1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel IXP4xx Ethernet driver for Linux
4 *
5 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6 *
7 * Ethernet port config (0x00 is not present on IXP42X):
8 *
9 * logical port 0x00 0x10 0x20
10 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
11 * physical PortId 2 0 1
12 * TX queue 23 24 25
13 * RX-free queue 26 27 28
14 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
15 *
16 * Queue entries:
17 * bits 0 -> 1 - NPE ID (RX and TX-done)
18 * bits 0 -> 2 - priority (TX, per 802.1D)
19 * bits 3 -> 4 - port ID (user-set?)
20 * bits 5 -> 31 - physical descriptor address
21 */
22
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmapool.h>
26 #include <linux/etherdevice.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/of.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/phy.h>
34 #include <linux/platform_device.h>
35 #include <linux/ptp_classify.h>
36 #include <linux/slab.h>
37 #include <linux/module.h>
38 #include <linux/soc/ixp4xx/npe.h>
39 #include <linux/soc/ixp4xx/qmgr.h>
40 #include <linux/soc/ixp4xx/cpu.h>
41 #include <linux/types.h>
42
43 #define IXP4XX_ETH_NPEA 0x00
44 #define IXP4XX_ETH_NPEB 0x10
45 #define IXP4XX_ETH_NPEC 0x20
46
47 #include "ixp46x_ts.h"
48
49 #define DEBUG_DESC 0
50 #define DEBUG_RX 0
51 #define DEBUG_TX 0
52 #define DEBUG_PKT_BYTES 0
53 #define DEBUG_MDIO 0
54 #define DEBUG_CLOSE 0
55
56 #define DRV_NAME "ixp4xx_eth"
57
58 #define MAX_NPES 3
59
60 #define RX_DESCS 64 /* also length of all RX queues */
61 #define TX_DESCS 16 /* also length of all TX queues */
62 #define TXDONE_QUEUE_LEN 64 /* dwords */
63
64 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
65 #define REGS_SIZE 0x1000
66 #define MAX_MRU 1536 /* 0x600 */
67 #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
68
69 #define NAPI_WEIGHT 16
70 #define MDIO_INTERVAL (3 * HZ)
71 #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
72 #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
73
74 #define NPE_ID(port_id) ((port_id) >> 4)
75 #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
76 #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
77 #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
78 #define TXDONE_QUEUE 31
79
80 #define PTP_SLAVE_MODE 1
81 #define PTP_MASTER_MODE 2
82 #define PORT2CHANNEL(p) NPE_ID(p->id)
83
84 /* TX Control Registers */
85 #define TX_CNTRL0_TX_EN 0x01
86 #define TX_CNTRL0_HALFDUPLEX 0x02
87 #define TX_CNTRL0_RETRY 0x04
88 #define TX_CNTRL0_PAD_EN 0x08
89 #define TX_CNTRL0_APPEND_FCS 0x10
90 #define TX_CNTRL0_2DEFER 0x20
91 #define TX_CNTRL0_RMII 0x40 /* reduced MII */
92 #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
93
94 /* RX Control Registers */
95 #define RX_CNTRL0_RX_EN 0x01
96 #define RX_CNTRL0_PADSTRIP_EN 0x02
97 #define RX_CNTRL0_SEND_FCS 0x04
98 #define RX_CNTRL0_PAUSE_EN 0x08
99 #define RX_CNTRL0_LOOP_EN 0x10
100 #define RX_CNTRL0_ADDR_FLTR_EN 0x20
101 #define RX_CNTRL0_RX_RUNT_EN 0x40
102 #define RX_CNTRL0_BCAST_DIS 0x80
103 #define RX_CNTRL1_DEFER_EN 0x01
104
105 /* Core Control Register */
106 #define CORE_RESET 0x01
107 #define CORE_RX_FIFO_FLUSH 0x02
108 #define CORE_TX_FIFO_FLUSH 0x04
109 #define CORE_SEND_JAM 0x08
110 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
111
112 #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
113 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
114 TX_CNTRL0_2DEFER)
115 #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
116 #define DEFAULT_CORE_CNTRL CORE_MDC_EN
117
118
119 /* NPE message codes */
120 #define NPE_GETSTATUS 0x00
121 #define NPE_EDB_SETPORTADDRESS 0x01
122 #define NPE_EDB_GETMACADDRESSDATABASE 0x02
123 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
124 #define NPE_GETSTATS 0x04
125 #define NPE_RESETSTATS 0x05
126 #define NPE_SETMAXFRAMELENGTHS 0x06
127 #define NPE_VLAN_SETRXTAGMODE 0x07
128 #define NPE_VLAN_SETDEFAULTRXVID 0x08
129 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
130 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
131 #define NPE_VLAN_SETRXQOSENTRY 0x0B
132 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
133 #define NPE_STP_SETBLOCKINGSTATE 0x0D
134 #define NPE_FW_SETFIREWALLMODE 0x0E
135 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
136 #define NPE_PC_SETAPMACTABLE 0x11
137 #define NPE_SETLOOPBACK_MODE 0x12
138 #define NPE_PC_SETBSSIDTABLE 0x13
139 #define NPE_ADDRESS_FILTER_CONFIG 0x14
140 #define NPE_APPENDFCSCONFIG 0x15
141 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
142 #define NPE_MAC_RECOVERY_START 0x17
143
144
145 #ifdef __ARMEB__
146 typedef struct sk_buff buffer_t;
147 #define free_buffer dev_kfree_skb
148 #define free_buffer_irq dev_consume_skb_irq
149 #else
150 typedef void buffer_t;
151 #define free_buffer kfree
152 #define free_buffer_irq kfree
153 #endif
154
155 /* Information about built-in Ethernet MAC interfaces */
156 struct eth_plat_info {
157 u8 phy; /* MII PHY ID, 0 - 31 */
158 u8 rxq; /* configurable, currently 0 - 31 only */
159 u8 txreadyq;
160 u8 hwaddr[ETH_ALEN];
161 u8 npe; /* NPE instance used by this interface */
162 bool has_mdio; /* If this instance has an MDIO bus */
163 };
164
165 struct eth_regs {
166 u32 tx_control[2], __res1[2]; /* 000 */
167 u32 rx_control[2], __res2[2]; /* 010 */
168 u32 random_seed, __res3[3]; /* 020 */
169 u32 partial_empty_threshold, __res4; /* 030 */
170 u32 partial_full_threshold, __res5; /* 038 */
171 u32 tx_start_bytes, __res6[3]; /* 040 */
172 u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
173 u32 tx_2part_deferral[2], __res8[2]; /* 060 */
174 u32 slot_time, __res9[3]; /* 070 */
175 u32 mdio_command[4]; /* 080 */
176 u32 mdio_status[4]; /* 090 */
177 u32 mcast_mask[6], __res10[2]; /* 0A0 */
178 u32 mcast_addr[6], __res11[2]; /* 0C0 */
179 u32 int_clock_threshold, __res12[3]; /* 0E0 */
180 u32 hw_addr[6], __res13[61]; /* 0F0 */
181 u32 core_control; /* 1FC */
182 };
183
184 struct port {
185 struct eth_regs __iomem *regs;
186 struct ixp46x_ts_regs __iomem *timesync_regs;
187 int phc_index;
188 struct npe *npe;
189 struct net_device *netdev;
190 struct napi_struct napi;
191 struct eth_plat_info *plat;
192 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
193 struct desc *desc_tab; /* coherent */
194 dma_addr_t desc_tab_phys;
195 int id; /* logical port ID */
196 int speed, duplex;
197 u8 firmware[4];
198 int hwts_tx_en;
199 int hwts_rx_en;
200 };
201
202 /* NPE message structure */
203 struct msg {
204 #ifdef __ARMEB__
205 u8 cmd, eth_id, byte2, byte3;
206 u8 byte4, byte5, byte6, byte7;
207 #else
208 u8 byte3, byte2, eth_id, cmd;
209 u8 byte7, byte6, byte5, byte4;
210 #endif
211 };
212
213 /* Ethernet packet descriptor */
214 struct desc {
215 u32 next; /* pointer to next buffer, unused */
216
217 #ifdef __ARMEB__
218 u16 buf_len; /* buffer length */
219 u16 pkt_len; /* packet length */
220 u32 data; /* pointer to data buffer in RAM */
221 u8 dest_id;
222 u8 src_id;
223 u16 flags;
224 u8 qos;
225 u8 padlen;
226 u16 vlan_tci;
227 #else
228 u16 pkt_len; /* packet length */
229 u16 buf_len; /* buffer length */
230 u32 data; /* pointer to data buffer in RAM */
231 u16 flags;
232 u8 src_id;
233 u8 dest_id;
234 u16 vlan_tci;
235 u8 padlen;
236 u8 qos;
237 #endif
238
239 #ifdef __ARMEB__
240 u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
241 u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
242 u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
243 #else
244 u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
245 u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
246 u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
247 #endif
248 };
249
250
251 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
252 (n) * sizeof(struct desc))
253 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
254
255 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
256 ((n) + RX_DESCS) * sizeof(struct desc))
257 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
258
259 #ifndef __ARMEB__
memcpy_swab32(u32 * dest,u32 * src,int cnt)260 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
261 {
262 int i;
263 for (i = 0; i < cnt; i++)
264 dest[i] = swab32(src[i]);
265 }
266 #endif
267
268 static DEFINE_SPINLOCK(mdio_lock);
269 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
270 static struct mii_bus *mdio_bus;
271 static struct device_node *mdio_bus_np;
272 static int ports_open;
273 static struct port *npe_port_tab[MAX_NPES];
274 static struct dma_pool *dma_pool;
275
ixp_ptp_match(struct sk_buff * skb,u16 uid_hi,u32 uid_lo,u16 seqid)276 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
277 {
278 u8 *data = skb->data;
279 unsigned int offset;
280 u16 *hi, *id;
281 u32 lo;
282
283 if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4)
284 return 0;
285
286 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
287
288 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
289 return 0;
290
291 hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
292 id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
293
294 memcpy(&lo, &hi[1], sizeof(lo));
295
296 return (uid_hi == ntohs(*hi) &&
297 uid_lo == ntohl(lo) &&
298 seqid == ntohs(*id));
299 }
300
ixp_rx_timestamp(struct port * port,struct sk_buff * skb)301 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
302 {
303 struct skb_shared_hwtstamps *shhwtstamps;
304 struct ixp46x_ts_regs *regs;
305 u64 ns;
306 u32 ch, hi, lo, val;
307 u16 uid, seq;
308
309 if (!port->hwts_rx_en)
310 return;
311
312 ch = PORT2CHANNEL(port);
313
314 regs = port->timesync_regs;
315
316 val = __raw_readl(®s->channel[ch].ch_event);
317
318 if (!(val & RX_SNAPSHOT_LOCKED))
319 return;
320
321 lo = __raw_readl(®s->channel[ch].src_uuid_lo);
322 hi = __raw_readl(®s->channel[ch].src_uuid_hi);
323
324 uid = hi & 0xffff;
325 seq = (hi >> 16) & 0xffff;
326
327 if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
328 goto out;
329
330 lo = __raw_readl(®s->channel[ch].rx_snap_lo);
331 hi = __raw_readl(®s->channel[ch].rx_snap_hi);
332 ns = ((u64) hi) << 32;
333 ns |= lo;
334 ns <<= TICKS_NS_SHIFT;
335
336 shhwtstamps = skb_hwtstamps(skb);
337 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
338 shhwtstamps->hwtstamp = ns_to_ktime(ns);
339 out:
340 __raw_writel(RX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event);
341 }
342
ixp_tx_timestamp(struct port * port,struct sk_buff * skb)343 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
344 {
345 struct skb_shared_hwtstamps shhwtstamps;
346 struct ixp46x_ts_regs *regs;
347 struct skb_shared_info *shtx;
348 u64 ns;
349 u32 ch, cnt, hi, lo, val;
350
351 shtx = skb_shinfo(skb);
352 if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
353 shtx->tx_flags |= SKBTX_IN_PROGRESS;
354 else
355 return;
356
357 ch = PORT2CHANNEL(port);
358
359 regs = port->timesync_regs;
360
361 /*
362 * This really stinks, but we have to poll for the Tx time stamp.
363 * Usually, the time stamp is ready after 4 to 6 microseconds.
364 */
365 for (cnt = 0; cnt < 100; cnt++) {
366 val = __raw_readl(®s->channel[ch].ch_event);
367 if (val & TX_SNAPSHOT_LOCKED)
368 break;
369 udelay(1);
370 }
371 if (!(val & TX_SNAPSHOT_LOCKED)) {
372 shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
373 return;
374 }
375
376 lo = __raw_readl(®s->channel[ch].tx_snap_lo);
377 hi = __raw_readl(®s->channel[ch].tx_snap_hi);
378 ns = ((u64) hi) << 32;
379 ns |= lo;
380 ns <<= TICKS_NS_SHIFT;
381
382 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
383 shhwtstamps.hwtstamp = ns_to_ktime(ns);
384 skb_tstamp_tx(skb, &shhwtstamps);
385
386 __raw_writel(TX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event);
387 }
388
hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)389 static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
390 {
391 struct hwtstamp_config cfg;
392 struct ixp46x_ts_regs *regs;
393 struct port *port = netdev_priv(netdev);
394 int ret;
395 int ch;
396
397 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
398 return -EFAULT;
399
400 ret = ixp46x_ptp_find(&port->timesync_regs, &port->phc_index);
401 if (ret)
402 return ret;
403
404 ch = PORT2CHANNEL(port);
405 regs = port->timesync_regs;
406
407 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
408 return -ERANGE;
409
410 switch (cfg.rx_filter) {
411 case HWTSTAMP_FILTER_NONE:
412 port->hwts_rx_en = 0;
413 break;
414 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
415 port->hwts_rx_en = PTP_SLAVE_MODE;
416 __raw_writel(0, ®s->channel[ch].ch_control);
417 break;
418 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
419 port->hwts_rx_en = PTP_MASTER_MODE;
420 __raw_writel(MASTER_MODE, ®s->channel[ch].ch_control);
421 break;
422 default:
423 return -ERANGE;
424 }
425
426 port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
427
428 /* Clear out any old time stamps. */
429 __raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
430 ®s->channel[ch].ch_event);
431
432 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
433 }
434
hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)435 static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
436 {
437 struct hwtstamp_config cfg;
438 struct port *port = netdev_priv(netdev);
439
440 cfg.flags = 0;
441 cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
442
443 switch (port->hwts_rx_en) {
444 case 0:
445 cfg.rx_filter = HWTSTAMP_FILTER_NONE;
446 break;
447 case PTP_SLAVE_MODE:
448 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
449 break;
450 case PTP_MASTER_MODE:
451 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
452 break;
453 default:
454 WARN_ON_ONCE(1);
455 return -ERANGE;
456 }
457
458 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
459 }
460
ixp4xx_mdio_cmd(struct mii_bus * bus,int phy_id,int location,int write,u16 cmd)461 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
462 int write, u16 cmd)
463 {
464 int cycles = 0;
465
466 if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
467 printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
468 return -1;
469 }
470
471 if (write) {
472 __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
473 __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
474 }
475 __raw_writel(((phy_id << 5) | location) & 0xFF,
476 &mdio_regs->mdio_command[2]);
477 __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
478 &mdio_regs->mdio_command[3]);
479
480 while ((cycles < MAX_MDIO_RETRIES) &&
481 (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
482 udelay(1);
483 cycles++;
484 }
485
486 if (cycles == MAX_MDIO_RETRIES) {
487 printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
488 phy_id);
489 return -1;
490 }
491
492 #if DEBUG_MDIO
493 printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
494 phy_id, write ? "write" : "read", cycles);
495 #endif
496
497 if (write)
498 return 0;
499
500 if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
501 #if DEBUG_MDIO
502 printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
503 phy_id);
504 #endif
505 return 0xFFFF; /* don't return error */
506 }
507
508 return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
509 ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
510 }
511
ixp4xx_mdio_read(struct mii_bus * bus,int phy_id,int location)512 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
513 {
514 unsigned long flags;
515 int ret;
516
517 spin_lock_irqsave(&mdio_lock, flags);
518 ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
519 spin_unlock_irqrestore(&mdio_lock, flags);
520 #if DEBUG_MDIO
521 printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
522 phy_id, location, ret);
523 #endif
524 return ret;
525 }
526
ixp4xx_mdio_write(struct mii_bus * bus,int phy_id,int location,u16 val)527 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
528 u16 val)
529 {
530 unsigned long flags;
531 int ret;
532
533 spin_lock_irqsave(&mdio_lock, flags);
534 ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
535 spin_unlock_irqrestore(&mdio_lock, flags);
536 #if DEBUG_MDIO
537 printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
538 bus->name, phy_id, location, val, ret);
539 #endif
540 return ret;
541 }
542
ixp4xx_mdio_register(struct eth_regs __iomem * regs)543 static int ixp4xx_mdio_register(struct eth_regs __iomem *regs)
544 {
545 int err;
546
547 if (!(mdio_bus = mdiobus_alloc()))
548 return -ENOMEM;
549
550 mdio_regs = regs;
551 __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
552 mdio_bus->name = "IXP4xx MII Bus";
553 mdio_bus->read = &ixp4xx_mdio_read;
554 mdio_bus->write = &ixp4xx_mdio_write;
555 snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
556
557 err = of_mdiobus_register(mdio_bus, mdio_bus_np);
558 if (err)
559 mdiobus_free(mdio_bus);
560 return err;
561 }
562
ixp4xx_mdio_remove(void)563 static void ixp4xx_mdio_remove(void)
564 {
565 mdiobus_unregister(mdio_bus);
566 mdiobus_free(mdio_bus);
567 }
568
569
ixp4xx_adjust_link(struct net_device * dev)570 static void ixp4xx_adjust_link(struct net_device *dev)
571 {
572 struct port *port = netdev_priv(dev);
573 struct phy_device *phydev = dev->phydev;
574
575 if (!phydev->link) {
576 if (port->speed) {
577 port->speed = 0;
578 printk(KERN_INFO "%s: link down\n", dev->name);
579 }
580 return;
581 }
582
583 if (port->speed == phydev->speed && port->duplex == phydev->duplex)
584 return;
585
586 port->speed = phydev->speed;
587 port->duplex = phydev->duplex;
588
589 if (port->duplex)
590 __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
591 &port->regs->tx_control[0]);
592 else
593 __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
594 &port->regs->tx_control[0]);
595
596 netdev_info(dev, "%s: link up, speed %u Mb/s, %s duplex\n",
597 dev->name, port->speed, port->duplex ? "full" : "half");
598 }
599
600
debug_pkt(struct net_device * dev,const char * func,u8 * data,int len)601 static inline void debug_pkt(struct net_device *dev, const char *func,
602 u8 *data, int len)
603 {
604 #if DEBUG_PKT_BYTES
605 int i;
606
607 netdev_debug(dev, "%s(%i) ", func, len);
608 for (i = 0; i < len; i++) {
609 if (i >= DEBUG_PKT_BYTES)
610 break;
611 printk("%s%02X",
612 ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
613 data[i]);
614 }
615 printk("\n");
616 #endif
617 }
618
619
debug_desc(u32 phys,struct desc * desc)620 static inline void debug_desc(u32 phys, struct desc *desc)
621 {
622 #if DEBUG_DESC
623 printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
624 " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
625 phys, desc->next, desc->buf_len, desc->pkt_len,
626 desc->data, desc->dest_id, desc->src_id, desc->flags,
627 desc->qos, desc->padlen, desc->vlan_tci,
628 desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
629 desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
630 desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
631 desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
632 #endif
633 }
634
queue_get_desc(unsigned int queue,struct port * port,int is_tx)635 static inline int queue_get_desc(unsigned int queue, struct port *port,
636 int is_tx)
637 {
638 u32 phys, tab_phys, n_desc;
639 struct desc *tab;
640
641 if (!(phys = qmgr_get_entry(queue)))
642 return -1;
643
644 phys &= ~0x1F; /* mask out non-address bits */
645 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
646 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
647 n_desc = (phys - tab_phys) / sizeof(struct desc);
648 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
649 debug_desc(phys, &tab[n_desc]);
650 BUG_ON(tab[n_desc].next);
651 return n_desc;
652 }
653
queue_put_desc(unsigned int queue,u32 phys,struct desc * desc)654 static inline void queue_put_desc(unsigned int queue, u32 phys,
655 struct desc *desc)
656 {
657 debug_desc(phys, desc);
658 BUG_ON(phys & 0x1F);
659 qmgr_put_entry(queue, phys);
660 /* Don't check for queue overflow here, we've allocated sufficient
661 length and queues >= 32 don't support this check anyway. */
662 }
663
664
dma_unmap_tx(struct port * port,struct desc * desc)665 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
666 {
667 #ifdef __ARMEB__
668 dma_unmap_single(&port->netdev->dev, desc->data,
669 desc->buf_len, DMA_TO_DEVICE);
670 #else
671 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
672 ALIGN((desc->data & 3) + desc->buf_len, 4),
673 DMA_TO_DEVICE);
674 #endif
675 }
676
677
eth_rx_irq(void * pdev)678 static void eth_rx_irq(void *pdev)
679 {
680 struct net_device *dev = pdev;
681 struct port *port = netdev_priv(dev);
682
683 #if DEBUG_RX
684 printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
685 #endif
686 qmgr_disable_irq(port->plat->rxq);
687 napi_schedule(&port->napi);
688 }
689
eth_poll(struct napi_struct * napi,int budget)690 static int eth_poll(struct napi_struct *napi, int budget)
691 {
692 struct port *port = container_of(napi, struct port, napi);
693 struct net_device *dev = port->netdev;
694 unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
695 int received = 0;
696
697 #if DEBUG_RX
698 netdev_debug(dev, "eth_poll\n");
699 #endif
700
701 while (received < budget) {
702 struct sk_buff *skb;
703 struct desc *desc;
704 int n;
705 #ifdef __ARMEB__
706 struct sk_buff *temp;
707 u32 phys;
708 #endif
709
710 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
711 #if DEBUG_RX
712 netdev_debug(dev, "eth_poll napi_complete\n");
713 #endif
714 napi_complete(napi);
715 qmgr_enable_irq(rxq);
716 if (!qmgr_stat_below_low_watermark(rxq) &&
717 napi_reschedule(napi)) { /* not empty again */
718 #if DEBUG_RX
719 netdev_debug(dev, "eth_poll napi_reschedule succeeded\n");
720 #endif
721 qmgr_disable_irq(rxq);
722 continue;
723 }
724 #if DEBUG_RX
725 netdev_debug(dev, "eth_poll all done\n");
726 #endif
727 return received; /* all work done */
728 }
729
730 desc = rx_desc_ptr(port, n);
731
732 #ifdef __ARMEB__
733 if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
734 phys = dma_map_single(&dev->dev, skb->data,
735 RX_BUFF_SIZE, DMA_FROM_DEVICE);
736 if (dma_mapping_error(&dev->dev, phys)) {
737 dev_kfree_skb(skb);
738 skb = NULL;
739 }
740 }
741 #else
742 skb = netdev_alloc_skb(dev,
743 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
744 #endif
745
746 if (!skb) {
747 dev->stats.rx_dropped++;
748 /* put the desc back on RX-ready queue */
749 desc->buf_len = MAX_MRU;
750 desc->pkt_len = 0;
751 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
752 continue;
753 }
754
755 /* process received frame */
756 #ifdef __ARMEB__
757 temp = skb;
758 skb = port->rx_buff_tab[n];
759 dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
760 RX_BUFF_SIZE, DMA_FROM_DEVICE);
761 #else
762 dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
763 RX_BUFF_SIZE, DMA_FROM_DEVICE);
764 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
765 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
766 #endif
767 skb_reserve(skb, NET_IP_ALIGN);
768 skb_put(skb, desc->pkt_len);
769
770 debug_pkt(dev, "eth_poll", skb->data, skb->len);
771
772 ixp_rx_timestamp(port, skb);
773 skb->protocol = eth_type_trans(skb, dev);
774 dev->stats.rx_packets++;
775 dev->stats.rx_bytes += skb->len;
776 netif_receive_skb(skb);
777
778 /* put the new buffer on RX-free queue */
779 #ifdef __ARMEB__
780 port->rx_buff_tab[n] = temp;
781 desc->data = phys + NET_IP_ALIGN;
782 #endif
783 desc->buf_len = MAX_MRU;
784 desc->pkt_len = 0;
785 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
786 received++;
787 }
788
789 #if DEBUG_RX
790 netdev_debug(dev, "eth_poll(): end, not all work done\n");
791 #endif
792 return received; /* not all work done */
793 }
794
795
eth_txdone_irq(void * unused)796 static void eth_txdone_irq(void *unused)
797 {
798 u32 phys;
799
800 #if DEBUG_TX
801 printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
802 #endif
803 while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
804 u32 npe_id, n_desc;
805 struct port *port;
806 struct desc *desc;
807 int start;
808
809 npe_id = phys & 3;
810 BUG_ON(npe_id >= MAX_NPES);
811 port = npe_port_tab[npe_id];
812 BUG_ON(!port);
813 phys &= ~0x1F; /* mask out non-address bits */
814 n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
815 BUG_ON(n_desc >= TX_DESCS);
816 desc = tx_desc_ptr(port, n_desc);
817 debug_desc(phys, desc);
818
819 if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
820 port->netdev->stats.tx_packets++;
821 port->netdev->stats.tx_bytes += desc->pkt_len;
822
823 dma_unmap_tx(port, desc);
824 #if DEBUG_TX
825 printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
826 port->netdev->name, port->tx_buff_tab[n_desc]);
827 #endif
828 free_buffer_irq(port->tx_buff_tab[n_desc]);
829 port->tx_buff_tab[n_desc] = NULL;
830 }
831
832 start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
833 queue_put_desc(port->plat->txreadyq, phys, desc);
834 if (start) { /* TX-ready queue was empty */
835 #if DEBUG_TX
836 printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
837 port->netdev->name);
838 #endif
839 netif_wake_queue(port->netdev);
840 }
841 }
842 }
843
eth_xmit(struct sk_buff * skb,struct net_device * dev)844 static netdev_tx_t eth_xmit(struct sk_buff *skb, struct net_device *dev)
845 {
846 struct port *port = netdev_priv(dev);
847 unsigned int txreadyq = port->plat->txreadyq;
848 int len, offset, bytes, n;
849 void *mem;
850 u32 phys;
851 struct desc *desc;
852
853 #if DEBUG_TX
854 netdev_debug(dev, "eth_xmit\n");
855 #endif
856
857 if (unlikely(skb->len > MAX_MRU)) {
858 dev_kfree_skb(skb);
859 dev->stats.tx_errors++;
860 return NETDEV_TX_OK;
861 }
862
863 debug_pkt(dev, "eth_xmit", skb->data, skb->len);
864
865 len = skb->len;
866 #ifdef __ARMEB__
867 offset = 0; /* no need to keep alignment */
868 bytes = len;
869 mem = skb->data;
870 #else
871 offset = (uintptr_t)skb->data & 3; /* keep 32-bit alignment */
872 bytes = ALIGN(offset + len, 4);
873 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
874 dev_kfree_skb(skb);
875 dev->stats.tx_dropped++;
876 return NETDEV_TX_OK;
877 }
878 memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
879 #endif
880
881 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
882 if (dma_mapping_error(&dev->dev, phys)) {
883 dev_kfree_skb(skb);
884 #ifndef __ARMEB__
885 kfree(mem);
886 #endif
887 dev->stats.tx_dropped++;
888 return NETDEV_TX_OK;
889 }
890
891 n = queue_get_desc(txreadyq, port, 1);
892 BUG_ON(n < 0);
893 desc = tx_desc_ptr(port, n);
894
895 #ifdef __ARMEB__
896 port->tx_buff_tab[n] = skb;
897 #else
898 port->tx_buff_tab[n] = mem;
899 #endif
900 desc->data = phys + offset;
901 desc->buf_len = desc->pkt_len = len;
902
903 /* NPE firmware pads short frames with zeros internally */
904 wmb();
905 queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
906
907 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
908 #if DEBUG_TX
909 netdev_debug(dev, "eth_xmit queue full\n");
910 #endif
911 netif_stop_queue(dev);
912 /* we could miss TX ready interrupt */
913 /* really empty in fact */
914 if (!qmgr_stat_below_low_watermark(txreadyq)) {
915 #if DEBUG_TX
916 netdev_debug(dev, "eth_xmit ready again\n");
917 #endif
918 netif_wake_queue(dev);
919 }
920 }
921
922 #if DEBUG_TX
923 netdev_debug(dev, "eth_xmit end\n");
924 #endif
925
926 ixp_tx_timestamp(port, skb);
927 skb_tx_timestamp(skb);
928
929 #ifndef __ARMEB__
930 dev_kfree_skb(skb);
931 #endif
932 return NETDEV_TX_OK;
933 }
934
935
eth_set_mcast_list(struct net_device * dev)936 static void eth_set_mcast_list(struct net_device *dev)
937 {
938 struct port *port = netdev_priv(dev);
939 struct netdev_hw_addr *ha;
940 u8 diffs[ETH_ALEN], *addr;
941 int i;
942 static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
943
944 if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) {
945 for (i = 0; i < ETH_ALEN; i++) {
946 __raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
947 __raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
948 }
949 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
950 &port->regs->rx_control[0]);
951 return;
952 }
953
954 if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
955 __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
956 &port->regs->rx_control[0]);
957 return;
958 }
959
960 eth_zero_addr(diffs);
961
962 addr = NULL;
963 netdev_for_each_mc_addr(ha, dev) {
964 if (!addr)
965 addr = ha->addr; /* first MAC address */
966 for (i = 0; i < ETH_ALEN; i++)
967 diffs[i] |= addr[i] ^ ha->addr[i];
968 }
969
970 for (i = 0; i < ETH_ALEN; i++) {
971 __raw_writel(addr[i], &port->regs->mcast_addr[i]);
972 __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
973 }
974
975 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
976 &port->regs->rx_control[0]);
977 }
978
979
eth_ioctl(struct net_device * dev,struct ifreq * req,int cmd)980 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
981 {
982 if (!netif_running(dev))
983 return -EINVAL;
984
985 if (cpu_is_ixp46x()) {
986 if (cmd == SIOCSHWTSTAMP)
987 return hwtstamp_set(dev, req);
988 if (cmd == SIOCGHWTSTAMP)
989 return hwtstamp_get(dev, req);
990 }
991
992 return phy_mii_ioctl(dev->phydev, req, cmd);
993 }
994
995 /* ethtool support */
996
ixp4xx_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)997 static void ixp4xx_get_drvinfo(struct net_device *dev,
998 struct ethtool_drvinfo *info)
999 {
1000 struct port *port = netdev_priv(dev);
1001
1002 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1003 snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
1004 port->firmware[0], port->firmware[1],
1005 port->firmware[2], port->firmware[3]);
1006 strscpy(info->bus_info, "internal", sizeof(info->bus_info));
1007 }
1008
ixp4xx_get_ts_info(struct net_device * dev,struct ethtool_ts_info * info)1009 static int ixp4xx_get_ts_info(struct net_device *dev,
1010 struct ethtool_ts_info *info)
1011 {
1012 struct port *port = netdev_priv(dev);
1013
1014 if (port->phc_index < 0)
1015 ixp46x_ptp_find(&port->timesync_regs, &port->phc_index);
1016
1017 info->phc_index = port->phc_index;
1018
1019 if (info->phc_index < 0) {
1020 info->so_timestamping =
1021 SOF_TIMESTAMPING_TX_SOFTWARE |
1022 SOF_TIMESTAMPING_RX_SOFTWARE |
1023 SOF_TIMESTAMPING_SOFTWARE;
1024 return 0;
1025 }
1026 info->so_timestamping =
1027 SOF_TIMESTAMPING_TX_HARDWARE |
1028 SOF_TIMESTAMPING_RX_HARDWARE |
1029 SOF_TIMESTAMPING_RAW_HARDWARE;
1030 info->tx_types =
1031 (1 << HWTSTAMP_TX_OFF) |
1032 (1 << HWTSTAMP_TX_ON);
1033 info->rx_filters =
1034 (1 << HWTSTAMP_FILTER_NONE) |
1035 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1036 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1037 return 0;
1038 }
1039
1040 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1041 .get_drvinfo = ixp4xx_get_drvinfo,
1042 .nway_reset = phy_ethtool_nway_reset,
1043 .get_link = ethtool_op_get_link,
1044 .get_ts_info = ixp4xx_get_ts_info,
1045 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1046 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1047 };
1048
1049
request_queues(struct port * port)1050 static int request_queues(struct port *port)
1051 {
1052 int err;
1053
1054 err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1055 "%s:RX-free", port->netdev->name);
1056 if (err)
1057 return err;
1058
1059 err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1060 "%s:RX", port->netdev->name);
1061 if (err)
1062 goto rel_rxfree;
1063
1064 err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1065 "%s:TX", port->netdev->name);
1066 if (err)
1067 goto rel_rx;
1068
1069 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1070 "%s:TX-ready", port->netdev->name);
1071 if (err)
1072 goto rel_tx;
1073
1074 /* TX-done queue handles skbs sent out by the NPEs */
1075 if (!ports_open) {
1076 err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1077 "%s:TX-done", DRV_NAME);
1078 if (err)
1079 goto rel_txready;
1080 }
1081 return 0;
1082
1083 rel_txready:
1084 qmgr_release_queue(port->plat->txreadyq);
1085 rel_tx:
1086 qmgr_release_queue(TX_QUEUE(port->id));
1087 rel_rx:
1088 qmgr_release_queue(port->plat->rxq);
1089 rel_rxfree:
1090 qmgr_release_queue(RXFREE_QUEUE(port->id));
1091 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1092 port->netdev->name);
1093 return err;
1094 }
1095
release_queues(struct port * port)1096 static void release_queues(struct port *port)
1097 {
1098 qmgr_release_queue(RXFREE_QUEUE(port->id));
1099 qmgr_release_queue(port->plat->rxq);
1100 qmgr_release_queue(TX_QUEUE(port->id));
1101 qmgr_release_queue(port->plat->txreadyq);
1102
1103 if (!ports_open)
1104 qmgr_release_queue(TXDONE_QUEUE);
1105 }
1106
init_queues(struct port * port)1107 static int init_queues(struct port *port)
1108 {
1109 int i;
1110
1111 if (!ports_open) {
1112 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1113 POOL_ALLOC_SIZE, 32, 0);
1114 if (!dma_pool)
1115 return -ENOMEM;
1116 }
1117
1118 port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL, &port->desc_tab_phys);
1119 if (!port->desc_tab)
1120 return -ENOMEM;
1121 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1122 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1123
1124 /* Setup RX buffers */
1125 for (i = 0; i < RX_DESCS; i++) {
1126 struct desc *desc = rx_desc_ptr(port, i);
1127 buffer_t *buff; /* skb or kmalloc()ated memory */
1128 void *data;
1129 #ifdef __ARMEB__
1130 if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1131 return -ENOMEM;
1132 data = buff->data;
1133 #else
1134 if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1135 return -ENOMEM;
1136 data = buff;
1137 #endif
1138 desc->buf_len = MAX_MRU;
1139 desc->data = dma_map_single(&port->netdev->dev, data,
1140 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1141 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1142 free_buffer(buff);
1143 return -EIO;
1144 }
1145 desc->data += NET_IP_ALIGN;
1146 port->rx_buff_tab[i] = buff;
1147 }
1148
1149 return 0;
1150 }
1151
destroy_queues(struct port * port)1152 static void destroy_queues(struct port *port)
1153 {
1154 int i;
1155
1156 if (port->desc_tab) {
1157 for (i = 0; i < RX_DESCS; i++) {
1158 struct desc *desc = rx_desc_ptr(port, i);
1159 buffer_t *buff = port->rx_buff_tab[i];
1160 if (buff) {
1161 dma_unmap_single(&port->netdev->dev,
1162 desc->data - NET_IP_ALIGN,
1163 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1164 free_buffer(buff);
1165 }
1166 }
1167 for (i = 0; i < TX_DESCS; i++) {
1168 struct desc *desc = tx_desc_ptr(port, i);
1169 buffer_t *buff = port->tx_buff_tab[i];
1170 if (buff) {
1171 dma_unmap_tx(port, desc);
1172 free_buffer(buff);
1173 }
1174 }
1175 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1176 port->desc_tab = NULL;
1177 }
1178
1179 if (!ports_open && dma_pool) {
1180 dma_pool_destroy(dma_pool);
1181 dma_pool = NULL;
1182 }
1183 }
1184
eth_open(struct net_device * dev)1185 static int eth_open(struct net_device *dev)
1186 {
1187 struct port *port = netdev_priv(dev);
1188 struct npe *npe = port->npe;
1189 struct msg msg;
1190 int i, err;
1191
1192 if (!npe_running(npe)) {
1193 err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1194 if (err)
1195 return err;
1196
1197 if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1198 netdev_err(dev, "%s not responding\n", npe_name(npe));
1199 return -EIO;
1200 }
1201 port->firmware[0] = msg.byte4;
1202 port->firmware[1] = msg.byte5;
1203 port->firmware[2] = msg.byte6;
1204 port->firmware[3] = msg.byte7;
1205 }
1206
1207 memset(&msg, 0, sizeof(msg));
1208 msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1209 msg.eth_id = port->id;
1210 msg.byte5 = port->plat->rxq | 0x80;
1211 msg.byte7 = port->plat->rxq << 4;
1212 for (i = 0; i < 8; i++) {
1213 msg.byte3 = i;
1214 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1215 return -EIO;
1216 }
1217
1218 msg.cmd = NPE_EDB_SETPORTADDRESS;
1219 msg.eth_id = PHYSICAL_ID(port->id);
1220 msg.byte2 = dev->dev_addr[0];
1221 msg.byte3 = dev->dev_addr[1];
1222 msg.byte4 = dev->dev_addr[2];
1223 msg.byte5 = dev->dev_addr[3];
1224 msg.byte6 = dev->dev_addr[4];
1225 msg.byte7 = dev->dev_addr[5];
1226 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1227 return -EIO;
1228
1229 memset(&msg, 0, sizeof(msg));
1230 msg.cmd = NPE_FW_SETFIREWALLMODE;
1231 msg.eth_id = port->id;
1232 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1233 return -EIO;
1234
1235 if ((err = request_queues(port)) != 0)
1236 return err;
1237
1238 if ((err = init_queues(port)) != 0) {
1239 destroy_queues(port);
1240 release_queues(port);
1241 return err;
1242 }
1243
1244 port->speed = 0; /* force "link up" message */
1245 phy_start(dev->phydev);
1246
1247 for (i = 0; i < ETH_ALEN; i++)
1248 __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1249 __raw_writel(0x08, &port->regs->random_seed);
1250 __raw_writel(0x12, &port->regs->partial_empty_threshold);
1251 __raw_writel(0x30, &port->regs->partial_full_threshold);
1252 __raw_writel(0x08, &port->regs->tx_start_bytes);
1253 __raw_writel(0x15, &port->regs->tx_deferral);
1254 __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1255 __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1256 __raw_writel(0x80, &port->regs->slot_time);
1257 __raw_writel(0x01, &port->regs->int_clock_threshold);
1258
1259 /* Populate queues with buffers, no failure after this point */
1260 for (i = 0; i < TX_DESCS; i++)
1261 queue_put_desc(port->plat->txreadyq,
1262 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1263
1264 for (i = 0; i < RX_DESCS; i++)
1265 queue_put_desc(RXFREE_QUEUE(port->id),
1266 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1267
1268 __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1269 __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1270 __raw_writel(0, &port->regs->rx_control[1]);
1271 __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1272
1273 napi_enable(&port->napi);
1274 eth_set_mcast_list(dev);
1275 netif_start_queue(dev);
1276
1277 qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1278 eth_rx_irq, dev);
1279 if (!ports_open) {
1280 qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1281 eth_txdone_irq, NULL);
1282 qmgr_enable_irq(TXDONE_QUEUE);
1283 }
1284 ports_open++;
1285 /* we may already have RX data, enables IRQ */
1286 napi_schedule(&port->napi);
1287 return 0;
1288 }
1289
eth_close(struct net_device * dev)1290 static int eth_close(struct net_device *dev)
1291 {
1292 struct port *port = netdev_priv(dev);
1293 struct msg msg;
1294 int buffs = RX_DESCS; /* allocated RX buffers */
1295 int i;
1296
1297 ports_open--;
1298 qmgr_disable_irq(port->plat->rxq);
1299 napi_disable(&port->napi);
1300 netif_stop_queue(dev);
1301
1302 while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1303 buffs--;
1304
1305 memset(&msg, 0, sizeof(msg));
1306 msg.cmd = NPE_SETLOOPBACK_MODE;
1307 msg.eth_id = port->id;
1308 msg.byte3 = 1;
1309 if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1310 netdev_crit(dev, "unable to enable loopback\n");
1311
1312 i = 0;
1313 do { /* drain RX buffers */
1314 while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1315 buffs--;
1316 if (!buffs)
1317 break;
1318 if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1319 /* we have to inject some packet */
1320 struct desc *desc;
1321 u32 phys;
1322 int n = queue_get_desc(port->plat->txreadyq, port, 1);
1323 BUG_ON(n < 0);
1324 desc = tx_desc_ptr(port, n);
1325 phys = tx_desc_phys(port, n);
1326 desc->buf_len = desc->pkt_len = 1;
1327 wmb();
1328 queue_put_desc(TX_QUEUE(port->id), phys, desc);
1329 }
1330 udelay(1);
1331 } while (++i < MAX_CLOSE_WAIT);
1332
1333 if (buffs)
1334 netdev_crit(dev, "unable to drain RX queue, %i buffer(s)"
1335 " left in NPE\n", buffs);
1336 #if DEBUG_CLOSE
1337 if (!buffs)
1338 netdev_debug(dev, "draining RX queue took %i cycles\n", i);
1339 #endif
1340
1341 buffs = TX_DESCS;
1342 while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1343 buffs--; /* cancel TX */
1344
1345 i = 0;
1346 do {
1347 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1348 buffs--;
1349 if (!buffs)
1350 break;
1351 } while (++i < MAX_CLOSE_WAIT);
1352
1353 if (buffs)
1354 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) "
1355 "left in NPE\n", buffs);
1356 #if DEBUG_CLOSE
1357 if (!buffs)
1358 netdev_debug(dev, "draining TX queues took %i cycles\n", i);
1359 #endif
1360
1361 msg.byte3 = 0;
1362 if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1363 netdev_crit(dev, "unable to disable loopback\n");
1364
1365 phy_stop(dev->phydev);
1366
1367 if (!ports_open)
1368 qmgr_disable_irq(TXDONE_QUEUE);
1369 destroy_queues(port);
1370 release_queues(port);
1371 return 0;
1372 }
1373
1374 static const struct net_device_ops ixp4xx_netdev_ops = {
1375 .ndo_open = eth_open,
1376 .ndo_stop = eth_close,
1377 .ndo_start_xmit = eth_xmit,
1378 .ndo_set_rx_mode = eth_set_mcast_list,
1379 .ndo_eth_ioctl = eth_ioctl,
1380 .ndo_set_mac_address = eth_mac_addr,
1381 .ndo_validate_addr = eth_validate_addr,
1382 };
1383
ixp4xx_of_get_platdata(struct device * dev)1384 static struct eth_plat_info *ixp4xx_of_get_platdata(struct device *dev)
1385 {
1386 struct device_node *np = dev->of_node;
1387 struct of_phandle_args queue_spec;
1388 struct of_phandle_args npe_spec;
1389 struct device_node *mdio_np;
1390 struct eth_plat_info *plat;
1391 u8 mac[ETH_ALEN];
1392 int ret;
1393
1394 plat = devm_kzalloc(dev, sizeof(*plat), GFP_KERNEL);
1395 if (!plat)
1396 return NULL;
1397
1398 ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0,
1399 &npe_spec);
1400 if (ret) {
1401 dev_err(dev, "no NPE engine specified\n");
1402 return NULL;
1403 }
1404 /* NPE ID 0x00, 0x10, 0x20... */
1405 plat->npe = (npe_spec.args[0] << 4);
1406
1407 /* Check if this device has an MDIO bus */
1408 mdio_np = of_get_child_by_name(np, "mdio");
1409 if (mdio_np) {
1410 plat->has_mdio = true;
1411 mdio_bus_np = mdio_np;
1412 /* DO NOT put the mdio_np, it will be used */
1413 }
1414
1415 /* Get the rx queue as a resource from queue manager */
1416 ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
1417 &queue_spec);
1418 if (ret) {
1419 dev_err(dev, "no rx queue phandle\n");
1420 return NULL;
1421 }
1422 plat->rxq = queue_spec.args[0];
1423
1424 /* Get the txready queue as resource from queue manager */
1425 ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
1426 &queue_spec);
1427 if (ret) {
1428 dev_err(dev, "no txready queue phandle\n");
1429 return NULL;
1430 }
1431 plat->txreadyq = queue_spec.args[0];
1432
1433 ret = of_get_mac_address(np, mac);
1434 if (!ret) {
1435 dev_info(dev, "Setting macaddr from DT %pM\n", mac);
1436 memcpy(plat->hwaddr, mac, ETH_ALEN);
1437 }
1438
1439 return plat;
1440 }
1441
ixp4xx_eth_probe(struct platform_device * pdev)1442 static int ixp4xx_eth_probe(struct platform_device *pdev)
1443 {
1444 struct phy_device *phydev = NULL;
1445 struct device *dev = &pdev->dev;
1446 struct device_node *np = dev->of_node;
1447 struct eth_plat_info *plat;
1448 struct net_device *ndev;
1449 struct port *port;
1450 int err;
1451
1452 plat = ixp4xx_of_get_platdata(dev);
1453 if (!plat)
1454 return -ENODEV;
1455
1456 if (!(ndev = devm_alloc_etherdev(dev, sizeof(struct port))))
1457 return -ENOMEM;
1458
1459 SET_NETDEV_DEV(ndev, dev);
1460 port = netdev_priv(ndev);
1461 port->netdev = ndev;
1462 port->id = plat->npe;
1463 port->phc_index = -1;
1464
1465 /* Get the port resource and remap */
1466 port->regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
1467 if (IS_ERR(port->regs))
1468 return PTR_ERR(port->regs);
1469
1470 /* Register the MDIO bus if we have it */
1471 if (plat->has_mdio) {
1472 err = ixp4xx_mdio_register(port->regs);
1473 if (err) {
1474 dev_err(dev, "failed to register MDIO bus\n");
1475 return err;
1476 }
1477 }
1478 /* If the instance with the MDIO bus has not yet appeared,
1479 * defer probing until it gets probed.
1480 */
1481 if (!mdio_bus)
1482 return -EPROBE_DEFER;
1483
1484 ndev->netdev_ops = &ixp4xx_netdev_ops;
1485 ndev->ethtool_ops = &ixp4xx_ethtool_ops;
1486 ndev->tx_queue_len = 100;
1487 /* Inherit the DMA masks from the platform device */
1488 ndev->dev.dma_mask = dev->dma_mask;
1489 ndev->dev.coherent_dma_mask = dev->coherent_dma_mask;
1490
1491 netif_napi_add_weight(ndev, &port->napi, eth_poll, NAPI_WEIGHT);
1492
1493 if (!(port->npe = npe_request(NPE_ID(port->id))))
1494 return -EIO;
1495
1496 port->plat = plat;
1497 npe_port_tab[NPE_ID(port->id)] = port;
1498 if (is_valid_ether_addr(plat->hwaddr))
1499 eth_hw_addr_set(ndev, plat->hwaddr);
1500 else
1501 eth_hw_addr_random(ndev);
1502
1503 platform_set_drvdata(pdev, ndev);
1504
1505 __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1506 &port->regs->core_control);
1507 udelay(50);
1508 __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1509 udelay(50);
1510
1511 phydev = of_phy_get_and_connect(ndev, np, ixp4xx_adjust_link);
1512 if (!phydev) {
1513 err = -ENODEV;
1514 dev_err(dev, "no phydev\n");
1515 goto err_free_mem;
1516 }
1517
1518 phydev->irq = PHY_POLL;
1519
1520 if ((err = register_netdev(ndev)))
1521 goto err_phy_dis;
1522
1523 netdev_info(ndev, "%s: MII PHY %i on %s\n", ndev->name, plat->phy,
1524 npe_name(port->npe));
1525
1526 return 0;
1527
1528 err_phy_dis:
1529 phy_disconnect(phydev);
1530 err_free_mem:
1531 npe_port_tab[NPE_ID(port->id)] = NULL;
1532 npe_release(port->npe);
1533 return err;
1534 }
1535
ixp4xx_eth_remove(struct platform_device * pdev)1536 static int ixp4xx_eth_remove(struct platform_device *pdev)
1537 {
1538 struct net_device *ndev = platform_get_drvdata(pdev);
1539 struct phy_device *phydev = ndev->phydev;
1540 struct port *port = netdev_priv(ndev);
1541
1542 unregister_netdev(ndev);
1543 phy_disconnect(phydev);
1544 ixp4xx_mdio_remove();
1545 npe_port_tab[NPE_ID(port->id)] = NULL;
1546 npe_release(port->npe);
1547 return 0;
1548 }
1549
1550 static const struct of_device_id ixp4xx_eth_of_match[] = {
1551 {
1552 .compatible = "intel,ixp4xx-ethernet",
1553 },
1554 { },
1555 };
1556
1557 static struct platform_driver ixp4xx_eth_driver = {
1558 .driver = {
1559 .name = DRV_NAME,
1560 .of_match_table = of_match_ptr(ixp4xx_eth_of_match),
1561 },
1562 .probe = ixp4xx_eth_probe,
1563 .remove = ixp4xx_eth_remove,
1564 };
1565 module_platform_driver(ixp4xx_eth_driver);
1566
1567 MODULE_AUTHOR("Krzysztof Halasa");
1568 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1569 MODULE_LICENSE("GPL v2");
1570 MODULE_ALIAS("platform:ixp4xx_eth");
1571