1 /*
2 * QEMU RISC-V Boot Helper
3 *
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "exec/cpu-defs.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/riscv/boot.h"
28 #include "hw/riscv/boot_opensbi.h"
29 #include "elf.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/qtest.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/reset.h"
34
35 #include <libfdt.h>
36
riscv_is_32bit(RISCVHartArrayState * harts)37 bool riscv_is_32bit(RISCVHartArrayState *harts)
38 {
39 RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(&harts->harts[0]);
40 return mcc->misa_mxl_max == MXL_RV32;
41 }
42
43 /*
44 * Return the per-socket PLIC hart topology configuration string
45 * (caller must free with g_free())
46 */
riscv_plic_hart_config_string(int hart_count)47 char *riscv_plic_hart_config_string(int hart_count)
48 {
49 g_autofree const char **vals = g_new(const char *, hart_count + 1);
50 int i;
51
52 for (i = 0; i < hart_count; i++) {
53 CPUState *cs = qemu_get_cpu(i);
54 CPURISCVState *env = &RISCV_CPU(cs)->env;
55
56 if (kvm_enabled()) {
57 vals[i] = "S";
58 } else if (riscv_has_ext(env, RVS)) {
59 vals[i] = "MS";
60 } else {
61 vals[i] = "M";
62 }
63 }
64 vals[i] = NULL;
65
66 /* g_strjoinv() obliges us to cast away const here */
67 return g_strjoinv(",", (char **)vals);
68 }
69
riscv_calc_kernel_start_addr(RISCVHartArrayState * harts,target_ulong firmware_end_addr)70 target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
71 target_ulong firmware_end_addr) {
72 if (riscv_is_32bit(harts)) {
73 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
74 } else {
75 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
76 }
77 }
78
riscv_default_firmware_name(RISCVHartArrayState * harts)79 const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
80 {
81 if (riscv_is_32bit(harts)) {
82 return RISCV32_BIOS_BIN;
83 }
84
85 return RISCV64_BIOS_BIN;
86 }
87
riscv_find_bios(const char * bios_filename)88 static char *riscv_find_bios(const char *bios_filename)
89 {
90 char *filename;
91
92 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
93 if (filename == NULL) {
94 if (!qtest_enabled()) {
95 /*
96 * We only ship OpenSBI binary bios images in the QEMU source.
97 * For machines that use images other than the default bios,
98 * running QEMU test will complain hence let's suppress the error
99 * report for QEMU testing.
100 */
101 error_report("Unable to find the RISC-V BIOS \"%s\"",
102 bios_filename);
103 exit(1);
104 }
105 }
106
107 return filename;
108 }
109
riscv_find_firmware(const char * firmware_filename,const char * default_machine_firmware)110 char *riscv_find_firmware(const char *firmware_filename,
111 const char *default_machine_firmware)
112 {
113 char *filename = NULL;
114
115 if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
116 /*
117 * The user didn't specify -bios, or has specified "-bios default".
118 * That means we are going to load the OpenSBI binary included in
119 * the QEMU source.
120 */
121 filename = riscv_find_bios(default_machine_firmware);
122 } else if (strcmp(firmware_filename, "none")) {
123 filename = riscv_find_bios(firmware_filename);
124 }
125
126 return filename;
127 }
128
riscv_find_and_load_firmware(MachineState * machine,const char * default_machine_firmware,hwaddr firmware_load_addr,symbol_fn_t sym_cb)129 target_ulong riscv_find_and_load_firmware(MachineState *machine,
130 const char *default_machine_firmware,
131 hwaddr firmware_load_addr,
132 symbol_fn_t sym_cb)
133 {
134 char *firmware_filename;
135 target_ulong firmware_end_addr = firmware_load_addr;
136
137 firmware_filename = riscv_find_firmware(machine->firmware,
138 default_machine_firmware);
139
140 if (firmware_filename) {
141 /* If not "none" load the firmware */
142 firmware_end_addr = riscv_load_firmware(firmware_filename,
143 firmware_load_addr, sym_cb);
144 g_free(firmware_filename);
145 }
146
147 return firmware_end_addr;
148 }
149
riscv_load_firmware(const char * firmware_filename,hwaddr firmware_load_addr,symbol_fn_t sym_cb)150 target_ulong riscv_load_firmware(const char *firmware_filename,
151 hwaddr firmware_load_addr,
152 symbol_fn_t sym_cb)
153 {
154 uint64_t firmware_entry, firmware_end;
155 ssize_t firmware_size;
156
157 g_assert(firmware_filename != NULL);
158
159 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
160 &firmware_entry, NULL, &firmware_end, NULL,
161 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
162 return firmware_end;
163 }
164
165 firmware_size = load_image_targphys_as(firmware_filename,
166 firmware_load_addr,
167 current_machine->ram_size, NULL);
168
169 if (firmware_size > 0) {
170 return firmware_load_addr + firmware_size;
171 }
172
173 error_report("could not load firmware '%s'", firmware_filename);
174 exit(1);
175 }
176
riscv_load_initrd(MachineState * machine,uint64_t kernel_entry)177 static void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry)
178 {
179 const char *filename = machine->initrd_filename;
180 uint64_t mem_size = machine->ram_size;
181 void *fdt = machine->fdt;
182 hwaddr start, end;
183 ssize_t size;
184
185 g_assert(filename != NULL);
186
187 /*
188 * We want to put the initrd far enough into RAM that when the
189 * kernel is uncompressed it will not clobber the initrd. However
190 * on boards without much RAM we must ensure that we still leave
191 * enough room for a decent sized initrd, and on boards with large
192 * amounts of RAM, we put the initrd at 512MB to allow large kernels
193 * to boot.
194 * So for boards with less than 1GB of RAM we put the initrd
195 * halfway into RAM, and for boards with 1GB of RAM or more we put
196 * the initrd at 512MB.
197 */
198 start = kernel_entry + MIN(mem_size / 2, 512 * MiB);
199
200 size = load_ramdisk(filename, start, mem_size - start);
201 if (size == -1) {
202 size = load_image_targphys(filename, start, mem_size - start);
203 if (size == -1) {
204 error_report("could not load ramdisk '%s'", filename);
205 exit(1);
206 }
207 }
208
209 /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
210 if (fdt) {
211 end = start + size;
212 qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-start", start);
213 qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-end", end);
214 }
215 }
216
riscv_load_kernel(MachineState * machine,RISCVHartArrayState * harts,target_ulong kernel_start_addr,bool load_initrd,symbol_fn_t sym_cb)217 target_ulong riscv_load_kernel(MachineState *machine,
218 RISCVHartArrayState *harts,
219 target_ulong kernel_start_addr,
220 bool load_initrd,
221 symbol_fn_t sym_cb)
222 {
223 const char *kernel_filename = machine->kernel_filename;
224 uint64_t kernel_load_base, kernel_entry;
225 void *fdt = machine->fdt;
226
227 g_assert(kernel_filename != NULL);
228
229 /*
230 * NB: Use low address not ELF entry point to ensure that the fw_dynamic
231 * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
232 * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
233 * the (expected) load address load address. This allows kernels to have
234 * separate SBI and ELF entry points (used by FreeBSD, for example).
235 */
236 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
237 NULL, &kernel_load_base, NULL, NULL, 0,
238 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
239 kernel_entry = kernel_load_base;
240 goto out;
241 }
242
243 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
244 NULL, NULL, NULL) > 0) {
245 goto out;
246 }
247
248 if (load_image_targphys_as(kernel_filename, kernel_start_addr,
249 current_machine->ram_size, NULL) > 0) {
250 kernel_entry = kernel_start_addr;
251 goto out;
252 }
253
254 error_report("could not load kernel '%s'", kernel_filename);
255 exit(1);
256
257 out:
258 /*
259 * For 32 bit CPUs 'kernel_entry' can be sign-extended by
260 * load_elf_ram_sym().
261 */
262 if (riscv_is_32bit(harts)) {
263 kernel_entry = extract64(kernel_entry, 0, 32);
264 }
265
266 if (load_initrd && machine->initrd_filename) {
267 riscv_load_initrd(machine, kernel_entry);
268 }
269
270 if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) {
271 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
272 machine->kernel_cmdline);
273 }
274
275 return kernel_entry;
276 }
277
278 /*
279 * This function makes an assumption that the DRAM interval
280 * 'dram_base' + 'dram_size' is contiguous.
281 *
282 * Considering that 'dram_end' is the lowest value between
283 * the end of the DRAM block and MachineState->ram_size, the
284 * FDT location will vary according to 'dram_base':
285 *
286 * - if 'dram_base' is less that 3072 MiB, the FDT will be
287 * put at the lowest value between 3072 MiB and 'dram_end';
288 *
289 * - if 'dram_base' is higher than 3072 MiB, the FDT will be
290 * put at 'dram_end'.
291 *
292 * The FDT is fdt_packed() during the calculation.
293 */
riscv_compute_fdt_addr(hwaddr dram_base,hwaddr dram_size,MachineState * ms)294 uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size,
295 MachineState *ms)
296 {
297 int ret = fdt_pack(ms->fdt);
298 hwaddr dram_end, temp;
299 int fdtsize;
300
301 /* Should only fail if we've built a corrupted tree */
302 g_assert(ret == 0);
303
304 fdtsize = fdt_totalsize(ms->fdt);
305 if (fdtsize <= 0) {
306 error_report("invalid device-tree");
307 exit(1);
308 }
309
310 /*
311 * A dram_size == 0, usually from a MemMapEntry[].size element,
312 * means that the DRAM block goes all the way to ms->ram_size.
313 */
314 dram_end = dram_base;
315 dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size;
316
317 /*
318 * We should put fdt as far as possible to avoid kernel/initrd overwriting
319 * its content. But it should be addressable by 32 bit system as well.
320 * Thus, put it at an 2MB aligned address that less than fdt size from the
321 * end of dram or 3GB whichever is lesser.
322 */
323 temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
324
325 return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
326 }
327
328 /*
329 * 'fdt_addr' is received as hwaddr because boards might put
330 * the FDT beyond 32-bit addressing boundary.
331 */
riscv_load_fdt(hwaddr fdt_addr,void * fdt)332 void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
333 {
334 uint32_t fdtsize = fdt_totalsize(fdt);
335
336 /* copy in the device tree */
337 qemu_fdt_dumpdtb(fdt, fdtsize);
338
339 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
340 &address_space_memory);
341 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
342 rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
343 }
344
riscv_rom_copy_firmware_info(MachineState * machine,hwaddr rom_base,hwaddr rom_size,uint32_t reset_vec_size,uint64_t kernel_entry)345 void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
346 hwaddr rom_size, uint32_t reset_vec_size,
347 uint64_t kernel_entry)
348 {
349 struct fw_dynamic_info dinfo;
350 size_t dinfo_len;
351
352 if (sizeof(dinfo.magic) == 4) {
353 dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
354 dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
355 dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
356 dinfo.next_addr = cpu_to_le32(kernel_entry);
357 } else {
358 dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
359 dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
360 dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
361 dinfo.next_addr = cpu_to_le64(kernel_entry);
362 }
363 dinfo.options = 0;
364 dinfo.boot_hart = 0;
365 dinfo_len = sizeof(dinfo);
366
367 /**
368 * copy the dynamic firmware info. This information is specific to
369 * OpenSBI but doesn't break any other firmware as long as they don't
370 * expect any certain value in "a2" register.
371 */
372 if (dinfo_len > (rom_size - reset_vec_size)) {
373 error_report("not enough space to store dynamic firmware info");
374 exit(1);
375 }
376
377 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
378 rom_base + reset_vec_size,
379 &address_space_memory);
380 }
381
riscv_setup_rom_reset_vec(MachineState * machine,RISCVHartArrayState * harts,hwaddr start_addr,hwaddr rom_base,hwaddr rom_size,uint64_t kernel_entry,uint64_t fdt_load_addr)382 void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
383 hwaddr start_addr,
384 hwaddr rom_base, hwaddr rom_size,
385 uint64_t kernel_entry,
386 uint64_t fdt_load_addr)
387 {
388 int i;
389 uint32_t start_addr_hi32 = 0x00000000;
390 uint32_t fdt_load_addr_hi32 = 0x00000000;
391
392 if (!riscv_is_32bit(harts)) {
393 start_addr_hi32 = start_addr >> 32;
394 fdt_load_addr_hi32 = fdt_load_addr >> 32;
395 }
396 /* reset vector */
397 uint32_t reset_vec[10] = {
398 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
399 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
400 0xf1402573, /* csrr a0, mhartid */
401 0,
402 0,
403 0x00028067, /* jr t0 */
404 start_addr, /* start: .dword */
405 start_addr_hi32,
406 fdt_load_addr, /* fdt_laddr: .dword */
407 fdt_load_addr_hi32,
408 /* fw_dyn: */
409 };
410 if (riscv_is_32bit(harts)) {
411 reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
412 reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
413 } else {
414 reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
415 reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
416 }
417
418 if (!harts->harts[0].cfg.ext_zicsr) {
419 /*
420 * The Zicsr extension has been disabled, so let's ensure we don't
421 * run the CSR instruction. Let's fill the address with a non
422 * compressed nop.
423 */
424 reset_vec[2] = 0x00000013; /* addi x0, x0, 0 */
425 }
426
427 /* copy in the reset vector in little_endian byte order */
428 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
429 reset_vec[i] = cpu_to_le32(reset_vec[i]);
430 }
431 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
432 rom_base, &address_space_memory);
433 riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
434 kernel_entry);
435 }
436
riscv_setup_direct_kernel(hwaddr kernel_addr,hwaddr fdt_addr)437 void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
438 {
439 CPUState *cs;
440
441 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
442 RISCVCPU *riscv_cpu = RISCV_CPU(cs);
443 riscv_cpu->env.kernel_addr = kernel_addr;
444 riscv_cpu->env.fdt_addr = fdt_addr;
445 }
446 }
447
riscv_setup_firmware_boot(MachineState * machine)448 void riscv_setup_firmware_boot(MachineState *machine)
449 {
450 if (machine->kernel_filename) {
451 FWCfgState *fw_cfg;
452 fw_cfg = fw_cfg_find();
453
454 assert(fw_cfg);
455 /*
456 * Expose the kernel, the command line, and the initrd in fw_cfg.
457 * We don't process them here at all, it's all left to the
458 * firmware.
459 */
460 load_image_to_fw_cfg(fw_cfg,
461 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
462 machine->kernel_filename,
463 true);
464 load_image_to_fw_cfg(fw_cfg,
465 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
466 machine->initrd_filename, false);
467
468 if (machine->kernel_cmdline) {
469 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
470 strlen(machine->kernel_cmdline) + 1);
471 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
472 machine->kernel_cmdline);
473 }
474 }
475 }
476