1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/nvme.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/wait.h>
18 #include <linux/inet.h>
19 #include <asm/unaligned.h>
20
21 #include <rdma/ib_verbs.h>
22 #include <rdma/rdma_cm.h>
23 #include <rdma/rw.h>
24 #include <rdma/ib_cm.h>
25
26 #include <linux/nvme-rdma.h>
27 #include "nvmet.h"
28
29 /*
30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31 */
32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
33 #define NVMET_RDMA_MAX_INLINE_SGE 4
34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
35
36 /* Assume mpsmin == device_page_size == 4KB */
37 #define NVMET_RDMA_MAX_MDTS 8
38 #define NVMET_RDMA_MAX_METADATA_MDTS 5
39
40 struct nvmet_rdma_srq;
41
42 struct nvmet_rdma_cmd {
43 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
44 struct ib_cqe cqe;
45 struct ib_recv_wr wr;
46 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
47 struct nvme_command *nvme_cmd;
48 struct nvmet_rdma_queue *queue;
49 struct nvmet_rdma_srq *nsrq;
50 };
51
52 enum {
53 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
54 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
55 };
56
57 struct nvmet_rdma_rsp {
58 struct ib_sge send_sge;
59 struct ib_cqe send_cqe;
60 struct ib_send_wr send_wr;
61
62 struct nvmet_rdma_cmd *cmd;
63 struct nvmet_rdma_queue *queue;
64
65 struct ib_cqe read_cqe;
66 struct ib_cqe write_cqe;
67 struct rdma_rw_ctx rw;
68
69 struct nvmet_req req;
70
71 bool allocated;
72 u8 n_rdma;
73 u32 flags;
74 u32 invalidate_rkey;
75
76 struct list_head wait_list;
77 struct list_head free_list;
78 };
79
80 enum nvmet_rdma_queue_state {
81 NVMET_RDMA_Q_CONNECTING,
82 NVMET_RDMA_Q_LIVE,
83 NVMET_RDMA_Q_DISCONNECTING,
84 };
85
86 struct nvmet_rdma_queue {
87 struct rdma_cm_id *cm_id;
88 struct ib_qp *qp;
89 struct nvmet_port *port;
90 struct ib_cq *cq;
91 atomic_t sq_wr_avail;
92 struct nvmet_rdma_device *dev;
93 struct nvmet_rdma_srq *nsrq;
94 spinlock_t state_lock;
95 enum nvmet_rdma_queue_state state;
96 struct nvmet_cq nvme_cq;
97 struct nvmet_sq nvme_sq;
98
99 struct nvmet_rdma_rsp *rsps;
100 struct list_head free_rsps;
101 spinlock_t rsps_lock;
102 struct nvmet_rdma_cmd *cmds;
103
104 struct work_struct release_work;
105 struct list_head rsp_wait_list;
106 struct list_head rsp_wr_wait_list;
107 spinlock_t rsp_wr_wait_lock;
108
109 int idx;
110 int host_qid;
111 int comp_vector;
112 int recv_queue_size;
113 int send_queue_size;
114
115 struct list_head queue_list;
116 };
117
118 struct nvmet_rdma_port {
119 struct nvmet_port *nport;
120 struct sockaddr_storage addr;
121 struct rdma_cm_id *cm_id;
122 struct delayed_work repair_work;
123 };
124
125 struct nvmet_rdma_srq {
126 struct ib_srq *srq;
127 struct nvmet_rdma_cmd *cmds;
128 struct nvmet_rdma_device *ndev;
129 };
130
131 struct nvmet_rdma_device {
132 struct ib_device *device;
133 struct ib_pd *pd;
134 struct nvmet_rdma_srq **srqs;
135 int srq_count;
136 size_t srq_size;
137 struct kref ref;
138 struct list_head entry;
139 int inline_data_size;
140 int inline_page_count;
141 };
142
143 static bool nvmet_rdma_use_srq;
144 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
145 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
146
147 static int srq_size_set(const char *val, const struct kernel_param *kp);
148 static const struct kernel_param_ops srq_size_ops = {
149 .set = srq_size_set,
150 .get = param_get_int,
151 };
152
153 static int nvmet_rdma_srq_size = 1024;
154 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
155 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
156
157 static DEFINE_IDA(nvmet_rdma_queue_ida);
158 static LIST_HEAD(nvmet_rdma_queue_list);
159 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
160
161 static LIST_HEAD(device_list);
162 static DEFINE_MUTEX(device_list_mutex);
163
164 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
165 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
169 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
170 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
171 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
172 struct nvmet_rdma_rsp *r);
173 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
174 struct nvmet_rdma_rsp *r);
175
176 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
177
srq_size_set(const char * val,const struct kernel_param * kp)178 static int srq_size_set(const char *val, const struct kernel_param *kp)
179 {
180 int n = 0, ret;
181
182 ret = kstrtoint(val, 10, &n);
183 if (ret != 0 || n < 256)
184 return -EINVAL;
185
186 return param_set_int(val, kp);
187 }
188
num_pages(int len)189 static int num_pages(int len)
190 {
191 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
192 }
193
nvmet_rdma_need_data_in(struct nvmet_rdma_rsp * rsp)194 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
195 {
196 return nvme_is_write(rsp->req.cmd) &&
197 rsp->req.transfer_len &&
198 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
199 }
200
nvmet_rdma_need_data_out(struct nvmet_rdma_rsp * rsp)201 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
202 {
203 return !nvme_is_write(rsp->req.cmd) &&
204 rsp->req.transfer_len &&
205 !rsp->req.cqe->status &&
206 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
207 }
208
209 static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue * queue)210 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
211 {
212 struct nvmet_rdma_rsp *rsp;
213 unsigned long flags;
214
215 spin_lock_irqsave(&queue->rsps_lock, flags);
216 rsp = list_first_entry_or_null(&queue->free_rsps,
217 struct nvmet_rdma_rsp, free_list);
218 if (likely(rsp))
219 list_del(&rsp->free_list);
220 spin_unlock_irqrestore(&queue->rsps_lock, flags);
221
222 if (unlikely(!rsp)) {
223 int ret;
224
225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
226 if (unlikely(!rsp))
227 return NULL;
228 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
229 if (unlikely(ret)) {
230 kfree(rsp);
231 return NULL;
232 }
233
234 rsp->allocated = true;
235 }
236
237 return rsp;
238 }
239
240 static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp * rsp)241 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
242 {
243 unsigned long flags;
244
245 if (unlikely(rsp->allocated)) {
246 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
247 kfree(rsp);
248 return;
249 }
250
251 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
252 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
253 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
254 }
255
nvmet_rdma_free_inline_pages(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c)256 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
257 struct nvmet_rdma_cmd *c)
258 {
259 struct scatterlist *sg;
260 struct ib_sge *sge;
261 int i;
262
263 if (!ndev->inline_data_size)
264 return;
265
266 sg = c->inline_sg;
267 sge = &c->sge[1];
268
269 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
270 if (sge->length)
271 ib_dma_unmap_page(ndev->device, sge->addr,
272 sge->length, DMA_FROM_DEVICE);
273 if (sg_page(sg))
274 __free_page(sg_page(sg));
275 }
276 }
277
nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c)278 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
279 struct nvmet_rdma_cmd *c)
280 {
281 struct scatterlist *sg;
282 struct ib_sge *sge;
283 struct page *pg;
284 int len;
285 int i;
286
287 if (!ndev->inline_data_size)
288 return 0;
289
290 sg = c->inline_sg;
291 sg_init_table(sg, ndev->inline_page_count);
292 sge = &c->sge[1];
293 len = ndev->inline_data_size;
294
295 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
296 pg = alloc_page(GFP_KERNEL);
297 if (!pg)
298 goto out_err;
299 sg_assign_page(sg, pg);
300 sge->addr = ib_dma_map_page(ndev->device,
301 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
302 if (ib_dma_mapping_error(ndev->device, sge->addr))
303 goto out_err;
304 sge->length = min_t(int, len, PAGE_SIZE);
305 sge->lkey = ndev->pd->local_dma_lkey;
306 len -= sge->length;
307 }
308
309 return 0;
310 out_err:
311 for (; i >= 0; i--, sg--, sge--) {
312 if (sge->length)
313 ib_dma_unmap_page(ndev->device, sge->addr,
314 sge->length, DMA_FROM_DEVICE);
315 if (sg_page(sg))
316 __free_page(sg_page(sg));
317 }
318 return -ENOMEM;
319 }
320
nvmet_rdma_alloc_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)321 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
322 struct nvmet_rdma_cmd *c, bool admin)
323 {
324 /* NVMe command / RDMA RECV */
325 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
326 if (!c->nvme_cmd)
327 goto out;
328
329 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
330 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
331 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
332 goto out_free_cmd;
333
334 c->sge[0].length = sizeof(*c->nvme_cmd);
335 c->sge[0].lkey = ndev->pd->local_dma_lkey;
336
337 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
338 goto out_unmap_cmd;
339
340 c->cqe.done = nvmet_rdma_recv_done;
341
342 c->wr.wr_cqe = &c->cqe;
343 c->wr.sg_list = c->sge;
344 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
345
346 return 0;
347
348 out_unmap_cmd:
349 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
350 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
351 out_free_cmd:
352 kfree(c->nvme_cmd);
353
354 out:
355 return -ENOMEM;
356 }
357
nvmet_rdma_free_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)358 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
359 struct nvmet_rdma_cmd *c, bool admin)
360 {
361 if (!admin)
362 nvmet_rdma_free_inline_pages(ndev, c);
363 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
364 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
365 kfree(c->nvme_cmd);
366 }
367
368 static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device * ndev,int nr_cmds,bool admin)369 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
370 int nr_cmds, bool admin)
371 {
372 struct nvmet_rdma_cmd *cmds;
373 int ret = -EINVAL, i;
374
375 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
376 if (!cmds)
377 goto out;
378
379 for (i = 0; i < nr_cmds; i++) {
380 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
381 if (ret)
382 goto out_free;
383 }
384
385 return cmds;
386
387 out_free:
388 while (--i >= 0)
389 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
390 kfree(cmds);
391 out:
392 return ERR_PTR(ret);
393 }
394
nvmet_rdma_free_cmds(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmds,int nr_cmds,bool admin)395 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
396 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
397 {
398 int i;
399
400 for (i = 0; i < nr_cmds; i++)
401 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
402 kfree(cmds);
403 }
404
nvmet_rdma_alloc_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)405 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
406 struct nvmet_rdma_rsp *r)
407 {
408 /* NVMe CQE / RDMA SEND */
409 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
410 if (!r->req.cqe)
411 goto out;
412
413 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
414 sizeof(*r->req.cqe), DMA_TO_DEVICE);
415 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
416 goto out_free_rsp;
417
418 if (ib_dma_pci_p2p_dma_supported(ndev->device))
419 r->req.p2p_client = &ndev->device->dev;
420 r->send_sge.length = sizeof(*r->req.cqe);
421 r->send_sge.lkey = ndev->pd->local_dma_lkey;
422
423 r->send_cqe.done = nvmet_rdma_send_done;
424
425 r->send_wr.wr_cqe = &r->send_cqe;
426 r->send_wr.sg_list = &r->send_sge;
427 r->send_wr.num_sge = 1;
428 r->send_wr.send_flags = IB_SEND_SIGNALED;
429
430 /* Data In / RDMA READ */
431 r->read_cqe.done = nvmet_rdma_read_data_done;
432 /* Data Out / RDMA WRITE */
433 r->write_cqe.done = nvmet_rdma_write_data_done;
434
435 return 0;
436
437 out_free_rsp:
438 kfree(r->req.cqe);
439 out:
440 return -ENOMEM;
441 }
442
nvmet_rdma_free_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)443 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
444 struct nvmet_rdma_rsp *r)
445 {
446 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
447 sizeof(*r->req.cqe), DMA_TO_DEVICE);
448 kfree(r->req.cqe);
449 }
450
451 static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue * queue)452 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
453 {
454 struct nvmet_rdma_device *ndev = queue->dev;
455 int nr_rsps = queue->recv_queue_size * 2;
456 int ret = -EINVAL, i;
457
458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
459 GFP_KERNEL);
460 if (!queue->rsps)
461 goto out;
462
463 for (i = 0; i < nr_rsps; i++) {
464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
465
466 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
467 if (ret)
468 goto out_free;
469
470 list_add_tail(&rsp->free_list, &queue->free_rsps);
471 }
472
473 return 0;
474
475 out_free:
476 while (--i >= 0)
477 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]);
478 kfree(queue->rsps);
479 out:
480 return ret;
481 }
482
nvmet_rdma_free_rsps(struct nvmet_rdma_queue * queue)483 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
484 {
485 struct nvmet_rdma_device *ndev = queue->dev;
486 int i, nr_rsps = queue->recv_queue_size * 2;
487
488 for (i = 0; i < nr_rsps; i++)
489 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]);
490 kfree(queue->rsps);
491 }
492
nvmet_rdma_post_recv(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmd)493 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
494 struct nvmet_rdma_cmd *cmd)
495 {
496 int ret;
497
498 ib_dma_sync_single_for_device(ndev->device,
499 cmd->sge[0].addr, cmd->sge[0].length,
500 DMA_FROM_DEVICE);
501
502 if (cmd->nsrq)
503 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
504 else
505 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
506
507 if (unlikely(ret))
508 pr_err("post_recv cmd failed\n");
509
510 return ret;
511 }
512
nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue * queue)513 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
514 {
515 spin_lock(&queue->rsp_wr_wait_lock);
516 while (!list_empty(&queue->rsp_wr_wait_list)) {
517 struct nvmet_rdma_rsp *rsp;
518 bool ret;
519
520 rsp = list_entry(queue->rsp_wr_wait_list.next,
521 struct nvmet_rdma_rsp, wait_list);
522 list_del(&rsp->wait_list);
523
524 spin_unlock(&queue->rsp_wr_wait_lock);
525 ret = nvmet_rdma_execute_command(rsp);
526 spin_lock(&queue->rsp_wr_wait_lock);
527
528 if (!ret) {
529 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
530 break;
531 }
532 }
533 spin_unlock(&queue->rsp_wr_wait_lock);
534 }
535
nvmet_rdma_check_pi_status(struct ib_mr * sig_mr)536 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
537 {
538 struct ib_mr_status mr_status;
539 int ret;
540 u16 status = 0;
541
542 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
543 if (ret) {
544 pr_err("ib_check_mr_status failed, ret %d\n", ret);
545 return NVME_SC_INVALID_PI;
546 }
547
548 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
549 switch (mr_status.sig_err.err_type) {
550 case IB_SIG_BAD_GUARD:
551 status = NVME_SC_GUARD_CHECK;
552 break;
553 case IB_SIG_BAD_REFTAG:
554 status = NVME_SC_REFTAG_CHECK;
555 break;
556 case IB_SIG_BAD_APPTAG:
557 status = NVME_SC_APPTAG_CHECK;
558 break;
559 }
560 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
561 mr_status.sig_err.err_type,
562 mr_status.sig_err.expected,
563 mr_status.sig_err.actual);
564 }
565
566 return status;
567 }
568
nvmet_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)569 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
570 struct nvme_command *cmd, struct ib_sig_domain *domain,
571 u16 control, u8 pi_type)
572 {
573 domain->sig_type = IB_SIG_TYPE_T10_DIF;
574 domain->sig.dif.bg_type = IB_T10DIF_CRC;
575 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
576 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
577 if (control & NVME_RW_PRINFO_PRCHK_REF)
578 domain->sig.dif.ref_remap = true;
579
580 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
581 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
582 domain->sig.dif.app_escape = true;
583 if (pi_type == NVME_NS_DPS_PI_TYPE3)
584 domain->sig.dif.ref_escape = true;
585 }
586
nvmet_rdma_set_sig_attrs(struct nvmet_req * req,struct ib_sig_attrs * sig_attrs)587 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
588 struct ib_sig_attrs *sig_attrs)
589 {
590 struct nvme_command *cmd = req->cmd;
591 u16 control = le16_to_cpu(cmd->rw.control);
592 u8 pi_type = req->ns->pi_type;
593 struct blk_integrity *bi;
594
595 bi = bdev_get_integrity(req->ns->bdev);
596
597 memset(sig_attrs, 0, sizeof(*sig_attrs));
598
599 if (control & NVME_RW_PRINFO_PRACT) {
600 /* for WRITE_INSERT/READ_STRIP no wire domain */
601 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
602 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
603 pi_type);
604 /* Clear the PRACT bit since HCA will generate/verify the PI */
605 control &= ~NVME_RW_PRINFO_PRACT;
606 cmd->rw.control = cpu_to_le16(control);
607 /* PI is added by the HW */
608 req->transfer_len += req->metadata_len;
609 } else {
610 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
611 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
612 pi_type);
613 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
614 pi_type);
615 }
616
617 if (control & NVME_RW_PRINFO_PRCHK_REF)
618 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
619 if (control & NVME_RW_PRINFO_PRCHK_GUARD)
620 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
621 if (control & NVME_RW_PRINFO_PRCHK_APP)
622 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
623 }
624
nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp * rsp,u64 addr,u32 key,struct ib_sig_attrs * sig_attrs)625 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
626 struct ib_sig_attrs *sig_attrs)
627 {
628 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
629 struct nvmet_req *req = &rsp->req;
630 int ret;
631
632 if (req->metadata_len)
633 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
634 cm_id->port_num, req->sg, req->sg_cnt,
635 req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
636 addr, key, nvmet_data_dir(req));
637 else
638 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
639 req->sg, req->sg_cnt, 0, addr, key,
640 nvmet_data_dir(req));
641
642 return ret;
643 }
644
nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp * rsp)645 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
646 {
647 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
648 struct nvmet_req *req = &rsp->req;
649
650 if (req->metadata_len)
651 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
652 cm_id->port_num, req->sg, req->sg_cnt,
653 req->metadata_sg, req->metadata_sg_cnt,
654 nvmet_data_dir(req));
655 else
656 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
657 req->sg, req->sg_cnt, nvmet_data_dir(req));
658 }
659
nvmet_rdma_release_rsp(struct nvmet_rdma_rsp * rsp)660 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
661 {
662 struct nvmet_rdma_queue *queue = rsp->queue;
663
664 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
665
666 if (rsp->n_rdma)
667 nvmet_rdma_rw_ctx_destroy(rsp);
668
669 if (rsp->req.sg != rsp->cmd->inline_sg)
670 nvmet_req_free_sgls(&rsp->req);
671
672 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
673 nvmet_rdma_process_wr_wait_list(queue);
674
675 nvmet_rdma_put_rsp(rsp);
676 }
677
nvmet_rdma_error_comp(struct nvmet_rdma_queue * queue)678 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
679 {
680 if (queue->nvme_sq.ctrl) {
681 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
682 } else {
683 /*
684 * we didn't setup the controller yet in case
685 * of admin connect error, just disconnect and
686 * cleanup the queue
687 */
688 nvmet_rdma_queue_disconnect(queue);
689 }
690 }
691
nvmet_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)692 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
693 {
694 struct nvmet_rdma_rsp *rsp =
695 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
696 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
697
698 nvmet_rdma_release_rsp(rsp);
699
700 if (unlikely(wc->status != IB_WC_SUCCESS &&
701 wc->status != IB_WC_WR_FLUSH_ERR)) {
702 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
703 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
704 nvmet_rdma_error_comp(queue);
705 }
706 }
707
nvmet_rdma_queue_response(struct nvmet_req * req)708 static void nvmet_rdma_queue_response(struct nvmet_req *req)
709 {
710 struct nvmet_rdma_rsp *rsp =
711 container_of(req, struct nvmet_rdma_rsp, req);
712 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
713 struct ib_send_wr *first_wr;
714
715 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
716 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
717 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
718 } else {
719 rsp->send_wr.opcode = IB_WR_SEND;
720 }
721
722 if (nvmet_rdma_need_data_out(rsp)) {
723 if (rsp->req.metadata_len)
724 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
725 cm_id->port_num, &rsp->write_cqe, NULL);
726 else
727 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
728 cm_id->port_num, NULL, &rsp->send_wr);
729 } else {
730 first_wr = &rsp->send_wr;
731 }
732
733 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
734
735 ib_dma_sync_single_for_device(rsp->queue->dev->device,
736 rsp->send_sge.addr, rsp->send_sge.length,
737 DMA_TO_DEVICE);
738
739 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
740 pr_err("sending cmd response failed\n");
741 nvmet_rdma_release_rsp(rsp);
742 }
743 }
744
nvmet_rdma_read_data_done(struct ib_cq * cq,struct ib_wc * wc)745 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
746 {
747 struct nvmet_rdma_rsp *rsp =
748 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
749 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
750 u16 status = 0;
751
752 WARN_ON(rsp->n_rdma <= 0);
753 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
754 rsp->n_rdma = 0;
755
756 if (unlikely(wc->status != IB_WC_SUCCESS)) {
757 nvmet_rdma_rw_ctx_destroy(rsp);
758 nvmet_req_uninit(&rsp->req);
759 nvmet_rdma_release_rsp(rsp);
760 if (wc->status != IB_WC_WR_FLUSH_ERR) {
761 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
762 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
763 nvmet_rdma_error_comp(queue);
764 }
765 return;
766 }
767
768 if (rsp->req.metadata_len)
769 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
770 nvmet_rdma_rw_ctx_destroy(rsp);
771
772 if (unlikely(status))
773 nvmet_req_complete(&rsp->req, status);
774 else
775 rsp->req.execute(&rsp->req);
776 }
777
nvmet_rdma_write_data_done(struct ib_cq * cq,struct ib_wc * wc)778 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
779 {
780 struct nvmet_rdma_rsp *rsp =
781 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
782 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
783 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
784 u16 status;
785
786 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
787 return;
788
789 WARN_ON(rsp->n_rdma <= 0);
790 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
791 rsp->n_rdma = 0;
792
793 if (unlikely(wc->status != IB_WC_SUCCESS)) {
794 nvmet_rdma_rw_ctx_destroy(rsp);
795 nvmet_req_uninit(&rsp->req);
796 nvmet_rdma_release_rsp(rsp);
797 if (wc->status != IB_WC_WR_FLUSH_ERR) {
798 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
799 ib_wc_status_msg(wc->status), wc->status);
800 nvmet_rdma_error_comp(queue);
801 }
802 return;
803 }
804
805 /*
806 * Upon RDMA completion check the signature status
807 * - if succeeded send good NVMe response
808 * - if failed send bad NVMe response with appropriate error
809 */
810 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
811 if (unlikely(status))
812 rsp->req.cqe->status = cpu_to_le16(status << 1);
813 nvmet_rdma_rw_ctx_destroy(rsp);
814
815 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
816 pr_err("sending cmd response failed\n");
817 nvmet_rdma_release_rsp(rsp);
818 }
819 }
820
nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp * rsp,u32 len,u64 off)821 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
822 u64 off)
823 {
824 int sg_count = num_pages(len);
825 struct scatterlist *sg;
826 int i;
827
828 sg = rsp->cmd->inline_sg;
829 for (i = 0; i < sg_count; i++, sg++) {
830 if (i < sg_count - 1)
831 sg_unmark_end(sg);
832 else
833 sg_mark_end(sg);
834 sg->offset = off;
835 sg->length = min_t(int, len, PAGE_SIZE - off);
836 len -= sg->length;
837 if (!i)
838 off = 0;
839 }
840
841 rsp->req.sg = rsp->cmd->inline_sg;
842 rsp->req.sg_cnt = sg_count;
843 }
844
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp * rsp)845 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
846 {
847 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
848 u64 off = le64_to_cpu(sgl->addr);
849 u32 len = le32_to_cpu(sgl->length);
850
851 if (!nvme_is_write(rsp->req.cmd)) {
852 rsp->req.error_loc =
853 offsetof(struct nvme_common_command, opcode);
854 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
855 }
856
857 if (off + len > rsp->queue->dev->inline_data_size) {
858 pr_err("invalid inline data offset!\n");
859 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
860 }
861
862 /* no data command? */
863 if (!len)
864 return 0;
865
866 nvmet_rdma_use_inline_sg(rsp, len, off);
867 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
868 rsp->req.transfer_len += len;
869 return 0;
870 }
871
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp * rsp,struct nvme_keyed_sgl_desc * sgl,bool invalidate)872 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
873 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
874 {
875 u64 addr = le64_to_cpu(sgl->addr);
876 u32 key = get_unaligned_le32(sgl->key);
877 struct ib_sig_attrs sig_attrs;
878 int ret;
879
880 rsp->req.transfer_len = get_unaligned_le24(sgl->length);
881
882 /* no data command? */
883 if (!rsp->req.transfer_len)
884 return 0;
885
886 if (rsp->req.metadata_len)
887 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
888
889 ret = nvmet_req_alloc_sgls(&rsp->req);
890 if (unlikely(ret < 0))
891 goto error_out;
892
893 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
894 if (unlikely(ret < 0))
895 goto error_out;
896 rsp->n_rdma += ret;
897
898 if (invalidate) {
899 rsp->invalidate_rkey = key;
900 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
901 }
902
903 return 0;
904
905 error_out:
906 rsp->req.transfer_len = 0;
907 return NVME_SC_INTERNAL;
908 }
909
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp * rsp)910 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
911 {
912 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
913
914 switch (sgl->type >> 4) {
915 case NVME_SGL_FMT_DATA_DESC:
916 switch (sgl->type & 0xf) {
917 case NVME_SGL_FMT_OFFSET:
918 return nvmet_rdma_map_sgl_inline(rsp);
919 default:
920 pr_err("invalid SGL subtype: %#x\n", sgl->type);
921 rsp->req.error_loc =
922 offsetof(struct nvme_common_command, dptr);
923 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
924 }
925 case NVME_KEY_SGL_FMT_DATA_DESC:
926 switch (sgl->type & 0xf) {
927 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
928 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
929 case NVME_SGL_FMT_ADDRESS:
930 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
931 default:
932 pr_err("invalid SGL subtype: %#x\n", sgl->type);
933 rsp->req.error_loc =
934 offsetof(struct nvme_common_command, dptr);
935 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
936 }
937 default:
938 pr_err("invalid SGL type: %#x\n", sgl->type);
939 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
940 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
941 }
942 }
943
nvmet_rdma_execute_command(struct nvmet_rdma_rsp * rsp)944 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
945 {
946 struct nvmet_rdma_queue *queue = rsp->queue;
947
948 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
949 &queue->sq_wr_avail) < 0)) {
950 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
951 1 + rsp->n_rdma, queue->idx,
952 queue->nvme_sq.ctrl->cntlid);
953 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
954 return false;
955 }
956
957 if (nvmet_rdma_need_data_in(rsp)) {
958 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
959 queue->cm_id->port_num, &rsp->read_cqe, NULL))
960 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
961 } else {
962 rsp->req.execute(&rsp->req);
963 }
964
965 return true;
966 }
967
nvmet_rdma_handle_command(struct nvmet_rdma_queue * queue,struct nvmet_rdma_rsp * cmd)968 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
969 struct nvmet_rdma_rsp *cmd)
970 {
971 u16 status;
972
973 ib_dma_sync_single_for_cpu(queue->dev->device,
974 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
975 DMA_FROM_DEVICE);
976 ib_dma_sync_single_for_cpu(queue->dev->device,
977 cmd->send_sge.addr, cmd->send_sge.length,
978 DMA_TO_DEVICE);
979
980 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
981 &queue->nvme_sq, &nvmet_rdma_ops))
982 return;
983
984 status = nvmet_rdma_map_sgl(cmd);
985 if (status)
986 goto out_err;
987
988 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
989 spin_lock(&queue->rsp_wr_wait_lock);
990 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
991 spin_unlock(&queue->rsp_wr_wait_lock);
992 }
993
994 return;
995
996 out_err:
997 nvmet_req_complete(&cmd->req, status);
998 }
999
nvmet_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1000 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1001 {
1002 struct nvmet_rdma_cmd *cmd =
1003 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1004 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1005 struct nvmet_rdma_rsp *rsp;
1006
1007 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1008 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1009 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1010 wc->wr_cqe, ib_wc_status_msg(wc->status),
1011 wc->status);
1012 nvmet_rdma_error_comp(queue);
1013 }
1014 return;
1015 }
1016
1017 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1018 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1019 nvmet_rdma_error_comp(queue);
1020 return;
1021 }
1022
1023 cmd->queue = queue;
1024 rsp = nvmet_rdma_get_rsp(queue);
1025 if (unlikely(!rsp)) {
1026 /*
1027 * we get here only under memory pressure,
1028 * silently drop and have the host retry
1029 * as we can't even fail it.
1030 */
1031 nvmet_rdma_post_recv(queue->dev, cmd);
1032 return;
1033 }
1034 rsp->queue = queue;
1035 rsp->cmd = cmd;
1036 rsp->flags = 0;
1037 rsp->req.cmd = cmd->nvme_cmd;
1038 rsp->req.port = queue->port;
1039 rsp->n_rdma = 0;
1040
1041 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&queue->state_lock, flags);
1045 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1046 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1047 else
1048 nvmet_rdma_put_rsp(rsp);
1049 spin_unlock_irqrestore(&queue->state_lock, flags);
1050 return;
1051 }
1052
1053 nvmet_rdma_handle_command(queue, rsp);
1054 }
1055
nvmet_rdma_destroy_srq(struct nvmet_rdma_srq * nsrq)1056 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1057 {
1058 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1059 false);
1060 ib_destroy_srq(nsrq->srq);
1061
1062 kfree(nsrq);
1063 }
1064
nvmet_rdma_destroy_srqs(struct nvmet_rdma_device * ndev)1065 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1066 {
1067 int i;
1068
1069 if (!ndev->srqs)
1070 return;
1071
1072 for (i = 0; i < ndev->srq_count; i++)
1073 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1074
1075 kfree(ndev->srqs);
1076 }
1077
1078 static struct nvmet_rdma_srq *
nvmet_rdma_init_srq(struct nvmet_rdma_device * ndev)1079 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1080 {
1081 struct ib_srq_init_attr srq_attr = { NULL, };
1082 size_t srq_size = ndev->srq_size;
1083 struct nvmet_rdma_srq *nsrq;
1084 struct ib_srq *srq;
1085 int ret, i;
1086
1087 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1088 if (!nsrq)
1089 return ERR_PTR(-ENOMEM);
1090
1091 srq_attr.attr.max_wr = srq_size;
1092 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1093 srq_attr.attr.srq_limit = 0;
1094 srq_attr.srq_type = IB_SRQT_BASIC;
1095 srq = ib_create_srq(ndev->pd, &srq_attr);
1096 if (IS_ERR(srq)) {
1097 ret = PTR_ERR(srq);
1098 goto out_free;
1099 }
1100
1101 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1102 if (IS_ERR(nsrq->cmds)) {
1103 ret = PTR_ERR(nsrq->cmds);
1104 goto out_destroy_srq;
1105 }
1106
1107 nsrq->srq = srq;
1108 nsrq->ndev = ndev;
1109
1110 for (i = 0; i < srq_size; i++) {
1111 nsrq->cmds[i].nsrq = nsrq;
1112 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1113 if (ret)
1114 goto out_free_cmds;
1115 }
1116
1117 return nsrq;
1118
1119 out_free_cmds:
1120 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1121 out_destroy_srq:
1122 ib_destroy_srq(srq);
1123 out_free:
1124 kfree(nsrq);
1125 return ERR_PTR(ret);
1126 }
1127
nvmet_rdma_init_srqs(struct nvmet_rdma_device * ndev)1128 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1129 {
1130 int i, ret;
1131
1132 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1133 /*
1134 * If SRQs aren't supported we just go ahead and use normal
1135 * non-shared receive queues.
1136 */
1137 pr_info("SRQ requested but not supported.\n");
1138 return 0;
1139 }
1140
1141 ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1142 nvmet_rdma_srq_size);
1143 ndev->srq_count = min(ndev->device->num_comp_vectors,
1144 ndev->device->attrs.max_srq);
1145
1146 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1147 if (!ndev->srqs)
1148 return -ENOMEM;
1149
1150 for (i = 0; i < ndev->srq_count; i++) {
1151 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1152 if (IS_ERR(ndev->srqs[i])) {
1153 ret = PTR_ERR(ndev->srqs[i]);
1154 goto err_srq;
1155 }
1156 }
1157
1158 return 0;
1159
1160 err_srq:
1161 while (--i >= 0)
1162 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1163 kfree(ndev->srqs);
1164 return ret;
1165 }
1166
nvmet_rdma_free_dev(struct kref * ref)1167 static void nvmet_rdma_free_dev(struct kref *ref)
1168 {
1169 struct nvmet_rdma_device *ndev =
1170 container_of(ref, struct nvmet_rdma_device, ref);
1171
1172 mutex_lock(&device_list_mutex);
1173 list_del(&ndev->entry);
1174 mutex_unlock(&device_list_mutex);
1175
1176 nvmet_rdma_destroy_srqs(ndev);
1177 ib_dealloc_pd(ndev->pd);
1178
1179 kfree(ndev);
1180 }
1181
1182 static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id * cm_id)1183 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1184 {
1185 struct nvmet_rdma_port *port = cm_id->context;
1186 struct nvmet_port *nport = port->nport;
1187 struct nvmet_rdma_device *ndev;
1188 int inline_page_count;
1189 int inline_sge_count;
1190 int ret;
1191
1192 mutex_lock(&device_list_mutex);
1193 list_for_each_entry(ndev, &device_list, entry) {
1194 if (ndev->device->node_guid == cm_id->device->node_guid &&
1195 kref_get_unless_zero(&ndev->ref))
1196 goto out_unlock;
1197 }
1198
1199 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1200 if (!ndev)
1201 goto out_err;
1202
1203 inline_page_count = num_pages(nport->inline_data_size);
1204 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1205 cm_id->device->attrs.max_recv_sge) - 1;
1206 if (inline_page_count > inline_sge_count) {
1207 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1208 nport->inline_data_size, cm_id->device->name,
1209 inline_sge_count * PAGE_SIZE);
1210 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1211 inline_page_count = inline_sge_count;
1212 }
1213 ndev->inline_data_size = nport->inline_data_size;
1214 ndev->inline_page_count = inline_page_count;
1215
1216 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1217 IBK_INTEGRITY_HANDOVER)) {
1218 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1219 cm_id->device->name);
1220 nport->pi_enable = false;
1221 }
1222
1223 ndev->device = cm_id->device;
1224 kref_init(&ndev->ref);
1225
1226 ndev->pd = ib_alloc_pd(ndev->device, 0);
1227 if (IS_ERR(ndev->pd))
1228 goto out_free_dev;
1229
1230 if (nvmet_rdma_use_srq) {
1231 ret = nvmet_rdma_init_srqs(ndev);
1232 if (ret)
1233 goto out_free_pd;
1234 }
1235
1236 list_add(&ndev->entry, &device_list);
1237 out_unlock:
1238 mutex_unlock(&device_list_mutex);
1239 pr_debug("added %s.\n", ndev->device->name);
1240 return ndev;
1241
1242 out_free_pd:
1243 ib_dealloc_pd(ndev->pd);
1244 out_free_dev:
1245 kfree(ndev);
1246 out_err:
1247 mutex_unlock(&device_list_mutex);
1248 return NULL;
1249 }
1250
nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue * queue)1251 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1252 {
1253 struct ib_qp_init_attr qp_attr = { };
1254 struct nvmet_rdma_device *ndev = queue->dev;
1255 int nr_cqe, ret, i, factor;
1256
1257 /*
1258 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1259 */
1260 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1261
1262 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1263 queue->comp_vector, IB_POLL_WORKQUEUE);
1264 if (IS_ERR(queue->cq)) {
1265 ret = PTR_ERR(queue->cq);
1266 pr_err("failed to create CQ cqe= %d ret= %d\n",
1267 nr_cqe + 1, ret);
1268 goto out;
1269 }
1270
1271 qp_attr.qp_context = queue;
1272 qp_attr.event_handler = nvmet_rdma_qp_event;
1273 qp_attr.send_cq = queue->cq;
1274 qp_attr.recv_cq = queue->cq;
1275 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1276 qp_attr.qp_type = IB_QPT_RC;
1277 /* +1 for drain */
1278 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1279 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1280 1 << NVMET_RDMA_MAX_MDTS);
1281 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1282 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1283 ndev->device->attrs.max_send_sge);
1284
1285 if (queue->nsrq) {
1286 qp_attr.srq = queue->nsrq->srq;
1287 } else {
1288 /* +1 for drain */
1289 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1290 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1291 }
1292
1293 if (queue->port->pi_enable && queue->host_qid)
1294 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1295
1296 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1297 if (ret) {
1298 pr_err("failed to create_qp ret= %d\n", ret);
1299 goto err_destroy_cq;
1300 }
1301 queue->qp = queue->cm_id->qp;
1302
1303 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1304
1305 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1306 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1307 qp_attr.cap.max_send_wr, queue->cm_id);
1308
1309 if (!queue->nsrq) {
1310 for (i = 0; i < queue->recv_queue_size; i++) {
1311 queue->cmds[i].queue = queue;
1312 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1313 if (ret)
1314 goto err_destroy_qp;
1315 }
1316 }
1317
1318 out:
1319 return ret;
1320
1321 err_destroy_qp:
1322 rdma_destroy_qp(queue->cm_id);
1323 err_destroy_cq:
1324 ib_cq_pool_put(queue->cq, nr_cqe + 1);
1325 goto out;
1326 }
1327
nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue * queue)1328 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1329 {
1330 ib_drain_qp(queue->qp);
1331 if (queue->cm_id)
1332 rdma_destroy_id(queue->cm_id);
1333 ib_destroy_qp(queue->qp);
1334 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1335 queue->send_queue_size + 1);
1336 }
1337
nvmet_rdma_free_queue(struct nvmet_rdma_queue * queue)1338 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1339 {
1340 pr_debug("freeing queue %d\n", queue->idx);
1341
1342 nvmet_sq_destroy(&queue->nvme_sq);
1343
1344 nvmet_rdma_destroy_queue_ib(queue);
1345 if (!queue->nsrq) {
1346 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1347 queue->recv_queue_size,
1348 !queue->host_qid);
1349 }
1350 nvmet_rdma_free_rsps(queue);
1351 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1352 kfree(queue);
1353 }
1354
nvmet_rdma_release_queue_work(struct work_struct * w)1355 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1356 {
1357 struct nvmet_rdma_queue *queue =
1358 container_of(w, struct nvmet_rdma_queue, release_work);
1359 struct nvmet_rdma_device *dev = queue->dev;
1360
1361 nvmet_rdma_free_queue(queue);
1362
1363 kref_put(&dev->ref, nvmet_rdma_free_dev);
1364 }
1365
1366 static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param * conn,struct nvmet_rdma_queue * queue)1367 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1368 struct nvmet_rdma_queue *queue)
1369 {
1370 struct nvme_rdma_cm_req *req;
1371
1372 req = (struct nvme_rdma_cm_req *)conn->private_data;
1373 if (!req || conn->private_data_len == 0)
1374 return NVME_RDMA_CM_INVALID_LEN;
1375
1376 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1377 return NVME_RDMA_CM_INVALID_RECFMT;
1378
1379 queue->host_qid = le16_to_cpu(req->qid);
1380
1381 /*
1382 * req->hsqsize corresponds to our recv queue size plus 1
1383 * req->hrqsize corresponds to our send queue size
1384 */
1385 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1386 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1387
1388 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1389 return NVME_RDMA_CM_INVALID_HSQSIZE;
1390
1391 /* XXX: Should we enforce some kind of max for IO queues? */
1392
1393 return 0;
1394 }
1395
nvmet_rdma_cm_reject(struct rdma_cm_id * cm_id,enum nvme_rdma_cm_status status)1396 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1397 enum nvme_rdma_cm_status status)
1398 {
1399 struct nvme_rdma_cm_rej rej;
1400
1401 pr_debug("rejecting connect request: status %d (%s)\n",
1402 status, nvme_rdma_cm_msg(status));
1403
1404 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1405 rej.sts = cpu_to_le16(status);
1406
1407 return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1408 IB_CM_REJ_CONSUMER_DEFINED);
1409 }
1410
1411 static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device * ndev,struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1412 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1413 struct rdma_cm_id *cm_id,
1414 struct rdma_cm_event *event)
1415 {
1416 struct nvmet_rdma_port *port = cm_id->context;
1417 struct nvmet_rdma_queue *queue;
1418 int ret;
1419
1420 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1421 if (!queue) {
1422 ret = NVME_RDMA_CM_NO_RSC;
1423 goto out_reject;
1424 }
1425
1426 ret = nvmet_sq_init(&queue->nvme_sq);
1427 if (ret) {
1428 ret = NVME_RDMA_CM_NO_RSC;
1429 goto out_free_queue;
1430 }
1431
1432 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1433 if (ret)
1434 goto out_destroy_sq;
1435
1436 /*
1437 * Schedules the actual release because calling rdma_destroy_id from
1438 * inside a CM callback would trigger a deadlock. (great API design..)
1439 */
1440 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1441 queue->dev = ndev;
1442 queue->cm_id = cm_id;
1443 queue->port = port->nport;
1444
1445 spin_lock_init(&queue->state_lock);
1446 queue->state = NVMET_RDMA_Q_CONNECTING;
1447 INIT_LIST_HEAD(&queue->rsp_wait_list);
1448 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1449 spin_lock_init(&queue->rsp_wr_wait_lock);
1450 INIT_LIST_HEAD(&queue->free_rsps);
1451 spin_lock_init(&queue->rsps_lock);
1452 INIT_LIST_HEAD(&queue->queue_list);
1453
1454 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1455 if (queue->idx < 0) {
1456 ret = NVME_RDMA_CM_NO_RSC;
1457 goto out_destroy_sq;
1458 }
1459
1460 /*
1461 * Spread the io queues across completion vectors,
1462 * but still keep all admin queues on vector 0.
1463 */
1464 queue->comp_vector = !queue->host_qid ? 0 :
1465 queue->idx % ndev->device->num_comp_vectors;
1466
1467
1468 ret = nvmet_rdma_alloc_rsps(queue);
1469 if (ret) {
1470 ret = NVME_RDMA_CM_NO_RSC;
1471 goto out_ida_remove;
1472 }
1473
1474 if (ndev->srqs) {
1475 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1476 } else {
1477 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1478 queue->recv_queue_size,
1479 !queue->host_qid);
1480 if (IS_ERR(queue->cmds)) {
1481 ret = NVME_RDMA_CM_NO_RSC;
1482 goto out_free_responses;
1483 }
1484 }
1485
1486 ret = nvmet_rdma_create_queue_ib(queue);
1487 if (ret) {
1488 pr_err("%s: creating RDMA queue failed (%d).\n",
1489 __func__, ret);
1490 ret = NVME_RDMA_CM_NO_RSC;
1491 goto out_free_cmds;
1492 }
1493
1494 return queue;
1495
1496 out_free_cmds:
1497 if (!queue->nsrq) {
1498 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1499 queue->recv_queue_size,
1500 !queue->host_qid);
1501 }
1502 out_free_responses:
1503 nvmet_rdma_free_rsps(queue);
1504 out_ida_remove:
1505 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1506 out_destroy_sq:
1507 nvmet_sq_destroy(&queue->nvme_sq);
1508 out_free_queue:
1509 kfree(queue);
1510 out_reject:
1511 nvmet_rdma_cm_reject(cm_id, ret);
1512 return NULL;
1513 }
1514
nvmet_rdma_qp_event(struct ib_event * event,void * priv)1515 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1516 {
1517 struct nvmet_rdma_queue *queue = priv;
1518
1519 switch (event->event) {
1520 case IB_EVENT_COMM_EST:
1521 rdma_notify(queue->cm_id, event->event);
1522 break;
1523 case IB_EVENT_QP_LAST_WQE_REACHED:
1524 pr_debug("received last WQE reached event for queue=0x%p\n",
1525 queue);
1526 break;
1527 default:
1528 pr_err("received IB QP event: %s (%d)\n",
1529 ib_event_msg(event->event), event->event);
1530 break;
1531 }
1532 }
1533
nvmet_rdma_cm_accept(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue,struct rdma_conn_param * p)1534 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1535 struct nvmet_rdma_queue *queue,
1536 struct rdma_conn_param *p)
1537 {
1538 struct rdma_conn_param param = { };
1539 struct nvme_rdma_cm_rep priv = { };
1540 int ret = -ENOMEM;
1541
1542 param.rnr_retry_count = 7;
1543 param.flow_control = 1;
1544 param.initiator_depth = min_t(u8, p->initiator_depth,
1545 queue->dev->device->attrs.max_qp_init_rd_atom);
1546 param.private_data = &priv;
1547 param.private_data_len = sizeof(priv);
1548 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1549 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1550
1551 ret = rdma_accept(cm_id, ¶m);
1552 if (ret)
1553 pr_err("rdma_accept failed (error code = %d)\n", ret);
1554
1555 return ret;
1556 }
1557
nvmet_rdma_queue_connect(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1558 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1559 struct rdma_cm_event *event)
1560 {
1561 struct nvmet_rdma_device *ndev;
1562 struct nvmet_rdma_queue *queue;
1563 int ret = -EINVAL;
1564
1565 ndev = nvmet_rdma_find_get_device(cm_id);
1566 if (!ndev) {
1567 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1568 return -ECONNREFUSED;
1569 }
1570
1571 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1572 if (!queue) {
1573 ret = -ENOMEM;
1574 goto put_device;
1575 }
1576
1577 if (queue->host_qid == 0) {
1578 /* Let inflight controller teardown complete */
1579 flush_workqueue(nvmet_wq);
1580 }
1581
1582 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1583 if (ret) {
1584 /*
1585 * Don't destroy the cm_id in free path, as we implicitly
1586 * destroy the cm_id here with non-zero ret code.
1587 */
1588 queue->cm_id = NULL;
1589 goto free_queue;
1590 }
1591
1592 mutex_lock(&nvmet_rdma_queue_mutex);
1593 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1594 mutex_unlock(&nvmet_rdma_queue_mutex);
1595
1596 return 0;
1597
1598 free_queue:
1599 nvmet_rdma_free_queue(queue);
1600 put_device:
1601 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1602
1603 return ret;
1604 }
1605
nvmet_rdma_queue_established(struct nvmet_rdma_queue * queue)1606 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1607 {
1608 unsigned long flags;
1609
1610 spin_lock_irqsave(&queue->state_lock, flags);
1611 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1612 pr_warn("trying to establish a connected queue\n");
1613 goto out_unlock;
1614 }
1615 queue->state = NVMET_RDMA_Q_LIVE;
1616
1617 while (!list_empty(&queue->rsp_wait_list)) {
1618 struct nvmet_rdma_rsp *cmd;
1619
1620 cmd = list_first_entry(&queue->rsp_wait_list,
1621 struct nvmet_rdma_rsp, wait_list);
1622 list_del(&cmd->wait_list);
1623
1624 spin_unlock_irqrestore(&queue->state_lock, flags);
1625 nvmet_rdma_handle_command(queue, cmd);
1626 spin_lock_irqsave(&queue->state_lock, flags);
1627 }
1628
1629 out_unlock:
1630 spin_unlock_irqrestore(&queue->state_lock, flags);
1631 }
1632
__nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1633 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1634 {
1635 bool disconnect = false;
1636 unsigned long flags;
1637
1638 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1639
1640 spin_lock_irqsave(&queue->state_lock, flags);
1641 switch (queue->state) {
1642 case NVMET_RDMA_Q_CONNECTING:
1643 while (!list_empty(&queue->rsp_wait_list)) {
1644 struct nvmet_rdma_rsp *rsp;
1645
1646 rsp = list_first_entry(&queue->rsp_wait_list,
1647 struct nvmet_rdma_rsp,
1648 wait_list);
1649 list_del(&rsp->wait_list);
1650 nvmet_rdma_put_rsp(rsp);
1651 }
1652 fallthrough;
1653 case NVMET_RDMA_Q_LIVE:
1654 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1655 disconnect = true;
1656 break;
1657 case NVMET_RDMA_Q_DISCONNECTING:
1658 break;
1659 }
1660 spin_unlock_irqrestore(&queue->state_lock, flags);
1661
1662 if (disconnect) {
1663 rdma_disconnect(queue->cm_id);
1664 queue_work(nvmet_wq, &queue->release_work);
1665 }
1666 }
1667
nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1668 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1669 {
1670 bool disconnect = false;
1671
1672 mutex_lock(&nvmet_rdma_queue_mutex);
1673 if (!list_empty(&queue->queue_list)) {
1674 list_del_init(&queue->queue_list);
1675 disconnect = true;
1676 }
1677 mutex_unlock(&nvmet_rdma_queue_mutex);
1678
1679 if (disconnect)
1680 __nvmet_rdma_queue_disconnect(queue);
1681 }
1682
nvmet_rdma_queue_connect_fail(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1683 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1684 struct nvmet_rdma_queue *queue)
1685 {
1686 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1687
1688 mutex_lock(&nvmet_rdma_queue_mutex);
1689 if (!list_empty(&queue->queue_list))
1690 list_del_init(&queue->queue_list);
1691 mutex_unlock(&nvmet_rdma_queue_mutex);
1692
1693 pr_err("failed to connect queue %d\n", queue->idx);
1694 queue_work(nvmet_wq, &queue->release_work);
1695 }
1696
1697 /**
1698 * nvmet_rdma_device_removal() - Handle RDMA device removal
1699 * @cm_id: rdma_cm id, used for nvmet port
1700 * @queue: nvmet rdma queue (cm id qp_context)
1701 *
1702 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1703 * to unplug. Note that this event can be generated on a normal
1704 * queue cm_id and/or a device bound listener cm_id (where in this
1705 * case queue will be null).
1706 *
1707 * We registered an ib_client to handle device removal for queues,
1708 * so we only need to handle the listening port cm_ids. In this case
1709 * we nullify the priv to prevent double cm_id destruction and destroying
1710 * the cm_id implicitely by returning a non-zero rc to the callout.
1711 */
nvmet_rdma_device_removal(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1712 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1713 struct nvmet_rdma_queue *queue)
1714 {
1715 struct nvmet_rdma_port *port;
1716
1717 if (queue) {
1718 /*
1719 * This is a queue cm_id. we have registered
1720 * an ib_client to handle queues removal
1721 * so don't interfear and just return.
1722 */
1723 return 0;
1724 }
1725
1726 port = cm_id->context;
1727
1728 /*
1729 * This is a listener cm_id. Make sure that
1730 * future remove_port won't invoke a double
1731 * cm_id destroy. use atomic xchg to make sure
1732 * we don't compete with remove_port.
1733 */
1734 if (xchg(&port->cm_id, NULL) != cm_id)
1735 return 0;
1736
1737 /*
1738 * We need to return 1 so that the core will destroy
1739 * it's own ID. What a great API design..
1740 */
1741 return 1;
1742 }
1743
nvmet_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1744 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1745 struct rdma_cm_event *event)
1746 {
1747 struct nvmet_rdma_queue *queue = NULL;
1748 int ret = 0;
1749
1750 if (cm_id->qp)
1751 queue = cm_id->qp->qp_context;
1752
1753 pr_debug("%s (%d): status %d id %p\n",
1754 rdma_event_msg(event->event), event->event,
1755 event->status, cm_id);
1756
1757 switch (event->event) {
1758 case RDMA_CM_EVENT_CONNECT_REQUEST:
1759 ret = nvmet_rdma_queue_connect(cm_id, event);
1760 break;
1761 case RDMA_CM_EVENT_ESTABLISHED:
1762 nvmet_rdma_queue_established(queue);
1763 break;
1764 case RDMA_CM_EVENT_ADDR_CHANGE:
1765 if (!queue) {
1766 struct nvmet_rdma_port *port = cm_id->context;
1767
1768 queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1769 break;
1770 }
1771 fallthrough;
1772 case RDMA_CM_EVENT_DISCONNECTED:
1773 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1774 nvmet_rdma_queue_disconnect(queue);
1775 break;
1776 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1777 ret = nvmet_rdma_device_removal(cm_id, queue);
1778 break;
1779 case RDMA_CM_EVENT_REJECTED:
1780 pr_debug("Connection rejected: %s\n",
1781 rdma_reject_msg(cm_id, event->status));
1782 fallthrough;
1783 case RDMA_CM_EVENT_UNREACHABLE:
1784 case RDMA_CM_EVENT_CONNECT_ERROR:
1785 nvmet_rdma_queue_connect_fail(cm_id, queue);
1786 break;
1787 default:
1788 pr_err("received unrecognized RDMA CM event %d\n",
1789 event->event);
1790 break;
1791 }
1792
1793 return ret;
1794 }
1795
nvmet_rdma_delete_ctrl(struct nvmet_ctrl * ctrl)1796 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1797 {
1798 struct nvmet_rdma_queue *queue;
1799
1800 restart:
1801 mutex_lock(&nvmet_rdma_queue_mutex);
1802 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1803 if (queue->nvme_sq.ctrl == ctrl) {
1804 list_del_init(&queue->queue_list);
1805 mutex_unlock(&nvmet_rdma_queue_mutex);
1806
1807 __nvmet_rdma_queue_disconnect(queue);
1808 goto restart;
1809 }
1810 }
1811 mutex_unlock(&nvmet_rdma_queue_mutex);
1812 }
1813
nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port * port)1814 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1815 {
1816 struct nvmet_rdma_queue *queue, *tmp;
1817 struct nvmet_port *nport = port->nport;
1818
1819 mutex_lock(&nvmet_rdma_queue_mutex);
1820 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1821 queue_list) {
1822 if (queue->port != nport)
1823 continue;
1824
1825 list_del_init(&queue->queue_list);
1826 __nvmet_rdma_queue_disconnect(queue);
1827 }
1828 mutex_unlock(&nvmet_rdma_queue_mutex);
1829 }
1830
nvmet_rdma_disable_port(struct nvmet_rdma_port * port)1831 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1832 {
1833 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1834
1835 if (cm_id)
1836 rdma_destroy_id(cm_id);
1837
1838 /*
1839 * Destroy the remaining queues, which are not belong to any
1840 * controller yet. Do it here after the RDMA-CM was destroyed
1841 * guarantees that no new queue will be created.
1842 */
1843 nvmet_rdma_destroy_port_queues(port);
1844 }
1845
nvmet_rdma_enable_port(struct nvmet_rdma_port * port)1846 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1847 {
1848 struct sockaddr *addr = (struct sockaddr *)&port->addr;
1849 struct rdma_cm_id *cm_id;
1850 int ret;
1851
1852 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1853 RDMA_PS_TCP, IB_QPT_RC);
1854 if (IS_ERR(cm_id)) {
1855 pr_err("CM ID creation failed\n");
1856 return PTR_ERR(cm_id);
1857 }
1858
1859 /*
1860 * Allow both IPv4 and IPv6 sockets to bind a single port
1861 * at the same time.
1862 */
1863 ret = rdma_set_afonly(cm_id, 1);
1864 if (ret) {
1865 pr_err("rdma_set_afonly failed (%d)\n", ret);
1866 goto out_destroy_id;
1867 }
1868
1869 ret = rdma_bind_addr(cm_id, addr);
1870 if (ret) {
1871 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1872 goto out_destroy_id;
1873 }
1874
1875 ret = rdma_listen(cm_id, 128);
1876 if (ret) {
1877 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1878 goto out_destroy_id;
1879 }
1880
1881 port->cm_id = cm_id;
1882 return 0;
1883
1884 out_destroy_id:
1885 rdma_destroy_id(cm_id);
1886 return ret;
1887 }
1888
nvmet_rdma_repair_port_work(struct work_struct * w)1889 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1890 {
1891 struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1892 struct nvmet_rdma_port, repair_work);
1893 int ret;
1894
1895 nvmet_rdma_disable_port(port);
1896 ret = nvmet_rdma_enable_port(port);
1897 if (ret)
1898 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1899 }
1900
nvmet_rdma_add_port(struct nvmet_port * nport)1901 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1902 {
1903 struct nvmet_rdma_port *port;
1904 __kernel_sa_family_t af;
1905 int ret;
1906
1907 port = kzalloc(sizeof(*port), GFP_KERNEL);
1908 if (!port)
1909 return -ENOMEM;
1910
1911 nport->priv = port;
1912 port->nport = nport;
1913 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1914
1915 switch (nport->disc_addr.adrfam) {
1916 case NVMF_ADDR_FAMILY_IP4:
1917 af = AF_INET;
1918 break;
1919 case NVMF_ADDR_FAMILY_IP6:
1920 af = AF_INET6;
1921 break;
1922 default:
1923 pr_err("address family %d not supported\n",
1924 nport->disc_addr.adrfam);
1925 ret = -EINVAL;
1926 goto out_free_port;
1927 }
1928
1929 if (nport->inline_data_size < 0) {
1930 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1931 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1932 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1933 nport->inline_data_size,
1934 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1935 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1936 }
1937
1938 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1939 nport->disc_addr.trsvcid, &port->addr);
1940 if (ret) {
1941 pr_err("malformed ip/port passed: %s:%s\n",
1942 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1943 goto out_free_port;
1944 }
1945
1946 ret = nvmet_rdma_enable_port(port);
1947 if (ret)
1948 goto out_free_port;
1949
1950 pr_info("enabling port %d (%pISpcs)\n",
1951 le16_to_cpu(nport->disc_addr.portid),
1952 (struct sockaddr *)&port->addr);
1953
1954 return 0;
1955
1956 out_free_port:
1957 kfree(port);
1958 return ret;
1959 }
1960
nvmet_rdma_remove_port(struct nvmet_port * nport)1961 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1962 {
1963 struct nvmet_rdma_port *port = nport->priv;
1964
1965 cancel_delayed_work_sync(&port->repair_work);
1966 nvmet_rdma_disable_port(port);
1967 kfree(port);
1968 }
1969
nvmet_rdma_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)1970 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1971 struct nvmet_port *nport, char *traddr)
1972 {
1973 struct nvmet_rdma_port *port = nport->priv;
1974 struct rdma_cm_id *cm_id = port->cm_id;
1975
1976 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1977 struct nvmet_rdma_rsp *rsp =
1978 container_of(req, struct nvmet_rdma_rsp, req);
1979 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1980 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1981
1982 sprintf(traddr, "%pISc", addr);
1983 } else {
1984 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1985 }
1986 }
1987
nvmet_rdma_get_mdts(const struct nvmet_ctrl * ctrl)1988 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1989 {
1990 if (ctrl->pi_support)
1991 return NVMET_RDMA_MAX_METADATA_MDTS;
1992 return NVMET_RDMA_MAX_MDTS;
1993 }
1994
nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl * ctrl)1995 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
1996 {
1997 return NVME_RDMA_MAX_QUEUE_SIZE;
1998 }
1999
2000 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2001 .owner = THIS_MODULE,
2002 .type = NVMF_TRTYPE_RDMA,
2003 .msdbd = 1,
2004 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2005 .add_port = nvmet_rdma_add_port,
2006 .remove_port = nvmet_rdma_remove_port,
2007 .queue_response = nvmet_rdma_queue_response,
2008 .delete_ctrl = nvmet_rdma_delete_ctrl,
2009 .disc_traddr = nvmet_rdma_disc_port_addr,
2010 .get_mdts = nvmet_rdma_get_mdts,
2011 .get_max_queue_size = nvmet_rdma_get_max_queue_size,
2012 };
2013
nvmet_rdma_remove_one(struct ib_device * ib_device,void * client_data)2014 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2015 {
2016 struct nvmet_rdma_queue *queue, *tmp;
2017 struct nvmet_rdma_device *ndev;
2018 bool found = false;
2019
2020 mutex_lock(&device_list_mutex);
2021 list_for_each_entry(ndev, &device_list, entry) {
2022 if (ndev->device == ib_device) {
2023 found = true;
2024 break;
2025 }
2026 }
2027 mutex_unlock(&device_list_mutex);
2028
2029 if (!found)
2030 return;
2031
2032 /*
2033 * IB Device that is used by nvmet controllers is being removed,
2034 * delete all queues using this device.
2035 */
2036 mutex_lock(&nvmet_rdma_queue_mutex);
2037 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2038 queue_list) {
2039 if (queue->dev->device != ib_device)
2040 continue;
2041
2042 pr_info("Removing queue %d\n", queue->idx);
2043 list_del_init(&queue->queue_list);
2044 __nvmet_rdma_queue_disconnect(queue);
2045 }
2046 mutex_unlock(&nvmet_rdma_queue_mutex);
2047
2048 flush_workqueue(nvmet_wq);
2049 }
2050
2051 static struct ib_client nvmet_rdma_ib_client = {
2052 .name = "nvmet_rdma",
2053 .remove = nvmet_rdma_remove_one
2054 };
2055
nvmet_rdma_init(void)2056 static int __init nvmet_rdma_init(void)
2057 {
2058 int ret;
2059
2060 ret = ib_register_client(&nvmet_rdma_ib_client);
2061 if (ret)
2062 return ret;
2063
2064 ret = nvmet_register_transport(&nvmet_rdma_ops);
2065 if (ret)
2066 goto err_ib_client;
2067
2068 return 0;
2069
2070 err_ib_client:
2071 ib_unregister_client(&nvmet_rdma_ib_client);
2072 return ret;
2073 }
2074
nvmet_rdma_exit(void)2075 static void __exit nvmet_rdma_exit(void)
2076 {
2077 nvmet_unregister_transport(&nvmet_rdma_ops);
2078 ib_unregister_client(&nvmet_rdma_ib_client);
2079 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2080 ida_destroy(&nvmet_rdma_queue_ida);
2081 }
2082
2083 module_init(nvmet_rdma_init);
2084 module_exit(nvmet_rdma_exit);
2085
2086 MODULE_LICENSE("GPL v2");
2087 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2088