xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4   * Copyright (C) 2013, 2021 Intel Corporation
5   */
6  
7  #include <linux/acpi.h>
8  #include <linux/bitops.h>
9  #include <linux/clk.h>
10  #include <linux/delay.h>
11  #include <linux/device.h>
12  #include <linux/dmaengine.h>
13  #include <linux/err.h>
14  #include <linux/errno.h>
15  #include <linux/gpio/consumer.h>
16  #include <linux/init.h>
17  #include <linux/interrupt.h>
18  #include <linux/ioport.h>
19  #include <linux/kernel.h>
20  #include <linux/module.h>
21  #include <linux/mod_devicetable.h>
22  #include <linux/of.h>
23  #include <linux/platform_device.h>
24  #include <linux/pm_runtime.h>
25  #include <linux/property.h>
26  #include <linux/slab.h>
27  
28  #include <linux/spi/pxa2xx_spi.h>
29  #include <linux/spi/spi.h>
30  
31  #include "spi-pxa2xx.h"
32  
33  MODULE_AUTHOR("Stephen Street");
34  MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35  MODULE_LICENSE("GPL");
36  MODULE_ALIAS("platform:pxa2xx-spi");
37  
38  #define TIMOUT_DFLT		1000
39  
40  /*
41   * For testing SSCR1 changes that require SSP restart, basically
42   * everything except the service and interrupt enables, the PXA270 developer
43   * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44   * list, but the PXA255 developer manual says all bits without really meaning
45   * the service and interrupt enables.
46   */
47  #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48  				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49  				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50  				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51  				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52  				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53  
54  #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55  				| QUARK_X1000_SSCR1_EFWR	\
56  				| QUARK_X1000_SSCR1_RFT		\
57  				| QUARK_X1000_SSCR1_TFT		\
58  				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59  
60  #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61  				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62  				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63  				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64  				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65  				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66  
67  #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68  #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69  #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70  #define LPSS_CAPS_CS_EN_SHIFT			9
71  #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72  
73  #define LPSS_PRIV_CLOCK_GATE 0x38
74  #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75  #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76  
77  struct lpss_config {
78  	/* LPSS offset from drv_data->ioaddr */
79  	unsigned offset;
80  	/* Register offsets from drv_data->lpss_base or -1 */
81  	int reg_general;
82  	int reg_ssp;
83  	int reg_cs_ctrl;
84  	int reg_capabilities;
85  	/* FIFO thresholds */
86  	u32 rx_threshold;
87  	u32 tx_threshold_lo;
88  	u32 tx_threshold_hi;
89  	/* Chip select control */
90  	unsigned cs_sel_shift;
91  	unsigned cs_sel_mask;
92  	unsigned cs_num;
93  	/* Quirks */
94  	unsigned cs_clk_stays_gated : 1;
95  };
96  
97  /* Keep these sorted with enum pxa_ssp_type */
98  static const struct lpss_config lpss_platforms[] = {
99  	{	/* LPSS_LPT_SSP */
100  		.offset = 0x800,
101  		.reg_general = 0x08,
102  		.reg_ssp = 0x0c,
103  		.reg_cs_ctrl = 0x18,
104  		.reg_capabilities = -1,
105  		.rx_threshold = 64,
106  		.tx_threshold_lo = 160,
107  		.tx_threshold_hi = 224,
108  	},
109  	{	/* LPSS_BYT_SSP */
110  		.offset = 0x400,
111  		.reg_general = 0x08,
112  		.reg_ssp = 0x0c,
113  		.reg_cs_ctrl = 0x18,
114  		.reg_capabilities = -1,
115  		.rx_threshold = 64,
116  		.tx_threshold_lo = 160,
117  		.tx_threshold_hi = 224,
118  	},
119  	{	/* LPSS_BSW_SSP */
120  		.offset = 0x400,
121  		.reg_general = 0x08,
122  		.reg_ssp = 0x0c,
123  		.reg_cs_ctrl = 0x18,
124  		.reg_capabilities = -1,
125  		.rx_threshold = 64,
126  		.tx_threshold_lo = 160,
127  		.tx_threshold_hi = 224,
128  		.cs_sel_shift = 2,
129  		.cs_sel_mask = 1 << 2,
130  		.cs_num = 2,
131  	},
132  	{	/* LPSS_SPT_SSP */
133  		.offset = 0x200,
134  		.reg_general = -1,
135  		.reg_ssp = 0x20,
136  		.reg_cs_ctrl = 0x24,
137  		.reg_capabilities = -1,
138  		.rx_threshold = 1,
139  		.tx_threshold_lo = 32,
140  		.tx_threshold_hi = 56,
141  	},
142  	{	/* LPSS_BXT_SSP */
143  		.offset = 0x200,
144  		.reg_general = -1,
145  		.reg_ssp = 0x20,
146  		.reg_cs_ctrl = 0x24,
147  		.reg_capabilities = 0xfc,
148  		.rx_threshold = 1,
149  		.tx_threshold_lo = 16,
150  		.tx_threshold_hi = 48,
151  		.cs_sel_shift = 8,
152  		.cs_sel_mask = 3 << 8,
153  		.cs_clk_stays_gated = true,
154  	},
155  	{	/* LPSS_CNL_SSP */
156  		.offset = 0x200,
157  		.reg_general = -1,
158  		.reg_ssp = 0x20,
159  		.reg_cs_ctrl = 0x24,
160  		.reg_capabilities = 0xfc,
161  		.rx_threshold = 1,
162  		.tx_threshold_lo = 32,
163  		.tx_threshold_hi = 56,
164  		.cs_sel_shift = 8,
165  		.cs_sel_mask = 3 << 8,
166  		.cs_clk_stays_gated = true,
167  	},
168  };
169  
170  static inline const struct lpss_config
lpss_get_config(const struct driver_data * drv_data)171  *lpss_get_config(const struct driver_data *drv_data)
172  {
173  	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
174  }
175  
is_lpss_ssp(const struct driver_data * drv_data)176  static bool is_lpss_ssp(const struct driver_data *drv_data)
177  {
178  	switch (drv_data->ssp_type) {
179  	case LPSS_LPT_SSP:
180  	case LPSS_BYT_SSP:
181  	case LPSS_BSW_SSP:
182  	case LPSS_SPT_SSP:
183  	case LPSS_BXT_SSP:
184  	case LPSS_CNL_SSP:
185  		return true;
186  	default:
187  		return false;
188  	}
189  }
190  
is_quark_x1000_ssp(const struct driver_data * drv_data)191  static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192  {
193  	return drv_data->ssp_type == QUARK_X1000_SSP;
194  }
195  
is_mmp2_ssp(const struct driver_data * drv_data)196  static bool is_mmp2_ssp(const struct driver_data *drv_data)
197  {
198  	return drv_data->ssp_type == MMP2_SSP;
199  }
200  
is_mrfld_ssp(const struct driver_data * drv_data)201  static bool is_mrfld_ssp(const struct driver_data *drv_data)
202  {
203  	return drv_data->ssp_type == MRFLD_SSP;
204  }
205  
pxa2xx_spi_update(const struct driver_data * drv_data,u32 reg,u32 mask,u32 value)206  static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
207  {
208  	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
209  		pxa2xx_spi_write(drv_data, reg, value & mask);
210  }
211  
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data * drv_data)212  static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
213  {
214  	switch (drv_data->ssp_type) {
215  	case QUARK_X1000_SSP:
216  		return QUARK_X1000_SSCR1_CHANGE_MASK;
217  	case CE4100_SSP:
218  		return CE4100_SSCR1_CHANGE_MASK;
219  	default:
220  		return SSCR1_CHANGE_MASK;
221  	}
222  }
223  
224  static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data * drv_data)225  pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
226  {
227  	switch (drv_data->ssp_type) {
228  	case QUARK_X1000_SSP:
229  		return RX_THRESH_QUARK_X1000_DFLT;
230  	case CE4100_SSP:
231  		return RX_THRESH_CE4100_DFLT;
232  	default:
233  		return RX_THRESH_DFLT;
234  	}
235  }
236  
pxa2xx_spi_txfifo_full(const struct driver_data * drv_data)237  static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
238  {
239  	u32 mask;
240  
241  	switch (drv_data->ssp_type) {
242  	case QUARK_X1000_SSP:
243  		mask = QUARK_X1000_SSSR_TFL_MASK;
244  		break;
245  	case CE4100_SSP:
246  		mask = CE4100_SSSR_TFL_MASK;
247  		break;
248  	default:
249  		mask = SSSR_TFL_MASK;
250  		break;
251  	}
252  
253  	return read_SSSR_bits(drv_data, mask) == mask;
254  }
255  
pxa2xx_spi_clear_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg)256  static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
257  				     u32 *sccr1_reg)
258  {
259  	u32 mask;
260  
261  	switch (drv_data->ssp_type) {
262  	case QUARK_X1000_SSP:
263  		mask = QUARK_X1000_SSCR1_RFT;
264  		break;
265  	case CE4100_SSP:
266  		mask = CE4100_SSCR1_RFT;
267  		break;
268  	default:
269  		mask = SSCR1_RFT;
270  		break;
271  	}
272  	*sccr1_reg &= ~mask;
273  }
274  
pxa2xx_spi_set_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg,u32 threshold)275  static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
276  				   u32 *sccr1_reg, u32 threshold)
277  {
278  	switch (drv_data->ssp_type) {
279  	case QUARK_X1000_SSP:
280  		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
281  		break;
282  	case CE4100_SSP:
283  		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
284  		break;
285  	default:
286  		*sccr1_reg |= SSCR1_RxTresh(threshold);
287  		break;
288  	}
289  }
290  
pxa2xx_configure_sscr0(const struct driver_data * drv_data,u32 clk_div,u8 bits)291  static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
292  				  u32 clk_div, u8 bits)
293  {
294  	switch (drv_data->ssp_type) {
295  	case QUARK_X1000_SSP:
296  		return clk_div
297  			| QUARK_X1000_SSCR0_Motorola
298  			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
299  	default:
300  		return clk_div
301  			| SSCR0_Motorola
302  			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
303  			| (bits > 16 ? SSCR0_EDSS : 0);
304  	}
305  }
306  
307  /*
308   * Read and write LPSS SSP private registers. Caller must first check that
309   * is_lpss_ssp() returns true before these can be called.
310   */
__lpss_ssp_read_priv(struct driver_data * drv_data,unsigned offset)311  static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
312  {
313  	WARN_ON(!drv_data->lpss_base);
314  	return readl(drv_data->lpss_base + offset);
315  }
316  
__lpss_ssp_write_priv(struct driver_data * drv_data,unsigned offset,u32 value)317  static void __lpss_ssp_write_priv(struct driver_data *drv_data,
318  				  unsigned offset, u32 value)
319  {
320  	WARN_ON(!drv_data->lpss_base);
321  	writel(value, drv_data->lpss_base + offset);
322  }
323  
324  /*
325   * lpss_ssp_setup - perform LPSS SSP specific setup
326   * @drv_data: pointer to the driver private data
327   *
328   * Perform LPSS SSP specific setup. This function must be called first if
329   * one is going to use LPSS SSP private registers.
330   */
lpss_ssp_setup(struct driver_data * drv_data)331  static void lpss_ssp_setup(struct driver_data *drv_data)
332  {
333  	const struct lpss_config *config;
334  	u32 value;
335  
336  	config = lpss_get_config(drv_data);
337  	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
338  
339  	/* Enable software chip select control */
340  	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
341  	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
342  	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
343  	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
344  
345  	/* Enable multiblock DMA transfers */
346  	if (drv_data->controller_info->enable_dma) {
347  		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
348  
349  		if (config->reg_general >= 0) {
350  			value = __lpss_ssp_read_priv(drv_data,
351  						     config->reg_general);
352  			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
353  			__lpss_ssp_write_priv(drv_data,
354  					      config->reg_general, value);
355  		}
356  	}
357  }
358  
lpss_ssp_select_cs(struct spi_device * spi,const struct lpss_config * config)359  static void lpss_ssp_select_cs(struct spi_device *spi,
360  			       const struct lpss_config *config)
361  {
362  	struct driver_data *drv_data =
363  		spi_controller_get_devdata(spi->controller);
364  	u32 value, cs;
365  
366  	if (!config->cs_sel_mask)
367  		return;
368  
369  	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
370  
371  	cs = spi_get_chipselect(spi, 0);
372  	cs <<= config->cs_sel_shift;
373  	if (cs != (value & config->cs_sel_mask)) {
374  		/*
375  		 * When switching another chip select output active the
376  		 * output must be selected first and wait 2 ssp_clk cycles
377  		 * before changing state to active. Otherwise a short
378  		 * glitch will occur on the previous chip select since
379  		 * output select is latched but state control is not.
380  		 */
381  		value &= ~config->cs_sel_mask;
382  		value |= cs;
383  		__lpss_ssp_write_priv(drv_data,
384  				      config->reg_cs_ctrl, value);
385  		ndelay(1000000000 /
386  		       (drv_data->controller->max_speed_hz / 2));
387  	}
388  }
389  
lpss_ssp_cs_control(struct spi_device * spi,bool enable)390  static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
391  {
392  	struct driver_data *drv_data =
393  		spi_controller_get_devdata(spi->controller);
394  	const struct lpss_config *config;
395  	u32 value;
396  
397  	config = lpss_get_config(drv_data);
398  
399  	if (enable)
400  		lpss_ssp_select_cs(spi, config);
401  
402  	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
403  	if (enable)
404  		value &= ~LPSS_CS_CONTROL_CS_HIGH;
405  	else
406  		value |= LPSS_CS_CONTROL_CS_HIGH;
407  	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
408  	if (config->cs_clk_stays_gated) {
409  		u32 clkgate;
410  
411  		/*
412  		 * Changing CS alone when dynamic clock gating is on won't
413  		 * actually flip CS at that time. This ruins SPI transfers
414  		 * that specify delays, or have no data. Toggle the clock mode
415  		 * to force on briefly to poke the CS pin to move.
416  		 */
417  		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
418  		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
419  			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
420  
421  		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
422  		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
423  	}
424  }
425  
cs_assert(struct spi_device * spi)426  static void cs_assert(struct spi_device *spi)
427  {
428  	struct driver_data *drv_data =
429  		spi_controller_get_devdata(spi->controller);
430  
431  	if (drv_data->ssp_type == CE4100_SSP) {
432  		pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
433  		return;
434  	}
435  
436  	if (is_lpss_ssp(drv_data))
437  		lpss_ssp_cs_control(spi, true);
438  }
439  
cs_deassert(struct spi_device * spi)440  static void cs_deassert(struct spi_device *spi)
441  {
442  	struct driver_data *drv_data =
443  		spi_controller_get_devdata(spi->controller);
444  	unsigned long timeout;
445  
446  	if (drv_data->ssp_type == CE4100_SSP)
447  		return;
448  
449  	/* Wait until SSP becomes idle before deasserting the CS */
450  	timeout = jiffies + msecs_to_jiffies(10);
451  	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
452  	       !time_after(jiffies, timeout))
453  		cpu_relax();
454  
455  	if (is_lpss_ssp(drv_data))
456  		lpss_ssp_cs_control(spi, false);
457  }
458  
pxa2xx_spi_set_cs(struct spi_device * spi,bool level)459  static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
460  {
461  	if (level)
462  		cs_deassert(spi);
463  	else
464  		cs_assert(spi);
465  }
466  
pxa2xx_spi_flush(struct driver_data * drv_data)467  int pxa2xx_spi_flush(struct driver_data *drv_data)
468  {
469  	unsigned long limit = loops_per_jiffy << 1;
470  
471  	do {
472  		while (read_SSSR_bits(drv_data, SSSR_RNE))
473  			pxa2xx_spi_read(drv_data, SSDR);
474  	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
475  	write_SSSR_CS(drv_data, SSSR_ROR);
476  
477  	return limit;
478  }
479  
pxa2xx_spi_off(struct driver_data * drv_data)480  static void pxa2xx_spi_off(struct driver_data *drv_data)
481  {
482  	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
483  	if (is_mmp2_ssp(drv_data))
484  		return;
485  
486  	pxa_ssp_disable(drv_data->ssp);
487  }
488  
null_writer(struct driver_data * drv_data)489  static int null_writer(struct driver_data *drv_data)
490  {
491  	u8 n_bytes = drv_data->n_bytes;
492  
493  	if (pxa2xx_spi_txfifo_full(drv_data)
494  		|| (drv_data->tx == drv_data->tx_end))
495  		return 0;
496  
497  	pxa2xx_spi_write(drv_data, SSDR, 0);
498  	drv_data->tx += n_bytes;
499  
500  	return 1;
501  }
502  
null_reader(struct driver_data * drv_data)503  static int null_reader(struct driver_data *drv_data)
504  {
505  	u8 n_bytes = drv_data->n_bytes;
506  
507  	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
508  		pxa2xx_spi_read(drv_data, SSDR);
509  		drv_data->rx += n_bytes;
510  	}
511  
512  	return drv_data->rx == drv_data->rx_end;
513  }
514  
u8_writer(struct driver_data * drv_data)515  static int u8_writer(struct driver_data *drv_data)
516  {
517  	if (pxa2xx_spi_txfifo_full(drv_data)
518  		|| (drv_data->tx == drv_data->tx_end))
519  		return 0;
520  
521  	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
522  	++drv_data->tx;
523  
524  	return 1;
525  }
526  
u8_reader(struct driver_data * drv_data)527  static int u8_reader(struct driver_data *drv_data)
528  {
529  	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
530  		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
531  		++drv_data->rx;
532  	}
533  
534  	return drv_data->rx == drv_data->rx_end;
535  }
536  
u16_writer(struct driver_data * drv_data)537  static int u16_writer(struct driver_data *drv_data)
538  {
539  	if (pxa2xx_spi_txfifo_full(drv_data)
540  		|| (drv_data->tx == drv_data->tx_end))
541  		return 0;
542  
543  	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
544  	drv_data->tx += 2;
545  
546  	return 1;
547  }
548  
u16_reader(struct driver_data * drv_data)549  static int u16_reader(struct driver_data *drv_data)
550  {
551  	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
552  		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
553  		drv_data->rx += 2;
554  	}
555  
556  	return drv_data->rx == drv_data->rx_end;
557  }
558  
u32_writer(struct driver_data * drv_data)559  static int u32_writer(struct driver_data *drv_data)
560  {
561  	if (pxa2xx_spi_txfifo_full(drv_data)
562  		|| (drv_data->tx == drv_data->tx_end))
563  		return 0;
564  
565  	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
566  	drv_data->tx += 4;
567  
568  	return 1;
569  }
570  
u32_reader(struct driver_data * drv_data)571  static int u32_reader(struct driver_data *drv_data)
572  {
573  	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
574  		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
575  		drv_data->rx += 4;
576  	}
577  
578  	return drv_data->rx == drv_data->rx_end;
579  }
580  
reset_sccr1(struct driver_data * drv_data)581  static void reset_sccr1(struct driver_data *drv_data)
582  {
583  	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
584  	struct chip_data *chip;
585  
586  	if (drv_data->controller->cur_msg) {
587  		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
588  		threshold = chip->threshold;
589  	} else {
590  		threshold = 0;
591  	}
592  
593  	switch (drv_data->ssp_type) {
594  	case QUARK_X1000_SSP:
595  		mask |= QUARK_X1000_SSCR1_RFT;
596  		break;
597  	case CE4100_SSP:
598  		mask |= CE4100_SSCR1_RFT;
599  		break;
600  	default:
601  		mask |= SSCR1_RFT;
602  		break;
603  	}
604  
605  	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
606  }
607  
int_stop_and_reset(struct driver_data * drv_data)608  static void int_stop_and_reset(struct driver_data *drv_data)
609  {
610  	/* Clear and disable interrupts */
611  	write_SSSR_CS(drv_data, drv_data->clear_sr);
612  	reset_sccr1(drv_data);
613  	if (pxa25x_ssp_comp(drv_data))
614  		return;
615  
616  	pxa2xx_spi_write(drv_data, SSTO, 0);
617  }
618  
int_error_stop(struct driver_data * drv_data,const char * msg,int err)619  static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
620  {
621  	int_stop_and_reset(drv_data);
622  	pxa2xx_spi_flush(drv_data);
623  	pxa2xx_spi_off(drv_data);
624  
625  	dev_err(drv_data->ssp->dev, "%s\n", msg);
626  
627  	drv_data->controller->cur_msg->status = err;
628  	spi_finalize_current_transfer(drv_data->controller);
629  }
630  
int_transfer_complete(struct driver_data * drv_data)631  static void int_transfer_complete(struct driver_data *drv_data)
632  {
633  	int_stop_and_reset(drv_data);
634  
635  	spi_finalize_current_transfer(drv_data->controller);
636  }
637  
interrupt_transfer(struct driver_data * drv_data)638  static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
639  {
640  	u32 irq_status;
641  
642  	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
643  	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
644  		irq_status &= ~SSSR_TFS;
645  
646  	if (irq_status & SSSR_ROR) {
647  		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
648  		return IRQ_HANDLED;
649  	}
650  
651  	if (irq_status & SSSR_TUR) {
652  		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
653  		return IRQ_HANDLED;
654  	}
655  
656  	if (irq_status & SSSR_TINT) {
657  		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
658  		if (drv_data->read(drv_data)) {
659  			int_transfer_complete(drv_data);
660  			return IRQ_HANDLED;
661  		}
662  	}
663  
664  	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
665  	do {
666  		if (drv_data->read(drv_data)) {
667  			int_transfer_complete(drv_data);
668  			return IRQ_HANDLED;
669  		}
670  	} while (drv_data->write(drv_data));
671  
672  	if (drv_data->read(drv_data)) {
673  		int_transfer_complete(drv_data);
674  		return IRQ_HANDLED;
675  	}
676  
677  	if (drv_data->tx == drv_data->tx_end) {
678  		u32 bytes_left;
679  		u32 sccr1_reg;
680  
681  		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
682  		sccr1_reg &= ~SSCR1_TIE;
683  
684  		/*
685  		 * PXA25x_SSP has no timeout, set up Rx threshold for
686  		 * the remaining Rx bytes.
687  		 */
688  		if (pxa25x_ssp_comp(drv_data)) {
689  			u32 rx_thre;
690  
691  			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
692  
693  			bytes_left = drv_data->rx_end - drv_data->rx;
694  			switch (drv_data->n_bytes) {
695  			case 4:
696  				bytes_left >>= 2;
697  				break;
698  			case 2:
699  				bytes_left >>= 1;
700  				break;
701  			}
702  
703  			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
704  			if (rx_thre > bytes_left)
705  				rx_thre = bytes_left;
706  
707  			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
708  		}
709  		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
710  	}
711  
712  	/* We did something */
713  	return IRQ_HANDLED;
714  }
715  
handle_bad_msg(struct driver_data * drv_data)716  static void handle_bad_msg(struct driver_data *drv_data)
717  {
718  	int_stop_and_reset(drv_data);
719  	pxa2xx_spi_off(drv_data);
720  
721  	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
722  }
723  
ssp_int(int irq,void * dev_id)724  static irqreturn_t ssp_int(int irq, void *dev_id)
725  {
726  	struct driver_data *drv_data = dev_id;
727  	u32 sccr1_reg;
728  	u32 mask = drv_data->mask_sr;
729  	u32 status;
730  
731  	/*
732  	 * The IRQ might be shared with other peripherals so we must first
733  	 * check that are we RPM suspended or not. If we are we assume that
734  	 * the IRQ was not for us (we shouldn't be RPM suspended when the
735  	 * interrupt is enabled).
736  	 */
737  	if (pm_runtime_suspended(drv_data->ssp->dev))
738  		return IRQ_NONE;
739  
740  	/*
741  	 * If the device is not yet in RPM suspended state and we get an
742  	 * interrupt that is meant for another device, check if status bits
743  	 * are all set to one. That means that the device is already
744  	 * powered off.
745  	 */
746  	status = pxa2xx_spi_read(drv_data, SSSR);
747  	if (status == ~0)
748  		return IRQ_NONE;
749  
750  	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
751  
752  	/* Ignore possible writes if we don't need to write */
753  	if (!(sccr1_reg & SSCR1_TIE))
754  		mask &= ~SSSR_TFS;
755  
756  	/* Ignore RX timeout interrupt if it is disabled */
757  	if (!(sccr1_reg & SSCR1_TINTE))
758  		mask &= ~SSSR_TINT;
759  
760  	if (!(status & mask))
761  		return IRQ_NONE;
762  
763  	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
764  	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
765  
766  	if (!drv_data->controller->cur_msg) {
767  		handle_bad_msg(drv_data);
768  		/* Never fail */
769  		return IRQ_HANDLED;
770  	}
771  
772  	return drv_data->transfer_handler(drv_data);
773  }
774  
775  /*
776   * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
777   * input frequency by fractions of 2^24. It also has a divider by 5.
778   *
779   * There are formulas to get baud rate value for given input frequency and
780   * divider parameters, such as DDS_CLK_RATE and SCR:
781   *
782   * Fsys = 200MHz
783   *
784   * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
785   * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
786   *
787   * DDS_CLK_RATE either 2^n or 2^n / 5.
788   * SCR is in range 0 .. 255
789   *
790   * Divisor = 5^i * 2^j * 2 * k
791   *       i = [0, 1]      i = 1 iff j = 0 or j > 3
792   *       j = [0, 23]     j = 0 iff i = 1
793   *       k = [1, 256]
794   * Special case: j = 0, i = 1: Divisor = 2 / 5
795   *
796   * Accordingly to the specification the recommended values for DDS_CLK_RATE
797   * are:
798   *	Case 1:		2^n, n = [0, 23]
799   *	Case 2:		2^24 * 2 / 5 (0x666666)
800   *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
801   *
802   * In all cases the lowest possible value is better.
803   *
804   * The function calculates parameters for all cases and chooses the one closest
805   * to the asked baud rate.
806   */
quark_x1000_get_clk_div(int rate,u32 * dds)807  static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
808  {
809  	unsigned long xtal = 200000000;
810  	unsigned long fref = xtal / 2;		/* mandatory division by 2,
811  						   see (2) */
812  						/* case 3 */
813  	unsigned long fref1 = fref / 2;		/* case 1 */
814  	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
815  	unsigned long scale;
816  	unsigned long q, q1, q2;
817  	long r, r1, r2;
818  	u32 mul;
819  
820  	/* Case 1 */
821  
822  	/* Set initial value for DDS_CLK_RATE */
823  	mul = (1 << 24) >> 1;
824  
825  	/* Calculate initial quot */
826  	q1 = DIV_ROUND_UP(fref1, rate);
827  
828  	/* Scale q1 if it's too big */
829  	if (q1 > 256) {
830  		/* Scale q1 to range [1, 512] */
831  		scale = fls_long(q1 - 1);
832  		if (scale > 9) {
833  			q1 >>= scale - 9;
834  			mul >>= scale - 9;
835  		}
836  
837  		/* Round the result if we have a remainder */
838  		q1 += q1 & 1;
839  	}
840  
841  	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
842  	scale = __ffs(q1);
843  	q1 >>= scale;
844  	mul >>= scale;
845  
846  	/* Get the remainder */
847  	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
848  
849  	/* Case 2 */
850  
851  	q2 = DIV_ROUND_UP(fref2, rate);
852  	r2 = abs(fref2 / q2 - rate);
853  
854  	/*
855  	 * Choose the best between two: less remainder we have the better. We
856  	 * can't go case 2 if q2 is greater than 256 since SCR register can
857  	 * hold only values 0 .. 255.
858  	 */
859  	if (r2 >= r1 || q2 > 256) {
860  		/* case 1 is better */
861  		r = r1;
862  		q = q1;
863  	} else {
864  		/* case 2 is better */
865  		r = r2;
866  		q = q2;
867  		mul = (1 << 24) * 2 / 5;
868  	}
869  
870  	/* Check case 3 only if the divisor is big enough */
871  	if (fref / rate >= 80) {
872  		u64 fssp;
873  		u32 m;
874  
875  		/* Calculate initial quot */
876  		q1 = DIV_ROUND_UP(fref, rate);
877  		m = (1 << 24) / q1;
878  
879  		/* Get the remainder */
880  		fssp = (u64)fref * m;
881  		do_div(fssp, 1 << 24);
882  		r1 = abs(fssp - rate);
883  
884  		/* Choose this one if it suits better */
885  		if (r1 < r) {
886  			/* case 3 is better */
887  			q = 1;
888  			mul = m;
889  		}
890  	}
891  
892  	*dds = mul;
893  	return q - 1;
894  }
895  
ssp_get_clk_div(struct driver_data * drv_data,int rate)896  static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
897  {
898  	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
899  	const struct ssp_device *ssp = drv_data->ssp;
900  
901  	rate = min_t(int, ssp_clk, rate);
902  
903  	/*
904  	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
905  	 * that the SSP transmission rate can be greater than the device rate.
906  	 */
907  	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
908  		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
909  	else
910  		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
911  }
912  
pxa2xx_ssp_get_clk_div(struct driver_data * drv_data,int rate)913  static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
914  					   int rate)
915  {
916  	struct chip_data *chip =
917  		spi_get_ctldata(drv_data->controller->cur_msg->spi);
918  	unsigned int clk_div;
919  
920  	switch (drv_data->ssp_type) {
921  	case QUARK_X1000_SSP:
922  		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
923  		break;
924  	default:
925  		clk_div = ssp_get_clk_div(drv_data, rate);
926  		break;
927  	}
928  	return clk_div << 8;
929  }
930  
pxa2xx_spi_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * xfer)931  static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
932  			       struct spi_device *spi,
933  			       struct spi_transfer *xfer)
934  {
935  	struct chip_data *chip = spi_get_ctldata(spi);
936  
937  	return chip->enable_dma &&
938  	       xfer->len <= MAX_DMA_LEN &&
939  	       xfer->len >= chip->dma_burst_size;
940  }
941  
pxa2xx_spi_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)942  static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
943  				   struct spi_device *spi,
944  				   struct spi_transfer *transfer)
945  {
946  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
947  	struct spi_message *message = controller->cur_msg;
948  	struct chip_data *chip = spi_get_ctldata(spi);
949  	u32 dma_thresh = chip->dma_threshold;
950  	u32 dma_burst = chip->dma_burst_size;
951  	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
952  	u32 clk_div;
953  	u8 bits;
954  	u32 speed;
955  	u32 cr0;
956  	u32 cr1;
957  	int err;
958  	int dma_mapped;
959  
960  	/* Check if we can DMA this transfer */
961  	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
962  
963  		/* Reject already-mapped transfers; PIO won't always work */
964  		if (message->is_dma_mapped
965  				|| transfer->rx_dma || transfer->tx_dma) {
966  			dev_err(&spi->dev,
967  				"Mapped transfer length of %u is greater than %d\n",
968  				transfer->len, MAX_DMA_LEN);
969  			return -EINVAL;
970  		}
971  
972  		/* Warn ... we force this to PIO mode */
973  		dev_warn_ratelimited(&spi->dev,
974  				     "DMA disabled for transfer length %u greater than %d\n",
975  				     transfer->len, MAX_DMA_LEN);
976  	}
977  
978  	/* Setup the transfer state based on the type of transfer */
979  	if (pxa2xx_spi_flush(drv_data) == 0) {
980  		dev_err(&spi->dev, "Flush failed\n");
981  		return -EIO;
982  	}
983  	drv_data->tx = (void *)transfer->tx_buf;
984  	drv_data->tx_end = drv_data->tx + transfer->len;
985  	drv_data->rx = transfer->rx_buf;
986  	drv_data->rx_end = drv_data->rx + transfer->len;
987  
988  	/* Change speed and bit per word on a per transfer */
989  	bits = transfer->bits_per_word;
990  	speed = transfer->speed_hz;
991  
992  	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
993  
994  	if (bits <= 8) {
995  		drv_data->n_bytes = 1;
996  		drv_data->read = drv_data->rx ? u8_reader : null_reader;
997  		drv_data->write = drv_data->tx ? u8_writer : null_writer;
998  	} else if (bits <= 16) {
999  		drv_data->n_bytes = 2;
1000  		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1001  		drv_data->write = drv_data->tx ? u16_writer : null_writer;
1002  	} else if (bits <= 32) {
1003  		drv_data->n_bytes = 4;
1004  		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1005  		drv_data->write = drv_data->tx ? u32_writer : null_writer;
1006  	}
1007  	/*
1008  	 * If bits per word is changed in DMA mode, then must check
1009  	 * the thresholds and burst also.
1010  	 */
1011  	if (chip->enable_dma) {
1012  		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1013  						spi,
1014  						bits, &dma_burst,
1015  						&dma_thresh))
1016  			dev_warn_ratelimited(&spi->dev,
1017  					     "DMA burst size reduced to match bits_per_word\n");
1018  	}
1019  
1020  	dma_mapped = controller->can_dma &&
1021  		     controller->can_dma(controller, spi, transfer) &&
1022  		     controller->cur_msg_mapped;
1023  	if (dma_mapped) {
1024  
1025  		/* Ensure we have the correct interrupt handler */
1026  		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1027  
1028  		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1029  		if (err)
1030  			return err;
1031  
1032  		/* Clear status and start DMA engine */
1033  		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1034  		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1035  
1036  		pxa2xx_spi_dma_start(drv_data);
1037  	} else {
1038  		/* Ensure we have the correct interrupt handler	*/
1039  		drv_data->transfer_handler = interrupt_transfer;
1040  
1041  		/* Clear status  */
1042  		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1043  		write_SSSR_CS(drv_data, drv_data->clear_sr);
1044  	}
1045  
1046  	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1047  	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1048  	if (!pxa25x_ssp_comp(drv_data))
1049  		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1050  			controller->max_speed_hz
1051  				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1052  			dma_mapped ? "DMA" : "PIO");
1053  	else
1054  		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1055  			controller->max_speed_hz / 2
1056  				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1057  			dma_mapped ? "DMA" : "PIO");
1058  
1059  	if (is_lpss_ssp(drv_data)) {
1060  		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1061  		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1062  	}
1063  
1064  	if (is_mrfld_ssp(drv_data)) {
1065  		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1066  		u32 thresh = 0;
1067  
1068  		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1069  		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1070  
1071  		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1072  	}
1073  
1074  	if (is_quark_x1000_ssp(drv_data))
1075  		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1076  
1077  	/* Stop the SSP */
1078  	if (!is_mmp2_ssp(drv_data))
1079  		pxa_ssp_disable(drv_data->ssp);
1080  
1081  	if (!pxa25x_ssp_comp(drv_data))
1082  		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1083  
1084  	/* First set CR1 without interrupt and service enables */
1085  	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1086  
1087  	/* See if we need to reload the configuration registers */
1088  	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1089  
1090  	/* Restart the SSP */
1091  	pxa_ssp_enable(drv_data->ssp);
1092  
1093  	if (is_mmp2_ssp(drv_data)) {
1094  		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1095  
1096  		if (tx_level) {
1097  			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1098  			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1099  			if (tx_level > transfer->len)
1100  				tx_level = transfer->len;
1101  			drv_data->tx += tx_level;
1102  		}
1103  	}
1104  
1105  	if (spi_controller_is_target(controller)) {
1106  		while (drv_data->write(drv_data))
1107  			;
1108  		if (drv_data->gpiod_ready) {
1109  			gpiod_set_value(drv_data->gpiod_ready, 1);
1110  			udelay(1);
1111  			gpiod_set_value(drv_data->gpiod_ready, 0);
1112  		}
1113  	}
1114  
1115  	/*
1116  	 * Release the data by enabling service requests and interrupts,
1117  	 * without changing any mode bits.
1118  	 */
1119  	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1120  
1121  	return 1;
1122  }
1123  
pxa2xx_spi_target_abort(struct spi_controller * controller)1124  static int pxa2xx_spi_target_abort(struct spi_controller *controller)
1125  {
1126  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1127  
1128  	int_error_stop(drv_data, "transfer aborted", -EINTR);
1129  
1130  	return 0;
1131  }
1132  
pxa2xx_spi_handle_err(struct spi_controller * controller,struct spi_message * msg)1133  static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1134  				 struct spi_message *msg)
1135  {
1136  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1137  
1138  	int_stop_and_reset(drv_data);
1139  
1140  	/* Disable the SSP */
1141  	pxa2xx_spi_off(drv_data);
1142  
1143  	/*
1144  	 * Stop the DMA if running. Note DMA callback handler may have unset
1145  	 * the dma_running already, which is fine as stopping is not needed
1146  	 * then but we shouldn't rely this flag for anything else than
1147  	 * stopping. For instance to differentiate between PIO and DMA
1148  	 * transfers.
1149  	 */
1150  	if (atomic_read(&drv_data->dma_running))
1151  		pxa2xx_spi_dma_stop(drv_data);
1152  }
1153  
pxa2xx_spi_unprepare_transfer(struct spi_controller * controller)1154  static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1155  {
1156  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1157  
1158  	/* Disable the SSP now */
1159  	pxa2xx_spi_off(drv_data);
1160  
1161  	return 0;
1162  }
1163  
setup(struct spi_device * spi)1164  static int setup(struct spi_device *spi)
1165  {
1166  	struct pxa2xx_spi_chip *chip_info;
1167  	struct chip_data *chip;
1168  	const struct lpss_config *config;
1169  	struct driver_data *drv_data =
1170  		spi_controller_get_devdata(spi->controller);
1171  	uint tx_thres, tx_hi_thres, rx_thres;
1172  
1173  	switch (drv_data->ssp_type) {
1174  	case QUARK_X1000_SSP:
1175  		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1176  		tx_hi_thres = 0;
1177  		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1178  		break;
1179  	case MRFLD_SSP:
1180  		tx_thres = TX_THRESH_MRFLD_DFLT;
1181  		tx_hi_thres = 0;
1182  		rx_thres = RX_THRESH_MRFLD_DFLT;
1183  		break;
1184  	case CE4100_SSP:
1185  		tx_thres = TX_THRESH_CE4100_DFLT;
1186  		tx_hi_thres = 0;
1187  		rx_thres = RX_THRESH_CE4100_DFLT;
1188  		break;
1189  	case LPSS_LPT_SSP:
1190  	case LPSS_BYT_SSP:
1191  	case LPSS_BSW_SSP:
1192  	case LPSS_SPT_SSP:
1193  	case LPSS_BXT_SSP:
1194  	case LPSS_CNL_SSP:
1195  		config = lpss_get_config(drv_data);
1196  		tx_thres = config->tx_threshold_lo;
1197  		tx_hi_thres = config->tx_threshold_hi;
1198  		rx_thres = config->rx_threshold;
1199  		break;
1200  	default:
1201  		tx_hi_thres = 0;
1202  		if (spi_controller_is_target(drv_data->controller)) {
1203  			tx_thres = 1;
1204  			rx_thres = 2;
1205  		} else {
1206  			tx_thres = TX_THRESH_DFLT;
1207  			rx_thres = RX_THRESH_DFLT;
1208  		}
1209  		break;
1210  	}
1211  
1212  	/* Only allocate on the first setup */
1213  	chip = spi_get_ctldata(spi);
1214  	if (!chip) {
1215  		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1216  		if (!chip)
1217  			return -ENOMEM;
1218  
1219  		if (drv_data->ssp_type == CE4100_SSP) {
1220  			if (spi_get_chipselect(spi, 0) > 4) {
1221  				dev_err(&spi->dev,
1222  					"failed setup: cs number must not be > 4.\n");
1223  				kfree(chip);
1224  				return -EINVAL;
1225  			}
1226  		}
1227  		chip->enable_dma = drv_data->controller_info->enable_dma;
1228  		chip->timeout = TIMOUT_DFLT;
1229  	}
1230  
1231  	/*
1232  	 * Protocol drivers may change the chip settings, so...
1233  	 * if chip_info exists, use it.
1234  	 */
1235  	chip_info = spi->controller_data;
1236  
1237  	/* chip_info isn't always needed */
1238  	if (chip_info) {
1239  		if (chip_info->timeout)
1240  			chip->timeout = chip_info->timeout;
1241  		if (chip_info->tx_threshold)
1242  			tx_thres = chip_info->tx_threshold;
1243  		if (chip_info->tx_hi_threshold)
1244  			tx_hi_thres = chip_info->tx_hi_threshold;
1245  		if (chip_info->rx_threshold)
1246  			rx_thres = chip_info->rx_threshold;
1247  		chip->dma_threshold = 0;
1248  	}
1249  
1250  	chip->cr1 = 0;
1251  	if (spi_controller_is_target(drv_data->controller)) {
1252  		chip->cr1 |= SSCR1_SCFR;
1253  		chip->cr1 |= SSCR1_SCLKDIR;
1254  		chip->cr1 |= SSCR1_SFRMDIR;
1255  		chip->cr1 |= SSCR1_SPH;
1256  	}
1257  
1258  	if (is_lpss_ssp(drv_data)) {
1259  		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260  		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1261  					  SSITF_TxHiThresh(tx_hi_thres);
1262  	}
1263  
1264  	if (is_mrfld_ssp(drv_data)) {
1265  		chip->lpss_rx_threshold = rx_thres;
1266  		chip->lpss_tx_threshold = tx_thres;
1267  	}
1268  
1269  	/*
1270  	 * Set DMA burst and threshold outside of chip_info path so that if
1271  	 * chip_info goes away after setting chip->enable_dma, the burst and
1272  	 * threshold can still respond to changes in bits_per_word.
1273  	 */
1274  	if (chip->enable_dma) {
1275  		/* Set up legal burst and threshold for DMA */
1276  		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1277  						spi->bits_per_word,
1278  						&chip->dma_burst_size,
1279  						&chip->dma_threshold)) {
1280  			dev_warn(&spi->dev,
1281  				 "in setup: DMA burst size reduced to match bits_per_word\n");
1282  		}
1283  		dev_dbg(&spi->dev,
1284  			"in setup: DMA burst size set to %u\n",
1285  			chip->dma_burst_size);
1286  	}
1287  
1288  	switch (drv_data->ssp_type) {
1289  	case QUARK_X1000_SSP:
1290  		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291  				   & QUARK_X1000_SSCR1_RFT)
1292  				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293  				   & QUARK_X1000_SSCR1_TFT);
1294  		break;
1295  	case CE4100_SSP:
1296  		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1297  			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1298  		break;
1299  	default:
1300  		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1301  			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1302  		break;
1303  	}
1304  
1305  	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1306  	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1307  		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1308  
1309  	if (spi->mode & SPI_LOOP)
1310  		chip->cr1 |= SSCR1_LBM;
1311  
1312  	spi_set_ctldata(spi, chip);
1313  
1314  	return 0;
1315  }
1316  
cleanup(struct spi_device * spi)1317  static void cleanup(struct spi_device *spi)
1318  {
1319  	struct chip_data *chip = spi_get_ctldata(spi);
1320  
1321  	kfree(chip);
1322  }
1323  
pxa2xx_spi_idma_filter(struct dma_chan * chan,void * param)1324  static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1325  {
1326  	return param == chan->device->dev;
1327  }
1328  
1329  static struct pxa2xx_spi_controller *
pxa2xx_spi_init_pdata(struct platform_device * pdev)1330  pxa2xx_spi_init_pdata(struct platform_device *pdev)
1331  {
1332  	struct pxa2xx_spi_controller *pdata;
1333  	struct device *dev = &pdev->dev;
1334  	struct device *parent = dev->parent;
1335  	struct ssp_device *ssp;
1336  	struct resource *res;
1337  	enum pxa_ssp_type type = SSP_UNDEFINED;
1338  	const void *match;
1339  	bool is_lpss_priv;
1340  	int status;
1341  	u64 uid;
1342  
1343  	is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv");
1344  
1345  	match = device_get_match_data(dev);
1346  	if (match)
1347  		type = (uintptr_t)match;
1348  	else if (is_lpss_priv) {
1349  		u32 value;
1350  
1351  		status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value);
1352  		if (status)
1353  			return ERR_PTR(status);
1354  
1355  		type = (enum pxa_ssp_type)value;
1356  	}
1357  
1358  	/* Validate the SSP type correctness */
1359  	if (!(type > SSP_UNDEFINED && type < SSP_MAX))
1360  		return ERR_PTR(-EINVAL);
1361  
1362  	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1363  	if (!pdata)
1364  		return ERR_PTR(-ENOMEM);
1365  
1366  	ssp = &pdata->ssp;
1367  
1368  	ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1369  	if (IS_ERR(ssp->mmio_base))
1370  		return ERR_CAST(ssp->mmio_base);
1371  
1372  	ssp->phys_base = res->start;
1373  
1374  	/* Platforms with iDMA 64-bit */
1375  	if (is_lpss_priv) {
1376  		pdata->tx_param = parent;
1377  		pdata->rx_param = parent;
1378  		pdata->dma_filter = pxa2xx_spi_idma_filter;
1379  	}
1380  
1381  	ssp->clk = devm_clk_get(dev, NULL);
1382  	if (IS_ERR(ssp->clk))
1383  		return ERR_CAST(ssp->clk);
1384  
1385  	ssp->irq = platform_get_irq(pdev, 0);
1386  	if (ssp->irq < 0)
1387  		return ERR_PTR(ssp->irq);
1388  
1389  	ssp->type = type;
1390  	ssp->dev = dev;
1391  
1392  	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1393  	if (status)
1394  		ssp->port_id = -1;
1395  	else
1396  		ssp->port_id = uid;
1397  
1398  	pdata->is_target = device_property_read_bool(dev, "spi-slave");
1399  	pdata->num_chipselect = 1;
1400  	pdata->enable_dma = true;
1401  	pdata->dma_burst_size = 1;
1402  
1403  	return pdata;
1404  }
1405  
pxa2xx_spi_fw_translate_cs(struct spi_controller * controller,unsigned int cs)1406  static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1407  				      unsigned int cs)
1408  {
1409  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1410  
1411  	if (has_acpi_companion(drv_data->ssp->dev)) {
1412  		switch (drv_data->ssp_type) {
1413  		/*
1414  		 * For Atoms the ACPI DeviceSelection used by the Windows
1415  		 * driver starts from 1 instead of 0 so translate it here
1416  		 * to match what Linux expects.
1417  		 */
1418  		case LPSS_BYT_SSP:
1419  		case LPSS_BSW_SSP:
1420  			return cs - 1;
1421  
1422  		default:
1423  			break;
1424  		}
1425  	}
1426  
1427  	return cs;
1428  }
1429  
pxa2xx_spi_max_dma_transfer_size(struct spi_device * spi)1430  static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1431  {
1432  	return MAX_DMA_LEN;
1433  }
1434  
pxa2xx_spi_probe(struct platform_device * pdev)1435  static int pxa2xx_spi_probe(struct platform_device *pdev)
1436  {
1437  	struct device *dev = &pdev->dev;
1438  	struct pxa2xx_spi_controller *platform_info;
1439  	struct spi_controller *controller;
1440  	struct driver_data *drv_data;
1441  	struct ssp_device *ssp;
1442  	const struct lpss_config *config;
1443  	int status;
1444  	u32 tmp;
1445  
1446  	platform_info = dev_get_platdata(dev);
1447  	if (!platform_info) {
1448  		platform_info = pxa2xx_spi_init_pdata(pdev);
1449  		if (IS_ERR(platform_info)) {
1450  			dev_err(&pdev->dev, "missing platform data\n");
1451  			return PTR_ERR(platform_info);
1452  		}
1453  	}
1454  
1455  	ssp = pxa_ssp_request(pdev->id, pdev->name);
1456  	if (!ssp)
1457  		ssp = &platform_info->ssp;
1458  
1459  	if (!ssp->mmio_base) {
1460  		dev_err(&pdev->dev, "failed to get SSP\n");
1461  		return -ENODEV;
1462  	}
1463  
1464  	if (platform_info->is_target)
1465  		controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
1466  	else
1467  		controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
1468  
1469  	if (!controller) {
1470  		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1471  		status = -ENOMEM;
1472  		goto out_error_controller_alloc;
1473  	}
1474  	drv_data = spi_controller_get_devdata(controller);
1475  	drv_data->controller = controller;
1476  	drv_data->controller_info = platform_info;
1477  	drv_data->ssp = ssp;
1478  
1479  	device_set_node(&controller->dev, dev_fwnode(dev));
1480  
1481  	/* The spi->mode bits understood by this driver: */
1482  	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1483  
1484  	controller->bus_num = ssp->port_id;
1485  	controller->dma_alignment = DMA_ALIGNMENT;
1486  	controller->cleanup = cleanup;
1487  	controller->setup = setup;
1488  	controller->set_cs = pxa2xx_spi_set_cs;
1489  	controller->transfer_one = pxa2xx_spi_transfer_one;
1490  	controller->target_abort = pxa2xx_spi_target_abort;
1491  	controller->handle_err = pxa2xx_spi_handle_err;
1492  	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1493  	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1494  	controller->auto_runtime_pm = true;
1495  	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1496  
1497  	drv_data->ssp_type = ssp->type;
1498  
1499  	if (pxa25x_ssp_comp(drv_data)) {
1500  		switch (drv_data->ssp_type) {
1501  		case QUARK_X1000_SSP:
1502  			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1503  			break;
1504  		default:
1505  			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1506  			break;
1507  		}
1508  
1509  		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1510  		drv_data->dma_cr1 = 0;
1511  		drv_data->clear_sr = SSSR_ROR;
1512  		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513  	} else {
1514  		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1515  		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1516  		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1517  		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1518  		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1519  						| SSSR_ROR | SSSR_TUR;
1520  	}
1521  
1522  	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1523  			drv_data);
1524  	if (status < 0) {
1525  		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1526  		goto out_error_controller_alloc;
1527  	}
1528  
1529  	/* Setup DMA if requested */
1530  	if (platform_info->enable_dma) {
1531  		status = pxa2xx_spi_dma_setup(drv_data);
1532  		if (status) {
1533  			dev_warn(dev, "no DMA channels available, using PIO\n");
1534  			platform_info->enable_dma = false;
1535  		} else {
1536  			controller->can_dma = pxa2xx_spi_can_dma;
1537  			controller->max_dma_len = MAX_DMA_LEN;
1538  			controller->max_transfer_size =
1539  				pxa2xx_spi_max_dma_transfer_size;
1540  		}
1541  	}
1542  
1543  	/* Enable SOC clock */
1544  	status = clk_prepare_enable(ssp->clk);
1545  	if (status)
1546  		goto out_error_dma_irq_alloc;
1547  
1548  	controller->max_speed_hz = clk_get_rate(ssp->clk);
1549  	/*
1550  	 * Set minimum speed for all other platforms than Intel Quark which is
1551  	 * able do under 1 Hz transfers.
1552  	 */
1553  	if (!pxa25x_ssp_comp(drv_data))
1554  		controller->min_speed_hz =
1555  			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1556  	else if (!is_quark_x1000_ssp(drv_data))
1557  		controller->min_speed_hz =
1558  			DIV_ROUND_UP(controller->max_speed_hz, 512);
1559  
1560  	pxa_ssp_disable(ssp);
1561  
1562  	/* Load default SSP configuration */
1563  	switch (drv_data->ssp_type) {
1564  	case QUARK_X1000_SSP:
1565  		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1566  		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1567  		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1568  
1569  		/* Using the Motorola SPI protocol and use 8 bit frame */
1570  		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1571  		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1572  		break;
1573  	case CE4100_SSP:
1574  		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1575  		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1576  		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1577  		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1578  		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1579  		break;
1580  	default:
1581  
1582  		if (spi_controller_is_target(controller)) {
1583  			tmp = SSCR1_SCFR |
1584  			      SSCR1_SCLKDIR |
1585  			      SSCR1_SFRMDIR |
1586  			      SSCR1_RxTresh(2) |
1587  			      SSCR1_TxTresh(1) |
1588  			      SSCR1_SPH;
1589  		} else {
1590  			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1591  			      SSCR1_TxTresh(TX_THRESH_DFLT);
1592  		}
1593  		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1594  		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1595  		if (!spi_controller_is_target(controller))
1596  			tmp |= SSCR0_SCR(2);
1597  		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1598  		break;
1599  	}
1600  
1601  	if (!pxa25x_ssp_comp(drv_data))
1602  		pxa2xx_spi_write(drv_data, SSTO, 0);
1603  
1604  	if (!is_quark_x1000_ssp(drv_data))
1605  		pxa2xx_spi_write(drv_data, SSPSP, 0);
1606  
1607  	if (is_lpss_ssp(drv_data)) {
1608  		lpss_ssp_setup(drv_data);
1609  		config = lpss_get_config(drv_data);
1610  		if (config->reg_capabilities >= 0) {
1611  			tmp = __lpss_ssp_read_priv(drv_data,
1612  						   config->reg_capabilities);
1613  			tmp &= LPSS_CAPS_CS_EN_MASK;
1614  			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1615  			platform_info->num_chipselect = ffz(tmp);
1616  		} else if (config->cs_num) {
1617  			platform_info->num_chipselect = config->cs_num;
1618  		}
1619  	}
1620  	controller->num_chipselect = platform_info->num_chipselect;
1621  	controller->use_gpio_descriptors = true;
1622  
1623  	if (platform_info->is_target) {
1624  		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1625  						"ready", GPIOD_OUT_LOW);
1626  		if (IS_ERR(drv_data->gpiod_ready)) {
1627  			status = PTR_ERR(drv_data->gpiod_ready);
1628  			goto out_error_clock_enabled;
1629  		}
1630  	}
1631  
1632  	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1633  	pm_runtime_use_autosuspend(&pdev->dev);
1634  	pm_runtime_set_active(&pdev->dev);
1635  	pm_runtime_enable(&pdev->dev);
1636  
1637  	/* Register with the SPI framework */
1638  	platform_set_drvdata(pdev, drv_data);
1639  	status = spi_register_controller(controller);
1640  	if (status) {
1641  		dev_err(&pdev->dev, "problem registering SPI controller\n");
1642  		goto out_error_pm_runtime_enabled;
1643  	}
1644  
1645  	return status;
1646  
1647  out_error_pm_runtime_enabled:
1648  	pm_runtime_disable(&pdev->dev);
1649  
1650  out_error_clock_enabled:
1651  	clk_disable_unprepare(ssp->clk);
1652  
1653  out_error_dma_irq_alloc:
1654  	pxa2xx_spi_dma_release(drv_data);
1655  	free_irq(ssp->irq, drv_data);
1656  
1657  out_error_controller_alloc:
1658  	pxa_ssp_free(ssp);
1659  	return status;
1660  }
1661  
pxa2xx_spi_remove(struct platform_device * pdev)1662  static void pxa2xx_spi_remove(struct platform_device *pdev)
1663  {
1664  	struct driver_data *drv_data = platform_get_drvdata(pdev);
1665  	struct ssp_device *ssp = drv_data->ssp;
1666  
1667  	pm_runtime_get_sync(&pdev->dev);
1668  
1669  	spi_unregister_controller(drv_data->controller);
1670  
1671  	/* Disable the SSP at the peripheral and SOC level */
1672  	pxa_ssp_disable(ssp);
1673  	clk_disable_unprepare(ssp->clk);
1674  
1675  	/* Release DMA */
1676  	if (drv_data->controller_info->enable_dma)
1677  		pxa2xx_spi_dma_release(drv_data);
1678  
1679  	pm_runtime_put_noidle(&pdev->dev);
1680  	pm_runtime_disable(&pdev->dev);
1681  
1682  	/* Release IRQ */
1683  	free_irq(ssp->irq, drv_data);
1684  
1685  	/* Release SSP */
1686  	pxa_ssp_free(ssp);
1687  }
1688  
pxa2xx_spi_suspend(struct device * dev)1689  static int pxa2xx_spi_suspend(struct device *dev)
1690  {
1691  	struct driver_data *drv_data = dev_get_drvdata(dev);
1692  	struct ssp_device *ssp = drv_data->ssp;
1693  	int status;
1694  
1695  	status = spi_controller_suspend(drv_data->controller);
1696  	if (status)
1697  		return status;
1698  
1699  	pxa_ssp_disable(ssp);
1700  
1701  	if (!pm_runtime_suspended(dev))
1702  		clk_disable_unprepare(ssp->clk);
1703  
1704  	return 0;
1705  }
1706  
pxa2xx_spi_resume(struct device * dev)1707  static int pxa2xx_spi_resume(struct device *dev)
1708  {
1709  	struct driver_data *drv_data = dev_get_drvdata(dev);
1710  	struct ssp_device *ssp = drv_data->ssp;
1711  	int status;
1712  
1713  	/* Enable the SSP clock */
1714  	if (!pm_runtime_suspended(dev)) {
1715  		status = clk_prepare_enable(ssp->clk);
1716  		if (status)
1717  			return status;
1718  	}
1719  
1720  	/* Start the queue running */
1721  	return spi_controller_resume(drv_data->controller);
1722  }
1723  
pxa2xx_spi_runtime_suspend(struct device * dev)1724  static int pxa2xx_spi_runtime_suspend(struct device *dev)
1725  {
1726  	struct driver_data *drv_data = dev_get_drvdata(dev);
1727  
1728  	clk_disable_unprepare(drv_data->ssp->clk);
1729  	return 0;
1730  }
1731  
pxa2xx_spi_runtime_resume(struct device * dev)1732  static int pxa2xx_spi_runtime_resume(struct device *dev)
1733  {
1734  	struct driver_data *drv_data = dev_get_drvdata(dev);
1735  
1736  	return clk_prepare_enable(drv_data->ssp->clk);
1737  }
1738  
1739  static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1740  	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1741  	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1742  };
1743  
1744  #ifdef CONFIG_ACPI
1745  static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1746  	{ "80860F0E", LPSS_BYT_SSP },
1747  	{ "8086228E", LPSS_BSW_SSP },
1748  	{ "INT33C0", LPSS_LPT_SSP },
1749  	{ "INT33C1", LPSS_LPT_SSP },
1750  	{ "INT3430", LPSS_LPT_SSP },
1751  	{ "INT3431", LPSS_LPT_SSP },
1752  	{}
1753  };
1754  MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1755  #endif
1756  
1757  static const struct of_device_id pxa2xx_spi_of_match[] __maybe_unused = {
1758  	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1759  	{}
1760  };
1761  MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1762  
1763  static struct platform_driver driver = {
1764  	.driver = {
1765  		.name	= "pxa2xx-spi",
1766  		.pm	= pm_ptr(&pxa2xx_spi_pm_ops),
1767  		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1768  		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1769  	},
1770  	.probe = pxa2xx_spi_probe,
1771  	.remove_new = pxa2xx_spi_remove,
1772  };
1773  
pxa2xx_spi_init(void)1774  static int __init pxa2xx_spi_init(void)
1775  {
1776  	return platform_driver_register(&driver);
1777  }
1778  subsys_initcall(pxa2xx_spi_init);
1779  
pxa2xx_spi_exit(void)1780  static void __exit pxa2xx_spi_exit(void)
1781  {
1782  	platform_driver_unregister(&driver);
1783  }
1784  module_exit(pxa2xx_spi_exit);
1785  
1786  MODULE_SOFTDEP("pre: dw_dmac");
1787