xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/ar9003_paprd.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1  /*
2   * Copyright (c) 2010-2011 Atheros Communications Inc.
3   *
4   * Permission to use, copy, modify, and/or distribute this software for any
5   * purpose with or without fee is hereby granted, provided that the above
6   * copyright notice and this permission notice appear in all copies.
7   *
8   * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9   * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10   * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11   * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12   * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13   * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14   * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15   */
16  
17  #include <linux/export.h>
18  #include "hw.h"
19  #include "ar9003_phy.h"
20  
ar9003_paprd_enable(struct ath_hw * ah,bool val)21  void ar9003_paprd_enable(struct ath_hw *ah, bool val)
22  {
23  	struct ath9k_channel *chan = ah->curchan;
24  	bool is2ghz = IS_CHAN_2GHZ(chan);
25  
26  	/*
27  	 * 3 bits for modalHeader5G.papdRateMaskHt20
28  	 * is used for sub-band disabling of PAPRD.
29  	 * 5G band is divided into 3 sub-bands -- upper,
30  	 * middle, lower.
31  	 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
32  	 * -- disable PAPRD for upper band 5GHz
33  	 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
34  	 * -- disable PAPRD for middle band 5GHz
35  	 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
36  	 * -- disable PAPRD for lower band 5GHz
37  	 */
38  
39  	if (!is2ghz) {
40  		if (chan->channel >= UPPER_5G_SUB_BAND_START) {
41  			if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz)
42  								  & BIT(30))
43  				val = false;
44  		} else if (chan->channel >= MID_5G_SUB_BAND_START) {
45  			if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz)
46  								  & BIT(29))
47  				val = false;
48  		} else {
49  			if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz)
50  								  & BIT(28))
51  				val = false;
52  		}
53  	}
54  
55  	if (val) {
56  		ah->paprd_table_write_done = true;
57  		ath9k_hw_apply_txpower(ah, chan, false);
58  	}
59  
60  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
61  		      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
62  	if (ah->caps.tx_chainmask & BIT(1))
63  		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
64  			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
65  	if (ah->caps.tx_chainmask & BIT(2))
66  		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
67  			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
68  }
69  EXPORT_SYMBOL(ar9003_paprd_enable);
70  
ar9003_get_training_power_2g(struct ath_hw * ah)71  static int ar9003_get_training_power_2g(struct ath_hw *ah)
72  {
73  	struct ath9k_channel *chan = ah->curchan;
74  	unsigned int power, scale, delta;
75  
76  	scale = ar9003_get_paprd_scale_factor(ah, chan);
77  
78  	if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
79  	    AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
80  		power = ah->paprd_target_power + 2;
81  	} else if (AR_SREV_9485(ah)) {
82  		power = 25;
83  	} else {
84  		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
85  				       AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
86  
87  		delta = abs((int) ah->paprd_target_power - (int) power);
88  		if (delta > scale)
89  			return -1;
90  
91  		if (delta < 4)
92  			power -= 4 - delta;
93  	}
94  
95  	return power;
96  }
97  
ar9003_get_training_power_5g(struct ath_hw * ah)98  static int ar9003_get_training_power_5g(struct ath_hw *ah)
99  {
100  	struct ath_common *common = ath9k_hw_common(ah);
101  	struct ath9k_channel *chan = ah->curchan;
102  	unsigned int power, scale, delta;
103  
104  	scale = ar9003_get_paprd_scale_factor(ah, chan);
105  
106  	if (IS_CHAN_HT40(chan))
107  		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
108  			AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
109  	else
110  		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
111  			AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
112  
113  	power += scale;
114  	delta = abs((int) ah->paprd_target_power - (int) power);
115  	if (delta > scale)
116  		return -1;
117  
118  	switch (get_streams(ah->txchainmask)) {
119  	case 1:
120  		delta = 6;
121  		break;
122  	case 2:
123  		delta = 4;
124  		break;
125  	case 3:
126  		delta = 2;
127  		break;
128  	default:
129  		delta = 0;
130  		ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
131  			ah->txchainmask);
132  	}
133  
134  	power += delta;
135  	return power;
136  }
137  
ar9003_paprd_setup_single_table(struct ath_hw * ah)138  static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
139  {
140  	struct ath_common *common = ath9k_hw_common(ah);
141  	static const u32 ctrl0[3] = {
142  		AR_PHY_PAPRD_CTRL0_B0,
143  		AR_PHY_PAPRD_CTRL0_B1,
144  		AR_PHY_PAPRD_CTRL0_B2
145  	};
146  	static const u32 ctrl1[3] = {
147  		AR_PHY_PAPRD_CTRL1_B0,
148  		AR_PHY_PAPRD_CTRL1_B1,
149  		AR_PHY_PAPRD_CTRL1_B2
150  	};
151  	int training_power;
152  	int i, val;
153  	u32 am2pm_mask = ah->paprd_ratemask;
154  
155  	if (IS_CHAN_2GHZ(ah->curchan))
156  		training_power = ar9003_get_training_power_2g(ah);
157  	else
158  		training_power = ar9003_get_training_power_5g(ah);
159  
160  	ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
161  		training_power, ah->paprd_target_power);
162  
163  	if (training_power < 0) {
164  		ath_dbg(common, CALIBRATE,
165  			"PAPRD target power delta out of range\n");
166  		return -ERANGE;
167  	}
168  	ah->paprd_training_power = training_power;
169  
170  	if (AR_SREV_9330(ah))
171  		am2pm_mask = 0;
172  
173  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
174  		      ah->paprd_ratemask);
175  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
176  		      am2pm_mask);
177  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
178  		      ah->paprd_ratemask_ht40);
179  
180  	ath_dbg(common, CALIBRATE, "PAPRD HT20 mask: 0x%x, HT40 mask: 0x%x\n",
181  		ah->paprd_ratemask, ah->paprd_ratemask_ht40);
182  
183  	for (i = 0; i < ah->caps.max_txchains; i++) {
184  		REG_RMW_FIELD(ah, ctrl0[i],
185  			      AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
186  		REG_RMW_FIELD(ah, ctrl1[i],
187  			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
188  		REG_RMW_FIELD(ah, ctrl1[i],
189  			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
190  		REG_RMW_FIELD(ah, ctrl1[i],
191  			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
192  		REG_RMW_FIELD(ah, ctrl1[i],
193  			      AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
194  		REG_RMW_FIELD(ah, ctrl1[i],
195  			      AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
196  		REG_RMW_FIELD(ah, ctrl1[i],
197  			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
198  		REG_RMW_FIELD(ah, ctrl0[i],
199  			      AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
200  	}
201  
202  	ar9003_paprd_enable(ah, false);
203  
204  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
205  		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
206  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
207  		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
208  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
209  		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
210  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
211  		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
212  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
213  		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
214  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
215  		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
216  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
217  		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
218  
219  	if (AR_SREV_9485(ah)) {
220  		val = 148;
221  	} else {
222  		if (IS_CHAN_2GHZ(ah->curchan)) {
223  			if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
224  				val = 145;
225  			else
226  				val = 147;
227  		} else {
228  			val = 137;
229  		}
230  	}
231  
232  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2(ah),
233  		      AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
234  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
235  		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
236  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
237  		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
238  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
239  		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
240  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
241  		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
242  
243  	if (AR_SREV_9485(ah) ||
244  	    AR_SREV_9462(ah) ||
245  	    AR_SREV_9565(ah) ||
246  	    AR_SREV_9550(ah) ||
247  	    AR_SREV_9330(ah) ||
248  	    AR_SREV_9340(ah))
249  		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
250  			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -3);
251  	else
252  		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
253  			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -6);
254  
255  	val = -10;
256  
257  	if (IS_CHAN_2GHZ(ah->curchan) && !AR_SREV_9462(ah) && !AR_SREV_9565(ah))
258  		val = -15;
259  
260  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
261  		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
262  		      val);
263  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
264  		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
265  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4(ah),
266  		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
267  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4(ah),
268  		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
269  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4(ah),
270  		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
271  		      100);
272  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
273  		      AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
274  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
275  		      AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
276  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
277  		      AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
278  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
279  		      AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
280  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
281  		      AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
282  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
283  		      AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
284  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
285  		      AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
286  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
287  		      AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
288  	return 0;
289  }
290  
ar9003_paprd_get_gain_table(struct ath_hw * ah)291  static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
292  {
293  	u32 *entry = ah->paprd_gain_table_entries;
294  	u8 *index = ah->paprd_gain_table_index;
295  	u32 reg = AR_PHY_TXGAIN_TABLE;
296  	int i;
297  
298  	for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
299  		entry[i] = REG_READ(ah, reg);
300  		index[i] = (entry[i] >> 24) & 0xff;
301  		reg += 4;
302  	}
303  }
304  
ar9003_get_desired_gain(struct ath_hw * ah,int chain,int target_power)305  static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
306  					    int target_power)
307  {
308  	int olpc_gain_delta = 0, cl_gain_mod;
309  	int alpha_therm, alpha_volt;
310  	int therm_cal_value, volt_cal_value;
311  	int therm_value, volt_value;
312  	int thermal_gain_corr, voltage_gain_corr;
313  	int desired_scale, desired_gain = 0;
314  	u32 reg_olpc  = 0, reg_cl_gain  = 0;
315  
316  	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
317  		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
318  	desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
319  				       AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
320  	alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
321  				     AR_PHY_TPC_19_ALPHA_THERM);
322  	alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
323  				    AR_PHY_TPC_19_ALPHA_VOLT);
324  	therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
325  					 AR_PHY_TPC_18_THERM_CAL_VALUE);
326  	volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
327  					AR_PHY_TPC_18_VOLT_CAL_VALUE);
328  	therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
329  				     AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
330  	volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
331  				    AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
332  
333  	switch (chain) {
334  	case 0:
335  		reg_olpc = AR_PHY_TPC_11_B0;
336  		reg_cl_gain = AR_PHY_CL_TAB_0;
337  		break;
338  	case 1:
339  		reg_olpc = AR_PHY_TPC_11_B1;
340  		reg_cl_gain = AR_PHY_CL_TAB_1;
341  		break;
342  	case 2:
343  		reg_olpc = AR_PHY_TPC_11_B2;
344  		reg_cl_gain = AR_PHY_CL_TAB_2;
345  		break;
346  	default:
347  		ath_dbg(ath9k_hw_common(ah), CALIBRATE,
348  			"Invalid chainmask: %d\n", chain);
349  		break;
350  	}
351  
352  	olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
353  					 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
354  	cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
355  					 AR_PHY_CL_TAB_CL_GAIN_MOD);
356  
357  	if (olpc_gain_delta >= 128)
358  		olpc_gain_delta = olpc_gain_delta - 256;
359  
360  	thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
361  			     (256 / 2)) / 256;
362  	voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
363  			     (128 / 2)) / 128;
364  	desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
365  	    voltage_gain_corr + desired_scale + cl_gain_mod;
366  
367  	return desired_gain;
368  }
369  
ar9003_tx_force_gain(struct ath_hw * ah,unsigned int gain_index)370  static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
371  {
372  	int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
373  	int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
374  	u32 *gain_table_entries = ah->paprd_gain_table_entries;
375  
376  	selected_gain_entry = gain_table_entries[gain_index];
377  	txbb1dbgain = selected_gain_entry & 0x7;
378  	txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
379  	txmxrgain = (selected_gain_entry >> 5) & 0xf;
380  	padrvgnA = (selected_gain_entry >> 9) & 0xf;
381  	padrvgnB = (selected_gain_entry >> 13) & 0xf;
382  	padrvgnC = (selected_gain_entry >> 17) & 0xf;
383  	padrvgnD = (selected_gain_entry >> 21) & 0x3;
384  
385  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
386  		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
387  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
388  		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
389  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
390  		      AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
391  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
392  		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
393  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
394  		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
395  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
396  		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
397  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
398  		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
399  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
400  		      AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
401  	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
402  		      AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
403  	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
404  	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
405  }
406  
find_expn(int num)407  static inline int find_expn(int num)
408  {
409  	return fls(num) - 1;
410  }
411  
find_proper_scale(int expn,int N)412  static inline int find_proper_scale(int expn, int N)
413  {
414  	return (expn > N) ? expn - 10 : 0;
415  }
416  
417  #define NUM_BIN 23
418  
create_pa_curve(u32 * data_L,u32 * data_U,u32 * pa_table,u16 * gain)419  static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
420  {
421  	unsigned int thresh_accum_cnt;
422  	int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
423  	int PA_in[NUM_BIN + 1];
424  	int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
425  	unsigned int B1_abs_max, B2_abs_max;
426  	int max_index, scale_factor;
427  	int y_est[NUM_BIN + 1];
428  	int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
429  	unsigned int x_tilde_abs;
430  	int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
431  	int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
432  	int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
433  	int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
434  	int y5, y3, tmp;
435  	int theta_low_bin = 0;
436  	int i;
437  
438  	/* disregard any bin that contains <= 16 samples */
439  	thresh_accum_cnt = 16;
440  	scale_factor = 5;
441  	max_index = 0;
442  	memset(theta, 0, sizeof(theta));
443  	memset(x_est, 0, sizeof(x_est));
444  	memset(Y, 0, sizeof(Y));
445  	memset(y_est, 0, sizeof(y_est));
446  	memset(x_tilde, 0, sizeof(x_tilde));
447  
448  	for (i = 0; i < NUM_BIN; i++) {
449  		s32 accum_cnt, accum_tx, accum_rx, accum_ang;
450  
451  		/* number of samples */
452  		accum_cnt = data_L[i] & 0xffff;
453  
454  		if (accum_cnt <= thresh_accum_cnt)
455  			continue;
456  
457  		max_index++;
458  
459  		/* sum(tx amplitude) */
460  		accum_tx = ((data_L[i] >> 16) & 0xffff) |
461  		    ((data_U[i] & 0x7ff) << 16);
462  
463  		/* sum(rx amplitude distance to lower bin edge) */
464  		accum_rx = ((data_U[i] >> 11) & 0x1f) |
465  		    ((data_L[i + 23] & 0xffff) << 5);
466  
467  		/* sum(angles) */
468  		accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
469  		    ((data_U[i + 23] & 0x7ff) << 16);
470  
471  		accum_tx <<= scale_factor;
472  		accum_rx <<= scale_factor;
473  		x_est[max_index] =
474  			(((accum_tx + accum_cnt) / accum_cnt) + 32) >>
475  			scale_factor;
476  
477  		Y[max_index] =
478  			((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
479  			    scale_factor) +
480  			(1 << scale_factor) * i + 16;
481  
482  		if (accum_ang >= (1 << 26))
483  			accum_ang -= 1 << 27;
484  
485  		theta[max_index] =
486  			((accum_ang * (1 << scale_factor)) + accum_cnt) /
487  			accum_cnt;
488  	}
489  
490  	/*
491  	 * Find average theta of first 5 bin and all of those to same value.
492  	 * Curve is linear at that range.
493  	 */
494  	for (i = 1; i < 6; i++)
495  		theta_low_bin += theta[i];
496  
497  	theta_low_bin = theta_low_bin / 5;
498  	for (i = 1; i < 6; i++)
499  		theta[i] = theta_low_bin;
500  
501  	/* Set values at origin */
502  	theta[0] = theta_low_bin;
503  	for (i = 0; i <= max_index; i++)
504  		theta[i] -= theta_low_bin;
505  
506  	x_est[0] = 0;
507  	Y[0] = 0;
508  	scale_factor = 8;
509  
510  	/* low signal gain */
511  	if (x_est[6] == x_est[3])
512  		return false;
513  
514  	G_fxp =
515  	    (((Y[6] - Y[3]) * 1 << scale_factor) +
516  	     (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
517  
518  	/* prevent division by zero */
519  	if (G_fxp == 0)
520  		return false;
521  
522  	Y_intercept =
523  	    (G_fxp * (x_est[0] - x_est[3]) +
524  	     (1 << scale_factor)) / (1 << scale_factor) + Y[3];
525  
526  	for (i = 0; i <= max_index; i++)
527  		y_est[i] = Y[i] - Y_intercept;
528  
529  	for (i = 0; i <= 3; i++) {
530  		y_est[i] = i * 32;
531  		x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
532  	}
533  
534  	if (y_est[max_index] == 0)
535  		return false;
536  
537  	x_est_fxp1_nonlin =
538  	    x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
539  				G_fxp) / G_fxp;
540  
541  	order_x_by_y =
542  	    (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
543  
544  	if (order_x_by_y == 0)
545  		M = 10;
546  	else if (order_x_by_y == 1)
547  		M = 9;
548  	else
549  		M = 8;
550  
551  	I = (max_index > 15) ? 7 : max_index >> 1;
552  	L = max_index - I;
553  	scale_factor = 8;
554  	sum_y_sqr = 0;
555  	sum_y_quad = 0;
556  	x_tilde_abs = 0;
557  
558  	for (i = 0; i <= L; i++) {
559  		unsigned int y_sqr;
560  		unsigned int y_quad;
561  		unsigned int tmp_abs;
562  
563  		/* prevent division by zero */
564  		if (y_est[i + I] == 0)
565  			return false;
566  
567  		x_est_fxp1_nonlin =
568  		    x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
569  				    G_fxp) / G_fxp;
570  
571  		x_tilde[i] =
572  		    (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
573  									  I];
574  		x_tilde[i] =
575  		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
576  		x_tilde[i] =
577  		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
578  		y_sqr =
579  		    (y_est[i + I] * y_est[i + I] +
580  		     (scale_factor * scale_factor)) / (scale_factor *
581  						       scale_factor);
582  		tmp_abs = abs(x_tilde[i]);
583  		if (tmp_abs > x_tilde_abs)
584  			x_tilde_abs = tmp_abs;
585  
586  		y_quad = y_sqr * y_sqr;
587  		sum_y_sqr = sum_y_sqr + y_sqr;
588  		sum_y_quad = sum_y_quad + y_quad;
589  		B1_tmp[i] = y_sqr * (L + 1);
590  		B2_tmp[i] = y_sqr;
591  	}
592  
593  	B1_abs_max = 0;
594  	B2_abs_max = 0;
595  	for (i = 0; i <= L; i++) {
596  		int abs_val;
597  
598  		B1_tmp[i] -= sum_y_sqr;
599  		B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
600  
601  		abs_val = abs(B1_tmp[i]);
602  		if (abs_val > B1_abs_max)
603  			B1_abs_max = abs_val;
604  
605  		abs_val = abs(B2_tmp[i]);
606  		if (abs_val > B2_abs_max)
607  			B2_abs_max = abs_val;
608  	}
609  
610  	Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
611  	Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
612  	Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
613  
614  	beta_raw = 0;
615  	alpha_raw = 0;
616  	for (i = 0; i <= L; i++) {
617  		x_tilde[i] = x_tilde[i] / (1 << Q_x);
618  		B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
619  		B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
620  		beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
621  		alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
622  	}
623  
624  	scale_B =
625  	    ((sum_y_quad / scale_factor) * (L + 1) -
626  	     (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
627  
628  	Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
629  	scale_B = scale_B / (1 << Q_scale_B);
630  	if (scale_B == 0)
631  		return false;
632  	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
633  	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
634  	beta_raw = beta_raw / (1 << Q_beta);
635  	alpha_raw = alpha_raw / (1 << Q_alpha);
636  	alpha = (alpha_raw << 10) / scale_B;
637  	beta = (beta_raw << 10) / scale_B;
638  	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
639  	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
640  	order1_5x = order_1 / 5;
641  	order2_3x = order_2 / 3;
642  	order1_5x_rem = order_1 - 5 * order1_5x;
643  	order2_3x_rem = order_2 - 3 * order2_3x;
644  
645  	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
646  		tmp = i * 32;
647  		y5 = ((beta * tmp) >> 6) >> order1_5x;
648  		y5 = (y5 * tmp) >> order1_5x;
649  		y5 = (y5 * tmp) >> order1_5x;
650  		y5 = (y5 * tmp) >> order1_5x;
651  		y5 = (y5 * tmp) >> order1_5x;
652  		y5 = y5 >> order1_5x_rem;
653  		y3 = (alpha * tmp) >> order2_3x;
654  		y3 = (y3 * tmp) >> order2_3x;
655  		y3 = (y3 * tmp) >> order2_3x;
656  		y3 = y3 >> order2_3x_rem;
657  		PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
658  
659  		if (i >= 2) {
660  			tmp = PA_in[i] - PA_in[i - 1];
661  			if (tmp < 0)
662  				PA_in[i] =
663  				    PA_in[i - 1] + (PA_in[i - 1] -
664  						    PA_in[i - 2]);
665  		}
666  
667  		PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
668  	}
669  
670  	beta_raw = 0;
671  	alpha_raw = 0;
672  
673  	for (i = 0; i <= L; i++) {
674  		int theta_tilde =
675  		    ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
676  		theta_tilde =
677  		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
678  		theta_tilde =
679  		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
680  		beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
681  		alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
682  	}
683  
684  	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
685  	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
686  	beta_raw = beta_raw / (1 << Q_beta);
687  	alpha_raw = alpha_raw / (1 << Q_alpha);
688  
689  	alpha = (alpha_raw << 10) / scale_B;
690  	beta = (beta_raw << 10) / scale_B;
691  	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
692  	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
693  	order1_5x = order_1 / 5;
694  	order2_3x = order_2 / 3;
695  	order1_5x_rem = order_1 - 5 * order1_5x;
696  	order2_3x_rem = order_2 - 3 * order2_3x;
697  
698  	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
699  		int PA_angle;
700  
701  		/* pa_table[4] is calculated from PA_angle for i=5 */
702  		if (i == 4)
703  			continue;
704  
705  		tmp = i * 32;
706  		if (beta > 0)
707  			y5 = (((beta * tmp - 64) >> 6) -
708  			      (1 << order1_5x)) / (1 << order1_5x);
709  		else
710  			y5 = ((((beta * tmp - 64) >> 6) +
711  			       (1 << order1_5x)) / (1 << order1_5x));
712  
713  		y5 = (y5 * tmp) / (1 << order1_5x);
714  		y5 = (y5 * tmp) / (1 << order1_5x);
715  		y5 = (y5 * tmp) / (1 << order1_5x);
716  		y5 = (y5 * tmp) / (1 << order1_5x);
717  		y5 = y5 / (1 << order1_5x_rem);
718  
719  		if (beta > 0)
720  			y3 = (alpha * tmp -
721  			      (1 << order2_3x)) / (1 << order2_3x);
722  		else
723  			y3 = (alpha * tmp +
724  			      (1 << order2_3x)) / (1 << order2_3x);
725  		y3 = (y3 * tmp) / (1 << order2_3x);
726  		y3 = (y3 * tmp) / (1 << order2_3x);
727  		y3 = y3 / (1 << order2_3x_rem);
728  
729  		if (i < 4) {
730  			PA_angle = 0;
731  		} else {
732  			PA_angle = y5 + y3;
733  			if (PA_angle < -150)
734  				PA_angle = -150;
735  			else if (PA_angle > 150)
736  				PA_angle = 150;
737  		}
738  
739  		pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
740  		if (i == 5) {
741  			PA_angle = (PA_angle + 2) >> 1;
742  			pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
743  			    (PA_angle & 0x7ff);
744  		}
745  	}
746  
747  	*gain = G_fxp;
748  	return true;
749  }
750  
ar9003_paprd_populate_single_table(struct ath_hw * ah,struct ath9k_hw_cal_data * caldata,int chain)751  void ar9003_paprd_populate_single_table(struct ath_hw *ah,
752  					struct ath9k_hw_cal_data *caldata,
753  					int chain)
754  {
755  	u32 *paprd_table_val = caldata->pa_table[chain];
756  	u32 small_signal_gain = caldata->small_signal_gain[chain];
757  	u32 training_power = ah->paprd_training_power;
758  	u32 reg = 0;
759  	int i;
760  
761  	if (chain == 0)
762  		reg = AR_PHY_PAPRD_MEM_TAB_B0;
763  	else if (chain == 1)
764  		reg = AR_PHY_PAPRD_MEM_TAB_B1;
765  	else if (chain == 2)
766  		reg = AR_PHY_PAPRD_MEM_TAB_B2;
767  
768  	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
769  		REG_WRITE(ah, reg, paprd_table_val[i]);
770  		reg = reg + 4;
771  	}
772  
773  	if (chain == 0)
774  		reg = AR_PHY_PA_GAIN123_B0;
775  	else if (chain == 1)
776  		reg = AR_PHY_PA_GAIN123_B1;
777  	else
778  		reg = AR_PHY_PA_GAIN123_B2;
779  
780  	REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
781  
782  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
783  		      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
784  		      training_power);
785  
786  	if (ah->caps.tx_chainmask & BIT(1))
787  		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
788  			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
789  			      training_power);
790  
791  	if (ah->caps.tx_chainmask & BIT(2))
792  		/* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
793  		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
794  			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
795  			      training_power);
796  }
797  EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
798  
ar9003_paprd_setup_gain_table(struct ath_hw * ah,int chain)799  void ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
800  {
801  	unsigned int i, desired_gain, gain_index;
802  	unsigned int train_power = ah->paprd_training_power;
803  
804  	desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
805  
806  	gain_index = 0;
807  	for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
808  		if (ah->paprd_gain_table_index[i] >= desired_gain)
809  			break;
810  		gain_index++;
811  	}
812  
813  	ar9003_tx_force_gain(ah, gain_index);
814  
815  	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
816  			AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
817  }
818  EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
819  
ar9003_paprd_retrain_pa_in(struct ath_hw * ah,struct ath9k_hw_cal_data * caldata,int chain)820  static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah,
821  				       struct ath9k_hw_cal_data *caldata,
822  				       int chain)
823  {
824  	u32 *pa_in = caldata->pa_table[chain];
825  	int capdiv_offset, quick_drop_offset;
826  	int capdiv2g, quick_drop;
827  	int count = 0;
828  	int i;
829  
830  	if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah))
831  		return false;
832  
833  	capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
834  				  AR_PHY_65NM_CH0_TXRF3_CAPDIV2G);
835  
836  	quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
837  				    AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP);
838  
839  	if (quick_drop)
840  		quick_drop -= 0x40;
841  
842  	for (i = 0; i < NUM_BIN + 1; i++) {
843  		if (pa_in[i] == 1400)
844  			count++;
845  	}
846  
847  	if (AR_SREV_9485(ah)) {
848  		if (pa_in[23] < 800) {
849  			capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150);
850  			capdiv2g += capdiv_offset;
851  			if (capdiv2g > 7) {
852  				capdiv2g = 7;
853  				if (pa_in[23] < 600) {
854  					quick_drop++;
855  					if (quick_drop > 0)
856  						quick_drop = 0;
857  				}
858  			}
859  		} else if (pa_in[23] == 1400) {
860  			quick_drop_offset = min_t(int, count / 3, 2);
861  			quick_drop += quick_drop_offset;
862  			capdiv2g += quick_drop_offset / 2;
863  
864  			if (capdiv2g > 7)
865  				capdiv2g = 7;
866  
867  			if (quick_drop > 0) {
868  				quick_drop = 0;
869  				capdiv2g -= quick_drop_offset;
870  				if (capdiv2g < 0)
871  					capdiv2g = 0;
872  			}
873  		} else {
874  			return false;
875  		}
876  	} else if (AR_SREV_9330(ah)) {
877  		if (pa_in[23] < 1000) {
878  			capdiv_offset = (1000 - pa_in[23]) / 100;
879  			capdiv2g += capdiv_offset;
880  			if (capdiv_offset > 3) {
881  				capdiv_offset = 1;
882  				quick_drop--;
883  			}
884  
885  			capdiv2g += capdiv_offset;
886  			if (capdiv2g > 6)
887  				capdiv2g = 6;
888  			if (quick_drop < -4)
889  				quick_drop = -4;
890  		} else if (pa_in[23] == 1400) {
891  			if (count > 3) {
892  				quick_drop++;
893  				capdiv2g -= count / 4;
894  				if (quick_drop > -2)
895  					quick_drop = -2;
896  			} else {
897  				capdiv2g--;
898  			}
899  
900  			if (capdiv2g < 0)
901  				capdiv2g = 0;
902  		} else {
903  			return false;
904  		}
905  	}
906  
907  	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
908  		      AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g);
909  	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
910  		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
911  		      quick_drop);
912  
913  	return true;
914  }
915  
ar9003_paprd_create_curve(struct ath_hw * ah,struct ath9k_hw_cal_data * caldata,int chain)916  int ar9003_paprd_create_curve(struct ath_hw *ah,
917  			      struct ath9k_hw_cal_data *caldata, int chain)
918  {
919  	u16 *small_signal_gain = &caldata->small_signal_gain[chain];
920  	u32 *pa_table = caldata->pa_table[chain];
921  	u32 *data_L, *data_U;
922  	int i, status = 0;
923  	u32 *buf;
924  	u32 reg;
925  
926  	memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
927  
928  	buf = kmalloc_array(2 * 48, sizeof(u32), GFP_KERNEL);
929  	if (!buf)
930  		return -ENOMEM;
931  
932  	data_L = &buf[0];
933  	data_U = &buf[48];
934  
935  	REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY(ah),
936  		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
937  
938  	reg = AR_PHY_CHAN_INFO_TAB_0;
939  	for (i = 0; i < 48; i++)
940  		data_L[i] = REG_READ(ah, reg + (i << 2));
941  
942  	REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY(ah),
943  		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
944  
945  	for (i = 0; i < 48; i++)
946  		data_U[i] = REG_READ(ah, reg + (i << 2));
947  
948  	if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
949  		status = -2;
950  
951  	if (ar9003_paprd_retrain_pa_in(ah, caldata, chain))
952  		status = -EINPROGRESS;
953  
954  	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
955  		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
956  
957  	kfree(buf);
958  
959  	return status;
960  }
961  EXPORT_SYMBOL(ar9003_paprd_create_curve);
962  
ar9003_paprd_init_table(struct ath_hw * ah)963  int ar9003_paprd_init_table(struct ath_hw *ah)
964  {
965  	int ret;
966  
967  	ret = ar9003_paprd_setup_single_table(ah);
968  	if (ret < 0)
969  	    return ret;
970  
971  	ar9003_paprd_get_gain_table(ah);
972  	return 0;
973  }
974  EXPORT_SYMBOL(ar9003_paprd_init_table);
975  
ar9003_paprd_is_done(struct ath_hw * ah)976  bool ar9003_paprd_is_done(struct ath_hw *ah)
977  {
978  	int paprd_done, agc2_pwr;
979  
980  	paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
981  				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
982  
983  	if (AR_SREV_9485(ah))
984  		goto exit;
985  
986  	if (paprd_done == 0x1) {
987  		agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
988  				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
989  
990  		ath_dbg(ath9k_hw_common(ah), CALIBRATE,
991  			"AGC2_PWR = 0x%x training done = 0x%x\n",
992  			agc2_pwr, paprd_done);
993  	/*
994  	 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
995  	 * when the training is completely done, otherwise retraining is
996  	 * done to make sure the value is in ideal range
997  	 */
998  		if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
999  			paprd_done = 0;
1000  	}
1001  exit:
1002  	return !!paprd_done;
1003  }
1004  EXPORT_SYMBOL(ar9003_paprd_is_done);
1005  
ar9003_is_paprd_enabled(struct ath_hw * ah)1006  bool ar9003_is_paprd_enabled(struct ath_hw *ah)
1007  {
1008  	if ((ah->caps.hw_caps & ATH9K_HW_CAP_PAPRD) && ah->config.enable_paprd)
1009  		return true;
1010  
1011  	return false;
1012  }
1013  EXPORT_SYMBOL(ar9003_is_paprd_enabled);
1014