1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5 #include <linux/devcoredump.h>
6
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 #include "sdio.h"
22
23 bool rtw_disable_lps_deep_mode;
24 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
25 bool rtw_bf_support = true;
26 unsigned int rtw_debug_mask;
27 EXPORT_SYMBOL(rtw_debug_mask);
28 /* EDCCA is enabled during normal behavior. For debugging purpose in
29 * a noisy environment, it can be disabled via edcca debugfs. Because
30 * all rtw88 devices will probably be affected if environment is noisy,
31 * rtw_edcca_enabled is just declared by driver instead of by device.
32 * So, turning it off will take effect for all rtw88 devices before
33 * there is a tough reason to maintain rtw_edcca_enabled by device.
34 */
35 bool rtw_edcca_enabled = true;
36
37 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
38 module_param_named(support_bf, rtw_bf_support, bool, 0644);
39 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
40
41 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
42 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
43 MODULE_PARM_DESC(debug_mask, "Debugging mask");
44
45 static struct ieee80211_channel rtw_channeltable_2g[] = {
46 {.center_freq = 2412, .hw_value = 1,},
47 {.center_freq = 2417, .hw_value = 2,},
48 {.center_freq = 2422, .hw_value = 3,},
49 {.center_freq = 2427, .hw_value = 4,},
50 {.center_freq = 2432, .hw_value = 5,},
51 {.center_freq = 2437, .hw_value = 6,},
52 {.center_freq = 2442, .hw_value = 7,},
53 {.center_freq = 2447, .hw_value = 8,},
54 {.center_freq = 2452, .hw_value = 9,},
55 {.center_freq = 2457, .hw_value = 10,},
56 {.center_freq = 2462, .hw_value = 11,},
57 {.center_freq = 2467, .hw_value = 12,},
58 {.center_freq = 2472, .hw_value = 13,},
59 {.center_freq = 2484, .hw_value = 14,},
60 };
61
62 static struct ieee80211_channel rtw_channeltable_5g[] = {
63 {.center_freq = 5180, .hw_value = 36,},
64 {.center_freq = 5200, .hw_value = 40,},
65 {.center_freq = 5220, .hw_value = 44,},
66 {.center_freq = 5240, .hw_value = 48,},
67 {.center_freq = 5260, .hw_value = 52,},
68 {.center_freq = 5280, .hw_value = 56,},
69 {.center_freq = 5300, .hw_value = 60,},
70 {.center_freq = 5320, .hw_value = 64,},
71 {.center_freq = 5500, .hw_value = 100,},
72 {.center_freq = 5520, .hw_value = 104,},
73 {.center_freq = 5540, .hw_value = 108,},
74 {.center_freq = 5560, .hw_value = 112,},
75 {.center_freq = 5580, .hw_value = 116,},
76 {.center_freq = 5600, .hw_value = 120,},
77 {.center_freq = 5620, .hw_value = 124,},
78 {.center_freq = 5640, .hw_value = 128,},
79 {.center_freq = 5660, .hw_value = 132,},
80 {.center_freq = 5680, .hw_value = 136,},
81 {.center_freq = 5700, .hw_value = 140,},
82 {.center_freq = 5720, .hw_value = 144,},
83 {.center_freq = 5745, .hw_value = 149,},
84 {.center_freq = 5765, .hw_value = 153,},
85 {.center_freq = 5785, .hw_value = 157,},
86 {.center_freq = 5805, .hw_value = 161,},
87 {.center_freq = 5825, .hw_value = 165,
88 .flags = IEEE80211_CHAN_NO_HT40MINUS},
89 };
90
91 static struct ieee80211_rate rtw_ratetable[] = {
92 {.bitrate = 10, .hw_value = 0x00,},
93 {.bitrate = 20, .hw_value = 0x01,},
94 {.bitrate = 55, .hw_value = 0x02,},
95 {.bitrate = 110, .hw_value = 0x03,},
96 {.bitrate = 60, .hw_value = 0x04,},
97 {.bitrate = 90, .hw_value = 0x05,},
98 {.bitrate = 120, .hw_value = 0x06,},
99 {.bitrate = 180, .hw_value = 0x07,},
100 {.bitrate = 240, .hw_value = 0x08,},
101 {.bitrate = 360, .hw_value = 0x09,},
102 {.bitrate = 480, .hw_value = 0x0a,},
103 {.bitrate = 540, .hw_value = 0x0b,},
104 };
105
106 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
107 {
108 .max = 1,
109 .types = BIT(NL80211_IFTYPE_STATION),
110 },
111 {
112 .max = 1,
113 .types = BIT(NL80211_IFTYPE_AP),
114 }
115 };
116
117 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
118 {
119 .limits = rtw_iface_limits,
120 .n_limits = ARRAY_SIZE(rtw_iface_limits),
121 .max_interfaces = 2,
122 .num_different_channels = 1,
123 }
124 };
125
rtw_desc_to_bitrate(u8 desc_rate)126 u16 rtw_desc_to_bitrate(u8 desc_rate)
127 {
128 struct ieee80211_rate rate;
129
130 if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
131 return 0;
132
133 rate = rtw_ratetable[desc_rate];
134
135 return rate.bitrate;
136 }
137
138 static struct ieee80211_supported_band rtw_band_2ghz = {
139 .band = NL80211_BAND_2GHZ,
140
141 .channels = rtw_channeltable_2g,
142 .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
143
144 .bitrates = rtw_ratetable,
145 .n_bitrates = ARRAY_SIZE(rtw_ratetable),
146
147 .ht_cap = {0},
148 .vht_cap = {0},
149 };
150
151 static struct ieee80211_supported_band rtw_band_5ghz = {
152 .band = NL80211_BAND_5GHZ,
153
154 .channels = rtw_channeltable_5g,
155 .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
156
157 /* 5G has no CCK rates */
158 .bitrates = rtw_ratetable + 4,
159 .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
160
161 .ht_cap = {0},
162 .vht_cap = {0},
163 };
164
165 struct rtw_watch_dog_iter_data {
166 struct rtw_dev *rtwdev;
167 struct rtw_vif *rtwvif;
168 };
169
rtw_dynamic_csi_rate(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif)170 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
171 {
172 struct rtw_bf_info *bf_info = &rtwdev->bf_info;
173 u8 fix_rate_enable = 0;
174 u8 new_csi_rate_idx;
175
176 if (rtwvif->bfee.role != RTW_BFEE_SU &&
177 rtwvif->bfee.role != RTW_BFEE_MU)
178 return;
179
180 rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
181 bf_info->cur_csi_rpt_rate,
182 fix_rate_enable, &new_csi_rate_idx);
183
184 if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
185 bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
186 }
187
rtw_vif_watch_dog_iter(void * data,struct ieee80211_vif * vif)188 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
189 {
190 struct rtw_watch_dog_iter_data *iter_data = data;
191 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
192
193 if (vif->type == NL80211_IFTYPE_STATION)
194 if (vif->cfg.assoc)
195 iter_data->rtwvif = rtwvif;
196
197 rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
198
199 rtwvif->stats.tx_unicast = 0;
200 rtwvif->stats.rx_unicast = 0;
201 rtwvif->stats.tx_cnt = 0;
202 rtwvif->stats.rx_cnt = 0;
203 }
204
205 /* process TX/RX statistics periodically for hardware,
206 * the information helps hardware to enhance performance
207 */
rtw_watch_dog_work(struct work_struct * work)208 static void rtw_watch_dog_work(struct work_struct *work)
209 {
210 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
211 watch_dog_work.work);
212 struct rtw_traffic_stats *stats = &rtwdev->stats;
213 struct rtw_watch_dog_iter_data data = {};
214 bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
215 bool ps_active;
216
217 mutex_lock(&rtwdev->mutex);
218
219 if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
220 goto unlock;
221
222 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
223 RTW_WATCH_DOG_DELAY_TIME);
224
225 if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
226 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
227 else
228 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
229
230 rtw_coex_wl_status_check(rtwdev);
231 rtw_coex_query_bt_hid_list(rtwdev);
232
233 if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
234 rtw_coex_wl_status_change_notify(rtwdev, 0);
235
236 if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
237 stats->rx_cnt > RTW_LPS_THRESHOLD)
238 ps_active = true;
239 else
240 ps_active = false;
241
242 ewma_tp_add(&stats->tx_ewma_tp,
243 (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
244 ewma_tp_add(&stats->rx_ewma_tp,
245 (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
246 stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
247 stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
248
249 /* reset tx/rx statictics */
250 stats->tx_unicast = 0;
251 stats->rx_unicast = 0;
252 stats->tx_cnt = 0;
253 stats->rx_cnt = 0;
254
255 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
256 goto unlock;
257
258 /* make sure BB/RF is working for dynamic mech */
259 rtw_leave_lps(rtwdev);
260
261 rtw_phy_dynamic_mechanism(rtwdev);
262
263 data.rtwdev = rtwdev;
264 /* rtw_iterate_vifs internally uses an atomic iterator which is needed
265 * to avoid taking local->iflist_mtx mutex
266 */
267 rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
268
269 /* fw supports only one station associated to enter lps, if there are
270 * more than two stations associated to the AP, then we can not enter
271 * lps, because fw does not handle the overlapped beacon interval
272 *
273 * rtw_recalc_lps() iterate vifs and determine if driver can enter
274 * ps by vif->type and vif->cfg.ps, all we need to do here is to
275 * get that vif and check if device is having traffic more than the
276 * threshold.
277 */
278 if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
279 !rtwdev->beacon_loss && !rtwdev->ap_active)
280 rtw_enter_lps(rtwdev, data.rtwvif->port);
281
282 rtwdev->watch_dog_cnt++;
283
284 unlock:
285 mutex_unlock(&rtwdev->mutex);
286 }
287
rtw_c2h_work(struct work_struct * work)288 static void rtw_c2h_work(struct work_struct *work)
289 {
290 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
291 struct sk_buff *skb, *tmp;
292
293 skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
294 skb_unlink(skb, &rtwdev->c2h_queue);
295 rtw_fw_c2h_cmd_handle(rtwdev, skb);
296 dev_kfree_skb_any(skb);
297 }
298 }
299
rtw_ips_work(struct work_struct * work)300 static void rtw_ips_work(struct work_struct *work)
301 {
302 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
303
304 mutex_lock(&rtwdev->mutex);
305 if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
306 rtw_enter_ips(rtwdev);
307 mutex_unlock(&rtwdev->mutex);
308 }
309
rtw_acquire_macid(struct rtw_dev * rtwdev)310 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
311 {
312 unsigned long mac_id;
313
314 mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
315 if (mac_id < RTW_MAX_MAC_ID_NUM)
316 set_bit(mac_id, rtwdev->mac_id_map);
317
318 return mac_id;
319 }
320
rtw_sta_rc_work(struct work_struct * work)321 static void rtw_sta_rc_work(struct work_struct *work)
322 {
323 struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
324 rc_work);
325 struct rtw_dev *rtwdev = si->rtwdev;
326
327 mutex_lock(&rtwdev->mutex);
328 rtw_update_sta_info(rtwdev, si, true);
329 mutex_unlock(&rtwdev->mutex);
330 }
331
rtw_sta_add(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,struct ieee80211_vif * vif)332 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
333 struct ieee80211_vif *vif)
334 {
335 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
336 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
337 int i;
338
339 si->mac_id = rtw_acquire_macid(rtwdev);
340 if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
341 return -ENOSPC;
342
343 if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc == 0)
344 rtwvif->mac_id = si->mac_id;
345 si->rtwdev = rtwdev;
346 si->sta = sta;
347 si->vif = vif;
348 si->init_ra_lv = 1;
349 ewma_rssi_init(&si->avg_rssi);
350 for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
351 rtw_txq_init(rtwdev, sta->txq[i]);
352 INIT_WORK(&si->rc_work, rtw_sta_rc_work);
353
354 rtw_update_sta_info(rtwdev, si, true);
355 rtw_fw_media_status_report(rtwdev, si->mac_id, true);
356
357 rtwdev->sta_cnt++;
358 rtwdev->beacon_loss = false;
359 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
360 sta->addr, si->mac_id);
361
362 return 0;
363 }
364
rtw_sta_remove(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,bool fw_exist)365 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
366 bool fw_exist)
367 {
368 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
369 int i;
370
371 cancel_work_sync(&si->rc_work);
372
373 rtw_release_macid(rtwdev, si->mac_id);
374 if (fw_exist)
375 rtw_fw_media_status_report(rtwdev, si->mac_id, false);
376
377 for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
378 rtw_txq_cleanup(rtwdev, sta->txq[i]);
379
380 kfree(si->mask);
381
382 rtwdev->sta_cnt--;
383 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
384 sta->addr, si->mac_id);
385 }
386
387 struct rtw_fwcd_hdr {
388 u32 item;
389 u32 size;
390 u32 padding1;
391 u32 padding2;
392 } __packed;
393
rtw_fwcd_prep(struct rtw_dev * rtwdev)394 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
395 {
396 const struct rtw_chip_info *chip = rtwdev->chip;
397 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
398 const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
399 u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
400 u8 i;
401
402 if (segs) {
403 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
404
405 for (i = 0; i < segs->num; i++)
406 prep_size += segs->segs[i];
407 }
408
409 desc->data = vmalloc(prep_size);
410 if (!desc->data)
411 return -ENOMEM;
412
413 desc->size = prep_size;
414 desc->next = desc->data;
415
416 return 0;
417 }
418
rtw_fwcd_next(struct rtw_dev * rtwdev,u32 item,u32 size)419 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
420 {
421 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
422 struct rtw_fwcd_hdr *hdr;
423 u8 *next;
424
425 if (!desc->data) {
426 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
427 return NULL;
428 }
429
430 next = desc->next + sizeof(struct rtw_fwcd_hdr);
431 if (next - desc->data + size > desc->size) {
432 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
433 return NULL;
434 }
435
436 hdr = (struct rtw_fwcd_hdr *)(desc->next);
437 hdr->item = item;
438 hdr->size = size;
439 hdr->padding1 = 0x01234567;
440 hdr->padding2 = 0x89abcdef;
441 desc->next = next + size;
442
443 return next;
444 }
445
rtw_fwcd_dump(struct rtw_dev * rtwdev)446 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
447 {
448 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
449
450 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
451
452 /* Data will be freed after lifetime of device coredump. After calling
453 * dev_coredump, data is supposed to be handled by the device coredump
454 * framework. Note that a new dump will be discarded if a previous one
455 * hasn't been released yet.
456 */
457 dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
458 }
459
rtw_fwcd_free(struct rtw_dev * rtwdev,bool free_self)460 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
461 {
462 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
463
464 if (free_self) {
465 rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
466 vfree(desc->data);
467 }
468
469 desc->data = NULL;
470 desc->next = NULL;
471 }
472
rtw_fw_dump_crash_log(struct rtw_dev * rtwdev)473 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
474 {
475 u32 size = rtwdev->chip->fw_rxff_size;
476 u32 *buf;
477 u8 seq;
478
479 buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
480 if (!buf)
481 return -ENOMEM;
482
483 if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
484 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
485 return -EINVAL;
486 }
487
488 if (GET_FW_DUMP_LEN(buf) == 0) {
489 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
490 return -EINVAL;
491 }
492
493 seq = GET_FW_DUMP_SEQ(buf);
494 if (seq > 0) {
495 rtw_dbg(rtwdev, RTW_DBG_FW,
496 "fw crash dump's seq is wrong: %d\n", seq);
497 return -EINVAL;
498 }
499
500 return 0;
501 }
502
rtw_dump_fw(struct rtw_dev * rtwdev,const u32 ocp_src,u32 size,u32 fwcd_item)503 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
504 u32 fwcd_item)
505 {
506 u32 rxff = rtwdev->chip->fw_rxff_size;
507 u32 dump_size, done_size = 0;
508 u8 *buf;
509 int ret;
510
511 buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
512 if (!buf)
513 return -ENOMEM;
514
515 while (size) {
516 dump_size = size > rxff ? rxff : size;
517
518 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
519 dump_size);
520 if (ret) {
521 rtw_err(rtwdev,
522 "ddma fw 0x%x [+0x%x] to fw fifo fail\n",
523 ocp_src, done_size);
524 return ret;
525 }
526
527 ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
528 dump_size, (u32 *)(buf + done_size));
529 if (ret) {
530 rtw_err(rtwdev,
531 "dump fw 0x%x [+0x%x] from fw fifo fail\n",
532 ocp_src, done_size);
533 return ret;
534 }
535
536 size -= dump_size;
537 done_size += dump_size;
538 }
539
540 return 0;
541 }
542 EXPORT_SYMBOL(rtw_dump_fw);
543
rtw_dump_reg(struct rtw_dev * rtwdev,const u32 addr,const u32 size)544 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
545 {
546 u8 *buf;
547 u32 i;
548
549 if (addr & 0x3) {
550 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
551 return -EINVAL;
552 }
553
554 buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
555 if (!buf)
556 return -ENOMEM;
557
558 for (i = 0; i < size; i += 4)
559 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
560
561 return 0;
562 }
563 EXPORT_SYMBOL(rtw_dump_reg);
564
rtw_vif_assoc_changed(struct rtw_vif * rtwvif,struct ieee80211_bss_conf * conf)565 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
566 struct ieee80211_bss_conf *conf)
567 {
568 struct ieee80211_vif *vif = NULL;
569
570 if (conf)
571 vif = container_of(conf, struct ieee80211_vif, bss_conf);
572
573 if (conf && vif->cfg.assoc) {
574 rtwvif->aid = vif->cfg.aid;
575 rtwvif->net_type = RTW_NET_MGD_LINKED;
576 } else {
577 rtwvif->aid = 0;
578 rtwvif->net_type = RTW_NET_NO_LINK;
579 }
580 }
581
rtw_reset_key_iter(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ieee80211_key_conf * key,void * data)582 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
583 struct ieee80211_vif *vif,
584 struct ieee80211_sta *sta,
585 struct ieee80211_key_conf *key,
586 void *data)
587 {
588 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
589 struct rtw_sec_desc *sec = &rtwdev->sec;
590
591 rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
592 }
593
rtw_reset_sta_iter(void * data,struct ieee80211_sta * sta)594 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
595 {
596 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
597
598 if (rtwdev->sta_cnt == 0) {
599 rtw_warn(rtwdev, "sta count before reset should not be 0\n");
600 return;
601 }
602 rtw_sta_remove(rtwdev, sta, false);
603 }
604
rtw_reset_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)605 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
606 {
607 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
608 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
609
610 rtw_bf_disassoc(rtwdev, vif, NULL);
611 rtw_vif_assoc_changed(rtwvif, NULL);
612 rtw_txq_cleanup(rtwdev, vif->txq);
613 }
614
rtw_fw_recovery(struct rtw_dev * rtwdev)615 void rtw_fw_recovery(struct rtw_dev *rtwdev)
616 {
617 if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
618 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
619 }
620
__fw_recovery_work(struct rtw_dev * rtwdev)621 static void __fw_recovery_work(struct rtw_dev *rtwdev)
622 {
623 int ret = 0;
624
625 set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
626 clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
627
628 ret = rtw_fwcd_prep(rtwdev);
629 if (ret)
630 goto free;
631 ret = rtw_fw_dump_crash_log(rtwdev);
632 if (ret)
633 goto free;
634 ret = rtw_chip_dump_fw_crash(rtwdev);
635 if (ret)
636 goto free;
637
638 rtw_fwcd_dump(rtwdev);
639 free:
640 rtw_fwcd_free(rtwdev, !!ret);
641 rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
642
643 WARN(1, "firmware crash, start reset and recover\n");
644
645 rcu_read_lock();
646 rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
647 rcu_read_unlock();
648 rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
649 rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
650 bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
651 rtw_enter_ips(rtwdev);
652 }
653
rtw_fw_recovery_work(struct work_struct * work)654 static void rtw_fw_recovery_work(struct work_struct *work)
655 {
656 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
657 fw_recovery_work);
658
659 mutex_lock(&rtwdev->mutex);
660 __fw_recovery_work(rtwdev);
661 mutex_unlock(&rtwdev->mutex);
662
663 ieee80211_restart_hw(rtwdev->hw);
664 }
665
666 struct rtw_txq_ba_iter_data {
667 };
668
rtw_txq_ba_iter(void * data,struct ieee80211_sta * sta)669 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
670 {
671 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
672 int ret;
673 u8 tid;
674
675 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
676 while (tid != IEEE80211_NUM_TIDS) {
677 clear_bit(tid, si->tid_ba);
678 ret = ieee80211_start_tx_ba_session(sta, tid, 0);
679 if (ret == -EINVAL) {
680 struct ieee80211_txq *txq;
681 struct rtw_txq *rtwtxq;
682
683 txq = sta->txq[tid];
684 rtwtxq = (struct rtw_txq *)txq->drv_priv;
685 set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
686 }
687
688 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
689 }
690 }
691
rtw_txq_ba_work(struct work_struct * work)692 static void rtw_txq_ba_work(struct work_struct *work)
693 {
694 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
695 struct rtw_txq_ba_iter_data data;
696
697 rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
698 }
699
rtw_set_rx_freq_band(struct rtw_rx_pkt_stat * pkt_stat,u8 channel)700 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
701 {
702 if (IS_CH_2G_BAND(channel))
703 pkt_stat->band = NL80211_BAND_2GHZ;
704 else if (IS_CH_5G_BAND(channel))
705 pkt_stat->band = NL80211_BAND_5GHZ;
706 else
707 return;
708
709 pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
710 }
711 EXPORT_SYMBOL(rtw_set_rx_freq_band);
712
rtw_set_dtim_period(struct rtw_dev * rtwdev,int dtim_period)713 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
714 {
715 rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
716 rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
717 }
718
rtw_update_channel(struct rtw_dev * rtwdev,u8 center_channel,u8 primary_channel,enum rtw_supported_band band,enum rtw_bandwidth bandwidth)719 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
720 u8 primary_channel, enum rtw_supported_band band,
721 enum rtw_bandwidth bandwidth)
722 {
723 enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
724 struct rtw_hal *hal = &rtwdev->hal;
725 u8 *cch_by_bw = hal->cch_by_bw;
726 u32 center_freq, primary_freq;
727 enum rtw_sar_bands sar_band;
728 u8 primary_channel_idx;
729
730 center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
731 primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
732
733 /* assign the center channel used while 20M bw is selected */
734 cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
735
736 /* assign the center channel used while current bw is selected */
737 cch_by_bw[bandwidth] = center_channel;
738
739 switch (bandwidth) {
740 case RTW_CHANNEL_WIDTH_20:
741 default:
742 primary_channel_idx = RTW_SC_DONT_CARE;
743 break;
744 case RTW_CHANNEL_WIDTH_40:
745 if (primary_freq > center_freq)
746 primary_channel_idx = RTW_SC_20_UPPER;
747 else
748 primary_channel_idx = RTW_SC_20_LOWER;
749 break;
750 case RTW_CHANNEL_WIDTH_80:
751 if (primary_freq > center_freq) {
752 if (primary_freq - center_freq == 10)
753 primary_channel_idx = RTW_SC_20_UPPER;
754 else
755 primary_channel_idx = RTW_SC_20_UPMOST;
756
757 /* assign the center channel used
758 * while 40M bw is selected
759 */
760 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
761 } else {
762 if (center_freq - primary_freq == 10)
763 primary_channel_idx = RTW_SC_20_LOWER;
764 else
765 primary_channel_idx = RTW_SC_20_LOWEST;
766
767 /* assign the center channel used
768 * while 40M bw is selected
769 */
770 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
771 }
772 break;
773 }
774
775 switch (center_channel) {
776 case 1 ... 14:
777 sar_band = RTW_SAR_BAND_0;
778 break;
779 case 36 ... 64:
780 sar_band = RTW_SAR_BAND_1;
781 break;
782 case 100 ... 144:
783 sar_band = RTW_SAR_BAND_3;
784 break;
785 case 149 ... 177:
786 sar_band = RTW_SAR_BAND_4;
787 break;
788 default:
789 WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
790 sar_band = RTW_SAR_BAND_0;
791 break;
792 }
793
794 hal->current_primary_channel_index = primary_channel_idx;
795 hal->current_band_width = bandwidth;
796 hal->primary_channel = primary_channel;
797 hal->current_channel = center_channel;
798 hal->current_band_type = band;
799 hal->sar_band = sar_band;
800 }
801
rtw_get_channel_params(struct cfg80211_chan_def * chandef,struct rtw_channel_params * chan_params)802 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
803 struct rtw_channel_params *chan_params)
804 {
805 struct ieee80211_channel *channel = chandef->chan;
806 enum nl80211_chan_width width = chandef->width;
807 u32 primary_freq, center_freq;
808 u8 center_chan;
809 u8 bandwidth = RTW_CHANNEL_WIDTH_20;
810
811 center_chan = channel->hw_value;
812 primary_freq = channel->center_freq;
813 center_freq = chandef->center_freq1;
814
815 switch (width) {
816 case NL80211_CHAN_WIDTH_20_NOHT:
817 case NL80211_CHAN_WIDTH_20:
818 bandwidth = RTW_CHANNEL_WIDTH_20;
819 break;
820 case NL80211_CHAN_WIDTH_40:
821 bandwidth = RTW_CHANNEL_WIDTH_40;
822 if (primary_freq > center_freq)
823 center_chan -= 2;
824 else
825 center_chan += 2;
826 break;
827 case NL80211_CHAN_WIDTH_80:
828 bandwidth = RTW_CHANNEL_WIDTH_80;
829 if (primary_freq > center_freq) {
830 if (primary_freq - center_freq == 10)
831 center_chan -= 2;
832 else
833 center_chan -= 6;
834 } else {
835 if (center_freq - primary_freq == 10)
836 center_chan += 2;
837 else
838 center_chan += 6;
839 }
840 break;
841 default:
842 center_chan = 0;
843 break;
844 }
845
846 chan_params->center_chan = center_chan;
847 chan_params->bandwidth = bandwidth;
848 chan_params->primary_chan = channel->hw_value;
849 }
850
rtw_set_channel(struct rtw_dev * rtwdev)851 void rtw_set_channel(struct rtw_dev *rtwdev)
852 {
853 const struct rtw_chip_info *chip = rtwdev->chip;
854 struct ieee80211_hw *hw = rtwdev->hw;
855 struct rtw_hal *hal = &rtwdev->hal;
856 struct rtw_channel_params ch_param;
857 u8 center_chan, primary_chan, bandwidth, band;
858
859 rtw_get_channel_params(&hw->conf.chandef, &ch_param);
860 if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
861 return;
862
863 center_chan = ch_param.center_chan;
864 primary_chan = ch_param.primary_chan;
865 bandwidth = ch_param.bandwidth;
866 band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
867
868 rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
869
870 if (rtwdev->scan_info.op_chan)
871 rtw_store_op_chan(rtwdev, true);
872
873 chip->ops->set_channel(rtwdev, center_chan, bandwidth,
874 hal->current_primary_channel_index);
875
876 if (hal->current_band_type == RTW_BAND_5G) {
877 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
878 } else {
879 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
880 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
881 else
882 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
883 }
884
885 rtw_phy_set_tx_power_level(rtwdev, center_chan);
886
887 /* if the channel isn't set for scanning, we will do RF calibration
888 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
889 * during scanning on each channel takes too long.
890 */
891 if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
892 rtwdev->need_rfk = true;
893 }
894
rtw_chip_prepare_tx(struct rtw_dev * rtwdev)895 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
896 {
897 const struct rtw_chip_info *chip = rtwdev->chip;
898
899 if (rtwdev->need_rfk) {
900 rtwdev->need_rfk = false;
901 chip->ops->phy_calibration(rtwdev);
902 }
903 }
904
rtw_vif_write_addr(struct rtw_dev * rtwdev,u32 start,u8 * addr)905 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
906 {
907 int i;
908
909 for (i = 0; i < ETH_ALEN; i++)
910 rtw_write8(rtwdev, start + i, addr[i]);
911 }
912
rtw_vif_port_config(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,u32 config)913 void rtw_vif_port_config(struct rtw_dev *rtwdev,
914 struct rtw_vif *rtwvif,
915 u32 config)
916 {
917 u32 addr, mask;
918
919 if (config & PORT_SET_MAC_ADDR) {
920 addr = rtwvif->conf->mac_addr.addr;
921 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
922 }
923 if (config & PORT_SET_BSSID) {
924 addr = rtwvif->conf->bssid.addr;
925 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
926 }
927 if (config & PORT_SET_NET_TYPE) {
928 addr = rtwvif->conf->net_type.addr;
929 mask = rtwvif->conf->net_type.mask;
930 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
931 }
932 if (config & PORT_SET_AID) {
933 addr = rtwvif->conf->aid.addr;
934 mask = rtwvif->conf->aid.mask;
935 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
936 }
937 if (config & PORT_SET_BCN_CTRL) {
938 addr = rtwvif->conf->bcn_ctrl.addr;
939 mask = rtwvif->conf->bcn_ctrl.mask;
940 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
941 }
942 }
943
hw_bw_cap_to_bitamp(u8 bw_cap)944 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
945 {
946 u8 bw = 0;
947
948 switch (bw_cap) {
949 case EFUSE_HW_CAP_IGNORE:
950 case EFUSE_HW_CAP_SUPP_BW80:
951 bw |= BIT(RTW_CHANNEL_WIDTH_80);
952 fallthrough;
953 case EFUSE_HW_CAP_SUPP_BW40:
954 bw |= BIT(RTW_CHANNEL_WIDTH_40);
955 fallthrough;
956 default:
957 bw |= BIT(RTW_CHANNEL_WIDTH_20);
958 break;
959 }
960
961 return bw;
962 }
963
rtw_hw_config_rf_ant_num(struct rtw_dev * rtwdev,u8 hw_ant_num)964 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
965 {
966 const struct rtw_chip_info *chip = rtwdev->chip;
967 struct rtw_hal *hal = &rtwdev->hal;
968
969 if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
970 hw_ant_num >= hal->rf_path_num)
971 return;
972
973 switch (hw_ant_num) {
974 case 1:
975 hal->rf_type = RF_1T1R;
976 hal->rf_path_num = 1;
977 if (!chip->fix_rf_phy_num)
978 hal->rf_phy_num = hal->rf_path_num;
979 hal->antenna_tx = BB_PATH_A;
980 hal->antenna_rx = BB_PATH_A;
981 break;
982 default:
983 WARN(1, "invalid hw configuration from efuse\n");
984 break;
985 }
986 }
987
get_vht_ra_mask(struct ieee80211_sta * sta)988 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
989 {
990 u64 ra_mask = 0;
991 u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
992 u8 vht_mcs_cap;
993 int i, nss;
994
995 /* 4SS, every two bits for MCS7/8/9 */
996 for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
997 vht_mcs_cap = mcs_map & 0x3;
998 switch (vht_mcs_cap) {
999 case 2: /* MCS9 */
1000 ra_mask |= 0x3ffULL << nss;
1001 break;
1002 case 1: /* MCS8 */
1003 ra_mask |= 0x1ffULL << nss;
1004 break;
1005 case 0: /* MCS7 */
1006 ra_mask |= 0x0ffULL << nss;
1007 break;
1008 default:
1009 break;
1010 }
1011 }
1012
1013 return ra_mask;
1014 }
1015
get_rate_id(u8 wireless_set,enum rtw_bandwidth bw_mode,u8 tx_num)1016 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1017 {
1018 u8 rate_id = 0;
1019
1020 switch (wireless_set) {
1021 case WIRELESS_CCK:
1022 rate_id = RTW_RATEID_B_20M;
1023 break;
1024 case WIRELESS_OFDM:
1025 rate_id = RTW_RATEID_G;
1026 break;
1027 case WIRELESS_CCK | WIRELESS_OFDM:
1028 rate_id = RTW_RATEID_BG;
1029 break;
1030 case WIRELESS_OFDM | WIRELESS_HT:
1031 if (tx_num == 1)
1032 rate_id = RTW_RATEID_GN_N1SS;
1033 else if (tx_num == 2)
1034 rate_id = RTW_RATEID_GN_N2SS;
1035 else if (tx_num == 3)
1036 rate_id = RTW_RATEID_ARFR5_N_3SS;
1037 break;
1038 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1039 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1040 if (tx_num == 1)
1041 rate_id = RTW_RATEID_BGN_40M_1SS;
1042 else if (tx_num == 2)
1043 rate_id = RTW_RATEID_BGN_40M_2SS;
1044 else if (tx_num == 3)
1045 rate_id = RTW_RATEID_ARFR5_N_3SS;
1046 else if (tx_num == 4)
1047 rate_id = RTW_RATEID_ARFR7_N_4SS;
1048 } else {
1049 if (tx_num == 1)
1050 rate_id = RTW_RATEID_BGN_20M_1SS;
1051 else if (tx_num == 2)
1052 rate_id = RTW_RATEID_BGN_20M_2SS;
1053 else if (tx_num == 3)
1054 rate_id = RTW_RATEID_ARFR5_N_3SS;
1055 else if (tx_num == 4)
1056 rate_id = RTW_RATEID_ARFR7_N_4SS;
1057 }
1058 break;
1059 case WIRELESS_OFDM | WIRELESS_VHT:
1060 if (tx_num == 1)
1061 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1062 else if (tx_num == 2)
1063 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1064 else if (tx_num == 3)
1065 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1066 else if (tx_num == 4)
1067 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1068 break;
1069 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1070 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1071 if (tx_num == 1)
1072 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1073 else if (tx_num == 2)
1074 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1075 else if (tx_num == 3)
1076 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1077 else if (tx_num == 4)
1078 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1079 } else {
1080 if (tx_num == 1)
1081 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1082 else if (tx_num == 2)
1083 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1084 else if (tx_num == 3)
1085 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1086 else if (tx_num == 4)
1087 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1088 }
1089 break;
1090 default:
1091 break;
1092 }
1093
1094 return rate_id;
1095 }
1096
1097 #define RA_MASK_CCK_RATES 0x0000f
1098 #define RA_MASK_OFDM_RATES 0x00ff0
1099 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0)
1100 #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8)
1101 #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16)
1102 #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \
1103 RA_MASK_HT_RATES_2SS | \
1104 RA_MASK_HT_RATES_3SS)
1105 #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0)
1106 #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10)
1107 #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20)
1108 #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \
1109 RA_MASK_VHT_RATES_2SS | \
1110 RA_MASK_VHT_RATES_3SS)
1111 #define RA_MASK_CCK_IN_BG 0x00005
1112 #define RA_MASK_CCK_IN_HT 0x00005
1113 #define RA_MASK_CCK_IN_VHT 0x00005
1114 #define RA_MASK_OFDM_IN_VHT 0x00010
1115 #define RA_MASK_OFDM_IN_HT_2G 0x00010
1116 #define RA_MASK_OFDM_IN_HT_5G 0x00030
1117
rtw_rate_mask_rssi(struct rtw_sta_info * si,u8 wireless_set)1118 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1119 {
1120 u8 rssi_level = si->rssi_level;
1121
1122 if (wireless_set == WIRELESS_CCK)
1123 return 0xffffffffffffffffULL;
1124
1125 if (rssi_level == 0)
1126 return 0xffffffffffffffffULL;
1127 else if (rssi_level == 1)
1128 return 0xfffffffffffffff0ULL;
1129 else if (rssi_level == 2)
1130 return 0xffffffffffffefe0ULL;
1131 else if (rssi_level == 3)
1132 return 0xffffffffffffcfc0ULL;
1133 else if (rssi_level == 4)
1134 return 0xffffffffffff8f80ULL;
1135 else
1136 return 0xffffffffffff0f00ULL;
1137 }
1138
rtw_rate_mask_recover(u64 ra_mask,u64 ra_mask_bak)1139 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1140 {
1141 if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1142 ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1143
1144 if (ra_mask == 0)
1145 ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1146
1147 return ra_mask;
1148 }
1149
rtw_rate_mask_cfg(struct rtw_dev * rtwdev,struct rtw_sta_info * si,u64 ra_mask,bool is_vht_enable)1150 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1151 u64 ra_mask, bool is_vht_enable)
1152 {
1153 struct rtw_hal *hal = &rtwdev->hal;
1154 const struct cfg80211_bitrate_mask *mask = si->mask;
1155 u64 cfg_mask = GENMASK_ULL(63, 0);
1156 u8 band;
1157
1158 if (!si->use_cfg_mask)
1159 return ra_mask;
1160
1161 band = hal->current_band_type;
1162 if (band == RTW_BAND_2G) {
1163 band = NL80211_BAND_2GHZ;
1164 cfg_mask = mask->control[band].legacy;
1165 } else if (band == RTW_BAND_5G) {
1166 band = NL80211_BAND_5GHZ;
1167 cfg_mask = u64_encode_bits(mask->control[band].legacy,
1168 RA_MASK_OFDM_RATES);
1169 }
1170
1171 if (!is_vht_enable) {
1172 if (ra_mask & RA_MASK_HT_RATES_1SS)
1173 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1174 RA_MASK_HT_RATES_1SS);
1175 if (ra_mask & RA_MASK_HT_RATES_2SS)
1176 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1177 RA_MASK_HT_RATES_2SS);
1178 } else {
1179 if (ra_mask & RA_MASK_VHT_RATES_1SS)
1180 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1181 RA_MASK_VHT_RATES_1SS);
1182 if (ra_mask & RA_MASK_VHT_RATES_2SS)
1183 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1184 RA_MASK_VHT_RATES_2SS);
1185 }
1186
1187 ra_mask &= cfg_mask;
1188
1189 return ra_mask;
1190 }
1191
rtw_update_sta_info(struct rtw_dev * rtwdev,struct rtw_sta_info * si,bool reset_ra_mask)1192 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1193 bool reset_ra_mask)
1194 {
1195 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1196 struct ieee80211_sta *sta = si->sta;
1197 struct rtw_efuse *efuse = &rtwdev->efuse;
1198 struct rtw_hal *hal = &rtwdev->hal;
1199 u8 wireless_set;
1200 u8 bw_mode;
1201 u8 rate_id;
1202 u8 rf_type = RF_1T1R;
1203 u8 stbc_en = 0;
1204 u8 ldpc_en = 0;
1205 u8 tx_num = 1;
1206 u64 ra_mask = 0;
1207 u64 ra_mask_bak = 0;
1208 bool is_vht_enable = false;
1209 bool is_support_sgi = false;
1210
1211 if (sta->deflink.vht_cap.vht_supported) {
1212 is_vht_enable = true;
1213 ra_mask |= get_vht_ra_mask(sta);
1214 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1215 stbc_en = VHT_STBC_EN;
1216 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1217 ldpc_en = VHT_LDPC_EN;
1218 } else if (sta->deflink.ht_cap.ht_supported) {
1219 ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1220 (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1221 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1222 stbc_en = HT_STBC_EN;
1223 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1224 ldpc_en = HT_LDPC_EN;
1225 }
1226
1227 if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1228 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1229
1230 if (hal->current_band_type == RTW_BAND_5G) {
1231 ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1232 ra_mask_bak = ra_mask;
1233 if (sta->deflink.vht_cap.vht_supported) {
1234 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1235 wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1236 } else if (sta->deflink.ht_cap.ht_supported) {
1237 ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1238 wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1239 } else {
1240 wireless_set = WIRELESS_OFDM;
1241 }
1242 dm_info->rrsr_val_init = RRSR_INIT_5G;
1243 } else if (hal->current_band_type == RTW_BAND_2G) {
1244 ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1245 ra_mask_bak = ra_mask;
1246 if (sta->deflink.vht_cap.vht_supported) {
1247 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1248 RA_MASK_OFDM_IN_VHT;
1249 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1250 WIRELESS_HT | WIRELESS_VHT;
1251 } else if (sta->deflink.ht_cap.ht_supported) {
1252 ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1253 RA_MASK_OFDM_IN_HT_2G;
1254 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1255 WIRELESS_HT;
1256 } else if (sta->deflink.supp_rates[0] <= 0xf) {
1257 wireless_set = WIRELESS_CCK;
1258 } else {
1259 ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1260 wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1261 }
1262 dm_info->rrsr_val_init = RRSR_INIT_2G;
1263 } else {
1264 rtw_err(rtwdev, "Unknown band type\n");
1265 ra_mask_bak = ra_mask;
1266 wireless_set = 0;
1267 }
1268
1269 switch (sta->deflink.bandwidth) {
1270 case IEEE80211_STA_RX_BW_80:
1271 bw_mode = RTW_CHANNEL_WIDTH_80;
1272 is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1273 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1274 break;
1275 case IEEE80211_STA_RX_BW_40:
1276 bw_mode = RTW_CHANNEL_WIDTH_40;
1277 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1278 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1279 break;
1280 default:
1281 bw_mode = RTW_CHANNEL_WIDTH_20;
1282 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1283 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1284 break;
1285 }
1286
1287 if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1288 tx_num = 2;
1289 rf_type = RF_2T2R;
1290 } else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1291 tx_num = 2;
1292 rf_type = RF_2T2R;
1293 }
1294
1295 rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1296
1297 ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1298 ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1299 ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1300
1301 si->bw_mode = bw_mode;
1302 si->stbc_en = stbc_en;
1303 si->ldpc_en = ldpc_en;
1304 si->rf_type = rf_type;
1305 si->sgi_enable = is_support_sgi;
1306 si->vht_enable = is_vht_enable;
1307 si->ra_mask = ra_mask;
1308 si->rate_id = rate_id;
1309
1310 rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1311 }
1312
rtw_wait_firmware_completion(struct rtw_dev * rtwdev)1313 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1314 {
1315 const struct rtw_chip_info *chip = rtwdev->chip;
1316 struct rtw_fw_state *fw;
1317 int ret = 0;
1318
1319 fw = &rtwdev->fw;
1320 wait_for_completion(&fw->completion);
1321 if (!fw->firmware)
1322 ret = -EINVAL;
1323
1324 if (chip->wow_fw_name) {
1325 fw = &rtwdev->wow_fw;
1326 wait_for_completion(&fw->completion);
1327 if (!fw->firmware)
1328 ret = -EINVAL;
1329 }
1330
1331 return ret;
1332 }
1333
rtw_update_lps_deep_mode(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1334 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1335 struct rtw_fw_state *fw)
1336 {
1337 const struct rtw_chip_info *chip = rtwdev->chip;
1338
1339 if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1340 !fw->feature)
1341 return LPS_DEEP_MODE_NONE;
1342
1343 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1344 rtw_fw_feature_check(fw, FW_FEATURE_PG))
1345 return LPS_DEEP_MODE_PG;
1346
1347 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1348 rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1349 return LPS_DEEP_MODE_LCLK;
1350
1351 return LPS_DEEP_MODE_NONE;
1352 }
1353
rtw_power_on(struct rtw_dev * rtwdev)1354 static int rtw_power_on(struct rtw_dev *rtwdev)
1355 {
1356 const struct rtw_chip_info *chip = rtwdev->chip;
1357 struct rtw_fw_state *fw = &rtwdev->fw;
1358 bool wifi_only;
1359 int ret;
1360
1361 ret = rtw_hci_setup(rtwdev);
1362 if (ret) {
1363 rtw_err(rtwdev, "failed to setup hci\n");
1364 goto err;
1365 }
1366
1367 /* power on MAC before firmware downloaded */
1368 ret = rtw_mac_power_on(rtwdev);
1369 if (ret) {
1370 rtw_err(rtwdev, "failed to power on mac\n");
1371 goto err;
1372 }
1373
1374 ret = rtw_wait_firmware_completion(rtwdev);
1375 if (ret) {
1376 rtw_err(rtwdev, "failed to wait firmware completion\n");
1377 goto err_off;
1378 }
1379
1380 ret = rtw_download_firmware(rtwdev, fw);
1381 if (ret) {
1382 rtw_err(rtwdev, "failed to download firmware\n");
1383 goto err_off;
1384 }
1385
1386 /* config mac after firmware downloaded */
1387 ret = rtw_mac_init(rtwdev);
1388 if (ret) {
1389 rtw_err(rtwdev, "failed to configure mac\n");
1390 goto err_off;
1391 }
1392
1393 chip->ops->phy_set_param(rtwdev);
1394
1395 ret = rtw_hci_start(rtwdev);
1396 if (ret) {
1397 rtw_err(rtwdev, "failed to start hci\n");
1398 goto err_off;
1399 }
1400
1401 /* send H2C after HCI has started */
1402 rtw_fw_send_general_info(rtwdev);
1403 rtw_fw_send_phydm_info(rtwdev);
1404
1405 wifi_only = !rtwdev->efuse.btcoex;
1406 rtw_coex_power_on_setting(rtwdev);
1407 rtw_coex_init_hw_config(rtwdev, wifi_only);
1408
1409 return 0;
1410
1411 err_off:
1412 rtw_mac_power_off(rtwdev);
1413
1414 err:
1415 return ret;
1416 }
1417
rtw_core_fw_scan_notify(struct rtw_dev * rtwdev,bool start)1418 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1419 {
1420 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1421 return;
1422
1423 if (start) {
1424 rtw_fw_scan_notify(rtwdev, true);
1425 } else {
1426 reinit_completion(&rtwdev->fw_scan_density);
1427 rtw_fw_scan_notify(rtwdev, false);
1428 if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1429 SCAN_NOTIFY_TIMEOUT))
1430 rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1431 }
1432 }
1433
rtw_core_scan_start(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,const u8 * mac_addr,bool hw_scan)1434 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1435 const u8 *mac_addr, bool hw_scan)
1436 {
1437 u32 config = 0;
1438 int ret = 0;
1439
1440 rtw_leave_lps(rtwdev);
1441
1442 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1443 ret = rtw_leave_ips(rtwdev);
1444 if (ret) {
1445 rtw_err(rtwdev, "failed to leave idle state\n");
1446 return;
1447 }
1448 }
1449
1450 ether_addr_copy(rtwvif->mac_addr, mac_addr);
1451 config |= PORT_SET_MAC_ADDR;
1452 rtw_vif_port_config(rtwdev, rtwvif, config);
1453
1454 rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1455 rtw_core_fw_scan_notify(rtwdev, true);
1456
1457 set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1458 set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1459 }
1460
rtw_core_scan_complete(struct rtw_dev * rtwdev,struct ieee80211_vif * vif,bool hw_scan)1461 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1462 bool hw_scan)
1463 {
1464 struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1465 u32 config = 0;
1466
1467 if (!rtwvif)
1468 return;
1469
1470 clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1471 clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1472
1473 rtw_core_fw_scan_notify(rtwdev, false);
1474
1475 ether_addr_copy(rtwvif->mac_addr, vif->addr);
1476 config |= PORT_SET_MAC_ADDR;
1477 rtw_vif_port_config(rtwdev, rtwvif, config);
1478
1479 rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1480
1481 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1482 ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1483 }
1484
rtw_core_start(struct rtw_dev * rtwdev)1485 int rtw_core_start(struct rtw_dev *rtwdev)
1486 {
1487 int ret;
1488
1489 ret = rtw_power_on(rtwdev);
1490 if (ret)
1491 return ret;
1492
1493 rtw_sec_enable_sec_engine(rtwdev);
1494
1495 rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1496 rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1497
1498 /* rcr reset after powered on */
1499 rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1500
1501 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1502 RTW_WATCH_DOG_DELAY_TIME);
1503
1504 set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1505
1506 return 0;
1507 }
1508
rtw_power_off(struct rtw_dev * rtwdev)1509 static void rtw_power_off(struct rtw_dev *rtwdev)
1510 {
1511 rtw_hci_stop(rtwdev);
1512 rtw_coex_power_off_setting(rtwdev);
1513 rtw_mac_power_off(rtwdev);
1514 }
1515
rtw_core_stop(struct rtw_dev * rtwdev)1516 void rtw_core_stop(struct rtw_dev *rtwdev)
1517 {
1518 struct rtw_coex *coex = &rtwdev->coex;
1519
1520 clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1521 clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1522
1523 mutex_unlock(&rtwdev->mutex);
1524
1525 cancel_work_sync(&rtwdev->c2h_work);
1526 cancel_work_sync(&rtwdev->update_beacon_work);
1527 cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1528 cancel_delayed_work_sync(&coex->bt_relink_work);
1529 cancel_delayed_work_sync(&coex->bt_reenable_work);
1530 cancel_delayed_work_sync(&coex->defreeze_work);
1531 cancel_delayed_work_sync(&coex->wl_remain_work);
1532 cancel_delayed_work_sync(&coex->bt_remain_work);
1533 cancel_delayed_work_sync(&coex->wl_connecting_work);
1534 cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1535 cancel_delayed_work_sync(&coex->wl_ccklock_work);
1536
1537 mutex_lock(&rtwdev->mutex);
1538
1539 rtw_power_off(rtwdev);
1540 }
1541
rtw_init_ht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_ht_cap * ht_cap)1542 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1543 struct ieee80211_sta_ht_cap *ht_cap)
1544 {
1545 const struct rtw_chip_info *chip = rtwdev->chip;
1546 struct rtw_efuse *efuse = &rtwdev->efuse;
1547
1548 ht_cap->ht_supported = true;
1549 ht_cap->cap = 0;
1550 ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1551 IEEE80211_HT_CAP_MAX_AMSDU |
1552 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1553
1554 if (rtw_chip_has_rx_ldpc(rtwdev))
1555 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1556 if (rtw_chip_has_tx_stbc(rtwdev))
1557 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1558
1559 if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1560 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1561 IEEE80211_HT_CAP_DSSSCCK40 |
1562 IEEE80211_HT_CAP_SGI_40;
1563 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1564 ht_cap->ampdu_density = chip->ampdu_density;
1565 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1566 if (efuse->hw_cap.nss > 1) {
1567 ht_cap->mcs.rx_mask[0] = 0xFF;
1568 ht_cap->mcs.rx_mask[1] = 0xFF;
1569 ht_cap->mcs.rx_mask[4] = 0x01;
1570 ht_cap->mcs.rx_highest = cpu_to_le16(300);
1571 } else {
1572 ht_cap->mcs.rx_mask[0] = 0xFF;
1573 ht_cap->mcs.rx_mask[1] = 0x00;
1574 ht_cap->mcs.rx_mask[4] = 0x01;
1575 ht_cap->mcs.rx_highest = cpu_to_le16(150);
1576 }
1577 }
1578
rtw_init_vht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_vht_cap * vht_cap)1579 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1580 struct ieee80211_sta_vht_cap *vht_cap)
1581 {
1582 struct rtw_efuse *efuse = &rtwdev->efuse;
1583 u16 mcs_map;
1584 __le16 highest;
1585
1586 if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1587 efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1588 return;
1589
1590 vht_cap->vht_supported = true;
1591 vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1592 IEEE80211_VHT_CAP_SHORT_GI_80 |
1593 IEEE80211_VHT_CAP_RXSTBC_1 |
1594 IEEE80211_VHT_CAP_HTC_VHT |
1595 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1596 0;
1597 if (rtwdev->hal.rf_path_num > 1)
1598 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1599 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1600 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1601 vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1602 IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1603
1604 if (rtw_chip_has_rx_ldpc(rtwdev))
1605 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1606
1607 mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1608 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1609 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1610 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1611 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1612 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1613 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1614 if (efuse->hw_cap.nss > 1) {
1615 highest = cpu_to_le16(780);
1616 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1617 } else {
1618 highest = cpu_to_le16(390);
1619 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1620 }
1621
1622 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1623 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1624 vht_cap->vht_mcs.rx_highest = highest;
1625 vht_cap->vht_mcs.tx_highest = highest;
1626 }
1627
rtw_get_max_scan_ie_len(struct rtw_dev * rtwdev)1628 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1629 {
1630 u16 len;
1631
1632 len = rtwdev->chip->max_scan_ie_len;
1633
1634 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1635 rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1636 len = IEEE80211_MAX_DATA_LEN;
1637 else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1638 len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1639
1640 return len;
1641 }
1642
rtw_set_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1643 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1644 const struct rtw_chip_info *chip)
1645 {
1646 struct rtw_dev *rtwdev = hw->priv;
1647 struct ieee80211_supported_band *sband;
1648
1649 if (chip->band & RTW_BAND_2G) {
1650 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1651 if (!sband)
1652 goto err_out;
1653 if (chip->ht_supported)
1654 rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1655 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1656 }
1657
1658 if (chip->band & RTW_BAND_5G) {
1659 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1660 if (!sband)
1661 goto err_out;
1662 if (chip->ht_supported)
1663 rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1664 if (chip->vht_supported)
1665 rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1666 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1667 }
1668
1669 return;
1670
1671 err_out:
1672 rtw_err(rtwdev, "failed to set supported band\n");
1673 }
1674
rtw_unset_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1675 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1676 const struct rtw_chip_info *chip)
1677 {
1678 kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1679 kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1680 }
1681
rtw_vif_smps_iter(void * data,u8 * mac,struct ieee80211_vif * vif)1682 static void rtw_vif_smps_iter(void *data, u8 *mac,
1683 struct ieee80211_vif *vif)
1684 {
1685 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1686
1687 if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1688 return;
1689
1690 if (rtwdev->hal.txrx_1ss)
1691 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1692 else
1693 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1694 }
1695
rtw_set_txrx_1ss(struct rtw_dev * rtwdev,bool txrx_1ss)1696 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1697 {
1698 const struct rtw_chip_info *chip = rtwdev->chip;
1699 struct rtw_hal *hal = &rtwdev->hal;
1700
1701 if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1702 return;
1703
1704 rtwdev->hal.txrx_1ss = txrx_1ss;
1705 if (txrx_1ss)
1706 chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1707 else
1708 chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1709 hal->antenna_rx, false);
1710 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1711 }
1712
__update_firmware_feature(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1713 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1714 struct rtw_fw_state *fw)
1715 {
1716 u32 feature;
1717 const struct rtw_fw_hdr *fw_hdr =
1718 (const struct rtw_fw_hdr *)fw->firmware->data;
1719
1720 feature = le32_to_cpu(fw_hdr->feature);
1721 fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1722
1723 if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1724 RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1725 fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1726 }
1727
__update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1728 static void __update_firmware_info(struct rtw_dev *rtwdev,
1729 struct rtw_fw_state *fw)
1730 {
1731 const struct rtw_fw_hdr *fw_hdr =
1732 (const struct rtw_fw_hdr *)fw->firmware->data;
1733
1734 fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1735 fw->version = le16_to_cpu(fw_hdr->version);
1736 fw->sub_version = fw_hdr->subversion;
1737 fw->sub_index = fw_hdr->subindex;
1738
1739 __update_firmware_feature(rtwdev, fw);
1740 }
1741
__update_firmware_info_legacy(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1742 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1743 struct rtw_fw_state *fw)
1744 {
1745 struct rtw_fw_hdr_legacy *legacy =
1746 (struct rtw_fw_hdr_legacy *)fw->firmware->data;
1747
1748 fw->h2c_version = 0;
1749 fw->version = le16_to_cpu(legacy->version);
1750 fw->sub_version = legacy->subversion1;
1751 fw->sub_index = legacy->subversion2;
1752 }
1753
update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1754 static void update_firmware_info(struct rtw_dev *rtwdev,
1755 struct rtw_fw_state *fw)
1756 {
1757 if (rtw_chip_wcpu_11n(rtwdev))
1758 __update_firmware_info_legacy(rtwdev, fw);
1759 else
1760 __update_firmware_info(rtwdev, fw);
1761 }
1762
rtw_load_firmware_cb(const struct firmware * firmware,void * context)1763 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1764 {
1765 struct rtw_fw_state *fw = context;
1766 struct rtw_dev *rtwdev = fw->rtwdev;
1767
1768 if (!firmware || !firmware->data) {
1769 rtw_err(rtwdev, "failed to request firmware\n");
1770 complete_all(&fw->completion);
1771 return;
1772 }
1773
1774 fw->firmware = firmware;
1775 update_firmware_info(rtwdev, fw);
1776 complete_all(&fw->completion);
1777
1778 rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1779 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1780 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1781 }
1782
rtw_load_firmware(struct rtw_dev * rtwdev,enum rtw_fw_type type)1783 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1784 {
1785 const char *fw_name;
1786 struct rtw_fw_state *fw;
1787 int ret;
1788
1789 switch (type) {
1790 case RTW_WOWLAN_FW:
1791 fw = &rtwdev->wow_fw;
1792 fw_name = rtwdev->chip->wow_fw_name;
1793 break;
1794
1795 case RTW_NORMAL_FW:
1796 fw = &rtwdev->fw;
1797 fw_name = rtwdev->chip->fw_name;
1798 break;
1799
1800 default:
1801 rtw_warn(rtwdev, "unsupported firmware type\n");
1802 return -ENOENT;
1803 }
1804
1805 fw->type = type;
1806 fw->rtwdev = rtwdev;
1807 init_completion(&fw->completion);
1808
1809 ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1810 GFP_KERNEL, fw, rtw_load_firmware_cb);
1811 if (ret) {
1812 rtw_err(rtwdev, "failed to async firmware request\n");
1813 return ret;
1814 }
1815
1816 return 0;
1817 }
1818
rtw_chip_parameter_setup(struct rtw_dev * rtwdev)1819 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1820 {
1821 const struct rtw_chip_info *chip = rtwdev->chip;
1822 struct rtw_hal *hal = &rtwdev->hal;
1823 struct rtw_efuse *efuse = &rtwdev->efuse;
1824
1825 switch (rtw_hci_type(rtwdev)) {
1826 case RTW_HCI_TYPE_PCIE:
1827 rtwdev->hci.rpwm_addr = 0x03d9;
1828 rtwdev->hci.cpwm_addr = 0x03da;
1829 break;
1830 case RTW_HCI_TYPE_SDIO:
1831 rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1832 rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1833 break;
1834 case RTW_HCI_TYPE_USB:
1835 rtwdev->hci.rpwm_addr = 0xfe58;
1836 rtwdev->hci.cpwm_addr = 0xfe57;
1837 break;
1838 default:
1839 rtw_err(rtwdev, "unsupported hci type\n");
1840 return -EINVAL;
1841 }
1842
1843 hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1844 hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1845 hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1846 if (hal->chip_version & BIT_RF_TYPE_ID) {
1847 hal->rf_type = RF_2T2R;
1848 hal->rf_path_num = 2;
1849 hal->antenna_tx = BB_PATH_AB;
1850 hal->antenna_rx = BB_PATH_AB;
1851 } else {
1852 hal->rf_type = RF_1T1R;
1853 hal->rf_path_num = 1;
1854 hal->antenna_tx = BB_PATH_A;
1855 hal->antenna_rx = BB_PATH_A;
1856 }
1857 hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1858 hal->rf_path_num;
1859
1860 efuse->physical_size = chip->phy_efuse_size;
1861 efuse->logical_size = chip->log_efuse_size;
1862 efuse->protect_size = chip->ptct_efuse_size;
1863
1864 /* default use ack */
1865 rtwdev->hal.rcr |= BIT_VHT_DACK;
1866
1867 hal->bfee_sts_cap = 3;
1868
1869 return 0;
1870 }
1871
rtw_chip_efuse_enable(struct rtw_dev * rtwdev)1872 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1873 {
1874 struct rtw_fw_state *fw = &rtwdev->fw;
1875 int ret;
1876
1877 ret = rtw_hci_setup(rtwdev);
1878 if (ret) {
1879 rtw_err(rtwdev, "failed to setup hci\n");
1880 goto err;
1881 }
1882
1883 ret = rtw_mac_power_on(rtwdev);
1884 if (ret) {
1885 rtw_err(rtwdev, "failed to power on mac\n");
1886 goto err;
1887 }
1888
1889 rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1890
1891 wait_for_completion(&fw->completion);
1892 if (!fw->firmware) {
1893 ret = -EINVAL;
1894 rtw_err(rtwdev, "failed to load firmware\n");
1895 goto err;
1896 }
1897
1898 ret = rtw_download_firmware(rtwdev, fw);
1899 if (ret) {
1900 rtw_err(rtwdev, "failed to download firmware\n");
1901 goto err_off;
1902 }
1903
1904 return 0;
1905
1906 err_off:
1907 rtw_mac_power_off(rtwdev);
1908
1909 err:
1910 return ret;
1911 }
1912
rtw_dump_hw_feature(struct rtw_dev * rtwdev)1913 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1914 {
1915 struct rtw_efuse *efuse = &rtwdev->efuse;
1916 u8 hw_feature[HW_FEATURE_LEN];
1917 u8 id;
1918 u8 bw;
1919 int i;
1920
1921 id = rtw_read8(rtwdev, REG_C2HEVT);
1922 if (id != C2H_HW_FEATURE_REPORT) {
1923 rtw_err(rtwdev, "failed to read hw feature report\n");
1924 return -EBUSY;
1925 }
1926
1927 for (i = 0; i < HW_FEATURE_LEN; i++)
1928 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1929
1930 rtw_write8(rtwdev, REG_C2HEVT, 0);
1931
1932 bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1933 efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1934 efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1935 efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1936 efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1937 efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1938
1939 rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1940
1941 if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1942 efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1943 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1944
1945 rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1946 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1947 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1948 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1949
1950 return 0;
1951 }
1952
rtw_chip_efuse_disable(struct rtw_dev * rtwdev)1953 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1954 {
1955 rtw_hci_stop(rtwdev);
1956 rtw_mac_power_off(rtwdev);
1957 }
1958
rtw_chip_efuse_info_setup(struct rtw_dev * rtwdev)1959 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1960 {
1961 struct rtw_efuse *efuse = &rtwdev->efuse;
1962 int ret;
1963
1964 mutex_lock(&rtwdev->mutex);
1965
1966 /* power on mac to read efuse */
1967 ret = rtw_chip_efuse_enable(rtwdev);
1968 if (ret)
1969 goto out_unlock;
1970
1971 ret = rtw_parse_efuse_map(rtwdev);
1972 if (ret)
1973 goto out_disable;
1974
1975 ret = rtw_dump_hw_feature(rtwdev);
1976 if (ret)
1977 goto out_disable;
1978
1979 ret = rtw_check_supported_rfe(rtwdev);
1980 if (ret)
1981 goto out_disable;
1982
1983 if (efuse->crystal_cap == 0xff)
1984 efuse->crystal_cap = 0;
1985 if (efuse->pa_type_2g == 0xff)
1986 efuse->pa_type_2g = 0;
1987 if (efuse->pa_type_5g == 0xff)
1988 efuse->pa_type_5g = 0;
1989 if (efuse->lna_type_2g == 0xff)
1990 efuse->lna_type_2g = 0;
1991 if (efuse->lna_type_5g == 0xff)
1992 efuse->lna_type_5g = 0;
1993 if (efuse->channel_plan == 0xff)
1994 efuse->channel_plan = 0x7f;
1995 if (efuse->rf_board_option == 0xff)
1996 efuse->rf_board_option = 0;
1997 if (efuse->bt_setting & BIT(0))
1998 efuse->share_ant = true;
1999 if (efuse->regd == 0xff)
2000 efuse->regd = 0;
2001 if (efuse->tx_bb_swing_setting_2g == 0xff)
2002 efuse->tx_bb_swing_setting_2g = 0;
2003 if (efuse->tx_bb_swing_setting_5g == 0xff)
2004 efuse->tx_bb_swing_setting_5g = 0;
2005
2006 efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2007 efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2008 efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2009 efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2010 efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2011
2012 out_disable:
2013 rtw_chip_efuse_disable(rtwdev);
2014
2015 out_unlock:
2016 mutex_unlock(&rtwdev->mutex);
2017 return ret;
2018 }
2019
rtw_chip_board_info_setup(struct rtw_dev * rtwdev)2020 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2021 {
2022 struct rtw_hal *hal = &rtwdev->hal;
2023 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2024
2025 if (!rfe_def)
2026 return -ENODEV;
2027
2028 rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2029
2030 rtw_phy_init_tx_power(rtwdev);
2031 rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2032 rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2033 rtw_phy_tx_power_by_rate_config(hal);
2034 rtw_phy_tx_power_limit_config(hal);
2035
2036 return 0;
2037 }
2038
rtw_chip_info_setup(struct rtw_dev * rtwdev)2039 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2040 {
2041 int ret;
2042
2043 ret = rtw_chip_parameter_setup(rtwdev);
2044 if (ret) {
2045 rtw_err(rtwdev, "failed to setup chip parameters\n");
2046 goto err_out;
2047 }
2048
2049 ret = rtw_chip_efuse_info_setup(rtwdev);
2050 if (ret) {
2051 rtw_err(rtwdev, "failed to setup chip efuse info\n");
2052 goto err_out;
2053 }
2054
2055 ret = rtw_chip_board_info_setup(rtwdev);
2056 if (ret) {
2057 rtw_err(rtwdev, "failed to setup chip board info\n");
2058 goto err_out;
2059 }
2060
2061 return 0;
2062
2063 err_out:
2064 return ret;
2065 }
2066 EXPORT_SYMBOL(rtw_chip_info_setup);
2067
rtw_stats_init(struct rtw_dev * rtwdev)2068 static void rtw_stats_init(struct rtw_dev *rtwdev)
2069 {
2070 struct rtw_traffic_stats *stats = &rtwdev->stats;
2071 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2072 int i;
2073
2074 ewma_tp_init(&stats->tx_ewma_tp);
2075 ewma_tp_init(&stats->rx_ewma_tp);
2076
2077 for (i = 0; i < RTW_EVM_NUM; i++)
2078 ewma_evm_init(&dm_info->ewma_evm[i]);
2079 for (i = 0; i < RTW_SNR_NUM; i++)
2080 ewma_snr_init(&dm_info->ewma_snr[i]);
2081 }
2082
rtw_core_init(struct rtw_dev * rtwdev)2083 int rtw_core_init(struct rtw_dev *rtwdev)
2084 {
2085 const struct rtw_chip_info *chip = rtwdev->chip;
2086 struct rtw_coex *coex = &rtwdev->coex;
2087 int ret;
2088
2089 INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2090 INIT_LIST_HEAD(&rtwdev->txqs);
2091
2092 timer_setup(&rtwdev->tx_report.purge_timer,
2093 rtw_tx_report_purge_timer, 0);
2094 rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2095 if (!rtwdev->tx_wq) {
2096 rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2097 return -ENOMEM;
2098 }
2099
2100 INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2101 INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2102 INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2103 INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2104 INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2105 INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2106 INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2107 INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2108 rtw_coex_bt_multi_link_remain_work);
2109 INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2110 INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2111 INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2112 INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2113 INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2114 INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2115 INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2116 skb_queue_head_init(&rtwdev->c2h_queue);
2117 skb_queue_head_init(&rtwdev->coex.queue);
2118 skb_queue_head_init(&rtwdev->tx_report.queue);
2119
2120 spin_lock_init(&rtwdev->txq_lock);
2121 spin_lock_init(&rtwdev->tx_report.q_lock);
2122
2123 mutex_init(&rtwdev->mutex);
2124 mutex_init(&rtwdev->hal.tx_power_mutex);
2125
2126 init_waitqueue_head(&rtwdev->coex.wait);
2127 init_completion(&rtwdev->lps_leave_check);
2128 init_completion(&rtwdev->fw_scan_density);
2129
2130 rtwdev->sec.total_cam_num = 32;
2131 rtwdev->hal.current_channel = 1;
2132 rtwdev->dm_info.fix_rate = U8_MAX;
2133 set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2134
2135 rtw_stats_init(rtwdev);
2136
2137 /* default rx filter setting */
2138 rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2139 BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2140 BIT_AB | BIT_AM | BIT_APM;
2141
2142 ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2143 if (ret) {
2144 rtw_warn(rtwdev, "no firmware loaded\n");
2145 goto out;
2146 }
2147
2148 if (chip->wow_fw_name) {
2149 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2150 if (ret) {
2151 rtw_warn(rtwdev, "no wow firmware loaded\n");
2152 wait_for_completion(&rtwdev->fw.completion);
2153 if (rtwdev->fw.firmware)
2154 release_firmware(rtwdev->fw.firmware);
2155 goto out;
2156 }
2157 }
2158
2159 return 0;
2160
2161 out:
2162 destroy_workqueue(rtwdev->tx_wq);
2163 return ret;
2164 }
2165 EXPORT_SYMBOL(rtw_core_init);
2166
rtw_core_deinit(struct rtw_dev * rtwdev)2167 void rtw_core_deinit(struct rtw_dev *rtwdev)
2168 {
2169 struct rtw_fw_state *fw = &rtwdev->fw;
2170 struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2171 struct rtw_rsvd_page *rsvd_pkt, *tmp;
2172 unsigned long flags;
2173
2174 rtw_wait_firmware_completion(rtwdev);
2175
2176 if (fw->firmware)
2177 release_firmware(fw->firmware);
2178
2179 if (wow_fw->firmware)
2180 release_firmware(wow_fw->firmware);
2181
2182 destroy_workqueue(rtwdev->tx_wq);
2183 timer_delete_sync(&rtwdev->tx_report.purge_timer);
2184 spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2185 skb_queue_purge(&rtwdev->tx_report.queue);
2186 spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2187 skb_queue_purge(&rtwdev->coex.queue);
2188 skb_queue_purge(&rtwdev->c2h_queue);
2189
2190 list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2191 build_list) {
2192 list_del(&rsvd_pkt->build_list);
2193 kfree(rsvd_pkt);
2194 }
2195
2196 mutex_destroy(&rtwdev->mutex);
2197 mutex_destroy(&rtwdev->hal.tx_power_mutex);
2198 }
2199 EXPORT_SYMBOL(rtw_core_deinit);
2200
rtw_register_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2201 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2202 {
2203 struct rtw_hal *hal = &rtwdev->hal;
2204 int max_tx_headroom = 0;
2205 int ret;
2206
2207 max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2208
2209 if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2210 max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2211
2212 hw->extra_tx_headroom = max_tx_headroom;
2213 hw->queues = IEEE80211_NUM_ACS;
2214 hw->txq_data_size = sizeof(struct rtw_txq);
2215 hw->sta_data_size = sizeof(struct rtw_sta_info);
2216 hw->vif_data_size = sizeof(struct rtw_vif);
2217
2218 ieee80211_hw_set(hw, SIGNAL_DBM);
2219 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2220 ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2221 ieee80211_hw_set(hw, MFP_CAPABLE);
2222 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2223 ieee80211_hw_set(hw, SUPPORTS_PS);
2224 ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2225 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2226 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2227 ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2228 ieee80211_hw_set(hw, TX_AMSDU);
2229 ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2230
2231 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2232 BIT(NL80211_IFTYPE_AP) |
2233 BIT(NL80211_IFTYPE_ADHOC) |
2234 BIT(NL80211_IFTYPE_MESH_POINT);
2235 hw->wiphy->available_antennas_tx = hal->antenna_tx;
2236 hw->wiphy->available_antennas_rx = hal->antenna_rx;
2237
2238 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2239 WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2240
2241 hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2242 hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2243 hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2244
2245 if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2246 hw->wiphy->iface_combinations = rtw_iface_combs;
2247 hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2248 }
2249
2250 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2251 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2252 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2253
2254 #ifdef CONFIG_PM
2255 hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2256 hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2257 #endif
2258 rtw_set_supported_band(hw, rtwdev->chip);
2259 SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2260
2261 hw->wiphy->sar_capa = &rtw_sar_capa;
2262
2263 ret = rtw_regd_init(rtwdev);
2264 if (ret) {
2265 rtw_err(rtwdev, "failed to init regd\n");
2266 return ret;
2267 }
2268
2269 ret = ieee80211_register_hw(hw);
2270 if (ret) {
2271 rtw_err(rtwdev, "failed to register hw\n");
2272 return ret;
2273 }
2274
2275 ret = rtw_regd_hint(rtwdev);
2276 if (ret) {
2277 rtw_err(rtwdev, "failed to hint regd\n");
2278 return ret;
2279 }
2280
2281 rtw_debugfs_init(rtwdev);
2282
2283 rtwdev->bf_info.bfer_mu_cnt = 0;
2284 rtwdev->bf_info.bfer_su_cnt = 0;
2285
2286 return 0;
2287 }
2288 EXPORT_SYMBOL(rtw_register_hw);
2289
rtw_unregister_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2290 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2291 {
2292 const struct rtw_chip_info *chip = rtwdev->chip;
2293
2294 ieee80211_unregister_hw(hw);
2295 rtw_unset_supported_band(hw, chip);
2296 }
2297 EXPORT_SYMBOL(rtw_unregister_hw);
2298
2299 static
rtw_swap_reg_nbytes(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2,u8 nbytes)2300 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2301 const struct rtw_hw_reg *reg2, u8 nbytes)
2302 {
2303 u8 i;
2304
2305 for (i = 0; i < nbytes; i++) {
2306 u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2307 u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2308
2309 rtw_write8(rtwdev, reg1->addr + i, v2);
2310 rtw_write8(rtwdev, reg2->addr + i, v1);
2311 }
2312 }
2313
2314 static
rtw_swap_reg_mask(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2)2315 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2316 const struct rtw_hw_reg *reg2)
2317 {
2318 u32 v1, v2;
2319
2320 v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2321 v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2322 rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2323 rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2324 }
2325
2326 struct rtw_iter_port_switch_data {
2327 struct rtw_dev *rtwdev;
2328 struct rtw_vif *rtwvif_ap;
2329 };
2330
rtw_port_switch_iter(void * data,struct ieee80211_vif * vif)2331 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2332 {
2333 struct rtw_iter_port_switch_data *iter_data = data;
2334 struct rtw_dev *rtwdev = iter_data->rtwdev;
2335 struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2336 struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2337 const struct rtw_hw_reg *reg1, *reg2;
2338
2339 if (rtwvif_target->port != RTW_PORT_0)
2340 return;
2341
2342 rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2343 rtwvif_ap->port, rtwvif_target->port);
2344
2345 /* Leave LPS so the value swapped are not in PS mode */
2346 rtw_leave_lps(rtwdev);
2347
2348 reg1 = &rtwvif_ap->conf->net_type;
2349 reg2 = &rtwvif_target->conf->net_type;
2350 rtw_swap_reg_mask(rtwdev, reg1, reg2);
2351
2352 reg1 = &rtwvif_ap->conf->mac_addr;
2353 reg2 = &rtwvif_target->conf->mac_addr;
2354 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2355
2356 reg1 = &rtwvif_ap->conf->bssid;
2357 reg2 = &rtwvif_target->conf->bssid;
2358 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2359
2360 reg1 = &rtwvif_ap->conf->bcn_ctrl;
2361 reg2 = &rtwvif_target->conf->bcn_ctrl;
2362 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2363
2364 swap(rtwvif_target->port, rtwvif_ap->port);
2365 swap(rtwvif_target->conf, rtwvif_ap->conf);
2366
2367 rtw_fw_default_port(rtwdev, rtwvif_target);
2368 }
2369
rtw_core_port_switch(struct rtw_dev * rtwdev,struct ieee80211_vif * vif)2370 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2371 {
2372 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2373 struct rtw_iter_port_switch_data iter_data;
2374
2375 if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2376 return;
2377
2378 iter_data.rtwdev = rtwdev;
2379 iter_data.rtwvif_ap = rtwvif;
2380 rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2381 }
2382
rtw_check_sta_active_iter(void * data,struct ieee80211_vif * vif)2383 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2384 {
2385 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2386 bool *active = data;
2387
2388 if (*active)
2389 return;
2390
2391 if (vif->type != NL80211_IFTYPE_STATION)
2392 return;
2393
2394 if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2395 *active = true;
2396 }
2397
rtw_core_check_sta_active(struct rtw_dev * rtwdev)2398 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2399 {
2400 bool sta_active = false;
2401
2402 rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2403
2404 return rtwdev->ap_active || sta_active;
2405 }
2406
rtw_core_enable_beacon(struct rtw_dev * rtwdev,bool enable)2407 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2408 {
2409 if (!rtwdev->ap_active)
2410 return;
2411
2412 if (enable) {
2413 rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2414 rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2415 } else {
2416 rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2417 rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2418 }
2419 }
2420
2421 MODULE_AUTHOR("Realtek Corporation");
2422 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2423 MODULE_LICENSE("Dual BSD/GPL");
2424