1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32
33 /*
34 * RPC slabs and memory pools
35 */
36 #define RPC_BUFFER_MAXSIZE (2048)
37 #define RPC_BUFFER_POOLSIZE (8)
38 #define RPC_TASK_POOLSIZE (8)
39 static struct kmem_cache *rpc_task_slabp __read_mostly;
40 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
41 static mempool_t *rpc_task_mempool __read_mostly;
42 static mempool_t *rpc_buffer_mempool __read_mostly;
43
44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47
48 /*
49 * RPC tasks sit here while waiting for conditions to improve.
50 */
51 static struct rpc_wait_queue delay_queue;
52
53 /*
54 * rpciod-related stuff
55 */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
rpc_task_gfp_mask(void)60 gfp_t rpc_task_gfp_mask(void)
61 {
62 if (current->flags & PF_WQ_WORKER)
63 return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
64 return GFP_KERNEL;
65 }
66 EXPORT_SYMBOL_GPL(rpc_task_gfp_mask);
67
rpc_task_set_rpc_status(struct rpc_task * task,int rpc_status)68 bool rpc_task_set_rpc_status(struct rpc_task *task, int rpc_status)
69 {
70 if (cmpxchg(&task->tk_rpc_status, 0, rpc_status) == 0)
71 return true;
72 return false;
73 }
74
75 unsigned long
rpc_task_timeout(const struct rpc_task * task)76 rpc_task_timeout(const struct rpc_task *task)
77 {
78 unsigned long timeout = READ_ONCE(task->tk_timeout);
79
80 if (timeout != 0) {
81 unsigned long now = jiffies;
82 if (time_before(now, timeout))
83 return timeout - now;
84 }
85 return 0;
86 }
87 EXPORT_SYMBOL_GPL(rpc_task_timeout);
88
89 /*
90 * Disable the timer for a given RPC task. Should be called with
91 * queue->lock and bh_disabled in order to avoid races within
92 * rpc_run_timer().
93 */
94 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)95 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
96 {
97 if (list_empty(&task->u.tk_wait.timer_list))
98 return;
99 task->tk_timeout = 0;
100 list_del(&task->u.tk_wait.timer_list);
101 if (list_empty(&queue->timer_list.list))
102 cancel_delayed_work(&queue->timer_list.dwork);
103 }
104
105 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)106 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
107 {
108 unsigned long now = jiffies;
109 queue->timer_list.expires = expires;
110 if (time_before_eq(expires, now))
111 expires = 0;
112 else
113 expires -= now;
114 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
115 }
116
117 /*
118 * Set up a timer for the current task.
119 */
120 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned long timeout)121 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
122 unsigned long timeout)
123 {
124 task->tk_timeout = timeout;
125 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
126 rpc_set_queue_timer(queue, timeout);
127 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
128 }
129
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)130 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
131 {
132 if (queue->priority != priority) {
133 queue->priority = priority;
134 queue->nr = 1U << priority;
135 }
136 }
137
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)138 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
139 {
140 rpc_set_waitqueue_priority(queue, queue->maxpriority);
141 }
142
143 /*
144 * Add a request to a queue list
145 */
146 static void
__rpc_list_enqueue_task(struct list_head * q,struct rpc_task * task)147 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
148 {
149 struct rpc_task *t;
150
151 list_for_each_entry(t, q, u.tk_wait.list) {
152 if (t->tk_owner == task->tk_owner) {
153 list_add_tail(&task->u.tk_wait.links,
154 &t->u.tk_wait.links);
155 /* Cache the queue head in task->u.tk_wait.list */
156 task->u.tk_wait.list.next = q;
157 task->u.tk_wait.list.prev = NULL;
158 return;
159 }
160 }
161 INIT_LIST_HEAD(&task->u.tk_wait.links);
162 list_add_tail(&task->u.tk_wait.list, q);
163 }
164
165 /*
166 * Remove request from a queue list
167 */
168 static void
__rpc_list_dequeue_task(struct rpc_task * task)169 __rpc_list_dequeue_task(struct rpc_task *task)
170 {
171 struct list_head *q;
172 struct rpc_task *t;
173
174 if (task->u.tk_wait.list.prev == NULL) {
175 list_del(&task->u.tk_wait.links);
176 return;
177 }
178 if (!list_empty(&task->u.tk_wait.links)) {
179 t = list_first_entry(&task->u.tk_wait.links,
180 struct rpc_task,
181 u.tk_wait.links);
182 /* Assume __rpc_list_enqueue_task() cached the queue head */
183 q = t->u.tk_wait.list.next;
184 list_add_tail(&t->u.tk_wait.list, q);
185 list_del(&task->u.tk_wait.links);
186 }
187 list_del(&task->u.tk_wait.list);
188 }
189
190 /*
191 * Add new request to a priority queue.
192 */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)193 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
194 struct rpc_task *task,
195 unsigned char queue_priority)
196 {
197 if (unlikely(queue_priority > queue->maxpriority))
198 queue_priority = queue->maxpriority;
199 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
200 }
201
202 /*
203 * Add new request to wait queue.
204 */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)205 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
206 struct rpc_task *task,
207 unsigned char queue_priority)
208 {
209 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
210 if (RPC_IS_PRIORITY(queue))
211 __rpc_add_wait_queue_priority(queue, task, queue_priority);
212 else
213 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214 task->tk_waitqueue = queue;
215 queue->qlen++;
216 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
217 smp_wmb();
218 rpc_set_queued(task);
219 }
220
221 /*
222 * Remove request from a priority queue.
223 */
__rpc_remove_wait_queue_priority(struct rpc_task * task)224 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
225 {
226 __rpc_list_dequeue_task(task);
227 }
228
229 /*
230 * Remove request from queue.
231 * Note: must be called with spin lock held.
232 */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)233 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
234 {
235 __rpc_disable_timer(queue, task);
236 if (RPC_IS_PRIORITY(queue))
237 __rpc_remove_wait_queue_priority(task);
238 else
239 list_del(&task->u.tk_wait.list);
240 queue->qlen--;
241 }
242
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
244 {
245 int i;
246
247 spin_lock_init(&queue->lock);
248 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249 INIT_LIST_HEAD(&queue->tasks[i]);
250 queue->maxpriority = nr_queues - 1;
251 rpc_reset_waitqueue_priority(queue);
252 queue->qlen = 0;
253 queue->timer_list.expires = 0;
254 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
255 INIT_LIST_HEAD(&queue->timer_list.list);
256 rpc_assign_waitqueue_name(queue, qname);
257 }
258
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)259 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
260 {
261 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
262 }
263 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
264
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)265 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
266 {
267 __rpc_init_priority_wait_queue(queue, qname, 1);
268 }
269 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
270
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)271 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
272 {
273 cancel_delayed_work_sync(&queue->timer_list.dwork);
274 }
275 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
276
rpc_wait_bit_killable(struct wait_bit_key * key,int mode)277 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
278 {
279 schedule();
280 if (signal_pending_state(mode, current))
281 return -ERESTARTSYS;
282 return 0;
283 }
284
285 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)286 static void rpc_task_set_debuginfo(struct rpc_task *task)
287 {
288 struct rpc_clnt *clnt = task->tk_client;
289
290 /* Might be a task carrying a reverse-direction operation */
291 if (!clnt) {
292 static atomic_t rpc_pid;
293
294 task->tk_pid = atomic_inc_return(&rpc_pid);
295 return;
296 }
297
298 task->tk_pid = atomic_inc_return(&clnt->cl_pid);
299 }
300 #else
rpc_task_set_debuginfo(struct rpc_task * task)301 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
302 {
303 }
304 #endif
305
rpc_set_active(struct rpc_task * task)306 static void rpc_set_active(struct rpc_task *task)
307 {
308 rpc_task_set_debuginfo(task);
309 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
310 trace_rpc_task_begin(task, NULL);
311 }
312
313 /*
314 * Mark an RPC call as having completed by clearing the 'active' bit
315 * and then waking up all tasks that were sleeping.
316 */
rpc_complete_task(struct rpc_task * task)317 static int rpc_complete_task(struct rpc_task *task)
318 {
319 void *m = &task->tk_runstate;
320 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
321 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
322 unsigned long flags;
323 int ret;
324
325 trace_rpc_task_complete(task, NULL);
326
327 spin_lock_irqsave(&wq->lock, flags);
328 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
329 ret = atomic_dec_and_test(&task->tk_count);
330 if (waitqueue_active(wq))
331 __wake_up_locked_key(wq, TASK_NORMAL, &k);
332 spin_unlock_irqrestore(&wq->lock, flags);
333 return ret;
334 }
335
336 /*
337 * Allow callers to wait for completion of an RPC call
338 *
339 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
340 * to enforce taking of the wq->lock and hence avoid races with
341 * rpc_complete_task().
342 */
rpc_wait_for_completion_task(struct rpc_task * task)343 int rpc_wait_for_completion_task(struct rpc_task *task)
344 {
345 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
346 rpc_wait_bit_killable, TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
347 }
348 EXPORT_SYMBOL_GPL(rpc_wait_for_completion_task);
349
350 /*
351 * Make an RPC task runnable.
352 *
353 * Note: If the task is ASYNC, and is being made runnable after sitting on an
354 * rpc_wait_queue, this must be called with the queue spinlock held to protect
355 * the wait queue operation.
356 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
357 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
358 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
359 * the RPC_TASK_RUNNING flag.
360 */
rpc_make_runnable(struct workqueue_struct * wq,struct rpc_task * task)361 static void rpc_make_runnable(struct workqueue_struct *wq,
362 struct rpc_task *task)
363 {
364 bool need_wakeup = !rpc_test_and_set_running(task);
365
366 rpc_clear_queued(task);
367 if (!need_wakeup)
368 return;
369 if (RPC_IS_ASYNC(task)) {
370 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
371 queue_work(wq, &task->u.tk_work);
372 } else {
373 smp_mb__after_atomic();
374 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
375 }
376 }
377
378 /*
379 * Prepare for sleeping on a wait queue.
380 * By always appending tasks to the list we ensure FIFO behavior.
381 * NB: An RPC task will only receive interrupt-driven events as long
382 * as it's on a wait queue.
383 */
__rpc_do_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)384 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
385 struct rpc_task *task,
386 unsigned char queue_priority)
387 {
388 trace_rpc_task_sleep(task, q);
389
390 __rpc_add_wait_queue(q, task, queue_priority);
391 }
392
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)393 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
394 struct rpc_task *task,
395 unsigned char queue_priority)
396 {
397 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
398 return;
399 __rpc_do_sleep_on_priority(q, task, queue_priority);
400 }
401
__rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,unsigned char queue_priority)402 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
403 struct rpc_task *task, unsigned long timeout,
404 unsigned char queue_priority)
405 {
406 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
407 return;
408 if (time_is_after_jiffies(timeout)) {
409 __rpc_do_sleep_on_priority(q, task, queue_priority);
410 __rpc_add_timer(q, task, timeout);
411 } else
412 task->tk_status = -ETIMEDOUT;
413 }
414
rpc_set_tk_callback(struct rpc_task * task,rpc_action action)415 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
416 {
417 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
418 task->tk_callback = action;
419 }
420
rpc_sleep_check_activated(struct rpc_task * task)421 static bool rpc_sleep_check_activated(struct rpc_task *task)
422 {
423 /* We shouldn't ever put an inactive task to sleep */
424 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
425 task->tk_status = -EIO;
426 rpc_put_task_async(task);
427 return false;
428 }
429 return true;
430 }
431
rpc_sleep_on_timeout(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned long timeout)432 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
433 rpc_action action, unsigned long timeout)
434 {
435 if (!rpc_sleep_check_activated(task))
436 return;
437
438 rpc_set_tk_callback(task, action);
439
440 /*
441 * Protect the queue operations.
442 */
443 spin_lock(&q->lock);
444 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
445 spin_unlock(&q->lock);
446 }
447 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
448
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)449 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
450 rpc_action action)
451 {
452 if (!rpc_sleep_check_activated(task))
453 return;
454
455 rpc_set_tk_callback(task, action);
456
457 WARN_ON_ONCE(task->tk_timeout != 0);
458 /*
459 * Protect the queue operations.
460 */
461 spin_lock(&q->lock);
462 __rpc_sleep_on_priority(q, task, task->tk_priority);
463 spin_unlock(&q->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_sleep_on);
466
rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,int priority)467 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
468 struct rpc_task *task, unsigned long timeout, int priority)
469 {
470 if (!rpc_sleep_check_activated(task))
471 return;
472
473 priority -= RPC_PRIORITY_LOW;
474 /*
475 * Protect the queue operations.
476 */
477 spin_lock(&q->lock);
478 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
479 spin_unlock(&q->lock);
480 }
481 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
482
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,int priority)483 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
484 int priority)
485 {
486 if (!rpc_sleep_check_activated(task))
487 return;
488
489 WARN_ON_ONCE(task->tk_timeout != 0);
490 priority -= RPC_PRIORITY_LOW;
491 /*
492 * Protect the queue operations.
493 */
494 spin_lock(&q->lock);
495 __rpc_sleep_on_priority(q, task, priority);
496 spin_unlock(&q->lock);
497 }
498 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
499
500 /**
501 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
502 * @wq: workqueue on which to run task
503 * @queue: wait queue
504 * @task: task to be woken up
505 *
506 * Caller must hold queue->lock, and have cleared the task queued flag.
507 */
__rpc_do_wake_up_task_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)508 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
509 struct rpc_wait_queue *queue,
510 struct rpc_task *task)
511 {
512 /* Has the task been executed yet? If not, we cannot wake it up! */
513 if (!RPC_IS_ACTIVATED(task)) {
514 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
515 return;
516 }
517
518 trace_rpc_task_wakeup(task, queue);
519
520 __rpc_remove_wait_queue(queue, task);
521
522 rpc_make_runnable(wq, task);
523 }
524
525 /*
526 * Wake up a queued task while the queue lock is being held
527 */
528 static struct rpc_task *
rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task,bool (* action)(struct rpc_task *,void *),void * data)529 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
530 struct rpc_wait_queue *queue, struct rpc_task *task,
531 bool (*action)(struct rpc_task *, void *), void *data)
532 {
533 if (RPC_IS_QUEUED(task)) {
534 smp_rmb();
535 if (task->tk_waitqueue == queue) {
536 if (action == NULL || action(task, data)) {
537 __rpc_do_wake_up_task_on_wq(wq, queue, task);
538 return task;
539 }
540 }
541 }
542 return NULL;
543 }
544
545 /*
546 * Wake up a queued task while the queue lock is being held
547 */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)548 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
549 struct rpc_task *task)
550 {
551 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
552 task, NULL, NULL);
553 }
554
555 /*
556 * Wake up a task on a specific queue
557 */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)558 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
559 {
560 if (!RPC_IS_QUEUED(task))
561 return;
562 spin_lock(&queue->lock);
563 rpc_wake_up_task_queue_locked(queue, task);
564 spin_unlock(&queue->lock);
565 }
566 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
567
rpc_task_action_set_status(struct rpc_task * task,void * status)568 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
569 {
570 task->tk_status = *(int *)status;
571 return true;
572 }
573
574 static void
rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue * queue,struct rpc_task * task,int status)575 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
576 struct rpc_task *task, int status)
577 {
578 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
579 task, rpc_task_action_set_status, &status);
580 }
581
582 /**
583 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
584 * @queue: pointer to rpc_wait_queue
585 * @task: pointer to rpc_task
586 * @status: integer error value
587 *
588 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
589 * set to the value of @status.
590 */
591 void
rpc_wake_up_queued_task_set_status(struct rpc_wait_queue * queue,struct rpc_task * task,int status)592 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
593 struct rpc_task *task, int status)
594 {
595 if (!RPC_IS_QUEUED(task))
596 return;
597 spin_lock(&queue->lock);
598 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
599 spin_unlock(&queue->lock);
600 }
601
602 /*
603 * Wake up the next task on a priority queue.
604 */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)605 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
606 {
607 struct list_head *q;
608 struct rpc_task *task;
609
610 /*
611 * Service the privileged queue.
612 */
613 q = &queue->tasks[RPC_NR_PRIORITY - 1];
614 if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
615 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
616 goto out;
617 }
618
619 /*
620 * Service a batch of tasks from a single owner.
621 */
622 q = &queue->tasks[queue->priority];
623 if (!list_empty(q) && queue->nr) {
624 queue->nr--;
625 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
626 goto out;
627 }
628
629 /*
630 * Service the next queue.
631 */
632 do {
633 if (q == &queue->tasks[0])
634 q = &queue->tasks[queue->maxpriority];
635 else
636 q = q - 1;
637 if (!list_empty(q)) {
638 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
639 goto new_queue;
640 }
641 } while (q != &queue->tasks[queue->priority]);
642
643 rpc_reset_waitqueue_priority(queue);
644 return NULL;
645
646 new_queue:
647 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
648 out:
649 return task;
650 }
651
__rpc_find_next_queued(struct rpc_wait_queue * queue)652 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
653 {
654 if (RPC_IS_PRIORITY(queue))
655 return __rpc_find_next_queued_priority(queue);
656 if (!list_empty(&queue->tasks[0]))
657 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
658 return NULL;
659 }
660
661 /*
662 * Wake up the first task on the wait queue.
663 */
rpc_wake_up_first_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)664 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
665 struct rpc_wait_queue *queue,
666 bool (*func)(struct rpc_task *, void *), void *data)
667 {
668 struct rpc_task *task = NULL;
669
670 spin_lock(&queue->lock);
671 task = __rpc_find_next_queued(queue);
672 if (task != NULL)
673 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
674 task, func, data);
675 spin_unlock(&queue->lock);
676
677 return task;
678 }
679
680 /*
681 * Wake up the first task on the wait queue.
682 */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)683 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
684 bool (*func)(struct rpc_task *, void *), void *data)
685 {
686 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
687 }
688 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
689
rpc_wake_up_next_func(struct rpc_task * task,void * data)690 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
691 {
692 return true;
693 }
694
695 /*
696 * Wake up the next task on the wait queue.
697 */
rpc_wake_up_next(struct rpc_wait_queue * queue)698 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
699 {
700 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
701 }
702 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
703
704 /**
705 * rpc_wake_up_locked - wake up all rpc_tasks
706 * @queue: rpc_wait_queue on which the tasks are sleeping
707 *
708 */
rpc_wake_up_locked(struct rpc_wait_queue * queue)709 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
710 {
711 struct rpc_task *task;
712
713 for (;;) {
714 task = __rpc_find_next_queued(queue);
715 if (task == NULL)
716 break;
717 rpc_wake_up_task_queue_locked(queue, task);
718 }
719 }
720
721 /**
722 * rpc_wake_up - wake up all rpc_tasks
723 * @queue: rpc_wait_queue on which the tasks are sleeping
724 *
725 * Grabs queue->lock
726 */
rpc_wake_up(struct rpc_wait_queue * queue)727 void rpc_wake_up(struct rpc_wait_queue *queue)
728 {
729 spin_lock(&queue->lock);
730 rpc_wake_up_locked(queue);
731 spin_unlock(&queue->lock);
732 }
733 EXPORT_SYMBOL_GPL(rpc_wake_up);
734
735 /**
736 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
737 * @queue: rpc_wait_queue on which the tasks are sleeping
738 * @status: status value to set
739 */
rpc_wake_up_status_locked(struct rpc_wait_queue * queue,int status)740 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
741 {
742 struct rpc_task *task;
743
744 for (;;) {
745 task = __rpc_find_next_queued(queue);
746 if (task == NULL)
747 break;
748 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
749 }
750 }
751
752 /**
753 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
754 * @queue: rpc_wait_queue on which the tasks are sleeping
755 * @status: status value to set
756 *
757 * Grabs queue->lock
758 */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)759 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
760 {
761 spin_lock(&queue->lock);
762 rpc_wake_up_status_locked(queue, status);
763 spin_unlock(&queue->lock);
764 }
765 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
766
__rpc_queue_timer_fn(struct work_struct * work)767 static void __rpc_queue_timer_fn(struct work_struct *work)
768 {
769 struct rpc_wait_queue *queue = container_of(work,
770 struct rpc_wait_queue,
771 timer_list.dwork.work);
772 struct rpc_task *task, *n;
773 unsigned long expires, now, timeo;
774
775 spin_lock(&queue->lock);
776 expires = now = jiffies;
777 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
778 timeo = task->tk_timeout;
779 if (time_after_eq(now, timeo)) {
780 trace_rpc_task_timeout(task, task->tk_action);
781 task->tk_status = -ETIMEDOUT;
782 rpc_wake_up_task_queue_locked(queue, task);
783 continue;
784 }
785 if (expires == now || time_after(expires, timeo))
786 expires = timeo;
787 }
788 if (!list_empty(&queue->timer_list.list))
789 rpc_set_queue_timer(queue, expires);
790 spin_unlock(&queue->lock);
791 }
792
__rpc_atrun(struct rpc_task * task)793 static void __rpc_atrun(struct rpc_task *task)
794 {
795 if (task->tk_status == -ETIMEDOUT)
796 task->tk_status = 0;
797 }
798
799 /*
800 * Run a task at a later time
801 */
rpc_delay(struct rpc_task * task,unsigned long delay)802 void rpc_delay(struct rpc_task *task, unsigned long delay)
803 {
804 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
805 }
806 EXPORT_SYMBOL_GPL(rpc_delay);
807
808 /*
809 * Helper to call task->tk_ops->rpc_call_prepare
810 */
rpc_prepare_task(struct rpc_task * task)811 void rpc_prepare_task(struct rpc_task *task)
812 {
813 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
814 }
815
816 static void
rpc_init_task_statistics(struct rpc_task * task)817 rpc_init_task_statistics(struct rpc_task *task)
818 {
819 /* Initialize retry counters */
820 task->tk_garb_retry = 2;
821 task->tk_cred_retry = 2;
822
823 /* starting timestamp */
824 task->tk_start = ktime_get();
825 }
826
827 static void
rpc_reset_task_statistics(struct rpc_task * task)828 rpc_reset_task_statistics(struct rpc_task *task)
829 {
830 task->tk_timeouts = 0;
831 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
832 rpc_init_task_statistics(task);
833 }
834
835 /*
836 * Helper that calls task->tk_ops->rpc_call_done if it exists
837 */
rpc_exit_task(struct rpc_task * task)838 void rpc_exit_task(struct rpc_task *task)
839 {
840 trace_rpc_task_end(task, task->tk_action);
841 task->tk_action = NULL;
842 if (task->tk_ops->rpc_count_stats)
843 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
844 else if (task->tk_client)
845 rpc_count_iostats(task, task->tk_client->cl_metrics);
846 if (task->tk_ops->rpc_call_done != NULL) {
847 trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
848 task->tk_ops->rpc_call_done(task, task->tk_calldata);
849 if (task->tk_action != NULL) {
850 /* Always release the RPC slot and buffer memory */
851 xprt_release(task);
852 rpc_reset_task_statistics(task);
853 }
854 }
855 }
856
rpc_signal_task(struct rpc_task * task)857 void rpc_signal_task(struct rpc_task *task)
858 {
859 struct rpc_wait_queue *queue;
860
861 if (!RPC_IS_ACTIVATED(task))
862 return;
863
864 if (!rpc_task_set_rpc_status(task, -ERESTARTSYS))
865 return;
866 trace_rpc_task_signalled(task, task->tk_action);
867 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
868 smp_mb__after_atomic();
869 queue = READ_ONCE(task->tk_waitqueue);
870 if (queue)
871 rpc_wake_up_queued_task(queue, task);
872 }
873
rpc_task_try_cancel(struct rpc_task * task,int error)874 void rpc_task_try_cancel(struct rpc_task *task, int error)
875 {
876 struct rpc_wait_queue *queue;
877
878 if (!rpc_task_set_rpc_status(task, error))
879 return;
880 queue = READ_ONCE(task->tk_waitqueue);
881 if (queue)
882 rpc_wake_up_queued_task(queue, task);
883 }
884
rpc_exit(struct rpc_task * task,int status)885 void rpc_exit(struct rpc_task *task, int status)
886 {
887 task->tk_status = status;
888 task->tk_action = rpc_exit_task;
889 rpc_wake_up_queued_task(task->tk_waitqueue, task);
890 }
891 EXPORT_SYMBOL_GPL(rpc_exit);
892
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)893 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
894 {
895 if (ops->rpc_release != NULL)
896 ops->rpc_release(calldata);
897 }
898
xprt_needs_memalloc(struct rpc_xprt * xprt,struct rpc_task * tk)899 static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
900 {
901 if (!xprt)
902 return false;
903 if (!atomic_read(&xprt->swapper))
904 return false;
905 return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
906 }
907
908 /*
909 * This is the RPC `scheduler' (or rather, the finite state machine).
910 */
__rpc_execute(struct rpc_task * task)911 static void __rpc_execute(struct rpc_task *task)
912 {
913 struct rpc_wait_queue *queue;
914 int task_is_async = RPC_IS_ASYNC(task);
915 int status = 0;
916 unsigned long pflags = current->flags;
917
918 WARN_ON_ONCE(RPC_IS_QUEUED(task));
919 if (RPC_IS_QUEUED(task))
920 return;
921
922 for (;;) {
923 void (*do_action)(struct rpc_task *);
924
925 /*
926 * Perform the next FSM step or a pending callback.
927 *
928 * tk_action may be NULL if the task has been killed.
929 */
930 do_action = task->tk_action;
931 /* Tasks with an RPC error status should exit */
932 if (do_action && do_action != rpc_exit_task &&
933 (status = READ_ONCE(task->tk_rpc_status)) != 0) {
934 task->tk_status = status;
935 do_action = rpc_exit_task;
936 }
937 /* Callbacks override all actions */
938 if (task->tk_callback) {
939 do_action = task->tk_callback;
940 task->tk_callback = NULL;
941 }
942 if (!do_action)
943 break;
944 if (RPC_IS_SWAPPER(task) ||
945 xprt_needs_memalloc(task->tk_xprt, task))
946 current->flags |= PF_MEMALLOC;
947
948 trace_rpc_task_run_action(task, do_action);
949 do_action(task);
950
951 /*
952 * Lockless check for whether task is sleeping or not.
953 */
954 if (!RPC_IS_QUEUED(task)) {
955 cond_resched();
956 continue;
957 }
958
959 /*
960 * The queue->lock protects against races with
961 * rpc_make_runnable().
962 *
963 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
964 * rpc_task, rpc_make_runnable() can assign it to a
965 * different workqueue. We therefore cannot assume that the
966 * rpc_task pointer may still be dereferenced.
967 */
968 queue = task->tk_waitqueue;
969 spin_lock(&queue->lock);
970 if (!RPC_IS_QUEUED(task)) {
971 spin_unlock(&queue->lock);
972 continue;
973 }
974 /* Wake up any task that has an exit status */
975 if (READ_ONCE(task->tk_rpc_status) != 0) {
976 rpc_wake_up_task_queue_locked(queue, task);
977 spin_unlock(&queue->lock);
978 continue;
979 }
980 rpc_clear_running(task);
981 spin_unlock(&queue->lock);
982 if (task_is_async)
983 goto out;
984
985 /* sync task: sleep here */
986 trace_rpc_task_sync_sleep(task, task->tk_action);
987 status = out_of_line_wait_on_bit(&task->tk_runstate,
988 RPC_TASK_QUEUED, rpc_wait_bit_killable,
989 TASK_KILLABLE|TASK_FREEZABLE);
990 if (status < 0) {
991 /*
992 * When a sync task receives a signal, it exits with
993 * -ERESTARTSYS. In order to catch any callbacks that
994 * clean up after sleeping on some queue, we don't
995 * break the loop here, but go around once more.
996 */
997 rpc_signal_task(task);
998 }
999 trace_rpc_task_sync_wake(task, task->tk_action);
1000 }
1001
1002 /* Release all resources associated with the task */
1003 rpc_release_task(task);
1004 out:
1005 current_restore_flags(pflags, PF_MEMALLOC);
1006 }
1007
1008 /*
1009 * User-visible entry point to the scheduler.
1010 *
1011 * This may be called recursively if e.g. an async NFS task updates
1012 * the attributes and finds that dirty pages must be flushed.
1013 * NOTE: Upon exit of this function the task is guaranteed to be
1014 * released. In particular note that tk_release() will have
1015 * been called, so your task memory may have been freed.
1016 */
rpc_execute(struct rpc_task * task)1017 void rpc_execute(struct rpc_task *task)
1018 {
1019 bool is_async = RPC_IS_ASYNC(task);
1020
1021 rpc_set_active(task);
1022 rpc_make_runnable(rpciod_workqueue, task);
1023 if (!is_async) {
1024 unsigned int pflags = memalloc_nofs_save();
1025 __rpc_execute(task);
1026 memalloc_nofs_restore(pflags);
1027 }
1028 }
1029
rpc_async_schedule(struct work_struct * work)1030 static void rpc_async_schedule(struct work_struct *work)
1031 {
1032 unsigned int pflags = memalloc_nofs_save();
1033
1034 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1035 memalloc_nofs_restore(pflags);
1036 }
1037
1038 /**
1039 * rpc_malloc - allocate RPC buffer resources
1040 * @task: RPC task
1041 *
1042 * A single memory region is allocated, which is split between the
1043 * RPC call and RPC reply that this task is being used for. When
1044 * this RPC is retired, the memory is released by calling rpc_free.
1045 *
1046 * To prevent rpciod from hanging, this allocator never sleeps,
1047 * returning -ENOMEM and suppressing warning if the request cannot
1048 * be serviced immediately. The caller can arrange to sleep in a
1049 * way that is safe for rpciod.
1050 *
1051 * Most requests are 'small' (under 2KiB) and can be serviced from a
1052 * mempool, ensuring that NFS reads and writes can always proceed,
1053 * and that there is good locality of reference for these buffers.
1054 */
rpc_malloc(struct rpc_task * task)1055 int rpc_malloc(struct rpc_task *task)
1056 {
1057 struct rpc_rqst *rqst = task->tk_rqstp;
1058 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1059 struct rpc_buffer *buf;
1060 gfp_t gfp = rpc_task_gfp_mask();
1061
1062 size += sizeof(struct rpc_buffer);
1063 if (size <= RPC_BUFFER_MAXSIZE) {
1064 buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
1065 /* Reach for the mempool if dynamic allocation fails */
1066 if (!buf && RPC_IS_ASYNC(task))
1067 buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
1068 } else
1069 buf = kmalloc(size, gfp);
1070
1071 if (!buf)
1072 return -ENOMEM;
1073
1074 buf->len = size;
1075 rqst->rq_buffer = buf->data;
1076 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1077 return 0;
1078 }
1079 EXPORT_SYMBOL_GPL(rpc_malloc);
1080
1081 /**
1082 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1083 * @task: RPC task
1084 *
1085 */
rpc_free(struct rpc_task * task)1086 void rpc_free(struct rpc_task *task)
1087 {
1088 void *buffer = task->tk_rqstp->rq_buffer;
1089 size_t size;
1090 struct rpc_buffer *buf;
1091
1092 buf = container_of(buffer, struct rpc_buffer, data);
1093 size = buf->len;
1094
1095 if (size <= RPC_BUFFER_MAXSIZE)
1096 mempool_free(buf, rpc_buffer_mempool);
1097 else
1098 kfree(buf);
1099 }
1100 EXPORT_SYMBOL_GPL(rpc_free);
1101
1102 /*
1103 * Creation and deletion of RPC task structures
1104 */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)1105 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1106 {
1107 memset(task, 0, sizeof(*task));
1108 atomic_set(&task->tk_count, 1);
1109 task->tk_flags = task_setup_data->flags;
1110 task->tk_ops = task_setup_data->callback_ops;
1111 task->tk_calldata = task_setup_data->callback_data;
1112 INIT_LIST_HEAD(&task->tk_task);
1113
1114 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1115 task->tk_owner = current->tgid;
1116
1117 /* Initialize workqueue for async tasks */
1118 task->tk_workqueue = task_setup_data->workqueue;
1119
1120 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1121 xprt_get(task_setup_data->rpc_xprt));
1122
1123 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1124
1125 if (task->tk_ops->rpc_call_prepare != NULL)
1126 task->tk_action = rpc_prepare_task;
1127
1128 rpc_init_task_statistics(task);
1129 }
1130
rpc_alloc_task(void)1131 static struct rpc_task *rpc_alloc_task(void)
1132 {
1133 struct rpc_task *task;
1134
1135 task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
1136 if (task)
1137 return task;
1138 return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
1139 }
1140
1141 /*
1142 * Create a new task for the specified client.
1143 */
rpc_new_task(const struct rpc_task_setup * setup_data)1144 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1145 {
1146 struct rpc_task *task = setup_data->task;
1147 unsigned short flags = 0;
1148
1149 if (task == NULL) {
1150 task = rpc_alloc_task();
1151 if (task == NULL) {
1152 rpc_release_calldata(setup_data->callback_ops,
1153 setup_data->callback_data);
1154 return ERR_PTR(-ENOMEM);
1155 }
1156 flags = RPC_TASK_DYNAMIC;
1157 }
1158
1159 rpc_init_task(task, setup_data);
1160 task->tk_flags |= flags;
1161 return task;
1162 }
1163
1164 /*
1165 * rpc_free_task - release rpc task and perform cleanups
1166 *
1167 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1168 * in order to work around a workqueue dependency issue.
1169 *
1170 * Tejun Heo states:
1171 * "Workqueue currently considers two work items to be the same if they're
1172 * on the same address and won't execute them concurrently - ie. it
1173 * makes a work item which is queued again while being executed wait
1174 * for the previous execution to complete.
1175 *
1176 * If a work function frees the work item, and then waits for an event
1177 * which should be performed by another work item and *that* work item
1178 * recycles the freed work item, it can create a false dependency loop.
1179 * There really is no reliable way to detect this short of verifying
1180 * every memory free."
1181 *
1182 */
rpc_free_task(struct rpc_task * task)1183 static void rpc_free_task(struct rpc_task *task)
1184 {
1185 unsigned short tk_flags = task->tk_flags;
1186
1187 put_rpccred(task->tk_op_cred);
1188 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1189
1190 if (tk_flags & RPC_TASK_DYNAMIC)
1191 mempool_free(task, rpc_task_mempool);
1192 }
1193
rpc_async_release(struct work_struct * work)1194 static void rpc_async_release(struct work_struct *work)
1195 {
1196 unsigned int pflags = memalloc_nofs_save();
1197
1198 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1199 memalloc_nofs_restore(pflags);
1200 }
1201
rpc_release_resources_task(struct rpc_task * task)1202 static void rpc_release_resources_task(struct rpc_task *task)
1203 {
1204 xprt_release(task);
1205 if (task->tk_msg.rpc_cred) {
1206 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1207 put_cred(task->tk_msg.rpc_cred);
1208 task->tk_msg.rpc_cred = NULL;
1209 }
1210 rpc_task_release_client(task);
1211 }
1212
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)1213 static void rpc_final_put_task(struct rpc_task *task,
1214 struct workqueue_struct *q)
1215 {
1216 if (q != NULL) {
1217 INIT_WORK(&task->u.tk_work, rpc_async_release);
1218 queue_work(q, &task->u.tk_work);
1219 } else
1220 rpc_free_task(task);
1221 }
1222
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1223 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1224 {
1225 if (atomic_dec_and_test(&task->tk_count)) {
1226 rpc_release_resources_task(task);
1227 rpc_final_put_task(task, q);
1228 }
1229 }
1230
rpc_put_task(struct rpc_task * task)1231 void rpc_put_task(struct rpc_task *task)
1232 {
1233 rpc_do_put_task(task, NULL);
1234 }
1235 EXPORT_SYMBOL_GPL(rpc_put_task);
1236
rpc_put_task_async(struct rpc_task * task)1237 void rpc_put_task_async(struct rpc_task *task)
1238 {
1239 rpc_do_put_task(task, task->tk_workqueue);
1240 }
1241 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1242
rpc_release_task(struct rpc_task * task)1243 static void rpc_release_task(struct rpc_task *task)
1244 {
1245 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1246
1247 rpc_release_resources_task(task);
1248
1249 /*
1250 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1251 * so it should be safe to use task->tk_count as a test for whether
1252 * or not any other processes still hold references to our rpc_task.
1253 */
1254 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1255 /* Wake up anyone who may be waiting for task completion */
1256 if (!rpc_complete_task(task))
1257 return;
1258 } else {
1259 if (!atomic_dec_and_test(&task->tk_count))
1260 return;
1261 }
1262 rpc_final_put_task(task, task->tk_workqueue);
1263 }
1264
rpciod_up(void)1265 int rpciod_up(void)
1266 {
1267 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1268 }
1269
rpciod_down(void)1270 void rpciod_down(void)
1271 {
1272 module_put(THIS_MODULE);
1273 }
1274
1275 /*
1276 * Start up the rpciod workqueue.
1277 */
rpciod_start(void)1278 static int rpciod_start(void)
1279 {
1280 struct workqueue_struct *wq;
1281
1282 /*
1283 * Create the rpciod thread and wait for it to start.
1284 */
1285 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1286 if (!wq)
1287 goto out_failed;
1288 rpciod_workqueue = wq;
1289 wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1290 if (!wq)
1291 goto free_rpciod;
1292 xprtiod_workqueue = wq;
1293 return 1;
1294 free_rpciod:
1295 wq = rpciod_workqueue;
1296 rpciod_workqueue = NULL;
1297 destroy_workqueue(wq);
1298 out_failed:
1299 return 0;
1300 }
1301
rpciod_stop(void)1302 static void rpciod_stop(void)
1303 {
1304 struct workqueue_struct *wq = NULL;
1305
1306 if (rpciod_workqueue == NULL)
1307 return;
1308
1309 wq = rpciod_workqueue;
1310 rpciod_workqueue = NULL;
1311 destroy_workqueue(wq);
1312 wq = xprtiod_workqueue;
1313 xprtiod_workqueue = NULL;
1314 destroy_workqueue(wq);
1315 }
1316
1317 void
rpc_destroy_mempool(void)1318 rpc_destroy_mempool(void)
1319 {
1320 rpciod_stop();
1321 mempool_destroy(rpc_buffer_mempool);
1322 mempool_destroy(rpc_task_mempool);
1323 kmem_cache_destroy(rpc_task_slabp);
1324 kmem_cache_destroy(rpc_buffer_slabp);
1325 rpc_destroy_wait_queue(&delay_queue);
1326 }
1327
1328 int
rpc_init_mempool(void)1329 rpc_init_mempool(void)
1330 {
1331 /*
1332 * The following is not strictly a mempool initialisation,
1333 * but there is no harm in doing it here
1334 */
1335 rpc_init_wait_queue(&delay_queue, "delayq");
1336 if (!rpciod_start())
1337 goto err_nomem;
1338
1339 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1340 sizeof(struct rpc_task),
1341 0, SLAB_HWCACHE_ALIGN,
1342 NULL);
1343 if (!rpc_task_slabp)
1344 goto err_nomem;
1345 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1346 RPC_BUFFER_MAXSIZE,
1347 0, SLAB_HWCACHE_ALIGN,
1348 NULL);
1349 if (!rpc_buffer_slabp)
1350 goto err_nomem;
1351 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1352 rpc_task_slabp);
1353 if (!rpc_task_mempool)
1354 goto err_nomem;
1355 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1356 rpc_buffer_slabp);
1357 if (!rpc_buffer_mempool)
1358 goto err_nomem;
1359 return 0;
1360 err_nomem:
1361 rpc_destroy_mempool();
1362 return -ENOMEM;
1363 }
1364