xref: /openbmc/linux/drivers/isdn/hardware/mISDN/hfcsusb.c (revision c17cda15cc86e65e9725641daddcd7a63cc9ad01)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /* hfcsusb.c
3   * mISDN driver for Colognechip HFC-S USB chip
4   *
5   * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6   * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7   *
8   * module params
9   *   debug=<n>, default=0, with n=0xHHHHGGGG
10   *      H - l1 driver flags described in hfcsusb.h
11   *      G - common mISDN debug flags described at mISDNhw.h
12   *
13   *   poll=<n>, default 128
14   *     n : burst size of PH_DATA_IND at transparent rx data
15   *
16   * Revision: 0.3.3 (socket), 2008-11-05
17   */
18  
19  #include <linux/module.h>
20  #include <linux/delay.h>
21  #include <linux/usb.h>
22  #include <linux/mISDNhw.h>
23  #include <linux/slab.h>
24  #include "hfcsusb.h"
25  
26  static unsigned int debug;
27  static int poll = DEFAULT_TRANSP_BURST_SZ;
28  
29  static LIST_HEAD(HFClist);
30  static DEFINE_RWLOCK(HFClock);
31  
32  
33  MODULE_AUTHOR("Martin Bachem");
34  MODULE_LICENSE("GPL");
35  module_param(debug, uint, S_IRUGO | S_IWUSR);
36  module_param(poll, int, 0);
37  
38  static int hfcsusb_cnt;
39  
40  /* some function prototypes */
41  static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42  static void release_hw(struct hfcsusb *hw);
43  static void reset_hfcsusb(struct hfcsusb *hw);
44  static void setPortMode(struct hfcsusb *hw);
45  static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46  static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47  static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48  static void deactivate_bchannel(struct bchannel *bch);
49  static int  hfcsusb_ph_info(struct hfcsusb *hw);
50  
51  /* start next background transfer for control channel */
52  static void
ctrl_start_transfer(struct hfcsusb * hw)53  ctrl_start_transfer(struct hfcsusb *hw)
54  {
55  	if (debug & DBG_HFC_CALL_TRACE)
56  		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57  
58  	if (hw->ctrl_cnt) {
59  		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60  		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61  		hw->ctrl_urb->transfer_buffer = NULL;
62  		hw->ctrl_urb->transfer_buffer_length = 0;
63  		hw->ctrl_write.wIndex =
64  			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65  		hw->ctrl_write.wValue =
66  			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67  
68  		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69  	}
70  }
71  
72  /*
73   * queue a control transfer request to write HFC-S USB
74   * chip register using CTRL resuest queue
75   */
write_reg(struct hfcsusb * hw,__u8 reg,__u8 val)76  static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77  {
78  	struct ctrl_buf *buf;
79  
80  	if (debug & DBG_HFC_CALL_TRACE)
81  		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82  		       hw->name, __func__, reg, val);
83  
84  	spin_lock(&hw->ctrl_lock);
85  	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86  		spin_unlock(&hw->ctrl_lock);
87  		return 1;
88  	}
89  	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90  	buf->hfcs_reg = reg;
91  	buf->reg_val = val;
92  	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93  		hw->ctrl_in_idx = 0;
94  	if (++hw->ctrl_cnt == 1)
95  		ctrl_start_transfer(hw);
96  	spin_unlock(&hw->ctrl_lock);
97  
98  	return 0;
99  }
100  
101  /* control completion routine handling background control cmds */
102  static void
ctrl_complete(struct urb * urb)103  ctrl_complete(struct urb *urb)
104  {
105  	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106  
107  	if (debug & DBG_HFC_CALL_TRACE)
108  		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109  
110  	urb->dev = hw->dev;
111  	if (hw->ctrl_cnt) {
112  		hw->ctrl_cnt--;	/* decrement actual count */
113  		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114  			hw->ctrl_out_idx = 0;	/* pointer wrap */
115  
116  		ctrl_start_transfer(hw); /* start next transfer */
117  	}
118  }
119  
120  /* handle LED bits   */
121  static void
set_led_bit(struct hfcsusb * hw,signed short led_bits,int set_on)122  set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123  {
124  	if (set_on) {
125  		if (led_bits < 0)
126  			hw->led_state &= ~abs(led_bits);
127  		else
128  			hw->led_state |= led_bits;
129  	} else {
130  		if (led_bits < 0)
131  			hw->led_state |= abs(led_bits);
132  		else
133  			hw->led_state &= ~led_bits;
134  	}
135  }
136  
137  /* handle LED requests  */
138  static void
handle_led(struct hfcsusb * hw,int event)139  handle_led(struct hfcsusb *hw, int event)
140  {
141  	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142  		hfcsusb_idtab[hw->vend_idx].driver_info;
143  	__u8 tmpled;
144  
145  	if (driver_info->led_scheme == LED_OFF)
146  		return;
147  	tmpled = hw->led_state;
148  
149  	switch (event) {
150  	case LED_POWER_ON:
151  		set_led_bit(hw, driver_info->led_bits[0], 1);
152  		set_led_bit(hw, driver_info->led_bits[1], 0);
153  		set_led_bit(hw, driver_info->led_bits[2], 0);
154  		set_led_bit(hw, driver_info->led_bits[3], 0);
155  		break;
156  	case LED_POWER_OFF:
157  		set_led_bit(hw, driver_info->led_bits[0], 0);
158  		set_led_bit(hw, driver_info->led_bits[1], 0);
159  		set_led_bit(hw, driver_info->led_bits[2], 0);
160  		set_led_bit(hw, driver_info->led_bits[3], 0);
161  		break;
162  	case LED_S0_ON:
163  		set_led_bit(hw, driver_info->led_bits[1], 1);
164  		break;
165  	case LED_S0_OFF:
166  		set_led_bit(hw, driver_info->led_bits[1], 0);
167  		break;
168  	case LED_B1_ON:
169  		set_led_bit(hw, driver_info->led_bits[2], 1);
170  		break;
171  	case LED_B1_OFF:
172  		set_led_bit(hw, driver_info->led_bits[2], 0);
173  		break;
174  	case LED_B2_ON:
175  		set_led_bit(hw, driver_info->led_bits[3], 1);
176  		break;
177  	case LED_B2_OFF:
178  		set_led_bit(hw, driver_info->led_bits[3], 0);
179  		break;
180  	}
181  
182  	if (hw->led_state != tmpled) {
183  		if (debug & DBG_HFC_CALL_TRACE)
184  			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185  			       hw->name, __func__,
186  			       HFCUSB_P_DATA, hw->led_state);
187  
188  		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189  	}
190  }
191  
192  /*
193   * Layer2 -> Layer 1 Bchannel data
194   */
195  static int
hfcusb_l2l1B(struct mISDNchannel * ch,struct sk_buff * skb)196  hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197  {
198  	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
199  	struct hfcsusb		*hw = bch->hw;
200  	int			ret = -EINVAL;
201  	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
202  	u_long			flags;
203  
204  	if (debug & DBG_HFC_CALL_TRACE)
205  		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206  
207  	switch (hh->prim) {
208  	case PH_DATA_REQ:
209  		spin_lock_irqsave(&hw->lock, flags);
210  		ret = bchannel_senddata(bch, skb);
211  		spin_unlock_irqrestore(&hw->lock, flags);
212  		if (debug & DBG_HFC_CALL_TRACE)
213  			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214  			       hw->name, __func__, ret);
215  		if (ret > 0)
216  			ret = 0;
217  		return ret;
218  	case PH_ACTIVATE_REQ:
219  		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220  			hfcsusb_start_endpoint(hw, bch->nr - 1);
221  			ret = hfcsusb_setup_bch(bch, ch->protocol);
222  		} else
223  			ret = 0;
224  		if (!ret)
225  			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226  				    0, NULL, GFP_KERNEL);
227  		break;
228  	case PH_DEACTIVATE_REQ:
229  		deactivate_bchannel(bch);
230  		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231  			    0, NULL, GFP_KERNEL);
232  		ret = 0;
233  		break;
234  	}
235  	if (!ret)
236  		dev_kfree_skb(skb);
237  	return ret;
238  }
239  
240  /*
241   * send full D/B channel status information
242   * as MPH_INFORMATION_IND
243   */
244  static int
hfcsusb_ph_info(struct hfcsusb * hw)245  hfcsusb_ph_info(struct hfcsusb *hw)
246  {
247  	struct ph_info *phi;
248  	struct dchannel *dch = &hw->dch;
249  	int i;
250  
251  	phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252  	if (!phi)
253  		return -ENOMEM;
254  
255  	phi->dch.ch.protocol = hw->protocol;
256  	phi->dch.ch.Flags = dch->Flags;
257  	phi->dch.state = dch->state;
258  	phi->dch.num_bch = dch->dev.nrbchan;
259  	for (i = 0; i < dch->dev.nrbchan; i++) {
260  		phi->bch[i].protocol = hw->bch[i].ch.protocol;
261  		phi->bch[i].Flags = hw->bch[i].Flags;
262  	}
263  	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264  		    struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265  	kfree(phi);
266  
267  	return 0;
268  }
269  
270  /*
271   * Layer2 -> Layer 1 Dchannel data
272   */
273  static int
hfcusb_l2l1D(struct mISDNchannel * ch,struct sk_buff * skb)274  hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
275  {
276  	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
277  	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
278  	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
279  	struct hfcsusb		*hw = dch->hw;
280  	int			ret = -EINVAL;
281  	u_long			flags;
282  
283  	switch (hh->prim) {
284  	case PH_DATA_REQ:
285  		if (debug & DBG_HFC_CALL_TRACE)
286  			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
287  			       hw->name, __func__);
288  
289  		spin_lock_irqsave(&hw->lock, flags);
290  		ret = dchannel_senddata(dch, skb);
291  		spin_unlock_irqrestore(&hw->lock, flags);
292  		if (ret > 0) {
293  			ret = 0;
294  			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
295  		}
296  		break;
297  
298  	case PH_ACTIVATE_REQ:
299  		if (debug & DBG_HFC_CALL_TRACE)
300  			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
301  			       hw->name, __func__,
302  			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
303  
304  		if (hw->protocol == ISDN_P_NT_S0) {
305  			ret = 0;
306  			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
307  				_queue_data(&dch->dev.D,
308  					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
309  					    NULL, GFP_ATOMIC);
310  			} else {
311  				hfcsusb_ph_command(hw,
312  						   HFC_L1_ACTIVATE_NT);
313  				test_and_set_bit(FLG_L2_ACTIVATED,
314  						 &dch->Flags);
315  			}
316  		} else {
317  			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
318  			ret = l1_event(dch->l1, hh->prim);
319  		}
320  		break;
321  
322  	case PH_DEACTIVATE_REQ:
323  		if (debug & DBG_HFC_CALL_TRACE)
324  			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
325  			       hw->name, __func__);
326  		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
327  
328  		if (hw->protocol == ISDN_P_NT_S0) {
329  			struct sk_buff_head free_queue;
330  
331  			__skb_queue_head_init(&free_queue);
332  			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
333  			spin_lock_irqsave(&hw->lock, flags);
334  			skb_queue_splice_init(&dch->squeue, &free_queue);
335  			if (dch->tx_skb) {
336  				__skb_queue_tail(&free_queue, dch->tx_skb);
337  				dch->tx_skb = NULL;
338  			}
339  			dch->tx_idx = 0;
340  			if (dch->rx_skb) {
341  				__skb_queue_tail(&free_queue, dch->rx_skb);
342  				dch->rx_skb = NULL;
343  			}
344  			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
345  			spin_unlock_irqrestore(&hw->lock, flags);
346  			__skb_queue_purge(&free_queue);
347  #ifdef FIXME
348  			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
349  				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
350  #endif
351  			ret = 0;
352  		} else
353  			ret = l1_event(dch->l1, hh->prim);
354  		break;
355  	case MPH_INFORMATION_REQ:
356  		ret = hfcsusb_ph_info(hw);
357  		break;
358  	}
359  
360  	return ret;
361  }
362  
363  /*
364   * Layer 1 callback function
365   */
366  static int
hfc_l1callback(struct dchannel * dch,u_int cmd)367  hfc_l1callback(struct dchannel *dch, u_int cmd)
368  {
369  	struct hfcsusb *hw = dch->hw;
370  
371  	if (debug & DBG_HFC_CALL_TRACE)
372  		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
373  		       hw->name, __func__, cmd);
374  
375  	switch (cmd) {
376  	case INFO3_P8:
377  	case INFO3_P10:
378  	case HW_RESET_REQ:
379  	case HW_POWERUP_REQ:
380  		break;
381  
382  	case HW_DEACT_REQ:
383  		skb_queue_purge(&dch->squeue);
384  		if (dch->tx_skb) {
385  			dev_kfree_skb(dch->tx_skb);
386  			dch->tx_skb = NULL;
387  		}
388  		dch->tx_idx = 0;
389  		if (dch->rx_skb) {
390  			dev_kfree_skb(dch->rx_skb);
391  			dch->rx_skb = NULL;
392  		}
393  		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
394  		break;
395  	case PH_ACTIVATE_IND:
396  		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
397  		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
398  			    GFP_ATOMIC);
399  		break;
400  	case PH_DEACTIVATE_IND:
401  		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
402  		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
403  			    GFP_ATOMIC);
404  		break;
405  	default:
406  		if (dch->debug & DEBUG_HW)
407  			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
408  			       hw->name, __func__, cmd);
409  		return -1;
410  	}
411  	return hfcsusb_ph_info(hw);
412  }
413  
414  static int
open_dchannel(struct hfcsusb * hw,struct mISDNchannel * ch,struct channel_req * rq)415  open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
416  	      struct channel_req *rq)
417  {
418  	int err = 0;
419  
420  	if (debug & DEBUG_HW_OPEN)
421  		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
422  		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
423  		       __builtin_return_address(0));
424  	if (rq->protocol == ISDN_P_NONE)
425  		return -EINVAL;
426  
427  	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
428  	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
429  	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
430  
431  	/* E-Channel logging */
432  	if (rq->adr.channel == 1) {
433  		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
434  			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
435  			set_bit(FLG_ACTIVE, &hw->ech.Flags);
436  			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
437  				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
438  		} else
439  			return -EINVAL;
440  	}
441  
442  	if (!hw->initdone) {
443  		hw->protocol = rq->protocol;
444  		if (rq->protocol == ISDN_P_TE_S0) {
445  			err = create_l1(&hw->dch, hfc_l1callback);
446  			if (err)
447  				return err;
448  		}
449  		setPortMode(hw);
450  		ch->protocol = rq->protocol;
451  		hw->initdone = 1;
452  	} else {
453  		if (rq->protocol != ch->protocol)
454  			return -EPROTONOSUPPORT;
455  	}
456  
457  	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
458  	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
459  		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
460  			    0, NULL, GFP_KERNEL);
461  	rq->ch = ch;
462  	if (!try_module_get(THIS_MODULE))
463  		printk(KERN_WARNING "%s: %s: cannot get module\n",
464  		       hw->name, __func__);
465  	return 0;
466  }
467  
468  static int
open_bchannel(struct hfcsusb * hw,struct channel_req * rq)469  open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
470  {
471  	struct bchannel		*bch;
472  
473  	if (rq->adr.channel == 0 || rq->adr.channel > 2)
474  		return -EINVAL;
475  	if (rq->protocol == ISDN_P_NONE)
476  		return -EINVAL;
477  
478  	if (debug & DBG_HFC_CALL_TRACE)
479  		printk(KERN_DEBUG "%s: %s B%i\n",
480  		       hw->name, __func__, rq->adr.channel);
481  
482  	bch = &hw->bch[rq->adr.channel - 1];
483  	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
484  		return -EBUSY; /* b-channel can be only open once */
485  	bch->ch.protocol = rq->protocol;
486  	rq->ch = &bch->ch;
487  
488  	if (!try_module_get(THIS_MODULE))
489  		printk(KERN_WARNING "%s: %s:cannot get module\n",
490  		       hw->name, __func__);
491  	return 0;
492  }
493  
494  static int
channel_ctrl(struct hfcsusb * hw,struct mISDN_ctrl_req * cq)495  channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
496  {
497  	int ret = 0;
498  
499  	if (debug & DBG_HFC_CALL_TRACE)
500  		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
501  		       hw->name, __func__, (cq->op), (cq->channel));
502  
503  	switch (cq->op) {
504  	case MISDN_CTRL_GETOP:
505  		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
506  			MISDN_CTRL_DISCONNECT;
507  		break;
508  	default:
509  		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
510  		       hw->name, __func__, cq->op);
511  		ret = -EINVAL;
512  		break;
513  	}
514  	return ret;
515  }
516  
517  /*
518   * device control function
519   */
520  static int
hfc_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)521  hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
522  {
523  	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
524  	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
525  	struct hfcsusb		*hw = dch->hw;
526  	struct channel_req	*rq;
527  	int			err = 0;
528  
529  	if (dch->debug & DEBUG_HW)
530  		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
531  		       hw->name, __func__, cmd, arg);
532  	switch (cmd) {
533  	case OPEN_CHANNEL:
534  		rq = arg;
535  		if ((rq->protocol == ISDN_P_TE_S0) ||
536  		    (rq->protocol == ISDN_P_NT_S0))
537  			err = open_dchannel(hw, ch, rq);
538  		else
539  			err = open_bchannel(hw, rq);
540  		if (!err)
541  			hw->open++;
542  		break;
543  	case CLOSE_CHANNEL:
544  		hw->open--;
545  		if (debug & DEBUG_HW_OPEN)
546  			printk(KERN_DEBUG
547  			       "%s: %s: dev(%d) close from %p (open %d)\n",
548  			       hw->name, __func__, hw->dch.dev.id,
549  			       __builtin_return_address(0), hw->open);
550  		if (!hw->open) {
551  			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
552  			if (hw->fifos[HFCUSB_PCM_RX].pipe)
553  				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
554  			handle_led(hw, LED_POWER_ON);
555  		}
556  		module_put(THIS_MODULE);
557  		break;
558  	case CONTROL_CHANNEL:
559  		err = channel_ctrl(hw, arg);
560  		break;
561  	default:
562  		if (dch->debug & DEBUG_HW)
563  			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
564  			       hw->name, __func__, cmd);
565  		return -EINVAL;
566  	}
567  	return err;
568  }
569  
570  /*
571   * S0 TE state change event handler
572   */
573  static void
ph_state_te(struct dchannel * dch)574  ph_state_te(struct dchannel *dch)
575  {
576  	struct hfcsusb *hw = dch->hw;
577  
578  	if (debug & DEBUG_HW) {
579  		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
580  			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
581  			       HFC_TE_LAYER1_STATES[dch->state]);
582  		else
583  			printk(KERN_DEBUG "%s: %s: TE F%d\n",
584  			       hw->name, __func__, dch->state);
585  	}
586  
587  	switch (dch->state) {
588  	case 0:
589  		l1_event(dch->l1, HW_RESET_IND);
590  		break;
591  	case 3:
592  		l1_event(dch->l1, HW_DEACT_IND);
593  		break;
594  	case 5:
595  	case 8:
596  		l1_event(dch->l1, ANYSIGNAL);
597  		break;
598  	case 6:
599  		l1_event(dch->l1, INFO2);
600  		break;
601  	case 7:
602  		l1_event(dch->l1, INFO4_P8);
603  		break;
604  	}
605  	if (dch->state == 7)
606  		handle_led(hw, LED_S0_ON);
607  	else
608  		handle_led(hw, LED_S0_OFF);
609  }
610  
611  /*
612   * S0 NT state change event handler
613   */
614  static void
ph_state_nt(struct dchannel * dch)615  ph_state_nt(struct dchannel *dch)
616  {
617  	struct hfcsusb *hw = dch->hw;
618  
619  	if (debug & DEBUG_HW) {
620  		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
621  			printk(KERN_DEBUG "%s: %s: %s\n",
622  			       hw->name, __func__,
623  			       HFC_NT_LAYER1_STATES[dch->state]);
624  
625  		else
626  			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
627  			       hw->name, __func__, dch->state);
628  	}
629  
630  	switch (dch->state) {
631  	case (1):
632  		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
633  		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
634  		hw->nt_timer = 0;
635  		hw->timers &= ~NT_ACTIVATION_TIMER;
636  		handle_led(hw, LED_S0_OFF);
637  		break;
638  
639  	case (2):
640  		if (hw->nt_timer < 0) {
641  			hw->nt_timer = 0;
642  			hw->timers &= ~NT_ACTIVATION_TIMER;
643  			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
644  		} else {
645  			hw->timers |= NT_ACTIVATION_TIMER;
646  			hw->nt_timer = NT_T1_COUNT;
647  			/* allow G2 -> G3 transition */
648  			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
649  		}
650  		break;
651  	case (3):
652  		hw->nt_timer = 0;
653  		hw->timers &= ~NT_ACTIVATION_TIMER;
654  		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
655  		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
656  			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
657  		handle_led(hw, LED_S0_ON);
658  		break;
659  	case (4):
660  		hw->nt_timer = 0;
661  		hw->timers &= ~NT_ACTIVATION_TIMER;
662  		break;
663  	default:
664  		break;
665  	}
666  	hfcsusb_ph_info(hw);
667  }
668  
669  static void
ph_state(struct dchannel * dch)670  ph_state(struct dchannel *dch)
671  {
672  	struct hfcsusb *hw = dch->hw;
673  
674  	if (hw->protocol == ISDN_P_NT_S0)
675  		ph_state_nt(dch);
676  	else if (hw->protocol == ISDN_P_TE_S0)
677  		ph_state_te(dch);
678  }
679  
680  /*
681   * disable/enable BChannel for desired protocol
682   */
683  static int
hfcsusb_setup_bch(struct bchannel * bch,int protocol)684  hfcsusb_setup_bch(struct bchannel *bch, int protocol)
685  {
686  	struct hfcsusb *hw = bch->hw;
687  	__u8 conhdlc, sctrl, sctrl_r;
688  
689  	if (debug & DEBUG_HW)
690  		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
691  		       hw->name, __func__, bch->state, protocol,
692  		       bch->nr);
693  
694  	/* setup val for CON_HDLC */
695  	conhdlc = 0;
696  	if (protocol > ISDN_P_NONE)
697  		conhdlc = 8;	/* enable FIFO */
698  
699  	switch (protocol) {
700  	case (-1):	/* used for init */
701  		bch->state = -1;
702  		fallthrough;
703  	case (ISDN_P_NONE):
704  		if (bch->state == ISDN_P_NONE)
705  			return 0; /* already in idle state */
706  		bch->state = ISDN_P_NONE;
707  		clear_bit(FLG_HDLC, &bch->Flags);
708  		clear_bit(FLG_TRANSPARENT, &bch->Flags);
709  		break;
710  	case (ISDN_P_B_RAW):
711  		conhdlc |= 2;
712  		bch->state = protocol;
713  		set_bit(FLG_TRANSPARENT, &bch->Flags);
714  		break;
715  	case (ISDN_P_B_HDLC):
716  		bch->state = protocol;
717  		set_bit(FLG_HDLC, &bch->Flags);
718  		break;
719  	default:
720  		if (debug & DEBUG_HW)
721  			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
722  			       hw->name, __func__, protocol);
723  		return -ENOPROTOOPT;
724  	}
725  
726  	if (protocol >= ISDN_P_NONE) {
727  		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
728  		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729  		write_reg(hw, HFCUSB_INC_RES_F, 2);
730  		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
731  		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
732  		write_reg(hw, HFCUSB_INC_RES_F, 2);
733  
734  		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
735  		sctrl_r = 0x0;
736  		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
737  			sctrl |= 1;
738  			sctrl_r |= 1;
739  		}
740  		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
741  			sctrl |= 2;
742  			sctrl_r |= 2;
743  		}
744  		write_reg(hw, HFCUSB_SCTRL, sctrl);
745  		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
746  
747  		if (protocol > ISDN_P_NONE)
748  			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
749  		else
750  			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
751  				   LED_B2_OFF);
752  	}
753  	return hfcsusb_ph_info(hw);
754  }
755  
756  static void
hfcsusb_ph_command(struct hfcsusb * hw,u_char command)757  hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
758  {
759  	if (debug & DEBUG_HW)
760  		printk(KERN_DEBUG "%s: %s: %x\n",
761  		       hw->name, __func__, command);
762  
763  	switch (command) {
764  	case HFC_L1_ACTIVATE_TE:
765  		/* force sending sending INFO1 */
766  		write_reg(hw, HFCUSB_STATES, 0x14);
767  		/* start l1 activation */
768  		write_reg(hw, HFCUSB_STATES, 0x04);
769  		break;
770  
771  	case HFC_L1_FORCE_DEACTIVATE_TE:
772  		write_reg(hw, HFCUSB_STATES, 0x10);
773  		write_reg(hw, HFCUSB_STATES, 0x03);
774  		break;
775  
776  	case HFC_L1_ACTIVATE_NT:
777  		if (hw->dch.state == 3)
778  			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
779  				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
780  		else
781  			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
782  				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
783  		break;
784  
785  	case HFC_L1_DEACTIVATE_NT:
786  		write_reg(hw, HFCUSB_STATES,
787  			  HFCUSB_DO_ACTION);
788  		break;
789  	}
790  }
791  
792  /*
793   * Layer 1 B-channel hardware access
794   */
795  static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)796  channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
797  {
798  	return mISDN_ctrl_bchannel(bch, cq);
799  }
800  
801  /* collect data from incoming interrupt or isochron USB data */
802  static void
hfcsusb_rx_frame(struct usb_fifo * fifo,__u8 * data,unsigned int len,int finish)803  hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
804  		 int finish)
805  {
806  	struct hfcsusb	*hw = fifo->hw;
807  	struct sk_buff	*rx_skb = NULL;
808  	int		maxlen = 0;
809  	int		fifon = fifo->fifonum;
810  	int		i;
811  	int		hdlc = 0;
812  	unsigned long	flags;
813  
814  	if (debug & DBG_HFC_CALL_TRACE)
815  		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
816  		       "dch(%p) bch(%p) ech(%p)\n",
817  		       hw->name, __func__, fifon, len,
818  		       fifo->dch, fifo->bch, fifo->ech);
819  
820  	if (!len)
821  		return;
822  
823  	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
824  		printk(KERN_DEBUG "%s: %s: undefined channel\n",
825  		       hw->name, __func__);
826  		return;
827  	}
828  
829  	spin_lock_irqsave(&hw->lock, flags);
830  	if (fifo->dch) {
831  		rx_skb = fifo->dch->rx_skb;
832  		maxlen = fifo->dch->maxlen;
833  		hdlc = 1;
834  	}
835  	if (fifo->bch) {
836  		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
837  			fifo->bch->dropcnt += len;
838  			spin_unlock_irqrestore(&hw->lock, flags);
839  			return;
840  		}
841  		maxlen = bchannel_get_rxbuf(fifo->bch, len);
842  		rx_skb = fifo->bch->rx_skb;
843  		if (maxlen < 0) {
844  			if (rx_skb)
845  				skb_trim(rx_skb, 0);
846  			pr_warn("%s.B%d: No bufferspace for %d bytes\n",
847  				hw->name, fifo->bch->nr, len);
848  			spin_unlock_irqrestore(&hw->lock, flags);
849  			return;
850  		}
851  		maxlen = fifo->bch->maxlen;
852  		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
853  	}
854  	if (fifo->ech) {
855  		rx_skb = fifo->ech->rx_skb;
856  		maxlen = fifo->ech->maxlen;
857  		hdlc = 1;
858  	}
859  
860  	if (fifo->dch || fifo->ech) {
861  		if (!rx_skb) {
862  			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
863  			if (rx_skb) {
864  				if (fifo->dch)
865  					fifo->dch->rx_skb = rx_skb;
866  				if (fifo->ech)
867  					fifo->ech->rx_skb = rx_skb;
868  				skb_trim(rx_skb, 0);
869  			} else {
870  				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
871  				       hw->name, __func__);
872  				spin_unlock_irqrestore(&hw->lock, flags);
873  				return;
874  			}
875  		}
876  		/* D/E-Channel SKB range check */
877  		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
878  			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
879  			       "for fifo(%d) HFCUSB_D_RX\n",
880  			       hw->name, __func__, fifon);
881  			skb_trim(rx_skb, 0);
882  			spin_unlock_irqrestore(&hw->lock, flags);
883  			return;
884  		}
885  	}
886  
887  	skb_put_data(rx_skb, data, len);
888  
889  	if (hdlc) {
890  		/* we have a complete hdlc packet */
891  		if (finish) {
892  			if ((rx_skb->len > 3) &&
893  			    (!(rx_skb->data[rx_skb->len - 1]))) {
894  				if (debug & DBG_HFC_FIFO_VERBOSE) {
895  					printk(KERN_DEBUG "%s: %s: fifon(%i)"
896  					       " new RX len(%i): ",
897  					       hw->name, __func__, fifon,
898  					       rx_skb->len);
899  					i = 0;
900  					while (i < rx_skb->len)
901  						printk("%02x ",
902  						       rx_skb->data[i++]);
903  					printk("\n");
904  				}
905  
906  				/* remove CRC & status */
907  				skb_trim(rx_skb, rx_skb->len - 3);
908  
909  				if (fifo->dch)
910  					recv_Dchannel(fifo->dch);
911  				if (fifo->bch)
912  					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
913  						      0);
914  				if (fifo->ech)
915  					recv_Echannel(fifo->ech,
916  						      &hw->dch);
917  			} else {
918  				if (debug & DBG_HFC_FIFO_VERBOSE) {
919  					printk(KERN_DEBUG
920  					       "%s: CRC or minlen ERROR fifon(%i) "
921  					       "RX len(%i): ",
922  					       hw->name, fifon, rx_skb->len);
923  					i = 0;
924  					while (i < rx_skb->len)
925  						printk("%02x ",
926  						       rx_skb->data[i++]);
927  					printk("\n");
928  				}
929  				skb_trim(rx_skb, 0);
930  			}
931  		}
932  	} else {
933  		/* deliver transparent data to layer2 */
934  		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
935  	}
936  	spin_unlock_irqrestore(&hw->lock, flags);
937  }
938  
939  static void
fill_isoc_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * buf,int num_packets,int packet_size,int interval,usb_complete_t complete,void * context)940  fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
941  	      void *buf, int num_packets, int packet_size, int interval,
942  	      usb_complete_t complete, void *context)
943  {
944  	int k;
945  
946  	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
947  			  complete, context);
948  
949  	urb->number_of_packets = num_packets;
950  	urb->transfer_flags = URB_ISO_ASAP;
951  	urb->actual_length = 0;
952  	urb->interval = interval;
953  
954  	for (k = 0; k < num_packets; k++) {
955  		urb->iso_frame_desc[k].offset = packet_size * k;
956  		urb->iso_frame_desc[k].length = packet_size;
957  		urb->iso_frame_desc[k].actual_length = 0;
958  	}
959  }
960  
961  /* receive completion routine for all ISO tx fifos   */
962  static void
rx_iso_complete(struct urb * urb)963  rx_iso_complete(struct urb *urb)
964  {
965  	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
966  	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
967  	struct hfcsusb *hw = fifo->hw;
968  	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
969  		status, iso_status, i;
970  	__u8 *buf;
971  	static __u8 eof[8];
972  	__u8 s0_state;
973  	unsigned long flags;
974  
975  	fifon = fifo->fifonum;
976  	status = urb->status;
977  
978  	spin_lock_irqsave(&hw->lock, flags);
979  	if (fifo->stop_gracefull) {
980  		fifo->stop_gracefull = 0;
981  		fifo->active = 0;
982  		spin_unlock_irqrestore(&hw->lock, flags);
983  		return;
984  	}
985  	spin_unlock_irqrestore(&hw->lock, flags);
986  
987  	/*
988  	 * ISO transfer only partially completed,
989  	 * look at individual frame status for details
990  	 */
991  	if (status == -EXDEV) {
992  		if (debug & DEBUG_HW)
993  			printk(KERN_DEBUG "%s: %s: with -EXDEV "
994  			       "urb->status %d, fifonum %d\n",
995  			       hw->name, __func__,  status, fifon);
996  
997  		/* clear status, so go on with ISO transfers */
998  		status = 0;
999  	}
1000  
1001  	s0_state = 0;
1002  	if (fifo->active && !status) {
1003  		num_isoc_packets = iso_packets[fifon];
1004  		maxlen = fifo->usb_packet_maxlen;
1005  
1006  		for (k = 0; k < num_isoc_packets; ++k) {
1007  			len = urb->iso_frame_desc[k].actual_length;
1008  			offset = urb->iso_frame_desc[k].offset;
1009  			buf = context_iso_urb->buffer + offset;
1010  			iso_status = urb->iso_frame_desc[k].status;
1011  
1012  			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1013  				printk(KERN_DEBUG "%s: %s: "
1014  				       "ISO packet %i, status: %i\n",
1015  				       hw->name, __func__, k, iso_status);
1016  			}
1017  
1018  			/* USB data log for every D ISO in */
1019  			if ((fifon == HFCUSB_D_RX) &&
1020  			    (debug & DBG_HFC_USB_VERBOSE)) {
1021  				printk(KERN_DEBUG
1022  				       "%s: %s: %d (%d/%d) len(%d) ",
1023  				       hw->name, __func__, urb->start_frame,
1024  				       k, num_isoc_packets - 1,
1025  				       len);
1026  				for (i = 0; i < len; i++)
1027  					printk("%x ", buf[i]);
1028  				printk("\n");
1029  			}
1030  
1031  			if (!iso_status) {
1032  				if (fifo->last_urblen != maxlen) {
1033  					/*
1034  					 * save fifo fill-level threshold bits
1035  					 * to use them later in TX ISO URB
1036  					 * completions
1037  					 */
1038  					hw->threshold_mask = buf[1];
1039  
1040  					if (fifon == HFCUSB_D_RX)
1041  						s0_state = (buf[0] >> 4);
1042  
1043  					eof[fifon] = buf[0] & 1;
1044  					if (len > 2)
1045  						hfcsusb_rx_frame(fifo, buf + 2,
1046  								 len - 2, (len < maxlen)
1047  								 ? eof[fifon] : 0);
1048  				} else
1049  					hfcsusb_rx_frame(fifo, buf, len,
1050  							 (len < maxlen) ?
1051  							 eof[fifon] : 0);
1052  				fifo->last_urblen = len;
1053  			}
1054  		}
1055  
1056  		/* signal S0 layer1 state change */
1057  		if ((s0_state) && (hw->initdone) &&
1058  		    (s0_state != hw->dch.state)) {
1059  			hw->dch.state = s0_state;
1060  			schedule_event(&hw->dch, FLG_PHCHANGE);
1061  		}
1062  
1063  		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1064  			      context_iso_urb->buffer, num_isoc_packets,
1065  			      fifo->usb_packet_maxlen, fifo->intervall,
1066  			      (usb_complete_t)rx_iso_complete, urb->context);
1067  		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1068  		if (errcode < 0) {
1069  			if (debug & DEBUG_HW)
1070  				printk(KERN_DEBUG "%s: %s: error submitting "
1071  				       "ISO URB: %d\n",
1072  				       hw->name, __func__, errcode);
1073  		}
1074  	} else {
1075  		if (status && (debug & DBG_HFC_URB_INFO))
1076  			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1077  			       "urb->status %d, fifonum %d\n",
1078  			       hw->name, __func__, status, fifon);
1079  	}
1080  }
1081  
1082  /* receive completion routine for all interrupt rx fifos */
1083  static void
rx_int_complete(struct urb * urb)1084  rx_int_complete(struct urb *urb)
1085  {
1086  	int len, status, i;
1087  	__u8 *buf, maxlen, fifon;
1088  	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1089  	struct hfcsusb *hw = fifo->hw;
1090  	static __u8 eof[8];
1091  	unsigned long flags;
1092  
1093  	spin_lock_irqsave(&hw->lock, flags);
1094  	if (fifo->stop_gracefull) {
1095  		fifo->stop_gracefull = 0;
1096  		fifo->active = 0;
1097  		spin_unlock_irqrestore(&hw->lock, flags);
1098  		return;
1099  	}
1100  	spin_unlock_irqrestore(&hw->lock, flags);
1101  
1102  	fifon = fifo->fifonum;
1103  	if ((!fifo->active) || (urb->status)) {
1104  		if (debug & DBG_HFC_URB_ERROR)
1105  			printk(KERN_DEBUG
1106  			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1107  			       hw->name, __func__, fifon, urb->status);
1108  
1109  		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1110  		return;
1111  	}
1112  	len = urb->actual_length;
1113  	buf = fifo->buffer;
1114  	maxlen = fifo->usb_packet_maxlen;
1115  
1116  	/* USB data log for every D INT in */
1117  	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1118  		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1119  		       hw->name, __func__, len);
1120  		for (i = 0; i < len; i++)
1121  			printk("%02x ", buf[i]);
1122  		printk("\n");
1123  	}
1124  
1125  	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1126  		/* the threshold mask is in the 2nd status byte */
1127  		hw->threshold_mask = buf[1];
1128  
1129  		/* signal S0 layer1 state change */
1130  		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1131  			hw->dch.state = (buf[0] >> 4);
1132  			schedule_event(&hw->dch, FLG_PHCHANGE);
1133  		}
1134  
1135  		eof[fifon] = buf[0] & 1;
1136  		/* if we have more than the 2 status bytes -> collect data */
1137  		if (len > 2)
1138  			hfcsusb_rx_frame(fifo, buf + 2,
1139  					 urb->actual_length - 2,
1140  					 (len < maxlen) ? eof[fifon] : 0);
1141  	} else {
1142  		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1143  				 (len < maxlen) ? eof[fifon] : 0);
1144  	}
1145  	fifo->last_urblen = urb->actual_length;
1146  
1147  	status = usb_submit_urb(urb, GFP_ATOMIC);
1148  	if (status) {
1149  		if (debug & DEBUG_HW)
1150  			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1151  			       hw->name, __func__);
1152  	}
1153  }
1154  
1155  /* transmit completion routine for all ISO tx fifos */
1156  static void
tx_iso_complete(struct urb * urb)1157  tx_iso_complete(struct urb *urb)
1158  {
1159  	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1160  	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1161  	struct hfcsusb *hw = fifo->hw;
1162  	struct sk_buff *tx_skb;
1163  	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1164  		errcode, hdlc, i;
1165  	int *tx_idx;
1166  	int frame_complete, fifon, status, fillempty = 0;
1167  	__u8 threshbit, *p;
1168  	unsigned long flags;
1169  
1170  	spin_lock_irqsave(&hw->lock, flags);
1171  	if (fifo->stop_gracefull) {
1172  		fifo->stop_gracefull = 0;
1173  		fifo->active = 0;
1174  		spin_unlock_irqrestore(&hw->lock, flags);
1175  		return;
1176  	}
1177  
1178  	if (fifo->dch) {
1179  		tx_skb = fifo->dch->tx_skb;
1180  		tx_idx = &fifo->dch->tx_idx;
1181  		hdlc = 1;
1182  	} else if (fifo->bch) {
1183  		tx_skb = fifo->bch->tx_skb;
1184  		tx_idx = &fifo->bch->tx_idx;
1185  		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1186  		if (!tx_skb && !hdlc &&
1187  		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1188  			fillempty = 1;
1189  	} else {
1190  		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1191  		       hw->name, __func__);
1192  		spin_unlock_irqrestore(&hw->lock, flags);
1193  		return;
1194  	}
1195  
1196  	fifon = fifo->fifonum;
1197  	status = urb->status;
1198  
1199  	tx_offset = 0;
1200  
1201  	/*
1202  	 * ISO transfer only partially completed,
1203  	 * look at individual frame status for details
1204  	 */
1205  	if (status == -EXDEV) {
1206  		if (debug & DBG_HFC_URB_ERROR)
1207  			printk(KERN_DEBUG "%s: %s: "
1208  			       "-EXDEV (%i) fifon (%d)\n",
1209  			       hw->name, __func__, status, fifon);
1210  
1211  		/* clear status, so go on with ISO transfers */
1212  		status = 0;
1213  	}
1214  
1215  	if (fifo->active && !status) {
1216  		/* is FifoFull-threshold set for our channel? */
1217  		threshbit = (hw->threshold_mask & (1 << fifon));
1218  		num_isoc_packets = iso_packets[fifon];
1219  
1220  		/* predict dataflow to avoid fifo overflow */
1221  		if (fifon >= HFCUSB_D_TX)
1222  			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1223  		else
1224  			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1225  		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1226  			      context_iso_urb->buffer, num_isoc_packets,
1227  			      fifo->usb_packet_maxlen, fifo->intervall,
1228  			      (usb_complete_t)tx_iso_complete, urb->context);
1229  		memset(context_iso_urb->buffer, 0,
1230  		       sizeof(context_iso_urb->buffer));
1231  		frame_complete = 0;
1232  
1233  		for (k = 0; k < num_isoc_packets; ++k) {
1234  			/* analyze tx success of previous ISO packets */
1235  			if (debug & DBG_HFC_URB_ERROR) {
1236  				errcode = urb->iso_frame_desc[k].status;
1237  				if (errcode) {
1238  					printk(KERN_DEBUG "%s: %s: "
1239  					       "ISO packet %i, status: %i\n",
1240  					       hw->name, __func__, k, errcode);
1241  				}
1242  			}
1243  
1244  			/* Generate next ISO Packets */
1245  			if (tx_skb)
1246  				remain = tx_skb->len - *tx_idx;
1247  			else if (fillempty)
1248  				remain = 15; /* > not complete */
1249  			else
1250  				remain = 0;
1251  
1252  			if (remain > 0) {
1253  				fifo->bit_line -= sink;
1254  				current_len = (0 - fifo->bit_line) / 8;
1255  				if (current_len > 14)
1256  					current_len = 14;
1257  				if (current_len < 0)
1258  					current_len = 0;
1259  				if (remain < current_len)
1260  					current_len = remain;
1261  
1262  				/* how much bit do we put on the line? */
1263  				fifo->bit_line += current_len * 8;
1264  
1265  				context_iso_urb->buffer[tx_offset] = 0;
1266  				if (current_len == remain) {
1267  					if (hdlc) {
1268  						/* signal frame completion */
1269  						context_iso_urb->
1270  							buffer[tx_offset] = 1;
1271  						/* add 2 byte flags and 16bit
1272  						 * CRC at end of ISDN frame */
1273  						fifo->bit_line += 32;
1274  					}
1275  					frame_complete = 1;
1276  				}
1277  
1278  				/* copy tx data to iso-urb buffer */
1279  				p = context_iso_urb->buffer + tx_offset + 1;
1280  				if (fillempty) {
1281  					memset(p, fifo->bch->fill[0],
1282  					       current_len);
1283  				} else {
1284  					memcpy(p, (tx_skb->data + *tx_idx),
1285  					       current_len);
1286  					*tx_idx += current_len;
1287  				}
1288  				urb->iso_frame_desc[k].offset = tx_offset;
1289  				urb->iso_frame_desc[k].length = current_len + 1;
1290  
1291  				/* USB data log for every D ISO out */
1292  				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1293  				    (debug & DBG_HFC_USB_VERBOSE)) {
1294  					printk(KERN_DEBUG
1295  					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1296  					       hw->name, __func__,
1297  					       k, num_isoc_packets - 1,
1298  					       urb->iso_frame_desc[k].offset,
1299  					       urb->iso_frame_desc[k].length);
1300  
1301  					for (i = urb->iso_frame_desc[k].offset;
1302  					     i < (urb->iso_frame_desc[k].offset
1303  						  + urb->iso_frame_desc[k].length);
1304  					     i++)
1305  						printk("%x ",
1306  						       context_iso_urb->buffer[i]);
1307  
1308  					printk(" skb->len(%i) tx-idx(%d)\n",
1309  					       tx_skb->len, *tx_idx);
1310  				}
1311  
1312  				tx_offset += (current_len + 1);
1313  			} else {
1314  				urb->iso_frame_desc[k].offset = tx_offset++;
1315  				urb->iso_frame_desc[k].length = 1;
1316  				/* we lower data margin every msec */
1317  				fifo->bit_line -= sink;
1318  				if (fifo->bit_line < BITLINE_INF)
1319  					fifo->bit_line = BITLINE_INF;
1320  			}
1321  
1322  			if (frame_complete) {
1323  				frame_complete = 0;
1324  
1325  				if (debug & DBG_HFC_FIFO_VERBOSE) {
1326  					printk(KERN_DEBUG  "%s: %s: "
1327  					       "fifon(%i) new TX len(%i): ",
1328  					       hw->name, __func__,
1329  					       fifon, tx_skb->len);
1330  					i = 0;
1331  					while (i < tx_skb->len)
1332  						printk("%02x ",
1333  						       tx_skb->data[i++]);
1334  					printk("\n");
1335  				}
1336  
1337  				dev_consume_skb_irq(tx_skb);
1338  				tx_skb = NULL;
1339  				if (fifo->dch && get_next_dframe(fifo->dch))
1340  					tx_skb = fifo->dch->tx_skb;
1341  				else if (fifo->bch &&
1342  					 get_next_bframe(fifo->bch))
1343  					tx_skb = fifo->bch->tx_skb;
1344  			}
1345  		}
1346  		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1347  		if (errcode < 0) {
1348  			if (debug & DEBUG_HW)
1349  				printk(KERN_DEBUG
1350  				       "%s: %s: error submitting ISO URB: %d \n",
1351  				       hw->name, __func__, errcode);
1352  		}
1353  
1354  		/*
1355  		 * abuse DChannel tx iso completion to trigger NT mode state
1356  		 * changes tx_iso_complete is assumed to be called every
1357  		 * fifo->intervall (ms)
1358  		 */
1359  		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1360  		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1361  			if ((--hw->nt_timer) < 0)
1362  				schedule_event(&hw->dch, FLG_PHCHANGE);
1363  		}
1364  
1365  	} else {
1366  		if (status && (debug & DBG_HFC_URB_ERROR))
1367  			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1368  			       "fifonum=%d\n",
1369  			       hw->name, __func__,
1370  			       symbolic(urb_errlist, status), status, fifon);
1371  	}
1372  	spin_unlock_irqrestore(&hw->lock, flags);
1373  }
1374  
1375  /*
1376   * allocs urbs and start isoc transfer with two pending urbs to avoid
1377   * gaps in the transfer chain
1378   */
1379  static int
start_isoc_chain(struct usb_fifo * fifo,int num_packets_per_urb,usb_complete_t complete,int packet_size)1380  start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1381  		 usb_complete_t complete, int packet_size)
1382  {
1383  	struct hfcsusb *hw = fifo->hw;
1384  	int i, k, errcode;
1385  
1386  	if (debug)
1387  		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1388  		       hw->name, __func__, fifo->fifonum);
1389  
1390  	/* allocate Memory for Iso out Urbs */
1391  	for (i = 0; i < 2; i++) {
1392  		if (!(fifo->iso[i].urb)) {
1393  			fifo->iso[i].urb =
1394  				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1395  			if (!(fifo->iso[i].urb)) {
1396  				printk(KERN_DEBUG
1397  				       "%s: %s: alloc urb for fifo %i failed",
1398  				       hw->name, __func__, fifo->fifonum);
1399  				continue;
1400  			}
1401  			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1402  			fifo->iso[i].indx = i;
1403  
1404  			/* Init the first iso */
1405  			if (ISO_BUFFER_SIZE >=
1406  			    (fifo->usb_packet_maxlen *
1407  			     num_packets_per_urb)) {
1408  				fill_isoc_urb(fifo->iso[i].urb,
1409  					      fifo->hw->dev, fifo->pipe,
1410  					      fifo->iso[i].buffer,
1411  					      num_packets_per_urb,
1412  					      fifo->usb_packet_maxlen,
1413  					      fifo->intervall, complete,
1414  					      &fifo->iso[i]);
1415  				memset(fifo->iso[i].buffer, 0,
1416  				       sizeof(fifo->iso[i].buffer));
1417  
1418  				for (k = 0; k < num_packets_per_urb; k++) {
1419  					fifo->iso[i].urb->
1420  						iso_frame_desc[k].offset =
1421  						k * packet_size;
1422  					fifo->iso[i].urb->
1423  						iso_frame_desc[k].length =
1424  						packet_size;
1425  				}
1426  			} else {
1427  				printk(KERN_DEBUG
1428  				       "%s: %s: ISO Buffer size to small!\n",
1429  				       hw->name, __func__);
1430  			}
1431  		}
1432  		fifo->bit_line = BITLINE_INF;
1433  
1434  		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1435  		fifo->active = (errcode >= 0) ? 1 : 0;
1436  		fifo->stop_gracefull = 0;
1437  		if (errcode < 0) {
1438  			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1439  			       hw->name, __func__,
1440  			       symbolic(urb_errlist, errcode), i);
1441  		}
1442  	}
1443  	return fifo->active;
1444  }
1445  
1446  static void
stop_iso_gracefull(struct usb_fifo * fifo)1447  stop_iso_gracefull(struct usb_fifo *fifo)
1448  {
1449  	struct hfcsusb *hw = fifo->hw;
1450  	int i, timeout;
1451  	u_long flags;
1452  
1453  	for (i = 0; i < 2; i++) {
1454  		spin_lock_irqsave(&hw->lock, flags);
1455  		if (debug)
1456  			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1457  			       hw->name, __func__, fifo->fifonum, i);
1458  		fifo->stop_gracefull = 1;
1459  		spin_unlock_irqrestore(&hw->lock, flags);
1460  	}
1461  
1462  	for (i = 0; i < 2; i++) {
1463  		timeout = 3;
1464  		while (fifo->stop_gracefull && timeout--)
1465  			schedule_timeout_interruptible((HZ / 1000) * 16);
1466  		if (debug && fifo->stop_gracefull)
1467  			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1468  			       hw->name, __func__, fifo->fifonum, i);
1469  	}
1470  }
1471  
1472  static void
stop_int_gracefull(struct usb_fifo * fifo)1473  stop_int_gracefull(struct usb_fifo *fifo)
1474  {
1475  	struct hfcsusb *hw = fifo->hw;
1476  	int timeout;
1477  	u_long flags;
1478  
1479  	spin_lock_irqsave(&hw->lock, flags);
1480  	if (debug)
1481  		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1482  		       hw->name, __func__, fifo->fifonum);
1483  	fifo->stop_gracefull = 1;
1484  	spin_unlock_irqrestore(&hw->lock, flags);
1485  
1486  	timeout = 3;
1487  	while (fifo->stop_gracefull && timeout--)
1488  		schedule_timeout_interruptible((HZ / 1000) * 3);
1489  	if (debug && fifo->stop_gracefull)
1490  		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1491  		       hw->name, __func__, fifo->fifonum);
1492  }
1493  
1494  /* start the interrupt transfer for the given fifo */
1495  static void
start_int_fifo(struct usb_fifo * fifo)1496  start_int_fifo(struct usb_fifo *fifo)
1497  {
1498  	struct hfcsusb *hw = fifo->hw;
1499  	int errcode;
1500  
1501  	if (debug)
1502  		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1503  		       hw->name, __func__, fifo->fifonum);
1504  
1505  	if (!fifo->urb) {
1506  		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1507  		if (!fifo->urb)
1508  			return;
1509  	}
1510  	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1511  			 fifo->buffer, fifo->usb_packet_maxlen,
1512  			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1513  	fifo->active = 1;
1514  	fifo->stop_gracefull = 0;
1515  	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1516  	if (errcode) {
1517  		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1518  		       hw->name, __func__, errcode);
1519  		fifo->active = 0;
1520  	}
1521  }
1522  
1523  static void
setPortMode(struct hfcsusb * hw)1524  setPortMode(struct hfcsusb *hw)
1525  {
1526  	if (debug & DEBUG_HW)
1527  		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1528  		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1529  
1530  	if (hw->protocol == ISDN_P_TE_S0) {
1531  		write_reg(hw, HFCUSB_SCTRL, 0x40);
1532  		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1533  		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1534  		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1535  		write_reg(hw, HFCUSB_STATES, 3);
1536  	} else {
1537  		write_reg(hw, HFCUSB_SCTRL, 0x44);
1538  		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1539  		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1540  		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1541  		write_reg(hw, HFCUSB_STATES, 1);
1542  	}
1543  }
1544  
1545  static void
reset_hfcsusb(struct hfcsusb * hw)1546  reset_hfcsusb(struct hfcsusb *hw)
1547  {
1548  	struct usb_fifo *fifo;
1549  	int i;
1550  
1551  	if (debug & DEBUG_HW)
1552  		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1553  
1554  	/* do Chip reset */
1555  	write_reg(hw, HFCUSB_CIRM, 8);
1556  
1557  	/* aux = output, reset off */
1558  	write_reg(hw, HFCUSB_CIRM, 0x10);
1559  
1560  	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1561  	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1562  		  ((hw->packet_size / 8) << 4));
1563  
1564  	/* set USB_SIZE_I to match the wMaxPacketSize for ISO transfers */
1565  	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1566  
1567  	/* enable PCM/GCI master mode */
1568  	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1569  	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1570  
1571  	/* init the fifos */
1572  	write_reg(hw, HFCUSB_F_THRES,
1573  		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1574  
1575  	fifo = hw->fifos;
1576  	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1577  		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1578  		fifo[i].max_size =
1579  			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1580  		fifo[i].last_urblen = 0;
1581  
1582  		/* set 2 bit for D- & E-channel */
1583  		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1584  
1585  		/* enable all fifos */
1586  		if (i == HFCUSB_D_TX)
1587  			write_reg(hw, HFCUSB_CON_HDLC,
1588  				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1589  		else
1590  			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1591  		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1592  	}
1593  
1594  	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1595  	handle_led(hw, LED_POWER_ON);
1596  }
1597  
1598  /* start USB data pipes dependand on device's endpoint configuration */
1599  static void
hfcsusb_start_endpoint(struct hfcsusb * hw,int channel)1600  hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1601  {
1602  	/* quick check if endpoint already running */
1603  	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1604  		return;
1605  	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1606  		return;
1607  	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1608  		return;
1609  	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1610  		return;
1611  
1612  	/* start rx endpoints using USB INT IN method */
1613  	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1614  		start_int_fifo(hw->fifos + channel * 2 + 1);
1615  
1616  	/* start rx endpoints using USB ISO IN method */
1617  	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1618  		switch (channel) {
1619  		case HFC_CHAN_D:
1620  			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1621  					 ISOC_PACKETS_D,
1622  					 (usb_complete_t)rx_iso_complete,
1623  					 16);
1624  			break;
1625  		case HFC_CHAN_E:
1626  			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1627  					 ISOC_PACKETS_D,
1628  					 (usb_complete_t)rx_iso_complete,
1629  					 16);
1630  			break;
1631  		case HFC_CHAN_B1:
1632  			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1633  					 ISOC_PACKETS_B,
1634  					 (usb_complete_t)rx_iso_complete,
1635  					 16);
1636  			break;
1637  		case HFC_CHAN_B2:
1638  			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1639  					 ISOC_PACKETS_B,
1640  					 (usb_complete_t)rx_iso_complete,
1641  					 16);
1642  			break;
1643  		}
1644  	}
1645  
1646  	/* start tx endpoints using USB ISO OUT method */
1647  	switch (channel) {
1648  	case HFC_CHAN_D:
1649  		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1650  				 ISOC_PACKETS_B,
1651  				 (usb_complete_t)tx_iso_complete, 1);
1652  		break;
1653  	case HFC_CHAN_B1:
1654  		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1655  				 ISOC_PACKETS_D,
1656  				 (usb_complete_t)tx_iso_complete, 1);
1657  		break;
1658  	case HFC_CHAN_B2:
1659  		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1660  				 ISOC_PACKETS_B,
1661  				 (usb_complete_t)tx_iso_complete, 1);
1662  		break;
1663  	}
1664  }
1665  
1666  /* stop USB data pipes dependand on device's endpoint configuration */
1667  static void
hfcsusb_stop_endpoint(struct hfcsusb * hw,int channel)1668  hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1669  {
1670  	/* quick check if endpoint currently running */
1671  	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1672  		return;
1673  	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1674  		return;
1675  	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1676  		return;
1677  	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1678  		return;
1679  
1680  	/* rx endpoints using USB INT IN method */
1681  	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1682  		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1683  
1684  	/* rx endpoints using USB ISO IN method */
1685  	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1686  		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1687  
1688  	/* tx endpoints using USB ISO OUT method */
1689  	if (channel != HFC_CHAN_E)
1690  		stop_iso_gracefull(hw->fifos + channel * 2);
1691  }
1692  
1693  
1694  /* Hardware Initialization */
1695  static int
setup_hfcsusb(struct hfcsusb * hw)1696  setup_hfcsusb(struct hfcsusb *hw)
1697  {
1698  	void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1699  	u_char b;
1700  	int ret;
1701  
1702  	if (debug & DBG_HFC_CALL_TRACE)
1703  		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1704  
1705  	if (!dmabuf)
1706  		return -ENOMEM;
1707  
1708  	ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1709  
1710  	memcpy(&b, dmabuf, sizeof(u_char));
1711  	kfree(dmabuf);
1712  
1713  	/* check the chip id */
1714  	if (ret != 1) {
1715  		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1716  		       hw->name, __func__);
1717  		return 1;
1718  	}
1719  	if (b != HFCUSB_CHIPID) {
1720  		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1721  		       hw->name, __func__, b);
1722  		return 1;
1723  	}
1724  
1725  	/* first set the needed config, interface and alternate */
1726  	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1727  
1728  	hw->led_state = 0;
1729  
1730  	/* init the background machinery for control requests */
1731  	hw->ctrl_read.bRequestType = 0xc0;
1732  	hw->ctrl_read.bRequest = 1;
1733  	hw->ctrl_read.wLength = cpu_to_le16(1);
1734  	hw->ctrl_write.bRequestType = 0x40;
1735  	hw->ctrl_write.bRequest = 0;
1736  	hw->ctrl_write.wLength = 0;
1737  	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1738  			     (u_char *)&hw->ctrl_write, NULL, 0,
1739  			     (usb_complete_t)ctrl_complete, hw);
1740  
1741  	reset_hfcsusb(hw);
1742  	return 0;
1743  }
1744  
1745  static void
release_hw(struct hfcsusb * hw)1746  release_hw(struct hfcsusb *hw)
1747  {
1748  	if (debug & DBG_HFC_CALL_TRACE)
1749  		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1750  
1751  	/*
1752  	 * stop all endpoints gracefully
1753  	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1754  	 *       signals after calling mISDN_unregister_device()
1755  	 */
1756  	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1757  	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1758  	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1759  	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1760  		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1761  	if (hw->protocol == ISDN_P_TE_S0)
1762  		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1763  
1764  	mISDN_unregister_device(&hw->dch.dev);
1765  	mISDN_freebchannel(&hw->bch[1]);
1766  	mISDN_freebchannel(&hw->bch[0]);
1767  	mISDN_freedchannel(&hw->dch);
1768  
1769  	if (hw->ctrl_urb) {
1770  		usb_kill_urb(hw->ctrl_urb);
1771  		usb_free_urb(hw->ctrl_urb);
1772  		hw->ctrl_urb = NULL;
1773  	}
1774  
1775  	if (hw->intf)
1776  		usb_set_intfdata(hw->intf, NULL);
1777  	list_del(&hw->list);
1778  	kfree(hw);
1779  	hw = NULL;
1780  }
1781  
1782  static void
deactivate_bchannel(struct bchannel * bch)1783  deactivate_bchannel(struct bchannel *bch)
1784  {
1785  	struct hfcsusb *hw = bch->hw;
1786  	u_long flags;
1787  
1788  	if (bch->debug & DEBUG_HW)
1789  		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1790  		       hw->name, __func__, bch->nr);
1791  
1792  	spin_lock_irqsave(&hw->lock, flags);
1793  	mISDN_clear_bchannel(bch);
1794  	spin_unlock_irqrestore(&hw->lock, flags);
1795  	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1796  	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1797  }
1798  
1799  /*
1800   * Layer 1 B-channel hardware access
1801   */
1802  static int
hfc_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)1803  hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1804  {
1805  	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1806  	int		ret = -EINVAL;
1807  
1808  	if (bch->debug & DEBUG_HW)
1809  		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1810  
1811  	switch (cmd) {
1812  	case HW_TESTRX_RAW:
1813  	case HW_TESTRX_HDLC:
1814  	case HW_TESTRX_OFF:
1815  		ret = -EINVAL;
1816  		break;
1817  
1818  	case CLOSE_CHANNEL:
1819  		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1820  		deactivate_bchannel(bch);
1821  		ch->protocol = ISDN_P_NONE;
1822  		ch->peer = NULL;
1823  		module_put(THIS_MODULE);
1824  		ret = 0;
1825  		break;
1826  	case CONTROL_CHANNEL:
1827  		ret = channel_bctrl(bch, arg);
1828  		break;
1829  	default:
1830  		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1831  		       __func__, cmd);
1832  	}
1833  	return ret;
1834  }
1835  
1836  static int
setup_instance(struct hfcsusb * hw,struct device * parent)1837  setup_instance(struct hfcsusb *hw, struct device *parent)
1838  {
1839  	u_long	flags;
1840  	int	err, i;
1841  
1842  	if (debug & DBG_HFC_CALL_TRACE)
1843  		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1844  
1845  	spin_lock_init(&hw->ctrl_lock);
1846  	spin_lock_init(&hw->lock);
1847  
1848  	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1849  	hw->dch.debug = debug & 0xFFFF;
1850  	hw->dch.hw = hw;
1851  	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1852  	hw->dch.dev.D.send = hfcusb_l2l1D;
1853  	hw->dch.dev.D.ctrl = hfc_dctrl;
1854  
1855  	/* enable E-Channel logging */
1856  	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1857  		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1858  
1859  	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1860  		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1861  	hw->dch.dev.nrbchan = 2;
1862  	for (i = 0; i < 2; i++) {
1863  		hw->bch[i].nr = i + 1;
1864  		set_channelmap(i + 1, hw->dch.dev.channelmap);
1865  		hw->bch[i].debug = debug;
1866  		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1867  		hw->bch[i].hw = hw;
1868  		hw->bch[i].ch.send = hfcusb_l2l1B;
1869  		hw->bch[i].ch.ctrl = hfc_bctrl;
1870  		hw->bch[i].ch.nr = i + 1;
1871  		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1872  	}
1873  
1874  	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1875  	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1876  	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1877  	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1878  	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1879  	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1880  	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1881  	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1882  
1883  	err = setup_hfcsusb(hw);
1884  	if (err)
1885  		goto out;
1886  
1887  	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1888  		 hfcsusb_cnt + 1);
1889  	printk(KERN_INFO "%s: registered as '%s'\n",
1890  	       DRIVER_NAME, hw->name);
1891  
1892  	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1893  	if (err)
1894  		goto out;
1895  
1896  	hfcsusb_cnt++;
1897  	write_lock_irqsave(&HFClock, flags);
1898  	list_add_tail(&hw->list, &HFClist);
1899  	write_unlock_irqrestore(&HFClock, flags);
1900  	return 0;
1901  
1902  out:
1903  	mISDN_freebchannel(&hw->bch[1]);
1904  	mISDN_freebchannel(&hw->bch[0]);
1905  	mISDN_freedchannel(&hw->dch);
1906  	kfree(hw);
1907  	return err;
1908  }
1909  
1910  static int
hfcsusb_probe(struct usb_interface * intf,const struct usb_device_id * id)1911  hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1912  {
1913  	struct hfcsusb			*hw;
1914  	struct usb_device		*dev = interface_to_usbdev(intf);
1915  	struct usb_host_interface	*iface = intf->cur_altsetting;
1916  	struct usb_host_interface	*iface_used = NULL;
1917  	struct usb_host_endpoint	*ep;
1918  	struct hfcsusb_vdata		*driver_info;
1919  	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1920  		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1921  		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1922  		alt_used = 0;
1923  
1924  	vend_idx = 0xffff;
1925  	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1926  		if ((le16_to_cpu(dev->descriptor.idVendor)
1927  		     == hfcsusb_idtab[i].idVendor) &&
1928  		    (le16_to_cpu(dev->descriptor.idProduct)
1929  		     == hfcsusb_idtab[i].idProduct)) {
1930  			vend_idx = i;
1931  			continue;
1932  		}
1933  	}
1934  
1935  	printk(KERN_DEBUG
1936  	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1937  	       __func__, ifnum, iface->desc.bAlternateSetting,
1938  	       intf->minor, vend_idx);
1939  
1940  	if (vend_idx == 0xffff) {
1941  		printk(KERN_WARNING
1942  		       "%s: no valid vendor found in USB descriptor\n",
1943  		       __func__);
1944  		return -EIO;
1945  	}
1946  	/* if vendor and product ID is OK, start probing alternate settings */
1947  	alt_idx = 0;
1948  	small_match = -1;
1949  
1950  	/* default settings */
1951  	iso_packet_size = 16;
1952  	packet_size = 64;
1953  
1954  	while (alt_idx < intf->num_altsetting) {
1955  		iface = intf->altsetting + alt_idx;
1956  		probe_alt_setting = iface->desc.bAlternateSetting;
1957  		cfg_used = 0;
1958  
1959  		while (validconf[cfg_used][0]) {
1960  			cfg_found = 1;
1961  			vcf = validconf[cfg_used];
1962  			ep = iface->endpoint;
1963  			memcpy(cmptbl, vcf, 16 * sizeof(int));
1964  
1965  			/* check for all endpoints in this alternate setting */
1966  			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1967  				ep_addr = ep->desc.bEndpointAddress;
1968  
1969  				/* get endpoint base */
1970  				idx = ((ep_addr & 0x7f) - 1) * 2;
1971  				if (idx > 15)
1972  					return -EIO;
1973  
1974  				if (ep_addr & 0x80)
1975  					idx++;
1976  				attr = ep->desc.bmAttributes;
1977  
1978  				if (cmptbl[idx] != EP_NOP) {
1979  					if (cmptbl[idx] == EP_NUL)
1980  						cfg_found = 0;
1981  					if (attr == USB_ENDPOINT_XFER_INT
1982  					    && cmptbl[idx] == EP_INT)
1983  						cmptbl[idx] = EP_NUL;
1984  					if (attr == USB_ENDPOINT_XFER_BULK
1985  					    && cmptbl[idx] == EP_BLK)
1986  						cmptbl[idx] = EP_NUL;
1987  					if (attr == USB_ENDPOINT_XFER_ISOC
1988  					    && cmptbl[idx] == EP_ISO)
1989  						cmptbl[idx] = EP_NUL;
1990  
1991  					if (attr == USB_ENDPOINT_XFER_INT &&
1992  					    ep->desc.bInterval < vcf[17]) {
1993  						cfg_found = 0;
1994  					}
1995  				}
1996  				ep++;
1997  			}
1998  
1999  			for (i = 0; i < 16; i++)
2000  				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2001  					cfg_found = 0;
2002  
2003  			if (cfg_found) {
2004  				if (small_match < cfg_used) {
2005  					small_match = cfg_used;
2006  					alt_used = probe_alt_setting;
2007  					iface_used = iface;
2008  				}
2009  			}
2010  			cfg_used++;
2011  		}
2012  		alt_idx++;
2013  	}	/* (alt_idx < intf->num_altsetting) */
2014  
2015  	/* not found a valid USB Ta Endpoint config */
2016  	if (small_match == -1)
2017  		return -EIO;
2018  
2019  	iface = iface_used;
2020  	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2021  	if (!hw)
2022  		return -ENOMEM;	/* got no mem */
2023  	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2024  
2025  	ep = iface->endpoint;
2026  	vcf = validconf[small_match];
2027  
2028  	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2029  		struct usb_fifo *f;
2030  
2031  		ep_addr = ep->desc.bEndpointAddress;
2032  		/* get endpoint base */
2033  		idx = ((ep_addr & 0x7f) - 1) * 2;
2034  		if (ep_addr & 0x80)
2035  			idx++;
2036  		f = &hw->fifos[idx & 7];
2037  
2038  		/* init Endpoints */
2039  		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2040  			ep++;
2041  			continue;
2042  		}
2043  		switch (ep->desc.bmAttributes) {
2044  		case USB_ENDPOINT_XFER_INT:
2045  			f->pipe = usb_rcvintpipe(dev,
2046  						 ep->desc.bEndpointAddress);
2047  			f->usb_transfer_mode = USB_INT;
2048  			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2049  			break;
2050  		case USB_ENDPOINT_XFER_BULK:
2051  			if (ep_addr & 0x80)
2052  				f->pipe = usb_rcvbulkpipe(dev,
2053  							  ep->desc.bEndpointAddress);
2054  			else
2055  				f->pipe = usb_sndbulkpipe(dev,
2056  							  ep->desc.bEndpointAddress);
2057  			f->usb_transfer_mode = USB_BULK;
2058  			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2059  			break;
2060  		case USB_ENDPOINT_XFER_ISOC:
2061  			if (ep_addr & 0x80)
2062  				f->pipe = usb_rcvisocpipe(dev,
2063  							  ep->desc.bEndpointAddress);
2064  			else
2065  				f->pipe = usb_sndisocpipe(dev,
2066  							  ep->desc.bEndpointAddress);
2067  			f->usb_transfer_mode = USB_ISOC;
2068  			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2069  			break;
2070  		default:
2071  			f->pipe = 0;
2072  		}
2073  
2074  		if (f->pipe) {
2075  			f->fifonum = idx & 7;
2076  			f->hw = hw;
2077  			f->usb_packet_maxlen =
2078  				le16_to_cpu(ep->desc.wMaxPacketSize);
2079  			f->intervall = ep->desc.bInterval;
2080  		}
2081  		ep++;
2082  	}
2083  	hw->dev = dev; /* save device */
2084  	hw->if_used = ifnum; /* save used interface */
2085  	hw->alt_used = alt_used; /* and alternate config */
2086  	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2087  	hw->cfg_used = vcf[16];	/* store used config */
2088  	hw->vend_idx = vend_idx; /* store found vendor */
2089  	hw->packet_size = packet_size;
2090  	hw->iso_packet_size = iso_packet_size;
2091  
2092  	/* create the control pipes needed for register access */
2093  	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2094  	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2095  
2096  	driver_info = (struct hfcsusb_vdata *)
2097  		      hfcsusb_idtab[vend_idx].driver_info;
2098  
2099  	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2100  	if (!hw->ctrl_urb) {
2101  		pr_warn("%s: No memory for control urb\n",
2102  			driver_info->vend_name);
2103  		kfree(hw);
2104  		return -ENOMEM;
2105  	}
2106  
2107  	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2108  		hw->name, __func__, driver_info->vend_name,
2109  		conf_str[small_match], ifnum, alt_used);
2110  
2111  	if (setup_instance(hw, dev->dev.parent))
2112  		return -EIO;
2113  
2114  	hw->intf = intf;
2115  	usb_set_intfdata(hw->intf, hw);
2116  	return 0;
2117  }
2118  
2119  /* function called when an active device is removed */
2120  static void
hfcsusb_disconnect(struct usb_interface * intf)2121  hfcsusb_disconnect(struct usb_interface *intf)
2122  {
2123  	struct hfcsusb *hw = usb_get_intfdata(intf);
2124  	struct hfcsusb *next;
2125  	int cnt = 0;
2126  
2127  	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2128  
2129  	handle_led(hw, LED_POWER_OFF);
2130  	release_hw(hw);
2131  
2132  	list_for_each_entry_safe(hw, next, &HFClist, list)
2133  		cnt++;
2134  	if (!cnt)
2135  		hfcsusb_cnt = 0;
2136  
2137  	usb_set_intfdata(intf, NULL);
2138  }
2139  
2140  static struct usb_driver hfcsusb_drv = {
2141  	.name = DRIVER_NAME,
2142  	.id_table = hfcsusb_idtab,
2143  	.probe = hfcsusb_probe,
2144  	.disconnect = hfcsusb_disconnect,
2145  	.disable_hub_initiated_lpm = 1,
2146  };
2147  
2148  module_usb_driver(hfcsusb_drv);
2149