xref: /openbmc/linux/fs/btrfs/file.c (revision 7b5595f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "extent-tree.h"
36 #include "file-item.h"
37 #include "ioctl.h"
38 #include "file.h"
39 #include "super.h"
40 
41 /* simple helper to fault in pages and copy.  This should go away
42  * and be replaced with calls into generic code.
43  */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 					 struct page **prepared_pages,
46 					 struct iov_iter *i)
47 {
48 	size_t copied = 0;
49 	size_t total_copied = 0;
50 	int pg = 0;
51 	int offset = offset_in_page(pos);
52 
53 	while (write_bytes > 0) {
54 		size_t count = min_t(size_t,
55 				     PAGE_SIZE - offset, write_bytes);
56 		struct page *page = prepared_pages[pg];
57 		/*
58 		 * Copy data from userspace to the current page
59 		 */
60 		copied = copy_page_from_iter_atomic(page, offset, count, i);
61 
62 		/* Flush processor's dcache for this page */
63 		flush_dcache_page(page);
64 
65 		/*
66 		 * if we get a partial write, we can end up with
67 		 * partially up to date pages.  These add
68 		 * a lot of complexity, so make sure they don't
69 		 * happen by forcing this copy to be retried.
70 		 *
71 		 * The rest of the btrfs_file_write code will fall
72 		 * back to page at a time copies after we return 0.
73 		 */
74 		if (unlikely(copied < count)) {
75 			if (!PageUptodate(page)) {
76 				iov_iter_revert(i, copied);
77 				copied = 0;
78 			}
79 			if (!copied)
80 				break;
81 		}
82 
83 		write_bytes -= copied;
84 		total_copied += copied;
85 		offset += copied;
86 		if (offset == PAGE_SIZE) {
87 			pg++;
88 			offset = 0;
89 		}
90 	}
91 	return total_copied;
92 }
93 
94 /*
95  * unlocks pages after btrfs_file_write is done with them
96  */
btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 			     struct page **pages, size_t num_pages,
99 			     u64 pos, u64 copied)
100 {
101 	size_t i;
102 	u64 block_start = round_down(pos, fs_info->sectorsize);
103 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104 
105 	ASSERT(block_len <= U32_MAX);
106 	for (i = 0; i < num_pages; i++) {
107 		/* page checked is some magic around finding pages that
108 		 * have been modified without going through btrfs_set_page_dirty
109 		 * clear it here. There should be no need to mark the pages
110 		 * accessed as prepare_pages should have marked them accessed
111 		 * in prepare_pages via find_or_create_page()
112 		 */
113 		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 					       block_len);
115 		unlock_page(pages[i]);
116 		put_page(pages[i]);
117 	}
118 }
119 
120 /*
121  * After btrfs_copy_from_user(), update the following things for delalloc:
122  * - Mark newly dirtied pages as DELALLOC in the io tree.
123  *   Used to advise which range is to be written back.
124  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125  * - Update inode size for past EOF write
126  */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128 		      size_t num_pages, loff_t pos, size_t write_bytes,
129 		      struct extent_state **cached, bool noreserve)
130 {
131 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
132 	int err = 0;
133 	int i;
134 	u64 num_bytes;
135 	u64 start_pos;
136 	u64 end_of_last_block;
137 	u64 end_pos = pos + write_bytes;
138 	loff_t isize = i_size_read(&inode->vfs_inode);
139 	unsigned int extra_bits = 0;
140 
141 	if (write_bytes == 0)
142 		return 0;
143 
144 	if (noreserve)
145 		extra_bits |= EXTENT_NORESERVE;
146 
147 	start_pos = round_down(pos, fs_info->sectorsize);
148 	num_bytes = round_up(write_bytes + pos - start_pos,
149 			     fs_info->sectorsize);
150 	ASSERT(num_bytes <= U32_MAX);
151 
152 	end_of_last_block = start_pos + num_bytes - 1;
153 
154 	/*
155 	 * The pages may have already been dirty, clear out old accounting so
156 	 * we can set things up properly
157 	 */
158 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
160 			 cached);
161 
162 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
163 					extra_bits, cached);
164 	if (err)
165 		return err;
166 
167 	for (i = 0; i < num_pages; i++) {
168 		struct page *p = pages[i];
169 
170 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171 		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
173 	}
174 
175 	/*
176 	 * we've only changed i_size in ram, and we haven't updated
177 	 * the disk i_size.  There is no need to log the inode
178 	 * at this time.
179 	 */
180 	if (end_pos > isize)
181 		i_size_write(&inode->vfs_inode, end_pos);
182 	return 0;
183 }
184 
185 /*
186  * this is very complex, but the basic idea is to drop all extents
187  * in the range start - end.  hint_block is filled in with a block number
188  * that would be a good hint to the block allocator for this file.
189  *
190  * If an extent intersects the range but is not entirely inside the range
191  * it is either truncated or split.  Anything entirely inside the range
192  * is deleted from the tree.
193  *
194  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195  * to deal with that. We set the field 'bytes_found' of the arguments structure
196  * with the number of allocated bytes found in the target range, so that the
197  * caller can update the inode's number of bytes in an atomic way when
198  * replacing extents in a range to avoid races with stat(2).
199  */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)200 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 		       struct btrfs_root *root, struct btrfs_inode *inode,
202 		       struct btrfs_drop_extents_args *args)
203 {
204 	struct btrfs_fs_info *fs_info = root->fs_info;
205 	struct extent_buffer *leaf;
206 	struct btrfs_file_extent_item *fi;
207 	struct btrfs_ref ref = { 0 };
208 	struct btrfs_key key;
209 	struct btrfs_key new_key;
210 	u64 ino = btrfs_ino(inode);
211 	u64 search_start = args->start;
212 	u64 disk_bytenr = 0;
213 	u64 num_bytes = 0;
214 	u64 extent_offset = 0;
215 	u64 extent_end = 0;
216 	u64 last_end = args->start;
217 	int del_nr = 0;
218 	int del_slot = 0;
219 	int extent_type;
220 	int recow;
221 	int ret;
222 	int modify_tree = -1;
223 	int update_refs;
224 	int found = 0;
225 	struct btrfs_path *path = args->path;
226 
227 	args->bytes_found = 0;
228 	args->extent_inserted = false;
229 
230 	/* Must always have a path if ->replace_extent is true */
231 	ASSERT(!(args->replace_extent && !args->path));
232 
233 	if (!path) {
234 		path = btrfs_alloc_path();
235 		if (!path) {
236 			ret = -ENOMEM;
237 			goto out;
238 		}
239 	}
240 
241 	if (args->drop_cache)
242 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
243 
244 	if (args->start >= inode->disk_i_size && !args->replace_extent)
245 		modify_tree = 0;
246 
247 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
248 	while (1) {
249 		recow = 0;
250 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
251 					       search_start, modify_tree);
252 		if (ret < 0)
253 			break;
254 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255 			leaf = path->nodes[0];
256 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257 			if (key.objectid == ino &&
258 			    key.type == BTRFS_EXTENT_DATA_KEY)
259 				path->slots[0]--;
260 		}
261 		ret = 0;
262 next_slot:
263 		leaf = path->nodes[0];
264 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 			BUG_ON(del_nr > 0);
266 			ret = btrfs_next_leaf(root, path);
267 			if (ret < 0)
268 				break;
269 			if (ret > 0) {
270 				ret = 0;
271 				break;
272 			}
273 			leaf = path->nodes[0];
274 			recow = 1;
275 		}
276 
277 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
278 
279 		if (key.objectid > ino)
280 			break;
281 		if (WARN_ON_ONCE(key.objectid < ino) ||
282 		    key.type < BTRFS_EXTENT_DATA_KEY) {
283 			ASSERT(del_nr == 0);
284 			path->slots[0]++;
285 			goto next_slot;
286 		}
287 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
288 			break;
289 
290 		fi = btrfs_item_ptr(leaf, path->slots[0],
291 				    struct btrfs_file_extent_item);
292 		extent_type = btrfs_file_extent_type(leaf, fi);
293 
294 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 			extent_offset = btrfs_file_extent_offset(leaf, fi);
299 			extent_end = key.offset +
300 				btrfs_file_extent_num_bytes(leaf, fi);
301 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 			extent_end = key.offset +
303 				btrfs_file_extent_ram_bytes(leaf, fi);
304 		} else {
305 			/* can't happen */
306 			BUG();
307 		}
308 
309 		/*
310 		 * Don't skip extent items representing 0 byte lengths. They
311 		 * used to be created (bug) if while punching holes we hit
312 		 * -ENOSPC condition. So if we find one here, just ensure we
313 		 * delete it, otherwise we would insert a new file extent item
314 		 * with the same key (offset) as that 0 bytes length file
315 		 * extent item in the call to setup_items_for_insert() later
316 		 * in this function.
317 		 */
318 		if (extent_end == key.offset && extent_end >= search_start) {
319 			last_end = extent_end;
320 			goto delete_extent_item;
321 		}
322 
323 		if (extent_end <= search_start) {
324 			path->slots[0]++;
325 			goto next_slot;
326 		}
327 
328 		found = 1;
329 		search_start = max(key.offset, args->start);
330 		if (recow || !modify_tree) {
331 			modify_tree = -1;
332 			btrfs_release_path(path);
333 			continue;
334 		}
335 
336 		/*
337 		 *     | - range to drop - |
338 		 *  | -------- extent -------- |
339 		 */
340 		if (args->start > key.offset && args->end < extent_end) {
341 			BUG_ON(del_nr > 0);
342 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
343 				ret = -EOPNOTSUPP;
344 				break;
345 			}
346 
347 			memcpy(&new_key, &key, sizeof(new_key));
348 			new_key.offset = args->start;
349 			ret = btrfs_duplicate_item(trans, root, path,
350 						   &new_key);
351 			if (ret == -EAGAIN) {
352 				btrfs_release_path(path);
353 				continue;
354 			}
355 			if (ret < 0)
356 				break;
357 
358 			leaf = path->nodes[0];
359 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 					    struct btrfs_file_extent_item);
361 			btrfs_set_file_extent_num_bytes(leaf, fi,
362 							args->start - key.offset);
363 
364 			fi = btrfs_item_ptr(leaf, path->slots[0],
365 					    struct btrfs_file_extent_item);
366 
367 			extent_offset += args->start - key.offset;
368 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 			btrfs_set_file_extent_num_bytes(leaf, fi,
370 							extent_end - args->start);
371 			btrfs_mark_buffer_dirty(trans, leaf);
372 
373 			if (update_refs && disk_bytenr > 0) {
374 				btrfs_init_generic_ref(&ref,
375 						BTRFS_ADD_DELAYED_REF,
376 						disk_bytenr, num_bytes, 0);
377 				btrfs_init_data_ref(&ref,
378 						root->root_key.objectid,
379 						new_key.objectid,
380 						args->start - extent_offset,
381 						0, false);
382 				ret = btrfs_inc_extent_ref(trans, &ref);
383 				if (ret) {
384 					btrfs_abort_transaction(trans, ret);
385 					break;
386 				}
387 			}
388 			key.offset = args->start;
389 		}
390 		/*
391 		 * From here on out we will have actually dropped something, so
392 		 * last_end can be updated.
393 		 */
394 		last_end = extent_end;
395 
396 		/*
397 		 *  | ---- range to drop ----- |
398 		 *      | -------- extent -------- |
399 		 */
400 		if (args->start <= key.offset && args->end < extent_end) {
401 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
402 				ret = -EOPNOTSUPP;
403 				break;
404 			}
405 
406 			memcpy(&new_key, &key, sizeof(new_key));
407 			new_key.offset = args->end;
408 			btrfs_set_item_key_safe(trans, path, &new_key);
409 
410 			extent_offset += args->end - key.offset;
411 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 			btrfs_set_file_extent_num_bytes(leaf, fi,
413 							extent_end - args->end);
414 			btrfs_mark_buffer_dirty(trans, leaf);
415 			if (update_refs && disk_bytenr > 0)
416 				args->bytes_found += args->end - key.offset;
417 			break;
418 		}
419 
420 		search_start = extent_end;
421 		/*
422 		 *       | ---- range to drop ----- |
423 		 *  | -------- extent -------- |
424 		 */
425 		if (args->start > key.offset && args->end >= extent_end) {
426 			BUG_ON(del_nr > 0);
427 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
428 				ret = -EOPNOTSUPP;
429 				break;
430 			}
431 
432 			btrfs_set_file_extent_num_bytes(leaf, fi,
433 							args->start - key.offset);
434 			btrfs_mark_buffer_dirty(trans, leaf);
435 			if (update_refs && disk_bytenr > 0)
436 				args->bytes_found += extent_end - args->start;
437 			if (args->end == extent_end)
438 				break;
439 
440 			path->slots[0]++;
441 			goto next_slot;
442 		}
443 
444 		/*
445 		 *  | ---- range to drop ----- |
446 		 *    | ------ extent ------ |
447 		 */
448 		if (args->start <= key.offset && args->end >= extent_end) {
449 delete_extent_item:
450 			if (del_nr == 0) {
451 				del_slot = path->slots[0];
452 				del_nr = 1;
453 			} else {
454 				BUG_ON(del_slot + del_nr != path->slots[0]);
455 				del_nr++;
456 			}
457 
458 			if (update_refs &&
459 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
460 				args->bytes_found += extent_end - key.offset;
461 				extent_end = ALIGN(extent_end,
462 						   fs_info->sectorsize);
463 			} else if (update_refs && disk_bytenr > 0) {
464 				btrfs_init_generic_ref(&ref,
465 						BTRFS_DROP_DELAYED_REF,
466 						disk_bytenr, num_bytes, 0);
467 				btrfs_init_data_ref(&ref,
468 						root->root_key.objectid,
469 						key.objectid,
470 						key.offset - extent_offset, 0,
471 						false);
472 				ret = btrfs_free_extent(trans, &ref);
473 				if (ret) {
474 					btrfs_abort_transaction(trans, ret);
475 					break;
476 				}
477 				args->bytes_found += extent_end - key.offset;
478 			}
479 
480 			if (args->end == extent_end)
481 				break;
482 
483 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 				path->slots[0]++;
485 				goto next_slot;
486 			}
487 
488 			ret = btrfs_del_items(trans, root, path, del_slot,
489 					      del_nr);
490 			if (ret) {
491 				btrfs_abort_transaction(trans, ret);
492 				break;
493 			}
494 
495 			del_nr = 0;
496 			del_slot = 0;
497 
498 			btrfs_release_path(path);
499 			continue;
500 		}
501 
502 		BUG();
503 	}
504 
505 	if (!ret && del_nr > 0) {
506 		/*
507 		 * Set path->slots[0] to first slot, so that after the delete
508 		 * if items are move off from our leaf to its immediate left or
509 		 * right neighbor leafs, we end up with a correct and adjusted
510 		 * path->slots[0] for our insertion (if args->replace_extent).
511 		 */
512 		path->slots[0] = del_slot;
513 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
514 		if (ret)
515 			btrfs_abort_transaction(trans, ret);
516 	}
517 
518 	leaf = path->nodes[0];
519 	/*
520 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 	 * which case it unlocked our path, so check path->locks[0] matches a
522 	 * write lock.
523 	 */
524 	if (!ret && args->replace_extent &&
525 	    path->locks[0] == BTRFS_WRITE_LOCK &&
526 	    btrfs_leaf_free_space(leaf) >=
527 	    sizeof(struct btrfs_item) + args->extent_item_size) {
528 
529 		key.objectid = ino;
530 		key.type = BTRFS_EXTENT_DATA_KEY;
531 		key.offset = args->start;
532 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 			struct btrfs_key slot_key;
534 
535 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 				path->slots[0]++;
538 		}
539 		btrfs_setup_item_for_insert(trans, root, path, &key,
540 					    args->extent_item_size);
541 		args->extent_inserted = true;
542 	}
543 
544 	if (!args->path)
545 		btrfs_free_path(path);
546 	else if (!args->extent_inserted)
547 		btrfs_release_path(path);
548 out:
549 	args->drop_end = found ? min(args->end, last_end) : args->end;
550 
551 	return ret;
552 }
553 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)554 static int extent_mergeable(struct extent_buffer *leaf, int slot,
555 			    u64 objectid, u64 bytenr, u64 orig_offset,
556 			    u64 *start, u64 *end)
557 {
558 	struct btrfs_file_extent_item *fi;
559 	struct btrfs_key key;
560 	u64 extent_end;
561 
562 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
563 		return 0;
564 
565 	btrfs_item_key_to_cpu(leaf, &key, slot);
566 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
567 		return 0;
568 
569 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
570 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
571 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
572 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
573 	    btrfs_file_extent_compression(leaf, fi) ||
574 	    btrfs_file_extent_encryption(leaf, fi) ||
575 	    btrfs_file_extent_other_encoding(leaf, fi))
576 		return 0;
577 
578 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
579 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
580 		return 0;
581 
582 	*start = key.offset;
583 	*end = extent_end;
584 	return 1;
585 }
586 
587 /*
588  * Mark extent in the range start - end as written.
589  *
590  * This changes extent type from 'pre-allocated' to 'regular'. If only
591  * part of extent is marked as written, the extent will be split into
592  * two or three.
593  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)594 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
595 			      struct btrfs_inode *inode, u64 start, u64 end)
596 {
597 	struct btrfs_root *root = inode->root;
598 	struct extent_buffer *leaf;
599 	struct btrfs_path *path;
600 	struct btrfs_file_extent_item *fi;
601 	struct btrfs_ref ref = { 0 };
602 	struct btrfs_key key;
603 	struct btrfs_key new_key;
604 	u64 bytenr;
605 	u64 num_bytes;
606 	u64 extent_end;
607 	u64 orig_offset;
608 	u64 other_start;
609 	u64 other_end;
610 	u64 split;
611 	int del_nr = 0;
612 	int del_slot = 0;
613 	int recow;
614 	int ret = 0;
615 	u64 ino = btrfs_ino(inode);
616 
617 	path = btrfs_alloc_path();
618 	if (!path)
619 		return -ENOMEM;
620 again:
621 	recow = 0;
622 	split = start;
623 	key.objectid = ino;
624 	key.type = BTRFS_EXTENT_DATA_KEY;
625 	key.offset = split;
626 
627 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
628 	if (ret < 0)
629 		goto out;
630 	if (ret > 0 && path->slots[0] > 0)
631 		path->slots[0]--;
632 
633 	leaf = path->nodes[0];
634 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635 	if (key.objectid != ino ||
636 	    key.type != BTRFS_EXTENT_DATA_KEY) {
637 		ret = -EINVAL;
638 		btrfs_abort_transaction(trans, ret);
639 		goto out;
640 	}
641 	fi = btrfs_item_ptr(leaf, path->slots[0],
642 			    struct btrfs_file_extent_item);
643 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 		ret = -EINVAL;
645 		btrfs_abort_transaction(trans, ret);
646 		goto out;
647 	}
648 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649 	if (key.offset > start || extent_end < end) {
650 		ret = -EINVAL;
651 		btrfs_abort_transaction(trans, ret);
652 		goto out;
653 	}
654 
655 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658 	memcpy(&new_key, &key, sizeof(new_key));
659 
660 	if (start == key.offset && end < extent_end) {
661 		other_start = 0;
662 		other_end = start;
663 		if (extent_mergeable(leaf, path->slots[0] - 1,
664 				     ino, bytenr, orig_offset,
665 				     &other_start, &other_end)) {
666 			new_key.offset = end;
667 			btrfs_set_item_key_safe(trans, path, &new_key);
668 			fi = btrfs_item_ptr(leaf, path->slots[0],
669 					    struct btrfs_file_extent_item);
670 			btrfs_set_file_extent_generation(leaf, fi,
671 							 trans->transid);
672 			btrfs_set_file_extent_num_bytes(leaf, fi,
673 							extent_end - end);
674 			btrfs_set_file_extent_offset(leaf, fi,
675 						     end - orig_offset);
676 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 					    struct btrfs_file_extent_item);
678 			btrfs_set_file_extent_generation(leaf, fi,
679 							 trans->transid);
680 			btrfs_set_file_extent_num_bytes(leaf, fi,
681 							end - other_start);
682 			btrfs_mark_buffer_dirty(trans, leaf);
683 			goto out;
684 		}
685 	}
686 
687 	if (start > key.offset && end == extent_end) {
688 		other_start = end;
689 		other_end = 0;
690 		if (extent_mergeable(leaf, path->slots[0] + 1,
691 				     ino, bytenr, orig_offset,
692 				     &other_start, &other_end)) {
693 			fi = btrfs_item_ptr(leaf, path->slots[0],
694 					    struct btrfs_file_extent_item);
695 			btrfs_set_file_extent_num_bytes(leaf, fi,
696 							start - key.offset);
697 			btrfs_set_file_extent_generation(leaf, fi,
698 							 trans->transid);
699 			path->slots[0]++;
700 			new_key.offset = start;
701 			btrfs_set_item_key_safe(trans, path, &new_key);
702 
703 			fi = btrfs_item_ptr(leaf, path->slots[0],
704 					    struct btrfs_file_extent_item);
705 			btrfs_set_file_extent_generation(leaf, fi,
706 							 trans->transid);
707 			btrfs_set_file_extent_num_bytes(leaf, fi,
708 							other_end - start);
709 			btrfs_set_file_extent_offset(leaf, fi,
710 						     start - orig_offset);
711 			btrfs_mark_buffer_dirty(trans, leaf);
712 			goto out;
713 		}
714 	}
715 
716 	while (start > key.offset || end < extent_end) {
717 		if (key.offset == start)
718 			split = end;
719 
720 		new_key.offset = split;
721 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 		if (ret == -EAGAIN) {
723 			btrfs_release_path(path);
724 			goto again;
725 		}
726 		if (ret < 0) {
727 			btrfs_abort_transaction(trans, ret);
728 			goto out;
729 		}
730 
731 		leaf = path->nodes[0];
732 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733 				    struct btrfs_file_extent_item);
734 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735 		btrfs_set_file_extent_num_bytes(leaf, fi,
736 						split - key.offset);
737 
738 		fi = btrfs_item_ptr(leaf, path->slots[0],
739 				    struct btrfs_file_extent_item);
740 
741 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 		btrfs_set_file_extent_num_bytes(leaf, fi,
744 						extent_end - split);
745 		btrfs_mark_buffer_dirty(trans, leaf);
746 
747 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 				       num_bytes, 0);
749 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750 				    orig_offset, 0, false);
751 		ret = btrfs_inc_extent_ref(trans, &ref);
752 		if (ret) {
753 			btrfs_abort_transaction(trans, ret);
754 			goto out;
755 		}
756 
757 		if (split == start) {
758 			key.offset = start;
759 		} else {
760 			if (start != key.offset) {
761 				ret = -EINVAL;
762 				btrfs_abort_transaction(trans, ret);
763 				goto out;
764 			}
765 			path->slots[0]--;
766 			extent_end = end;
767 		}
768 		recow = 1;
769 	}
770 
771 	other_start = end;
772 	other_end = 0;
773 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 			       num_bytes, 0);
775 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 			    0, false);
777 	if (extent_mergeable(leaf, path->slots[0] + 1,
778 			     ino, bytenr, orig_offset,
779 			     &other_start, &other_end)) {
780 		if (recow) {
781 			btrfs_release_path(path);
782 			goto again;
783 		}
784 		extent_end = other_end;
785 		del_slot = path->slots[0] + 1;
786 		del_nr++;
787 		ret = btrfs_free_extent(trans, &ref);
788 		if (ret) {
789 			btrfs_abort_transaction(trans, ret);
790 			goto out;
791 		}
792 	}
793 	other_start = 0;
794 	other_end = start;
795 	if (extent_mergeable(leaf, path->slots[0] - 1,
796 			     ino, bytenr, orig_offset,
797 			     &other_start, &other_end)) {
798 		if (recow) {
799 			btrfs_release_path(path);
800 			goto again;
801 		}
802 		key.offset = other_start;
803 		del_slot = path->slots[0];
804 		del_nr++;
805 		ret = btrfs_free_extent(trans, &ref);
806 		if (ret) {
807 			btrfs_abort_transaction(trans, ret);
808 			goto out;
809 		}
810 	}
811 	if (del_nr == 0) {
812 		fi = btrfs_item_ptr(leaf, path->slots[0],
813 			   struct btrfs_file_extent_item);
814 		btrfs_set_file_extent_type(leaf, fi,
815 					   BTRFS_FILE_EXTENT_REG);
816 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817 		btrfs_mark_buffer_dirty(trans, leaf);
818 	} else {
819 		fi = btrfs_item_ptr(leaf, del_slot - 1,
820 			   struct btrfs_file_extent_item);
821 		btrfs_set_file_extent_type(leaf, fi,
822 					   BTRFS_FILE_EXTENT_REG);
823 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824 		btrfs_set_file_extent_num_bytes(leaf, fi,
825 						extent_end - key.offset);
826 		btrfs_mark_buffer_dirty(trans, leaf);
827 
828 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
829 		if (ret < 0) {
830 			btrfs_abort_transaction(trans, ret);
831 			goto out;
832 		}
833 	}
834 out:
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 /*
840  * on error we return an unlocked page and the error value
841  * on success we return a locked page and 0
842  */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)843 static int prepare_uptodate_page(struct inode *inode,
844 				 struct page *page, u64 pos,
845 				 bool force_uptodate)
846 {
847 	struct folio *folio = page_folio(page);
848 	int ret = 0;
849 
850 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851 	    !PageUptodate(page)) {
852 		ret = btrfs_read_folio(NULL, folio);
853 		if (ret)
854 			return ret;
855 		lock_page(page);
856 		if (!PageUptodate(page)) {
857 			unlock_page(page);
858 			return -EIO;
859 		}
860 
861 		/*
862 		 * Since btrfs_read_folio() will unlock the folio before it
863 		 * returns, there is a window where btrfs_release_folio() can be
864 		 * called to release the page.  Here we check both inode
865 		 * mapping and PagePrivate() to make sure the page was not
866 		 * released.
867 		 *
868 		 * The private flag check is essential for subpage as we need
869 		 * to store extra bitmap using page->private.
870 		 */
871 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
872 			unlock_page(page);
873 			return -EAGAIN;
874 		}
875 	}
876 	return 0;
877 }
878 
get_prepare_fgp_flags(bool nowait)879 static fgf_t get_prepare_fgp_flags(bool nowait)
880 {
881 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882 
883 	if (nowait)
884 		fgp_flags |= FGP_NOWAIT;
885 
886 	return fgp_flags;
887 }
888 
get_prepare_gfp_flags(struct inode * inode,bool nowait)889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890 {
891 	gfp_t gfp;
892 
893 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 	if (nowait) {
895 		gfp &= ~__GFP_DIRECT_RECLAIM;
896 		gfp |= GFP_NOWAIT;
897 	}
898 
899 	return gfp;
900 }
901 
902 /*
903  * this just gets pages into the page cache and locks them down.
904  */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)905 static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 				  size_t num_pages, loff_t pos,
907 				  size_t write_bytes, bool force_uptodate,
908 				  bool nowait)
909 {
910 	int i;
911 	unsigned long index = pos >> PAGE_SHIFT;
912 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
914 	int err = 0;
915 	int faili;
916 
917 	for (i = 0; i < num_pages; i++) {
918 again:
919 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 					      fgp_flags, mask | __GFP_WRITE);
921 		if (!pages[i]) {
922 			faili = i - 1;
923 			if (nowait)
924 				err = -EAGAIN;
925 			else
926 				err = -ENOMEM;
927 			goto fail;
928 		}
929 
930 		err = set_page_extent_mapped(pages[i]);
931 		if (err < 0) {
932 			faili = i;
933 			goto fail;
934 		}
935 
936 		if (i == 0)
937 			err = prepare_uptodate_page(inode, pages[i], pos,
938 						    force_uptodate);
939 		if (!err && i == num_pages - 1)
940 			err = prepare_uptodate_page(inode, pages[i],
941 						    pos + write_bytes, false);
942 		if (err) {
943 			put_page(pages[i]);
944 			if (!nowait && err == -EAGAIN) {
945 				err = 0;
946 				goto again;
947 			}
948 			faili = i - 1;
949 			goto fail;
950 		}
951 		wait_on_page_writeback(pages[i]);
952 	}
953 
954 	return 0;
955 fail:
956 	while (faili >= 0) {
957 		unlock_page(pages[faili]);
958 		put_page(pages[faili]);
959 		faili--;
960 	}
961 	return err;
962 
963 }
964 
965 /*
966  * This function locks the extent and properly waits for data=ordered extents
967  * to finish before allowing the pages to be modified if need.
968  *
969  * The return value:
970  * 1 - the extent is locked
971  * 0 - the extent is not locked, and everything is OK
972  * -EAGAIN - need re-prepare the pages
973  * the other < 0 number - Something wrong happens
974  */
975 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977 				size_t num_pages, loff_t pos,
978 				size_t write_bytes,
979 				u64 *lockstart, u64 *lockend, bool nowait,
980 				struct extent_state **cached_state)
981 {
982 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 	u64 start_pos;
984 	u64 last_pos;
985 	int i;
986 	int ret = 0;
987 
988 	start_pos = round_down(pos, fs_info->sectorsize);
989 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
990 
991 	if (start_pos < inode->vfs_inode.i_size) {
992 		struct btrfs_ordered_extent *ordered;
993 
994 		if (nowait) {
995 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 					     cached_state)) {
997 				for (i = 0; i < num_pages; i++) {
998 					unlock_page(pages[i]);
999 					put_page(pages[i]);
1000 					pages[i] = NULL;
1001 				}
1002 
1003 				return -EAGAIN;
1004 			}
1005 		} else {
1006 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 		}
1008 
1009 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 						     last_pos - start_pos + 1);
1011 		if (ordered &&
1012 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1013 		    ordered->file_offset <= last_pos) {
1014 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 				      cached_state);
1016 			for (i = 0; i < num_pages; i++) {
1017 				unlock_page(pages[i]);
1018 				put_page(pages[i]);
1019 			}
1020 			btrfs_start_ordered_extent(ordered);
1021 			btrfs_put_ordered_extent(ordered);
1022 			return -EAGAIN;
1023 		}
1024 		if (ordered)
1025 			btrfs_put_ordered_extent(ordered);
1026 
1027 		*lockstart = start_pos;
1028 		*lockend = last_pos;
1029 		ret = 1;
1030 	}
1031 
1032 	/*
1033 	 * We should be called after prepare_pages() which should have locked
1034 	 * all pages in the range.
1035 	 */
1036 	for (i = 0; i < num_pages; i++)
1037 		WARN_ON(!PageLocked(pages[i]));
1038 
1039 	return ret;
1040 }
1041 
1042 /*
1043  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044  *
1045  * @pos:         File offset.
1046  * @write_bytes: The length to write, will be updated to the nocow writeable
1047  *               range.
1048  *
1049  * This function will flush ordered extents in the range to ensure proper
1050  * nocow checks.
1051  *
1052  * Return:
1053  * > 0          If we can nocow, and updates @write_bytes.
1054  *  0           If we can't do a nocow write.
1055  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1056  *              root is in progress.
1057  * < 0          If an error happened.
1058  *
1059  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060  */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062 			   size_t *write_bytes, bool nowait)
1063 {
1064 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 	struct btrfs_root *root = inode->root;
1066 	struct extent_state *cached_state = NULL;
1067 	u64 lockstart, lockend;
1068 	u64 num_bytes;
1069 	int ret;
1070 
1071 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 		return 0;
1073 
1074 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075 		return -EAGAIN;
1076 
1077 	lockstart = round_down(pos, fs_info->sectorsize);
1078 	lockend = round_up(pos + *write_bytes,
1079 			   fs_info->sectorsize) - 1;
1080 	num_bytes = lockend - lockstart + 1;
1081 
1082 	if (nowait) {
1083 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 						  &cached_state)) {
1085 			btrfs_drew_write_unlock(&root->snapshot_lock);
1086 			return -EAGAIN;
1087 		}
1088 	} else {
1089 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 						   &cached_state);
1091 	}
1092 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093 			NULL, NULL, NULL, nowait, false);
1094 	if (ret <= 0)
1095 		btrfs_drew_write_unlock(&root->snapshot_lock);
1096 	else
1097 		*write_bytes = min_t(size_t, *write_bytes ,
1098 				     num_bytes - pos + lockstart);
1099 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100 
1101 	return ret;
1102 }
1103 
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105 {
1106 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107 }
1108 
update_time_for_write(struct inode * inode)1109 static void update_time_for_write(struct inode *inode)
1110 {
1111 	struct timespec64 now, ctime;
1112 
1113 	if (IS_NOCMTIME(inode))
1114 		return;
1115 
1116 	now = current_time(inode);
1117 	if (!timespec64_equal(&inode->i_mtime, &now))
1118 		inode->i_mtime = now;
1119 
1120 	ctime = inode_get_ctime(inode);
1121 	if (!timespec64_equal(&ctime, &now))
1122 		inode_set_ctime_to_ts(inode, now);
1123 
1124 	if (IS_I_VERSION(inode))
1125 		inode_inc_iversion(inode);
1126 }
1127 
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1128 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1129 			     size_t count)
1130 {
1131 	struct file *file = iocb->ki_filp;
1132 	struct inode *inode = file_inode(file);
1133 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1134 	loff_t pos = iocb->ki_pos;
1135 	int ret;
1136 	loff_t oldsize;
1137 	loff_t start_pos;
1138 
1139 	/*
1140 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1141 	 * prealloc flags, as without those flags we always have to COW. We will
1142 	 * later check if we can really COW into the target range (using
1143 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1144 	 */
1145 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1146 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1147 		return -EAGAIN;
1148 
1149 	ret = file_remove_privs(file);
1150 	if (ret)
1151 		return ret;
1152 
1153 	/*
1154 	 * We reserve space for updating the inode when we reserve space for the
1155 	 * extent we are going to write, so we will enospc out there.  We don't
1156 	 * need to start yet another transaction to update the inode as we will
1157 	 * update the inode when we finish writing whatever data we write.
1158 	 */
1159 	update_time_for_write(inode);
1160 
1161 	start_pos = round_down(pos, fs_info->sectorsize);
1162 	oldsize = i_size_read(inode);
1163 	if (start_pos > oldsize) {
1164 		/* Expand hole size to cover write data, preventing empty gap */
1165 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1166 
1167 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1175 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1176 					       struct iov_iter *i)
1177 {
1178 	struct file *file = iocb->ki_filp;
1179 	loff_t pos;
1180 	struct inode *inode = file_inode(file);
1181 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1182 	struct page **pages = NULL;
1183 	struct extent_changeset *data_reserved = NULL;
1184 	u64 release_bytes = 0;
1185 	u64 lockstart;
1186 	u64 lockend;
1187 	size_t num_written = 0;
1188 	int nrptrs;
1189 	ssize_t ret;
1190 	bool only_release_metadata = false;
1191 	bool force_page_uptodate = false;
1192 	loff_t old_isize = i_size_read(inode);
1193 	unsigned int ilock_flags = 0;
1194 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1195 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1196 
1197 	if (nowait)
1198 		ilock_flags |= BTRFS_ILOCK_TRY;
1199 
1200 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1201 	if (ret < 0)
1202 		return ret;
1203 
1204 	ret = generic_write_checks(iocb, i);
1205 	if (ret <= 0)
1206 		goto out;
1207 
1208 	ret = btrfs_write_check(iocb, i, ret);
1209 	if (ret < 0)
1210 		goto out;
1211 
1212 	pos = iocb->ki_pos;
1213 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1214 			PAGE_SIZE / (sizeof(struct page *)));
1215 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1216 	nrptrs = max(nrptrs, 8);
1217 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1218 	if (!pages) {
1219 		ret = -ENOMEM;
1220 		goto out;
1221 	}
1222 
1223 	while (iov_iter_count(i) > 0) {
1224 		struct extent_state *cached_state = NULL;
1225 		size_t offset = offset_in_page(pos);
1226 		size_t sector_offset;
1227 		size_t write_bytes = min(iov_iter_count(i),
1228 					 nrptrs * (size_t)PAGE_SIZE -
1229 					 offset);
1230 		size_t num_pages;
1231 		size_t reserve_bytes;
1232 		size_t dirty_pages;
1233 		size_t copied;
1234 		size_t dirty_sectors;
1235 		size_t num_sectors;
1236 		int extents_locked;
1237 
1238 		/*
1239 		 * Fault pages before locking them in prepare_pages
1240 		 * to avoid recursive lock
1241 		 */
1242 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1243 			ret = -EFAULT;
1244 			break;
1245 		}
1246 
1247 		only_release_metadata = false;
1248 		sector_offset = pos & (fs_info->sectorsize - 1);
1249 
1250 		extent_changeset_release(data_reserved);
1251 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1252 						  &data_reserved, pos,
1253 						  write_bytes, nowait);
1254 		if (ret < 0) {
1255 			int can_nocow;
1256 
1257 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1258 				ret = -EAGAIN;
1259 				break;
1260 			}
1261 
1262 			/*
1263 			 * If we don't have to COW at the offset, reserve
1264 			 * metadata only. write_bytes may get smaller than
1265 			 * requested here.
1266 			 */
1267 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1268 							   &write_bytes, nowait);
1269 			if (can_nocow < 0)
1270 				ret = can_nocow;
1271 			if (can_nocow > 0)
1272 				ret = 0;
1273 			if (ret)
1274 				break;
1275 			only_release_metadata = true;
1276 		}
1277 
1278 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1279 		WARN_ON(num_pages > nrptrs);
1280 		reserve_bytes = round_up(write_bytes + sector_offset,
1281 					 fs_info->sectorsize);
1282 		WARN_ON(reserve_bytes == 0);
1283 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1284 						      reserve_bytes,
1285 						      reserve_bytes, nowait);
1286 		if (ret) {
1287 			if (!only_release_metadata)
1288 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1289 						data_reserved, pos,
1290 						write_bytes);
1291 			else
1292 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1293 
1294 			if (nowait && ret == -ENOSPC)
1295 				ret = -EAGAIN;
1296 			break;
1297 		}
1298 
1299 		release_bytes = reserve_bytes;
1300 again:
1301 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1302 		if (ret) {
1303 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1304 			break;
1305 		}
1306 
1307 		/*
1308 		 * This is going to setup the pages array with the number of
1309 		 * pages we want, so we don't really need to worry about the
1310 		 * contents of pages from loop to loop
1311 		 */
1312 		ret = prepare_pages(inode, pages, num_pages,
1313 				    pos, write_bytes, force_page_uptodate, false);
1314 		if (ret) {
1315 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1316 						       reserve_bytes);
1317 			break;
1318 		}
1319 
1320 		extents_locked = lock_and_cleanup_extent_if_need(
1321 				BTRFS_I(inode), pages,
1322 				num_pages, pos, write_bytes, &lockstart,
1323 				&lockend, nowait, &cached_state);
1324 		if (extents_locked < 0) {
1325 			if (!nowait && extents_locked == -EAGAIN)
1326 				goto again;
1327 
1328 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1329 						       reserve_bytes);
1330 			ret = extents_locked;
1331 			break;
1332 		}
1333 
1334 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1335 
1336 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1337 		dirty_sectors = round_up(copied + sector_offset,
1338 					fs_info->sectorsize);
1339 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1340 
1341 		/*
1342 		 * if we have trouble faulting in the pages, fall
1343 		 * back to one page at a time
1344 		 */
1345 		if (copied < write_bytes)
1346 			nrptrs = 1;
1347 
1348 		if (copied == 0) {
1349 			force_page_uptodate = true;
1350 			dirty_sectors = 0;
1351 			dirty_pages = 0;
1352 		} else {
1353 			force_page_uptodate = false;
1354 			dirty_pages = DIV_ROUND_UP(copied + offset,
1355 						   PAGE_SIZE);
1356 		}
1357 
1358 		if (num_sectors > dirty_sectors) {
1359 			/* release everything except the sectors we dirtied */
1360 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1361 			if (only_release_metadata) {
1362 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1363 							release_bytes, true);
1364 			} else {
1365 				u64 __pos;
1366 
1367 				__pos = round_down(pos,
1368 						   fs_info->sectorsize) +
1369 					(dirty_pages << PAGE_SHIFT);
1370 				btrfs_delalloc_release_space(BTRFS_I(inode),
1371 						data_reserved, __pos,
1372 						release_bytes, true);
1373 			}
1374 		}
1375 
1376 		release_bytes = round_up(copied + sector_offset,
1377 					fs_info->sectorsize);
1378 
1379 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1380 					dirty_pages, pos, copied,
1381 					&cached_state, only_release_metadata);
1382 
1383 		/*
1384 		 * If we have not locked the extent range, because the range's
1385 		 * start offset is >= i_size, we might still have a non-NULL
1386 		 * cached extent state, acquired while marking the extent range
1387 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1388 		 * possible cached extent state to avoid a memory leak.
1389 		 */
1390 		if (extents_locked)
1391 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1392 				      lockend, &cached_state);
1393 		else
1394 			free_extent_state(cached_state);
1395 
1396 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1397 		if (ret) {
1398 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1399 			break;
1400 		}
1401 
1402 		release_bytes = 0;
1403 		if (only_release_metadata)
1404 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1405 
1406 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1407 
1408 		cond_resched();
1409 
1410 		pos += copied;
1411 		num_written += copied;
1412 	}
1413 
1414 	kfree(pages);
1415 
1416 	if (release_bytes) {
1417 		if (only_release_metadata) {
1418 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1419 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1420 					release_bytes, true);
1421 		} else {
1422 			btrfs_delalloc_release_space(BTRFS_I(inode),
1423 					data_reserved,
1424 					round_down(pos, fs_info->sectorsize),
1425 					release_bytes, true);
1426 		}
1427 	}
1428 
1429 	extent_changeset_free(data_reserved);
1430 	if (num_written > 0) {
1431 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1432 		iocb->ki_pos += num_written;
1433 	}
1434 out:
1435 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1436 	return num_written ? num_written : ret;
1437 }
1438 
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1439 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1440 			       const struct iov_iter *iter, loff_t offset)
1441 {
1442 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1443 
1444 	if (offset & blocksize_mask)
1445 		return -EINVAL;
1446 
1447 	if (iov_iter_alignment(iter) & blocksize_mask)
1448 		return -EINVAL;
1449 
1450 	return 0;
1451 }
1452 
btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1453 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1454 {
1455 	struct file *file = iocb->ki_filp;
1456 	struct inode *inode = file_inode(file);
1457 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1458 	loff_t pos;
1459 	ssize_t written = 0;
1460 	ssize_t written_buffered;
1461 	size_t prev_left = 0;
1462 	loff_t endbyte;
1463 	ssize_t err;
1464 	unsigned int ilock_flags = 0;
1465 	struct iomap_dio *dio;
1466 
1467 	if (iocb->ki_flags & IOCB_NOWAIT)
1468 		ilock_flags |= BTRFS_ILOCK_TRY;
1469 
1470 	/*
1471 	 * If the write DIO is within EOF, use a shared lock and also only if
1472 	 * security bits will likely not be dropped by file_remove_privs() called
1473 	 * from btrfs_write_check(). Either will need to be rechecked after the
1474 	 * lock was acquired.
1475 	 */
1476 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1477 		ilock_flags |= BTRFS_ILOCK_SHARED;
1478 
1479 relock:
1480 	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1481 	if (err < 0)
1482 		return err;
1483 
1484 	/* Shared lock cannot be used with security bits set. */
1485 	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1486 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1487 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1488 		goto relock;
1489 	}
1490 
1491 	err = generic_write_checks(iocb, from);
1492 	if (err <= 0) {
1493 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1494 		return err;
1495 	}
1496 
1497 	err = btrfs_write_check(iocb, from, err);
1498 	if (err < 0) {
1499 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1500 		goto out;
1501 	}
1502 
1503 	pos = iocb->ki_pos;
1504 	/*
1505 	 * Re-check since file size may have changed just before taking the
1506 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1507 	 */
1508 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1509 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1510 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1511 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1512 		goto relock;
1513 	}
1514 
1515 	if (check_direct_IO(fs_info, from, pos)) {
1516 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1517 		goto buffered;
1518 	}
1519 
1520 	/*
1521 	 * The iov_iter can be mapped to the same file range we are writing to.
1522 	 * If that's the case, then we will deadlock in the iomap code, because
1523 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1524 	 * an ordered extent, and after that it will fault in the pages that the
1525 	 * iov_iter refers to. During the fault in we end up in the readahead
1526 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1527 	 * find that ordered extent and then wait for it to complete (at
1528 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1529 	 * obviously the ordered extent can never complete as we didn't submit
1530 	 * yet the respective bio(s). This always happens when the buffer is
1531 	 * memory mapped to the same file range, since the iomap DIO code always
1532 	 * invalidates pages in the target file range (after starting and waiting
1533 	 * for any writeback).
1534 	 *
1535 	 * So here we disable page faults in the iov_iter and then retry if we
1536 	 * got -EFAULT, faulting in the pages before the retry.
1537 	 */
1538 again:
1539 	from->nofault = true;
1540 	dio = btrfs_dio_write(iocb, from, written);
1541 	from->nofault = false;
1542 
1543 	if (IS_ERR_OR_NULL(dio)) {
1544 		err = PTR_ERR_OR_ZERO(dio);
1545 	} else {
1546 		/*
1547 		 * If we have a synchoronous write, we must make sure the fsync
1548 		 * triggered by the iomap_dio_complete() call below doesn't
1549 		 * deadlock on the inode lock - we are already holding it and we
1550 		 * can't call it after unlocking because we may need to complete
1551 		 * partial writes due to the input buffer (or parts of it) not
1552 		 * being already faulted in.
1553 		 */
1554 		ASSERT(current->journal_info == NULL);
1555 		current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB;
1556 		err = iomap_dio_complete(dio);
1557 		current->journal_info = NULL;
1558 	}
1559 
1560 	/* No increment (+=) because iomap returns a cumulative value. */
1561 	if (err > 0)
1562 		written = err;
1563 
1564 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1565 		const size_t left = iov_iter_count(from);
1566 		/*
1567 		 * We have more data left to write. Try to fault in as many as
1568 		 * possible of the remainder pages and retry. We do this without
1569 		 * releasing and locking again the inode, to prevent races with
1570 		 * truncate.
1571 		 *
1572 		 * Also, in case the iov refers to pages in the file range of the
1573 		 * file we want to write to (due to a mmap), we could enter an
1574 		 * infinite loop if we retry after faulting the pages in, since
1575 		 * iomap will invalidate any pages in the range early on, before
1576 		 * it tries to fault in the pages of the iov. So we keep track of
1577 		 * how much was left of iov in the previous EFAULT and fallback
1578 		 * to buffered IO in case we haven't made any progress.
1579 		 */
1580 		if (left == prev_left) {
1581 			err = -ENOTBLK;
1582 		} else {
1583 			fault_in_iov_iter_readable(from, left);
1584 			prev_left = left;
1585 			goto again;
1586 		}
1587 	}
1588 
1589 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1590 
1591 	/*
1592 	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1593 	 * we must fallback to buffered IO.
1594 	 */
1595 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1596 		goto out;
1597 
1598 buffered:
1599 	/*
1600 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1601 	 * it must retry the operation in a context where blocking is acceptable,
1602 	 * because even if we end up not blocking during the buffered IO attempt
1603 	 * below, we will block when flushing and waiting for the IO.
1604 	 */
1605 	if (iocb->ki_flags & IOCB_NOWAIT) {
1606 		err = -EAGAIN;
1607 		goto out;
1608 	}
1609 
1610 	pos = iocb->ki_pos;
1611 	written_buffered = btrfs_buffered_write(iocb, from);
1612 	if (written_buffered < 0) {
1613 		err = written_buffered;
1614 		goto out;
1615 	}
1616 	/*
1617 	 * Ensure all data is persisted. We want the next direct IO read to be
1618 	 * able to read what was just written.
1619 	 */
1620 	endbyte = pos + written_buffered - 1;
1621 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1622 	if (err)
1623 		goto out;
1624 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1625 	if (err)
1626 		goto out;
1627 	written += written_buffered;
1628 	iocb->ki_pos = pos + written_buffered;
1629 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1630 				 endbyte >> PAGE_SHIFT);
1631 out:
1632 	return err < 0 ? err : written;
1633 }
1634 
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1635 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1636 			const struct btrfs_ioctl_encoded_io_args *encoded)
1637 {
1638 	struct file *file = iocb->ki_filp;
1639 	struct inode *inode = file_inode(file);
1640 	loff_t count;
1641 	ssize_t ret;
1642 
1643 	btrfs_inode_lock(BTRFS_I(inode), 0);
1644 	count = encoded->len;
1645 	ret = generic_write_checks_count(iocb, &count);
1646 	if (ret == 0 && count != encoded->len) {
1647 		/*
1648 		 * The write got truncated by generic_write_checks_count(). We
1649 		 * can't do a partial encoded write.
1650 		 */
1651 		ret = -EFBIG;
1652 	}
1653 	if (ret || encoded->len == 0)
1654 		goto out;
1655 
1656 	ret = btrfs_write_check(iocb, from, encoded->len);
1657 	if (ret < 0)
1658 		goto out;
1659 
1660 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1661 out:
1662 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1663 	return ret;
1664 }
1665 
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1666 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1667 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1668 {
1669 	struct file *file = iocb->ki_filp;
1670 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1671 	ssize_t num_written, num_sync;
1672 
1673 	/*
1674 	 * If the fs flips readonly due to some impossible error, although we
1675 	 * have opened a file as writable, we have to stop this write operation
1676 	 * to ensure consistency.
1677 	 */
1678 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1679 		return -EROFS;
1680 
1681 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1682 		return -EOPNOTSUPP;
1683 
1684 	if (encoded) {
1685 		num_written = btrfs_encoded_write(iocb, from, encoded);
1686 		num_sync = encoded->len;
1687 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1688 		num_written = btrfs_direct_write(iocb, from);
1689 		num_sync = num_written;
1690 	} else {
1691 		num_written = btrfs_buffered_write(iocb, from);
1692 		num_sync = num_written;
1693 	}
1694 
1695 	btrfs_set_inode_last_sub_trans(inode);
1696 
1697 	if (num_sync > 0) {
1698 		num_sync = generic_write_sync(iocb, num_sync);
1699 		if (num_sync < 0)
1700 			num_written = num_sync;
1701 	}
1702 
1703 	return num_written;
1704 }
1705 
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1706 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1707 {
1708 	return btrfs_do_write_iter(iocb, from, NULL);
1709 }
1710 
btrfs_release_file(struct inode * inode,struct file * filp)1711 int btrfs_release_file(struct inode *inode, struct file *filp)
1712 {
1713 	struct btrfs_file_private *private = filp->private_data;
1714 
1715 	if (private) {
1716 		kfree(private->filldir_buf);
1717 		free_extent_state(private->llseek_cached_state);
1718 		kfree(private);
1719 		filp->private_data = NULL;
1720 	}
1721 
1722 	/*
1723 	 * Set by setattr when we are about to truncate a file from a non-zero
1724 	 * size to a zero size.  This tries to flush down new bytes that may
1725 	 * have been written if the application were using truncate to replace
1726 	 * a file in place.
1727 	 */
1728 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1729 			       &BTRFS_I(inode)->runtime_flags))
1730 			filemap_flush(inode->i_mapping);
1731 	return 0;
1732 }
1733 
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)1734 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1735 {
1736 	int ret;
1737 	struct blk_plug plug;
1738 
1739 	/*
1740 	 * This is only called in fsync, which would do synchronous writes, so
1741 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1742 	 * multiple disks using raid profile, a large IO can be split to
1743 	 * several segments of stripe length (currently 64K).
1744 	 */
1745 	blk_start_plug(&plug);
1746 	ret = btrfs_fdatawrite_range(inode, start, end);
1747 	blk_finish_plug(&plug);
1748 
1749 	return ret;
1750 }
1751 
skip_inode_logging(const struct btrfs_log_ctx * ctx)1752 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1753 {
1754 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1755 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1756 
1757 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
1758 	    list_empty(&ctx->ordered_extents))
1759 		return true;
1760 
1761 	/*
1762 	 * If we are doing a fast fsync we can not bail out if the inode's
1763 	 * last_trans is <= then the last committed transaction, because we only
1764 	 * update the last_trans of the inode during ordered extent completion,
1765 	 * and for a fast fsync we don't wait for that, we only wait for the
1766 	 * writeback to complete.
1767 	 */
1768 	if (inode->last_trans <= fs_info->last_trans_committed &&
1769 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1770 	     list_empty(&ctx->ordered_extents)))
1771 		return true;
1772 
1773 	return false;
1774 }
1775 
1776 /*
1777  * fsync call for both files and directories.  This logs the inode into
1778  * the tree log instead of forcing full commits whenever possible.
1779  *
1780  * It needs to call filemap_fdatawait so that all ordered extent updates are
1781  * in the metadata btree are up to date for copying to the log.
1782  *
1783  * It drops the inode mutex before doing the tree log commit.  This is an
1784  * important optimization for directories because holding the mutex prevents
1785  * new operations on the dir while we write to disk.
1786  */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1787 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1788 {
1789 	struct dentry *dentry = file_dentry(file);
1790 	struct inode *inode = d_inode(dentry);
1791 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1792 	struct btrfs_root *root = BTRFS_I(inode)->root;
1793 	struct btrfs_trans_handle *trans;
1794 	struct btrfs_log_ctx ctx;
1795 	int ret = 0, err;
1796 	u64 len;
1797 	bool full_sync;
1798 	bool skip_ilock = false;
1799 
1800 	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1801 		skip_ilock = true;
1802 		current->journal_info = NULL;
1803 		lockdep_assert_held(&inode->i_rwsem);
1804 	}
1805 
1806 	trace_btrfs_sync_file(file, datasync);
1807 
1808 	btrfs_init_log_ctx(&ctx, inode);
1809 
1810 	/*
1811 	 * Always set the range to a full range, otherwise we can get into
1812 	 * several problems, from missing file extent items to represent holes
1813 	 * when not using the NO_HOLES feature, to log tree corruption due to
1814 	 * races between hole detection during logging and completion of ordered
1815 	 * extents outside the range, to missing checksums due to ordered extents
1816 	 * for which we flushed only a subset of their pages.
1817 	 */
1818 	start = 0;
1819 	end = LLONG_MAX;
1820 	len = (u64)LLONG_MAX + 1;
1821 
1822 	/*
1823 	 * We write the dirty pages in the range and wait until they complete
1824 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1825 	 * multi-task, and make the performance up.  See
1826 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1827 	 */
1828 	ret = start_ordered_ops(inode, start, end);
1829 	if (ret)
1830 		goto out;
1831 
1832 	if (skip_ilock)
1833 		down_write(&BTRFS_I(inode)->i_mmap_lock);
1834 	else
1835 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1836 
1837 	atomic_inc(&root->log_batch);
1838 
1839 	/*
1840 	 * Before we acquired the inode's lock and the mmap lock, someone may
1841 	 * have dirtied more pages in the target range. We need to make sure
1842 	 * that writeback for any such pages does not start while we are logging
1843 	 * the inode, because if it does, any of the following might happen when
1844 	 * we are not doing a full inode sync:
1845 	 *
1846 	 * 1) We log an extent after its writeback finishes but before its
1847 	 *    checksums are added to the csum tree, leading to -EIO errors
1848 	 *    when attempting to read the extent after a log replay.
1849 	 *
1850 	 * 2) We can end up logging an extent before its writeback finishes.
1851 	 *    Therefore after the log replay we will have a file extent item
1852 	 *    pointing to an unwritten extent (and no data checksums as well).
1853 	 *
1854 	 * So trigger writeback for any eventual new dirty pages and then we
1855 	 * wait for all ordered extents to complete below.
1856 	 */
1857 	ret = start_ordered_ops(inode, start, end);
1858 	if (ret) {
1859 		if (skip_ilock)
1860 			up_write(&BTRFS_I(inode)->i_mmap_lock);
1861 		else
1862 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1863 		goto out;
1864 	}
1865 
1866 	/*
1867 	 * Always check for the full sync flag while holding the inode's lock,
1868 	 * to avoid races with other tasks. The flag must be either set all the
1869 	 * time during logging or always off all the time while logging.
1870 	 * We check the flag here after starting delalloc above, because when
1871 	 * running delalloc the full sync flag may be set if we need to drop
1872 	 * extra extent map ranges due to temporary memory allocation failures.
1873 	 */
1874 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1875 			     &BTRFS_I(inode)->runtime_flags);
1876 
1877 	/*
1878 	 * We have to do this here to avoid the priority inversion of waiting on
1879 	 * IO of a lower priority task while holding a transaction open.
1880 	 *
1881 	 * For a full fsync we wait for the ordered extents to complete while
1882 	 * for a fast fsync we wait just for writeback to complete, and then
1883 	 * attach the ordered extents to the transaction so that a transaction
1884 	 * commit waits for their completion, to avoid data loss if we fsync,
1885 	 * the current transaction commits before the ordered extents complete
1886 	 * and a power failure happens right after that.
1887 	 *
1888 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1889 	 * logical address recorded in the ordered extent may change. We need
1890 	 * to wait for the IO to stabilize the logical address.
1891 	 */
1892 	if (full_sync || btrfs_is_zoned(fs_info)) {
1893 		ret = btrfs_wait_ordered_range(inode, start, len);
1894 	} else {
1895 		/*
1896 		 * Get our ordered extents as soon as possible to avoid doing
1897 		 * checksum lookups in the csum tree, and use instead the
1898 		 * checksums attached to the ordered extents.
1899 		 */
1900 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1901 						      &ctx.ordered_extents);
1902 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1903 	}
1904 
1905 	if (ret)
1906 		goto out_release_extents;
1907 
1908 	atomic_inc(&root->log_batch);
1909 
1910 	smp_mb();
1911 	if (skip_inode_logging(&ctx)) {
1912 		/*
1913 		 * We've had everything committed since the last time we were
1914 		 * modified so clear this flag in case it was set for whatever
1915 		 * reason, it's no longer relevant.
1916 		 */
1917 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1918 			  &BTRFS_I(inode)->runtime_flags);
1919 		/*
1920 		 * An ordered extent might have started before and completed
1921 		 * already with io errors, in which case the inode was not
1922 		 * updated and we end up here. So check the inode's mapping
1923 		 * for any errors that might have happened since we last
1924 		 * checked called fsync.
1925 		 */
1926 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1927 		goto out_release_extents;
1928 	}
1929 
1930 	/*
1931 	 * We use start here because we will need to wait on the IO to complete
1932 	 * in btrfs_sync_log, which could require joining a transaction (for
1933 	 * example checking cross references in the nocow path).  If we use join
1934 	 * here we could get into a situation where we're waiting on IO to
1935 	 * happen that is blocked on a transaction trying to commit.  With start
1936 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1937 	 * before we start blocking joiners.  This comment is to keep somebody
1938 	 * from thinking they are super smart and changing this to
1939 	 * btrfs_join_transaction *cough*Josef*cough*.
1940 	 */
1941 	trans = btrfs_start_transaction(root, 0);
1942 	if (IS_ERR(trans)) {
1943 		ret = PTR_ERR(trans);
1944 		goto out_release_extents;
1945 	}
1946 	trans->in_fsync = true;
1947 
1948 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1949 	btrfs_release_log_ctx_extents(&ctx);
1950 	if (ret < 0) {
1951 		/* Fallthrough and commit/free transaction. */
1952 		ret = BTRFS_LOG_FORCE_COMMIT;
1953 	}
1954 
1955 	/* we've logged all the items and now have a consistent
1956 	 * version of the file in the log.  It is possible that
1957 	 * someone will come in and modify the file, but that's
1958 	 * fine because the log is consistent on disk, and we
1959 	 * have references to all of the file's extents
1960 	 *
1961 	 * It is possible that someone will come in and log the
1962 	 * file again, but that will end up using the synchronization
1963 	 * inside btrfs_sync_log to keep things safe.
1964 	 */
1965 	if (skip_ilock)
1966 		up_write(&BTRFS_I(inode)->i_mmap_lock);
1967 	else
1968 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1969 
1970 	if (ret == BTRFS_NO_LOG_SYNC) {
1971 		ret = btrfs_end_transaction(trans);
1972 		goto out;
1973 	}
1974 
1975 	/* We successfully logged the inode, attempt to sync the log. */
1976 	if (!ret) {
1977 		ret = btrfs_sync_log(trans, root, &ctx);
1978 		if (!ret) {
1979 			ret = btrfs_end_transaction(trans);
1980 			goto out;
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * At this point we need to commit the transaction because we had
1986 	 * btrfs_need_log_full_commit() or some other error.
1987 	 *
1988 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1989 	 * the ordered extents, start it again and commit the transaction.  If
1990 	 * we attempt to wait on the ordered extents here we could deadlock with
1991 	 * something like fallocate() that is holding the extent lock trying to
1992 	 * start a transaction while some other thread is trying to commit the
1993 	 * transaction while we (fsync) are currently holding the transaction
1994 	 * open.
1995 	 */
1996 	if (!full_sync) {
1997 		ret = btrfs_end_transaction(trans);
1998 		if (ret)
1999 			goto out;
2000 		ret = btrfs_wait_ordered_range(inode, start, len);
2001 		if (ret)
2002 			goto out;
2003 
2004 		/*
2005 		 * This is safe to use here because we're only interested in
2006 		 * making sure the transaction that had the ordered extents is
2007 		 * committed.  We aren't waiting on anything past this point,
2008 		 * we're purely getting the transaction and committing it.
2009 		 */
2010 		trans = btrfs_attach_transaction_barrier(root);
2011 		if (IS_ERR(trans)) {
2012 			ret = PTR_ERR(trans);
2013 
2014 			/*
2015 			 * We committed the transaction and there's no currently
2016 			 * running transaction, this means everything we care
2017 			 * about made it to disk and we are done.
2018 			 */
2019 			if (ret == -ENOENT)
2020 				ret = 0;
2021 			goto out;
2022 		}
2023 	}
2024 
2025 	ret = btrfs_commit_transaction(trans);
2026 out:
2027 	ASSERT(list_empty(&ctx.list));
2028 	ASSERT(list_empty(&ctx.conflict_inodes));
2029 	err = file_check_and_advance_wb_err(file);
2030 	if (!ret)
2031 		ret = err;
2032 	return ret > 0 ? -EIO : ret;
2033 
2034 out_release_extents:
2035 	btrfs_release_log_ctx_extents(&ctx);
2036 	if (skip_ilock)
2037 		up_write(&BTRFS_I(inode)->i_mmap_lock);
2038 	else
2039 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2040 	goto out;
2041 }
2042 
2043 static const struct vm_operations_struct btrfs_file_vm_ops = {
2044 	.fault		= filemap_fault,
2045 	.map_pages	= filemap_map_pages,
2046 	.page_mkwrite	= btrfs_page_mkwrite,
2047 };
2048 
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2049 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2050 {
2051 	struct address_space *mapping = filp->f_mapping;
2052 
2053 	if (!mapping->a_ops->read_folio)
2054 		return -ENOEXEC;
2055 
2056 	file_accessed(filp);
2057 	vma->vm_ops = &btrfs_file_vm_ops;
2058 
2059 	return 0;
2060 }
2061 
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2062 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2063 			  int slot, u64 start, u64 end)
2064 {
2065 	struct btrfs_file_extent_item *fi;
2066 	struct btrfs_key key;
2067 
2068 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2069 		return 0;
2070 
2071 	btrfs_item_key_to_cpu(leaf, &key, slot);
2072 	if (key.objectid != btrfs_ino(inode) ||
2073 	    key.type != BTRFS_EXTENT_DATA_KEY)
2074 		return 0;
2075 
2076 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2077 
2078 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2079 		return 0;
2080 
2081 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2082 		return 0;
2083 
2084 	if (key.offset == end)
2085 		return 1;
2086 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2087 		return 1;
2088 	return 0;
2089 }
2090 
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2091 static int fill_holes(struct btrfs_trans_handle *trans,
2092 		struct btrfs_inode *inode,
2093 		struct btrfs_path *path, u64 offset, u64 end)
2094 {
2095 	struct btrfs_fs_info *fs_info = trans->fs_info;
2096 	struct btrfs_root *root = inode->root;
2097 	struct extent_buffer *leaf;
2098 	struct btrfs_file_extent_item *fi;
2099 	struct extent_map *hole_em;
2100 	struct btrfs_key key;
2101 	int ret;
2102 
2103 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2104 		goto out;
2105 
2106 	key.objectid = btrfs_ino(inode);
2107 	key.type = BTRFS_EXTENT_DATA_KEY;
2108 	key.offset = offset;
2109 
2110 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2111 	if (ret <= 0) {
2112 		/*
2113 		 * We should have dropped this offset, so if we find it then
2114 		 * something has gone horribly wrong.
2115 		 */
2116 		if (ret == 0)
2117 			ret = -EINVAL;
2118 		return ret;
2119 	}
2120 
2121 	leaf = path->nodes[0];
2122 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2123 		u64 num_bytes;
2124 
2125 		path->slots[0]--;
2126 		fi = btrfs_item_ptr(leaf, path->slots[0],
2127 				    struct btrfs_file_extent_item);
2128 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2129 			end - offset;
2130 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2131 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2132 		btrfs_set_file_extent_offset(leaf, fi, 0);
2133 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2134 		btrfs_mark_buffer_dirty(trans, leaf);
2135 		goto out;
2136 	}
2137 
2138 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2139 		u64 num_bytes;
2140 
2141 		key.offset = offset;
2142 		btrfs_set_item_key_safe(trans, path, &key);
2143 		fi = btrfs_item_ptr(leaf, path->slots[0],
2144 				    struct btrfs_file_extent_item);
2145 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2146 			offset;
2147 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2148 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2149 		btrfs_set_file_extent_offset(leaf, fi, 0);
2150 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2151 		btrfs_mark_buffer_dirty(trans, leaf);
2152 		goto out;
2153 	}
2154 	btrfs_release_path(path);
2155 
2156 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2157 				       end - offset);
2158 	if (ret)
2159 		return ret;
2160 
2161 out:
2162 	btrfs_release_path(path);
2163 
2164 	hole_em = alloc_extent_map();
2165 	if (!hole_em) {
2166 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2167 		btrfs_set_inode_full_sync(inode);
2168 	} else {
2169 		hole_em->start = offset;
2170 		hole_em->len = end - offset;
2171 		hole_em->ram_bytes = hole_em->len;
2172 		hole_em->orig_start = offset;
2173 
2174 		hole_em->block_start = EXTENT_MAP_HOLE;
2175 		hole_em->block_len = 0;
2176 		hole_em->orig_block_len = 0;
2177 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2178 		hole_em->generation = trans->transid;
2179 
2180 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2181 		free_extent_map(hole_em);
2182 		if (ret)
2183 			btrfs_set_inode_full_sync(inode);
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 /*
2190  * Find a hole extent on given inode and change start/len to the end of hole
2191  * extent.(hole/vacuum extent whose em->start <= start &&
2192  *	   em->start + em->len > start)
2193  * When a hole extent is found, return 1 and modify start/len.
2194  */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2195 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2196 {
2197 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2198 	struct extent_map *em;
2199 	int ret = 0;
2200 
2201 	em = btrfs_get_extent(inode, NULL, 0,
2202 			      round_down(*start, fs_info->sectorsize),
2203 			      round_up(*len, fs_info->sectorsize));
2204 	if (IS_ERR(em))
2205 		return PTR_ERR(em);
2206 
2207 	/* Hole or vacuum extent(only exists in no-hole mode) */
2208 	if (em->block_start == EXTENT_MAP_HOLE) {
2209 		ret = 1;
2210 		*len = em->start + em->len > *start + *len ?
2211 		       0 : *start + *len - em->start - em->len;
2212 		*start = em->start + em->len;
2213 	}
2214 	free_extent_map(em);
2215 	return ret;
2216 }
2217 
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2218 static void btrfs_punch_hole_lock_range(struct inode *inode,
2219 					const u64 lockstart,
2220 					const u64 lockend,
2221 					struct extent_state **cached_state)
2222 {
2223 	/*
2224 	 * For subpage case, if the range is not at page boundary, we could
2225 	 * have pages at the leading/tailing part of the range.
2226 	 * This could lead to dead loop since filemap_range_has_page()
2227 	 * will always return true.
2228 	 * So here we need to do extra page alignment for
2229 	 * filemap_range_has_page().
2230 	 */
2231 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2232 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2233 
2234 	while (1) {
2235 		truncate_pagecache_range(inode, lockstart, lockend);
2236 
2237 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2238 			    cached_state);
2239 		/*
2240 		 * We can't have ordered extents in the range, nor dirty/writeback
2241 		 * pages, because we have locked the inode's VFS lock in exclusive
2242 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2243 		 * we have flushed all delalloc in the range and we have waited
2244 		 * for any ordered extents in the range to complete.
2245 		 * We can race with anyone reading pages from this range, so after
2246 		 * locking the range check if we have pages in the range, and if
2247 		 * we do, unlock the range and retry.
2248 		 */
2249 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2250 					    page_lockend))
2251 			break;
2252 
2253 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2254 			      cached_state);
2255 	}
2256 
2257 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2258 }
2259 
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2260 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2261 				     struct btrfs_inode *inode,
2262 				     struct btrfs_path *path,
2263 				     struct btrfs_replace_extent_info *extent_info,
2264 				     const u64 replace_len,
2265 				     const u64 bytes_to_drop)
2266 {
2267 	struct btrfs_fs_info *fs_info = trans->fs_info;
2268 	struct btrfs_root *root = inode->root;
2269 	struct btrfs_file_extent_item *extent;
2270 	struct extent_buffer *leaf;
2271 	struct btrfs_key key;
2272 	int slot;
2273 	struct btrfs_ref ref = { 0 };
2274 	int ret;
2275 
2276 	if (replace_len == 0)
2277 		return 0;
2278 
2279 	if (extent_info->disk_offset == 0 &&
2280 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2281 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2282 		return 0;
2283 	}
2284 
2285 	key.objectid = btrfs_ino(inode);
2286 	key.type = BTRFS_EXTENT_DATA_KEY;
2287 	key.offset = extent_info->file_offset;
2288 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2289 				      sizeof(struct btrfs_file_extent_item));
2290 	if (ret)
2291 		return ret;
2292 	leaf = path->nodes[0];
2293 	slot = path->slots[0];
2294 	write_extent_buffer(leaf, extent_info->extent_buf,
2295 			    btrfs_item_ptr_offset(leaf, slot),
2296 			    sizeof(struct btrfs_file_extent_item));
2297 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2298 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2299 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2300 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2301 	if (extent_info->is_new_extent)
2302 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2303 	btrfs_mark_buffer_dirty(trans, leaf);
2304 	btrfs_release_path(path);
2305 
2306 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2307 						replace_len);
2308 	if (ret)
2309 		return ret;
2310 
2311 	/* If it's a hole, nothing more needs to be done. */
2312 	if (extent_info->disk_offset == 0) {
2313 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2314 		return 0;
2315 	}
2316 
2317 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2318 
2319 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2320 		key.objectid = extent_info->disk_offset;
2321 		key.type = BTRFS_EXTENT_ITEM_KEY;
2322 		key.offset = extent_info->disk_len;
2323 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2324 						       btrfs_ino(inode),
2325 						       extent_info->file_offset,
2326 						       extent_info->qgroup_reserved,
2327 						       &key);
2328 	} else {
2329 		u64 ref_offset;
2330 
2331 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2332 				       extent_info->disk_offset,
2333 				       extent_info->disk_len, 0);
2334 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2335 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2336 				    btrfs_ino(inode), ref_offset, 0, false);
2337 		ret = btrfs_inc_extent_ref(trans, &ref);
2338 	}
2339 
2340 	extent_info->insertions++;
2341 
2342 	return ret;
2343 }
2344 
2345 /*
2346  * The respective range must have been previously locked, as well as the inode.
2347  * The end offset is inclusive (last byte of the range).
2348  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2349  * the file range with an extent.
2350  * When not punching a hole, we don't want to end up in a state where we dropped
2351  * extents without inserting a new one, so we must abort the transaction to avoid
2352  * a corruption.
2353  */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2354 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2355 			       struct btrfs_path *path, const u64 start,
2356 			       const u64 end,
2357 			       struct btrfs_replace_extent_info *extent_info,
2358 			       struct btrfs_trans_handle **trans_out)
2359 {
2360 	struct btrfs_drop_extents_args drop_args = { 0 };
2361 	struct btrfs_root *root = inode->root;
2362 	struct btrfs_fs_info *fs_info = root->fs_info;
2363 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2364 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2365 	struct btrfs_trans_handle *trans = NULL;
2366 	struct btrfs_block_rsv *rsv;
2367 	unsigned int rsv_count;
2368 	u64 cur_offset;
2369 	u64 len = end - start;
2370 	int ret = 0;
2371 
2372 	if (end <= start)
2373 		return -EINVAL;
2374 
2375 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2376 	if (!rsv) {
2377 		ret = -ENOMEM;
2378 		goto out;
2379 	}
2380 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2381 	rsv->failfast = true;
2382 
2383 	/*
2384 	 * 1 - update the inode
2385 	 * 1 - removing the extents in the range
2386 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2387 	 *     replacing the range with a new extent
2388 	 */
2389 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2390 		rsv_count = 3;
2391 	else
2392 		rsv_count = 2;
2393 
2394 	trans = btrfs_start_transaction(root, rsv_count);
2395 	if (IS_ERR(trans)) {
2396 		ret = PTR_ERR(trans);
2397 		trans = NULL;
2398 		goto out_free;
2399 	}
2400 
2401 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2402 				      min_size, false);
2403 	if (WARN_ON(ret))
2404 		goto out_trans;
2405 	trans->block_rsv = rsv;
2406 
2407 	cur_offset = start;
2408 	drop_args.path = path;
2409 	drop_args.end = end + 1;
2410 	drop_args.drop_cache = true;
2411 	while (cur_offset < end) {
2412 		drop_args.start = cur_offset;
2413 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2414 		/* If we are punching a hole decrement the inode's byte count */
2415 		if (!extent_info)
2416 			btrfs_update_inode_bytes(inode, 0,
2417 						 drop_args.bytes_found);
2418 		if (ret != -ENOSPC) {
2419 			/*
2420 			 * The only time we don't want to abort is if we are
2421 			 * attempting to clone a partial inline extent, in which
2422 			 * case we'll get EOPNOTSUPP.  However if we aren't
2423 			 * clone we need to abort no matter what, because if we
2424 			 * got EOPNOTSUPP via prealloc then we messed up and
2425 			 * need to abort.
2426 			 */
2427 			if (ret &&
2428 			    (ret != -EOPNOTSUPP ||
2429 			     (extent_info && extent_info->is_new_extent)))
2430 				btrfs_abort_transaction(trans, ret);
2431 			break;
2432 		}
2433 
2434 		trans->block_rsv = &fs_info->trans_block_rsv;
2435 
2436 		if (!extent_info && cur_offset < drop_args.drop_end &&
2437 		    cur_offset < ino_size) {
2438 			ret = fill_holes(trans, inode, path, cur_offset,
2439 					 drop_args.drop_end);
2440 			if (ret) {
2441 				/*
2442 				 * If we failed then we didn't insert our hole
2443 				 * entries for the area we dropped, so now the
2444 				 * fs is corrupted, so we must abort the
2445 				 * transaction.
2446 				 */
2447 				btrfs_abort_transaction(trans, ret);
2448 				break;
2449 			}
2450 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2451 			/*
2452 			 * We are past the i_size here, but since we didn't
2453 			 * insert holes we need to clear the mapped area so we
2454 			 * know to not set disk_i_size in this area until a new
2455 			 * file extent is inserted here.
2456 			 */
2457 			ret = btrfs_inode_clear_file_extent_range(inode,
2458 					cur_offset,
2459 					drop_args.drop_end - cur_offset);
2460 			if (ret) {
2461 				/*
2462 				 * We couldn't clear our area, so we could
2463 				 * presumably adjust up and corrupt the fs, so
2464 				 * we need to abort.
2465 				 */
2466 				btrfs_abort_transaction(trans, ret);
2467 				break;
2468 			}
2469 		}
2470 
2471 		if (extent_info &&
2472 		    drop_args.drop_end > extent_info->file_offset) {
2473 			u64 replace_len = drop_args.drop_end -
2474 					  extent_info->file_offset;
2475 
2476 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2477 					extent_info, replace_len,
2478 					drop_args.bytes_found);
2479 			if (ret) {
2480 				btrfs_abort_transaction(trans, ret);
2481 				break;
2482 			}
2483 			extent_info->data_len -= replace_len;
2484 			extent_info->data_offset += replace_len;
2485 			extent_info->file_offset += replace_len;
2486 		}
2487 
2488 		/*
2489 		 * We are releasing our handle on the transaction, balance the
2490 		 * dirty pages of the btree inode and flush delayed items, and
2491 		 * then get a new transaction handle, which may now point to a
2492 		 * new transaction in case someone else may have committed the
2493 		 * transaction we used to replace/drop file extent items. So
2494 		 * bump the inode's iversion and update mtime and ctime except
2495 		 * if we are called from a dedupe context. This is because a
2496 		 * power failure/crash may happen after the transaction is
2497 		 * committed and before we finish replacing/dropping all the
2498 		 * file extent items we need.
2499 		 */
2500 		inode_inc_iversion(&inode->vfs_inode);
2501 
2502 		if (!extent_info || extent_info->update_times)
2503 			inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode);
2504 
2505 		ret = btrfs_update_inode(trans, root, inode);
2506 		if (ret)
2507 			break;
2508 
2509 		btrfs_end_transaction(trans);
2510 		btrfs_btree_balance_dirty(fs_info);
2511 
2512 		trans = btrfs_start_transaction(root, rsv_count);
2513 		if (IS_ERR(trans)) {
2514 			ret = PTR_ERR(trans);
2515 			trans = NULL;
2516 			break;
2517 		}
2518 
2519 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2520 					      rsv, min_size, false);
2521 		if (WARN_ON(ret))
2522 			break;
2523 		trans->block_rsv = rsv;
2524 
2525 		cur_offset = drop_args.drop_end;
2526 		len = end - cur_offset;
2527 		if (!extent_info && len) {
2528 			ret = find_first_non_hole(inode, &cur_offset, &len);
2529 			if (unlikely(ret < 0))
2530 				break;
2531 			if (ret && !len) {
2532 				ret = 0;
2533 				break;
2534 			}
2535 		}
2536 	}
2537 
2538 	/*
2539 	 * If we were cloning, force the next fsync to be a full one since we
2540 	 * we replaced (or just dropped in the case of cloning holes when
2541 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2542 	 * maps for the replacement extents (or holes).
2543 	 */
2544 	if (extent_info && !extent_info->is_new_extent)
2545 		btrfs_set_inode_full_sync(inode);
2546 
2547 	if (ret)
2548 		goto out_trans;
2549 
2550 	trans->block_rsv = &fs_info->trans_block_rsv;
2551 	/*
2552 	 * If we are using the NO_HOLES feature we might have had already an
2553 	 * hole that overlaps a part of the region [lockstart, lockend] and
2554 	 * ends at (or beyond) lockend. Since we have no file extent items to
2555 	 * represent holes, drop_end can be less than lockend and so we must
2556 	 * make sure we have an extent map representing the existing hole (the
2557 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2558 	 * map representing the existing hole), otherwise the fast fsync path
2559 	 * will not record the existence of the hole region
2560 	 * [existing_hole_start, lockend].
2561 	 */
2562 	if (drop_args.drop_end <= end)
2563 		drop_args.drop_end = end + 1;
2564 	/*
2565 	 * Don't insert file hole extent item if it's for a range beyond eof
2566 	 * (because it's useless) or if it represents a 0 bytes range (when
2567 	 * cur_offset == drop_end).
2568 	 */
2569 	if (!extent_info && cur_offset < ino_size &&
2570 	    cur_offset < drop_args.drop_end) {
2571 		ret = fill_holes(trans, inode, path, cur_offset,
2572 				 drop_args.drop_end);
2573 		if (ret) {
2574 			/* Same comment as above. */
2575 			btrfs_abort_transaction(trans, ret);
2576 			goto out_trans;
2577 		}
2578 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2579 		/* See the comment in the loop above for the reasoning here. */
2580 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2581 					drop_args.drop_end - cur_offset);
2582 		if (ret) {
2583 			btrfs_abort_transaction(trans, ret);
2584 			goto out_trans;
2585 		}
2586 
2587 	}
2588 	if (extent_info) {
2589 		ret = btrfs_insert_replace_extent(trans, inode, path,
2590 				extent_info, extent_info->data_len,
2591 				drop_args.bytes_found);
2592 		if (ret) {
2593 			btrfs_abort_transaction(trans, ret);
2594 			goto out_trans;
2595 		}
2596 	}
2597 
2598 out_trans:
2599 	if (!trans)
2600 		goto out_free;
2601 
2602 	trans->block_rsv = &fs_info->trans_block_rsv;
2603 	if (ret)
2604 		btrfs_end_transaction(trans);
2605 	else
2606 		*trans_out = trans;
2607 out_free:
2608 	btrfs_free_block_rsv(fs_info, rsv);
2609 out:
2610 	return ret;
2611 }
2612 
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2613 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2614 {
2615 	struct inode *inode = file_inode(file);
2616 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2617 	struct btrfs_root *root = BTRFS_I(inode)->root;
2618 	struct extent_state *cached_state = NULL;
2619 	struct btrfs_path *path;
2620 	struct btrfs_trans_handle *trans = NULL;
2621 	u64 lockstart;
2622 	u64 lockend;
2623 	u64 tail_start;
2624 	u64 tail_len;
2625 	u64 orig_start = offset;
2626 	int ret = 0;
2627 	bool same_block;
2628 	u64 ino_size;
2629 	bool truncated_block = false;
2630 	bool updated_inode = false;
2631 
2632 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2633 
2634 	ret = btrfs_wait_ordered_range(inode, offset, len);
2635 	if (ret)
2636 		goto out_only_mutex;
2637 
2638 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2639 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2640 	if (ret < 0)
2641 		goto out_only_mutex;
2642 	if (ret && !len) {
2643 		/* Already in a large hole */
2644 		ret = 0;
2645 		goto out_only_mutex;
2646 	}
2647 
2648 	ret = file_modified(file);
2649 	if (ret)
2650 		goto out_only_mutex;
2651 
2652 	lockstart = round_up(offset, fs_info->sectorsize);
2653 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2654 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2655 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2656 	/*
2657 	 * We needn't truncate any block which is beyond the end of the file
2658 	 * because we are sure there is no data there.
2659 	 */
2660 	/*
2661 	 * Only do this if we are in the same block and we aren't doing the
2662 	 * entire block.
2663 	 */
2664 	if (same_block && len < fs_info->sectorsize) {
2665 		if (offset < ino_size) {
2666 			truncated_block = true;
2667 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2668 						   0);
2669 		} else {
2670 			ret = 0;
2671 		}
2672 		goto out_only_mutex;
2673 	}
2674 
2675 	/* zero back part of the first block */
2676 	if (offset < ino_size) {
2677 		truncated_block = true;
2678 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2679 		if (ret) {
2680 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2681 			return ret;
2682 		}
2683 	}
2684 
2685 	/* Check the aligned pages after the first unaligned page,
2686 	 * if offset != orig_start, which means the first unaligned page
2687 	 * including several following pages are already in holes,
2688 	 * the extra check can be skipped */
2689 	if (offset == orig_start) {
2690 		/* after truncate page, check hole again */
2691 		len = offset + len - lockstart;
2692 		offset = lockstart;
2693 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2694 		if (ret < 0)
2695 			goto out_only_mutex;
2696 		if (ret && !len) {
2697 			ret = 0;
2698 			goto out_only_mutex;
2699 		}
2700 		lockstart = offset;
2701 	}
2702 
2703 	/* Check the tail unaligned part is in a hole */
2704 	tail_start = lockend + 1;
2705 	tail_len = offset + len - tail_start;
2706 	if (tail_len) {
2707 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2708 		if (unlikely(ret < 0))
2709 			goto out_only_mutex;
2710 		if (!ret) {
2711 			/* zero the front end of the last page */
2712 			if (tail_start + tail_len < ino_size) {
2713 				truncated_block = true;
2714 				ret = btrfs_truncate_block(BTRFS_I(inode),
2715 							tail_start + tail_len,
2716 							0, 1);
2717 				if (ret)
2718 					goto out_only_mutex;
2719 			}
2720 		}
2721 	}
2722 
2723 	if (lockend < lockstart) {
2724 		ret = 0;
2725 		goto out_only_mutex;
2726 	}
2727 
2728 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2729 
2730 	path = btrfs_alloc_path();
2731 	if (!path) {
2732 		ret = -ENOMEM;
2733 		goto out;
2734 	}
2735 
2736 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2737 					 lockend, NULL, &trans);
2738 	btrfs_free_path(path);
2739 	if (ret)
2740 		goto out;
2741 
2742 	ASSERT(trans != NULL);
2743 	inode_inc_iversion(inode);
2744 	inode->i_mtime = inode_set_ctime_current(inode);
2745 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2746 	updated_inode = true;
2747 	btrfs_end_transaction(trans);
2748 	btrfs_btree_balance_dirty(fs_info);
2749 out:
2750 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2751 		      &cached_state);
2752 out_only_mutex:
2753 	if (!updated_inode && truncated_block && !ret) {
2754 		/*
2755 		 * If we only end up zeroing part of a page, we still need to
2756 		 * update the inode item, so that all the time fields are
2757 		 * updated as well as the necessary btrfs inode in memory fields
2758 		 * for detecting, at fsync time, if the inode isn't yet in the
2759 		 * log tree or it's there but not up to date.
2760 		 */
2761 		struct timespec64 now = inode_set_ctime_current(inode);
2762 
2763 		inode_inc_iversion(inode);
2764 		inode->i_mtime = now;
2765 		trans = btrfs_start_transaction(root, 1);
2766 		if (IS_ERR(trans)) {
2767 			ret = PTR_ERR(trans);
2768 		} else {
2769 			int ret2;
2770 
2771 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2772 			ret2 = btrfs_end_transaction(trans);
2773 			if (!ret)
2774 				ret = ret2;
2775 		}
2776 	}
2777 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2778 	return ret;
2779 }
2780 
2781 /* Helper structure to record which range is already reserved */
2782 struct falloc_range {
2783 	struct list_head list;
2784 	u64 start;
2785 	u64 len;
2786 };
2787 
2788 /*
2789  * Helper function to add falloc range
2790  *
2791  * Caller should have locked the larger range of extent containing
2792  * [start, len)
2793  */
add_falloc_range(struct list_head * head,u64 start,u64 len)2794 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2795 {
2796 	struct falloc_range *range = NULL;
2797 
2798 	if (!list_empty(head)) {
2799 		/*
2800 		 * As fallocate iterates by bytenr order, we only need to check
2801 		 * the last range.
2802 		 */
2803 		range = list_last_entry(head, struct falloc_range, list);
2804 		if (range->start + range->len == start) {
2805 			range->len += len;
2806 			return 0;
2807 		}
2808 	}
2809 
2810 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2811 	if (!range)
2812 		return -ENOMEM;
2813 	range->start = start;
2814 	range->len = len;
2815 	list_add_tail(&range->list, head);
2816 	return 0;
2817 }
2818 
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2819 static int btrfs_fallocate_update_isize(struct inode *inode,
2820 					const u64 end,
2821 					const int mode)
2822 {
2823 	struct btrfs_trans_handle *trans;
2824 	struct btrfs_root *root = BTRFS_I(inode)->root;
2825 	int ret;
2826 	int ret2;
2827 
2828 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2829 		return 0;
2830 
2831 	trans = btrfs_start_transaction(root, 1);
2832 	if (IS_ERR(trans))
2833 		return PTR_ERR(trans);
2834 
2835 	inode_set_ctime_current(inode);
2836 	i_size_write(inode, end);
2837 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2838 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2839 	ret2 = btrfs_end_transaction(trans);
2840 
2841 	return ret ? ret : ret2;
2842 }
2843 
2844 enum {
2845 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2846 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2847 	RANGE_BOUNDARY_HOLE,
2848 };
2849 
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2850 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2851 						 u64 offset)
2852 {
2853 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2854 	struct extent_map *em;
2855 	int ret;
2856 
2857 	offset = round_down(offset, sectorsize);
2858 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2859 	if (IS_ERR(em))
2860 		return PTR_ERR(em);
2861 
2862 	if (em->block_start == EXTENT_MAP_HOLE)
2863 		ret = RANGE_BOUNDARY_HOLE;
2864 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2865 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2866 	else
2867 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2868 
2869 	free_extent_map(em);
2870 	return ret;
2871 }
2872 
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2873 static int btrfs_zero_range(struct inode *inode,
2874 			    loff_t offset,
2875 			    loff_t len,
2876 			    const int mode)
2877 {
2878 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2879 	struct extent_map *em;
2880 	struct extent_changeset *data_reserved = NULL;
2881 	int ret;
2882 	u64 alloc_hint = 0;
2883 	const u64 sectorsize = fs_info->sectorsize;
2884 	u64 alloc_start = round_down(offset, sectorsize);
2885 	u64 alloc_end = round_up(offset + len, sectorsize);
2886 	u64 bytes_to_reserve = 0;
2887 	bool space_reserved = false;
2888 
2889 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2890 			      alloc_end - alloc_start);
2891 	if (IS_ERR(em)) {
2892 		ret = PTR_ERR(em);
2893 		goto out;
2894 	}
2895 
2896 	/*
2897 	 * Avoid hole punching and extent allocation for some cases. More cases
2898 	 * could be considered, but these are unlikely common and we keep things
2899 	 * as simple as possible for now. Also, intentionally, if the target
2900 	 * range contains one or more prealloc extents together with regular
2901 	 * extents and holes, we drop all the existing extents and allocate a
2902 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2903 	 */
2904 	if (em->start <= alloc_start &&
2905 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2906 		const u64 em_end = em->start + em->len;
2907 
2908 		if (em_end >= offset + len) {
2909 			/*
2910 			 * The whole range is already a prealloc extent,
2911 			 * do nothing except updating the inode's i_size if
2912 			 * needed.
2913 			 */
2914 			free_extent_map(em);
2915 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2916 							   mode);
2917 			goto out;
2918 		}
2919 		/*
2920 		 * Part of the range is already a prealloc extent, so operate
2921 		 * only on the remaining part of the range.
2922 		 */
2923 		alloc_start = em_end;
2924 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2925 		len = offset + len - alloc_start;
2926 		offset = alloc_start;
2927 		alloc_hint = em->block_start + em->len;
2928 	}
2929 	free_extent_map(em);
2930 
2931 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2932 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2933 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2934 				      sectorsize);
2935 		if (IS_ERR(em)) {
2936 			ret = PTR_ERR(em);
2937 			goto out;
2938 		}
2939 
2940 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2941 			free_extent_map(em);
2942 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2943 							   mode);
2944 			goto out;
2945 		}
2946 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2947 			free_extent_map(em);
2948 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2949 						   0);
2950 			if (!ret)
2951 				ret = btrfs_fallocate_update_isize(inode,
2952 								   offset + len,
2953 								   mode);
2954 			return ret;
2955 		}
2956 		free_extent_map(em);
2957 		alloc_start = round_down(offset, sectorsize);
2958 		alloc_end = alloc_start + sectorsize;
2959 		goto reserve_space;
2960 	}
2961 
2962 	alloc_start = round_up(offset, sectorsize);
2963 	alloc_end = round_down(offset + len, sectorsize);
2964 
2965 	/*
2966 	 * For unaligned ranges, check the pages at the boundaries, they might
2967 	 * map to an extent, in which case we need to partially zero them, or
2968 	 * they might map to a hole, in which case we need our allocation range
2969 	 * to cover them.
2970 	 */
2971 	if (!IS_ALIGNED(offset, sectorsize)) {
2972 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2973 							    offset);
2974 		if (ret < 0)
2975 			goto out;
2976 		if (ret == RANGE_BOUNDARY_HOLE) {
2977 			alloc_start = round_down(offset, sectorsize);
2978 			ret = 0;
2979 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2980 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2981 			if (ret)
2982 				goto out;
2983 		} else {
2984 			ret = 0;
2985 		}
2986 	}
2987 
2988 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2989 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2990 							    offset + len);
2991 		if (ret < 0)
2992 			goto out;
2993 		if (ret == RANGE_BOUNDARY_HOLE) {
2994 			alloc_end = round_up(offset + len, sectorsize);
2995 			ret = 0;
2996 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2997 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2998 						   0, 1);
2999 			if (ret)
3000 				goto out;
3001 		} else {
3002 			ret = 0;
3003 		}
3004 	}
3005 
3006 reserve_space:
3007 	if (alloc_start < alloc_end) {
3008 		struct extent_state *cached_state = NULL;
3009 		const u64 lockstart = alloc_start;
3010 		const u64 lockend = alloc_end - 1;
3011 
3012 		bytes_to_reserve = alloc_end - alloc_start;
3013 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3014 						      bytes_to_reserve);
3015 		if (ret < 0)
3016 			goto out;
3017 		space_reserved = true;
3018 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3019 					    &cached_state);
3020 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3021 						alloc_start, bytes_to_reserve);
3022 		if (ret) {
3023 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3024 				      lockend, &cached_state);
3025 			goto out;
3026 		}
3027 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3028 						alloc_end - alloc_start,
3029 						i_blocksize(inode),
3030 						offset + len, &alloc_hint);
3031 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3032 			      &cached_state);
3033 		/* btrfs_prealloc_file_range releases reserved space on error */
3034 		if (ret) {
3035 			space_reserved = false;
3036 			goto out;
3037 		}
3038 	}
3039 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3040  out:
3041 	if (ret && space_reserved)
3042 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3043 					       alloc_start, bytes_to_reserve);
3044 	extent_changeset_free(data_reserved);
3045 
3046 	return ret;
3047 }
3048 
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3049 static long btrfs_fallocate(struct file *file, int mode,
3050 			    loff_t offset, loff_t len)
3051 {
3052 	struct inode *inode = file_inode(file);
3053 	struct extent_state *cached_state = NULL;
3054 	struct extent_changeset *data_reserved = NULL;
3055 	struct falloc_range *range;
3056 	struct falloc_range *tmp;
3057 	LIST_HEAD(reserve_list);
3058 	u64 cur_offset;
3059 	u64 last_byte;
3060 	u64 alloc_start;
3061 	u64 alloc_end;
3062 	u64 alloc_hint = 0;
3063 	u64 locked_end;
3064 	u64 actual_end = 0;
3065 	u64 data_space_needed = 0;
3066 	u64 data_space_reserved = 0;
3067 	u64 qgroup_reserved = 0;
3068 	struct extent_map *em;
3069 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3070 	int ret;
3071 
3072 	/* Do not allow fallocate in ZONED mode */
3073 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3074 		return -EOPNOTSUPP;
3075 
3076 	alloc_start = round_down(offset, blocksize);
3077 	alloc_end = round_up(offset + len, blocksize);
3078 	cur_offset = alloc_start;
3079 
3080 	/* Make sure we aren't being give some crap mode */
3081 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3082 		     FALLOC_FL_ZERO_RANGE))
3083 		return -EOPNOTSUPP;
3084 
3085 	if (mode & FALLOC_FL_PUNCH_HOLE)
3086 		return btrfs_punch_hole(file, offset, len);
3087 
3088 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3089 
3090 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3091 		ret = inode_newsize_ok(inode, offset + len);
3092 		if (ret)
3093 			goto out;
3094 	}
3095 
3096 	ret = file_modified(file);
3097 	if (ret)
3098 		goto out;
3099 
3100 	/*
3101 	 * TODO: Move these two operations after we have checked
3102 	 * accurate reserved space, or fallocate can still fail but
3103 	 * with page truncated or size expanded.
3104 	 *
3105 	 * But that's a minor problem and won't do much harm BTW.
3106 	 */
3107 	if (alloc_start > inode->i_size) {
3108 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3109 					alloc_start);
3110 		if (ret)
3111 			goto out;
3112 	} else if (offset + len > inode->i_size) {
3113 		/*
3114 		 * If we are fallocating from the end of the file onward we
3115 		 * need to zero out the end of the block if i_size lands in the
3116 		 * middle of a block.
3117 		 */
3118 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3119 		if (ret)
3120 			goto out;
3121 	}
3122 
3123 	/*
3124 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3125 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3126 	 * locking the file range, flush all dealloc in the range and wait for
3127 	 * all ordered extents in the range to complete. After this we can lock
3128 	 * the file range and, due to the previous locking we did, we know there
3129 	 * can't be more delalloc or ordered extents in the range.
3130 	 */
3131 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3132 				       alloc_end - alloc_start);
3133 	if (ret)
3134 		goto out;
3135 
3136 	if (mode & FALLOC_FL_ZERO_RANGE) {
3137 		ret = btrfs_zero_range(inode, offset, len, mode);
3138 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3139 		return ret;
3140 	}
3141 
3142 	locked_end = alloc_end - 1;
3143 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3144 		    &cached_state);
3145 
3146 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3147 
3148 	/* First, check if we exceed the qgroup limit */
3149 	while (cur_offset < alloc_end) {
3150 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3151 				      alloc_end - cur_offset);
3152 		if (IS_ERR(em)) {
3153 			ret = PTR_ERR(em);
3154 			break;
3155 		}
3156 		last_byte = min(extent_map_end(em), alloc_end);
3157 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3158 		last_byte = ALIGN(last_byte, blocksize);
3159 		if (em->block_start == EXTENT_MAP_HOLE ||
3160 		    (cur_offset >= inode->i_size &&
3161 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3162 			const u64 range_len = last_byte - cur_offset;
3163 
3164 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3165 			if (ret < 0) {
3166 				free_extent_map(em);
3167 				break;
3168 			}
3169 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3170 					&data_reserved, cur_offset, range_len);
3171 			if (ret < 0) {
3172 				free_extent_map(em);
3173 				break;
3174 			}
3175 			qgroup_reserved += range_len;
3176 			data_space_needed += range_len;
3177 		}
3178 		free_extent_map(em);
3179 		cur_offset = last_byte;
3180 	}
3181 
3182 	if (!ret && data_space_needed > 0) {
3183 		/*
3184 		 * We are safe to reserve space here as we can't have delalloc
3185 		 * in the range, see above.
3186 		 */
3187 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3188 						      data_space_needed);
3189 		if (!ret)
3190 			data_space_reserved = data_space_needed;
3191 	}
3192 
3193 	/*
3194 	 * If ret is still 0, means we're OK to fallocate.
3195 	 * Or just cleanup the list and exit.
3196 	 */
3197 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3198 		if (!ret) {
3199 			ret = btrfs_prealloc_file_range(inode, mode,
3200 					range->start,
3201 					range->len, i_blocksize(inode),
3202 					offset + len, &alloc_hint);
3203 			/*
3204 			 * btrfs_prealloc_file_range() releases space even
3205 			 * if it returns an error.
3206 			 */
3207 			data_space_reserved -= range->len;
3208 			qgroup_reserved -= range->len;
3209 		} else if (data_space_reserved > 0) {
3210 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3211 					       data_reserved, range->start,
3212 					       range->len);
3213 			data_space_reserved -= range->len;
3214 			qgroup_reserved -= range->len;
3215 		} else if (qgroup_reserved > 0) {
3216 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3217 					       range->start, range->len, NULL);
3218 			qgroup_reserved -= range->len;
3219 		}
3220 		list_del(&range->list);
3221 		kfree(range);
3222 	}
3223 	if (ret < 0)
3224 		goto out_unlock;
3225 
3226 	/*
3227 	 * We didn't need to allocate any more space, but we still extended the
3228 	 * size of the file so we need to update i_size and the inode item.
3229 	 */
3230 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3231 out_unlock:
3232 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3233 		      &cached_state);
3234 out:
3235 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3236 	extent_changeset_free(data_reserved);
3237 	return ret;
3238 }
3239 
3240 /*
3241  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3242  * that has unflushed and/or flushing delalloc. There might be other adjacent
3243  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3244  * looping while it gets adjacent subranges, and merging them together.
3245  */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3246 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3247 				   struct extent_state **cached_state,
3248 				   bool *search_io_tree,
3249 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3250 {
3251 	u64 len = end + 1 - start;
3252 	u64 delalloc_len = 0;
3253 	struct btrfs_ordered_extent *oe;
3254 	u64 oe_start;
3255 	u64 oe_end;
3256 
3257 	/*
3258 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3259 	 * means we have delalloc (dirty pages) for which writeback has not
3260 	 * started yet.
3261 	 */
3262 	if (*search_io_tree) {
3263 		spin_lock(&inode->lock);
3264 		if (inode->delalloc_bytes > 0) {
3265 			spin_unlock(&inode->lock);
3266 			*delalloc_start_ret = start;
3267 			delalloc_len = count_range_bits(&inode->io_tree,
3268 							delalloc_start_ret, end,
3269 							len, EXTENT_DELALLOC, 1,
3270 							cached_state);
3271 		} else {
3272 			spin_unlock(&inode->lock);
3273 		}
3274 	}
3275 
3276 	if (delalloc_len > 0) {
3277 		/*
3278 		 * If delalloc was found then *delalloc_start_ret has a sector size
3279 		 * aligned value (rounded down).
3280 		 */
3281 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3282 
3283 		if (*delalloc_start_ret == start) {
3284 			/* Delalloc for the whole range, nothing more to do. */
3285 			if (*delalloc_end_ret == end)
3286 				return true;
3287 			/* Else trim our search range for ordered extents. */
3288 			start = *delalloc_end_ret + 1;
3289 			len = end + 1 - start;
3290 		}
3291 	} else {
3292 		/* No delalloc, future calls don't need to search again. */
3293 		*search_io_tree = false;
3294 	}
3295 
3296 	/*
3297 	 * Now also check if there's any ordered extent in the range.
3298 	 * We do this because:
3299 	 *
3300 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3301 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3302 	 *    an ordered extent for the write. So we might just have been called
3303 	 *    after delalloc is flushed and before the ordered extent completes
3304 	 *    and inserts the new file extent item in the subvolume's btree;
3305 	 *
3306 	 * 2) We may have an ordered extent created by flushing delalloc for a
3307 	 *    subrange that starts before the subrange we found marked with
3308 	 *    EXTENT_DELALLOC in the io tree.
3309 	 *
3310 	 * We could also use the extent map tree to find such delalloc that is
3311 	 * being flushed, but using the ordered extents tree is more efficient
3312 	 * because it's usually much smaller as ordered extents are removed from
3313 	 * the tree once they complete. With the extent maps, we mau have them
3314 	 * in the extent map tree for a very long time, and they were either
3315 	 * created by previous writes or loaded by read operations.
3316 	 */
3317 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3318 	if (!oe)
3319 		return (delalloc_len > 0);
3320 
3321 	/* The ordered extent may span beyond our search range. */
3322 	oe_start = max(oe->file_offset, start);
3323 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3324 
3325 	btrfs_put_ordered_extent(oe);
3326 
3327 	/* Don't have unflushed delalloc, return the ordered extent range. */
3328 	if (delalloc_len == 0) {
3329 		*delalloc_start_ret = oe_start;
3330 		*delalloc_end_ret = oe_end;
3331 		return true;
3332 	}
3333 
3334 	/*
3335 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3336 	 * If the ranges are adjacent returned a combined range, otherwise
3337 	 * return the leftmost range.
3338 	 */
3339 	if (oe_start < *delalloc_start_ret) {
3340 		if (oe_end < *delalloc_start_ret)
3341 			*delalloc_end_ret = oe_end;
3342 		*delalloc_start_ret = oe_start;
3343 	} else if (*delalloc_end_ret + 1 == oe_start) {
3344 		*delalloc_end_ret = oe_end;
3345 	}
3346 
3347 	return true;
3348 }
3349 
3350 /*
3351  * Check if there's delalloc in a given range.
3352  *
3353  * @inode:               The inode.
3354  * @start:               The start offset of the range. It does not need to be
3355  *                       sector size aligned.
3356  * @end:                 The end offset (inclusive value) of the search range.
3357  *                       It does not need to be sector size aligned.
3358  * @cached_state:        Extent state record used for speeding up delalloc
3359  *                       searches in the inode's io_tree. Can be NULL.
3360  * @delalloc_start_ret:  Output argument, set to the start offset of the
3361  *                       subrange found with delalloc (may not be sector size
3362  *                       aligned).
3363  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3364  *                       of the subrange found with delalloc.
3365  *
3366  * Returns true if a subrange with delalloc is found within the given range, and
3367  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3368  * end offsets of the subrange.
3369  */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3370 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3371 				  struct extent_state **cached_state,
3372 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3373 {
3374 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3375 	u64 prev_delalloc_end = 0;
3376 	bool search_io_tree = true;
3377 	bool ret = false;
3378 
3379 	while (cur_offset <= end) {
3380 		u64 delalloc_start;
3381 		u64 delalloc_end;
3382 		bool delalloc;
3383 
3384 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3385 						  cached_state, &search_io_tree,
3386 						  &delalloc_start,
3387 						  &delalloc_end);
3388 		if (!delalloc)
3389 			break;
3390 
3391 		if (prev_delalloc_end == 0) {
3392 			/* First subrange found. */
3393 			*delalloc_start_ret = max(delalloc_start, start);
3394 			*delalloc_end_ret = delalloc_end;
3395 			ret = true;
3396 		} else if (delalloc_start == prev_delalloc_end + 1) {
3397 			/* Subrange adjacent to the previous one, merge them. */
3398 			*delalloc_end_ret = delalloc_end;
3399 		} else {
3400 			/* Subrange not adjacent to the previous one, exit. */
3401 			break;
3402 		}
3403 
3404 		prev_delalloc_end = delalloc_end;
3405 		cur_offset = delalloc_end + 1;
3406 		cond_resched();
3407 	}
3408 
3409 	return ret;
3410 }
3411 
3412 /*
3413  * Check if there's a hole or delalloc range in a range representing a hole (or
3414  * prealloc extent) found in the inode's subvolume btree.
3415  *
3416  * @inode:      The inode.
3417  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3418  * @start:      Start offset of the hole region. It does not need to be sector
3419  *              size aligned.
3420  * @end:        End offset (inclusive value) of the hole region. It does not
3421  *              need to be sector size aligned.
3422  * @start_ret:  Return parameter, used to set the start of the subrange in the
3423  *              hole that matches the search criteria (seek mode), if such
3424  *              subrange is found (return value of the function is true).
3425  *              The value returned here may not be sector size aligned.
3426  *
3427  * Returns true if a subrange matching the given seek mode is found, and if one
3428  * is found, it updates @start_ret with the start of the subrange.
3429  */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3430 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3431 					struct extent_state **cached_state,
3432 					u64 start, u64 end, u64 *start_ret)
3433 {
3434 	u64 delalloc_start;
3435 	u64 delalloc_end;
3436 	bool delalloc;
3437 
3438 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3439 						&delalloc_start, &delalloc_end);
3440 	if (delalloc && whence == SEEK_DATA) {
3441 		*start_ret = delalloc_start;
3442 		return true;
3443 	}
3444 
3445 	if (delalloc && whence == SEEK_HOLE) {
3446 		/*
3447 		 * We found delalloc but it starts after out start offset. So we
3448 		 * have a hole between our start offset and the delalloc start.
3449 		 */
3450 		if (start < delalloc_start) {
3451 			*start_ret = start;
3452 			return true;
3453 		}
3454 		/*
3455 		 * Delalloc range starts at our start offset.
3456 		 * If the delalloc range's length is smaller than our range,
3457 		 * then it means we have a hole that starts where the delalloc
3458 		 * subrange ends.
3459 		 */
3460 		if (delalloc_end < end) {
3461 			*start_ret = delalloc_end + 1;
3462 			return true;
3463 		}
3464 
3465 		/* There's delalloc for the whole range. */
3466 		return false;
3467 	}
3468 
3469 	if (!delalloc && whence == SEEK_HOLE) {
3470 		*start_ret = start;
3471 		return true;
3472 	}
3473 
3474 	/*
3475 	 * No delalloc in the range and we are seeking for data. The caller has
3476 	 * to iterate to the next extent item in the subvolume btree.
3477 	 */
3478 	return false;
3479 }
3480 
find_desired_extent(struct file * file,loff_t offset,int whence)3481 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3482 {
3483 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3484 	struct btrfs_file_private *private = file->private_data;
3485 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3486 	struct extent_state *cached_state = NULL;
3487 	struct extent_state **delalloc_cached_state;
3488 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3489 	const u64 ino = btrfs_ino(inode);
3490 	struct btrfs_root *root = inode->root;
3491 	struct btrfs_path *path;
3492 	struct btrfs_key key;
3493 	u64 last_extent_end;
3494 	u64 lockstart;
3495 	u64 lockend;
3496 	u64 start;
3497 	int ret;
3498 	bool found = false;
3499 
3500 	if (i_size == 0 || offset >= i_size)
3501 		return -ENXIO;
3502 
3503 	/*
3504 	 * Quick path. If the inode has no prealloc extents and its number of
3505 	 * bytes used matches its i_size, then it can not have holes.
3506 	 */
3507 	if (whence == SEEK_HOLE &&
3508 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3509 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3510 		return i_size;
3511 
3512 	if (!private) {
3513 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3514 		/*
3515 		 * No worries if memory allocation failed.
3516 		 * The private structure is used only for speeding up multiple
3517 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3518 		 * so everything will still be correct.
3519 		 */
3520 		file->private_data = private;
3521 	}
3522 
3523 	if (private)
3524 		delalloc_cached_state = &private->llseek_cached_state;
3525 	else
3526 		delalloc_cached_state = NULL;
3527 
3528 	/*
3529 	 * offset can be negative, in this case we start finding DATA/HOLE from
3530 	 * the very start of the file.
3531 	 */
3532 	start = max_t(loff_t, 0, offset);
3533 
3534 	lockstart = round_down(start, fs_info->sectorsize);
3535 	lockend = round_up(i_size, fs_info->sectorsize);
3536 	if (lockend <= lockstart)
3537 		lockend = lockstart + fs_info->sectorsize;
3538 	lockend--;
3539 
3540 	path = btrfs_alloc_path();
3541 	if (!path)
3542 		return -ENOMEM;
3543 	path->reada = READA_FORWARD;
3544 
3545 	key.objectid = ino;
3546 	key.type = BTRFS_EXTENT_DATA_KEY;
3547 	key.offset = start;
3548 
3549 	last_extent_end = lockstart;
3550 
3551 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3552 
3553 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3554 	if (ret < 0) {
3555 		goto out;
3556 	} else if (ret > 0 && path->slots[0] > 0) {
3557 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3558 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3559 			path->slots[0]--;
3560 	}
3561 
3562 	while (start < i_size) {
3563 		struct extent_buffer *leaf = path->nodes[0];
3564 		struct btrfs_file_extent_item *extent;
3565 		u64 extent_end;
3566 		u8 type;
3567 
3568 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3569 			ret = btrfs_next_leaf(root, path);
3570 			if (ret < 0)
3571 				goto out;
3572 			else if (ret > 0)
3573 				break;
3574 
3575 			leaf = path->nodes[0];
3576 		}
3577 
3578 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3579 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3580 			break;
3581 
3582 		extent_end = btrfs_file_extent_end(path);
3583 
3584 		/*
3585 		 * In the first iteration we may have a slot that points to an
3586 		 * extent that ends before our start offset, so skip it.
3587 		 */
3588 		if (extent_end <= start) {
3589 			path->slots[0]++;
3590 			continue;
3591 		}
3592 
3593 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3594 		if (last_extent_end < key.offset) {
3595 			u64 search_start = last_extent_end;
3596 			u64 found_start;
3597 
3598 			/*
3599 			 * First iteration, @start matches @offset and it's
3600 			 * within the hole.
3601 			 */
3602 			if (start == offset)
3603 				search_start = offset;
3604 
3605 			found = find_desired_extent_in_hole(inode, whence,
3606 							    delalloc_cached_state,
3607 							    search_start,
3608 							    key.offset - 1,
3609 							    &found_start);
3610 			if (found) {
3611 				start = found_start;
3612 				break;
3613 			}
3614 			/*
3615 			 * Didn't find data or a hole (due to delalloc) in the
3616 			 * implicit hole range, so need to analyze the extent.
3617 			 */
3618 		}
3619 
3620 		extent = btrfs_item_ptr(leaf, path->slots[0],
3621 					struct btrfs_file_extent_item);
3622 		type = btrfs_file_extent_type(leaf, extent);
3623 
3624 		/*
3625 		 * Can't access the extent's disk_bytenr field if this is an
3626 		 * inline extent, since at that offset, it's where the extent
3627 		 * data starts.
3628 		 */
3629 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3630 		    (type == BTRFS_FILE_EXTENT_REG &&
3631 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3632 			/*
3633 			 * Explicit hole or prealloc extent, search for delalloc.
3634 			 * A prealloc extent is treated like a hole.
3635 			 */
3636 			u64 search_start = key.offset;
3637 			u64 found_start;
3638 
3639 			/*
3640 			 * First iteration, @start matches @offset and it's
3641 			 * within the hole.
3642 			 */
3643 			if (start == offset)
3644 				search_start = offset;
3645 
3646 			found = find_desired_extent_in_hole(inode, whence,
3647 							    delalloc_cached_state,
3648 							    search_start,
3649 							    extent_end - 1,
3650 							    &found_start);
3651 			if (found) {
3652 				start = found_start;
3653 				break;
3654 			}
3655 			/*
3656 			 * Didn't find data or a hole (due to delalloc) in the
3657 			 * implicit hole range, so need to analyze the next
3658 			 * extent item.
3659 			 */
3660 		} else {
3661 			/*
3662 			 * Found a regular or inline extent.
3663 			 * If we are seeking for data, adjust the start offset
3664 			 * and stop, we're done.
3665 			 */
3666 			if (whence == SEEK_DATA) {
3667 				start = max_t(u64, key.offset, offset);
3668 				found = true;
3669 				break;
3670 			}
3671 			/*
3672 			 * Else, we are seeking for a hole, check the next file
3673 			 * extent item.
3674 			 */
3675 		}
3676 
3677 		start = extent_end;
3678 		last_extent_end = extent_end;
3679 		path->slots[0]++;
3680 		if (fatal_signal_pending(current)) {
3681 			ret = -EINTR;
3682 			goto out;
3683 		}
3684 		cond_resched();
3685 	}
3686 
3687 	/* We have an implicit hole from the last extent found up to i_size. */
3688 	if (!found && start < i_size) {
3689 		found = find_desired_extent_in_hole(inode, whence,
3690 						    delalloc_cached_state, start,
3691 						    i_size - 1, &start);
3692 		if (!found)
3693 			start = i_size;
3694 	}
3695 
3696 out:
3697 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3698 	btrfs_free_path(path);
3699 
3700 	if (ret < 0)
3701 		return ret;
3702 
3703 	if (whence == SEEK_DATA && start >= i_size)
3704 		return -ENXIO;
3705 
3706 	return min_t(loff_t, start, i_size);
3707 }
3708 
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3709 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3710 {
3711 	struct inode *inode = file->f_mapping->host;
3712 
3713 	switch (whence) {
3714 	default:
3715 		return generic_file_llseek(file, offset, whence);
3716 	case SEEK_DATA:
3717 	case SEEK_HOLE:
3718 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3719 		offset = find_desired_extent(file, offset, whence);
3720 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3721 		break;
3722 	}
3723 
3724 	if (offset < 0)
3725 		return offset;
3726 
3727 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3728 }
3729 
btrfs_file_open(struct inode * inode,struct file * filp)3730 static int btrfs_file_open(struct inode *inode, struct file *filp)
3731 {
3732 	int ret;
3733 
3734 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3735 		        FMODE_CAN_ODIRECT;
3736 
3737 	ret = fsverity_file_open(inode, filp);
3738 	if (ret)
3739 		return ret;
3740 	return generic_file_open(inode, filp);
3741 }
3742 
check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)3743 static int check_direct_read(struct btrfs_fs_info *fs_info,
3744 			     const struct iov_iter *iter, loff_t offset)
3745 {
3746 	int ret;
3747 	int i, seg;
3748 
3749 	ret = check_direct_IO(fs_info, iter, offset);
3750 	if (ret < 0)
3751 		return ret;
3752 
3753 	if (!iter_is_iovec(iter))
3754 		return 0;
3755 
3756 	for (seg = 0; seg < iter->nr_segs; seg++) {
3757 		for (i = seg + 1; i < iter->nr_segs; i++) {
3758 			const struct iovec *iov1 = iter_iov(iter) + seg;
3759 			const struct iovec *iov2 = iter_iov(iter) + i;
3760 
3761 			if (iov1->iov_base == iov2->iov_base)
3762 				return -EINVAL;
3763 		}
3764 	}
3765 	return 0;
3766 }
3767 
btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)3768 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3769 {
3770 	struct inode *inode = file_inode(iocb->ki_filp);
3771 	size_t prev_left = 0;
3772 	ssize_t read = 0;
3773 	ssize_t ret;
3774 
3775 	if (fsverity_active(inode))
3776 		return 0;
3777 
3778 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3779 		return 0;
3780 
3781 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3782 again:
3783 	/*
3784 	 * This is similar to what we do for direct IO writes, see the comment
3785 	 * at btrfs_direct_write(), but we also disable page faults in addition
3786 	 * to disabling them only at the iov_iter level. This is because when
3787 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3788 	 * which can still trigger page fault ins despite having set ->nofault
3789 	 * to true of our 'to' iov_iter.
3790 	 *
3791 	 * The difference to direct IO writes is that we deadlock when trying
3792 	 * to lock the extent range in the inode's tree during he page reads
3793 	 * triggered by the fault in (while for writes it is due to waiting for
3794 	 * our own ordered extent). This is because for direct IO reads,
3795 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3796 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3797 	 */
3798 	pagefault_disable();
3799 	to->nofault = true;
3800 	ret = btrfs_dio_read(iocb, to, read);
3801 	to->nofault = false;
3802 	pagefault_enable();
3803 
3804 	/* No increment (+=) because iomap returns a cumulative value. */
3805 	if (ret > 0)
3806 		read = ret;
3807 
3808 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3809 		const size_t left = iov_iter_count(to);
3810 
3811 		if (left == prev_left) {
3812 			/*
3813 			 * We didn't make any progress since the last attempt,
3814 			 * fallback to a buffered read for the remainder of the
3815 			 * range. This is just to avoid any possibility of looping
3816 			 * for too long.
3817 			 */
3818 			ret = read;
3819 		} else {
3820 			/*
3821 			 * We made some progress since the last retry or this is
3822 			 * the first time we are retrying. Fault in as many pages
3823 			 * as possible and retry.
3824 			 */
3825 			fault_in_iov_iter_writeable(to, left);
3826 			prev_left = left;
3827 			goto again;
3828 		}
3829 	}
3830 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3831 	return ret < 0 ? ret : read;
3832 }
3833 
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3834 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3835 {
3836 	ssize_t ret = 0;
3837 
3838 	if (iocb->ki_flags & IOCB_DIRECT) {
3839 		ret = btrfs_direct_read(iocb, to);
3840 		if (ret < 0 || !iov_iter_count(to) ||
3841 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3842 			return ret;
3843 	}
3844 
3845 	return filemap_read(iocb, to, ret);
3846 }
3847 
3848 const struct file_operations btrfs_file_operations = {
3849 	.llseek		= btrfs_file_llseek,
3850 	.read_iter      = btrfs_file_read_iter,
3851 	.splice_read	= filemap_splice_read,
3852 	.write_iter	= btrfs_file_write_iter,
3853 	.splice_write	= iter_file_splice_write,
3854 	.mmap		= btrfs_file_mmap,
3855 	.open		= btrfs_file_open,
3856 	.release	= btrfs_release_file,
3857 	.get_unmapped_area = thp_get_unmapped_area,
3858 	.fsync		= btrfs_sync_file,
3859 	.fallocate	= btrfs_fallocate,
3860 	.unlocked_ioctl	= btrfs_ioctl,
3861 #ifdef CONFIG_COMPAT
3862 	.compat_ioctl	= btrfs_compat_ioctl,
3863 #endif
3864 	.remap_file_range = btrfs_remap_file_range,
3865 };
3866 
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3867 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3868 {
3869 	int ret;
3870 
3871 	/*
3872 	 * So with compression we will find and lock a dirty page and clear the
3873 	 * first one as dirty, setup an async extent, and immediately return
3874 	 * with the entire range locked but with nobody actually marked with
3875 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3876 	 * expect it to work since it will just kick off a thread to do the
3877 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3878 	 * since it will wait on the page lock, which won't be unlocked until
3879 	 * after the pages have been marked as writeback and so we're good to go
3880 	 * from there.  We have to do this otherwise we'll miss the ordered
3881 	 * extents and that results in badness.  Please Josef, do not think you
3882 	 * know better and pull this out at some point in the future, it is
3883 	 * right and you are wrong.
3884 	 */
3885 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3886 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3887 			     &BTRFS_I(inode)->runtime_flags))
3888 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3889 
3890 	return ret;
3891 }
3892