1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 #include "fs.h"
25 #include "accessors.h"
26 #include "extent-tree.h"
27 #include "root-tree.h"
28 #include "dir-item.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "orphan.h"
32 #include "tree-checker.h"
33
34 #define MAX_CONFLICT_INODES 10
35
36 /* magic values for the inode_only field in btrfs_log_inode:
37 *
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 * during log replay
41 */
42 enum {
43 LOG_INODE_ALL,
44 LOG_INODE_EXISTS,
45 };
46
47 /*
48 * directory trouble cases
49 *
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
54 *
55 * mkdir foo/some_dir
56 * normal commit
57 * rename foo/some_dir foo2/some_dir
58 * mkdir foo/some_dir
59 * fsync foo/some_dir/some_file
60 *
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
64 *
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
67 *
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
71 *
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
74 *
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
77 *
78 * mkdir f1/foo
79 * normal commit
80 * rm -rf f1/foo
81 * fsync(f1)
82 *
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
87 * ugly details.
88 */
89
90 /*
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
95 *
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
98 */
99 enum {
100 LOG_WALK_PIN_ONLY,
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
103 LOG_WALK_REPLAY_ALL,
104 };
105
106 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 struct btrfs_inode *inode,
108 int inode_only,
109 struct btrfs_log_ctx *ctx);
110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
118 static void wait_log_commit(struct btrfs_root *root, int transid);
119
120 /*
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
123 *
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
127 *
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
133 *
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
137 *
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
141 */
142
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)143 static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
144 {
145 unsigned int nofs_flag;
146 struct inode *inode;
147
148 /*
149 * We're holding a transaction handle whether we are logging or
150 * replaying a log tree, so we must make sure NOFS semantics apply
151 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
152 * to allocate an inode, which can recurse back into the filesystem and
153 * attempt a transaction commit, resulting in a deadlock.
154 */
155 nofs_flag = memalloc_nofs_save();
156 inode = btrfs_iget(root->fs_info->sb, objectid, root);
157 memalloc_nofs_restore(nofs_flag);
158
159 return inode;
160 }
161
162 /*
163 * start a sub transaction and setup the log tree
164 * this increments the log tree writer count to make the people
165 * syncing the tree wait for us to finish
166 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)167 static int start_log_trans(struct btrfs_trans_handle *trans,
168 struct btrfs_root *root,
169 struct btrfs_log_ctx *ctx)
170 {
171 struct btrfs_fs_info *fs_info = root->fs_info;
172 struct btrfs_root *tree_root = fs_info->tree_root;
173 const bool zoned = btrfs_is_zoned(fs_info);
174 int ret = 0;
175 bool created = false;
176
177 /*
178 * First check if the log root tree was already created. If not, create
179 * it before locking the root's log_mutex, just to keep lockdep happy.
180 */
181 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
182 mutex_lock(&tree_root->log_mutex);
183 if (!fs_info->log_root_tree) {
184 ret = btrfs_init_log_root_tree(trans, fs_info);
185 if (!ret) {
186 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
187 created = true;
188 }
189 }
190 mutex_unlock(&tree_root->log_mutex);
191 if (ret)
192 return ret;
193 }
194
195 mutex_lock(&root->log_mutex);
196
197 again:
198 if (root->log_root) {
199 int index = (root->log_transid + 1) % 2;
200
201 if (btrfs_need_log_full_commit(trans)) {
202 ret = BTRFS_LOG_FORCE_COMMIT;
203 goto out;
204 }
205
206 if (zoned && atomic_read(&root->log_commit[index])) {
207 wait_log_commit(root, root->log_transid - 1);
208 goto again;
209 }
210
211 if (!root->log_start_pid) {
212 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
213 root->log_start_pid = current->pid;
214 } else if (root->log_start_pid != current->pid) {
215 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 }
217 } else {
218 /*
219 * This means fs_info->log_root_tree was already created
220 * for some other FS trees. Do the full commit not to mix
221 * nodes from multiple log transactions to do sequential
222 * writing.
223 */
224 if (zoned && !created) {
225 ret = BTRFS_LOG_FORCE_COMMIT;
226 goto out;
227 }
228
229 ret = btrfs_add_log_tree(trans, root);
230 if (ret)
231 goto out;
232
233 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
234 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
235 root->log_start_pid = current->pid;
236 }
237
238 atomic_inc(&root->log_writers);
239 if (!ctx->logging_new_name) {
240 int index = root->log_transid % 2;
241 list_add_tail(&ctx->list, &root->log_ctxs[index]);
242 ctx->log_transid = root->log_transid;
243 }
244
245 out:
246 mutex_unlock(&root->log_mutex);
247 return ret;
248 }
249
250 /*
251 * returns 0 if there was a log transaction running and we were able
252 * to join, or returns -ENOENT if there were not transactions
253 * in progress
254 */
join_running_log_trans(struct btrfs_root * root)255 static int join_running_log_trans(struct btrfs_root *root)
256 {
257 const bool zoned = btrfs_is_zoned(root->fs_info);
258 int ret = -ENOENT;
259
260 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
261 return ret;
262
263 mutex_lock(&root->log_mutex);
264 again:
265 if (root->log_root) {
266 int index = (root->log_transid + 1) % 2;
267
268 ret = 0;
269 if (zoned && atomic_read(&root->log_commit[index])) {
270 wait_log_commit(root, root->log_transid - 1);
271 goto again;
272 }
273 atomic_inc(&root->log_writers);
274 }
275 mutex_unlock(&root->log_mutex);
276 return ret;
277 }
278
279 /*
280 * This either makes the current running log transaction wait
281 * until you call btrfs_end_log_trans() or it makes any future
282 * log transactions wait until you call btrfs_end_log_trans()
283 */
btrfs_pin_log_trans(struct btrfs_root * root)284 void btrfs_pin_log_trans(struct btrfs_root *root)
285 {
286 atomic_inc(&root->log_writers);
287 }
288
289 /*
290 * indicate we're done making changes to the log tree
291 * and wake up anyone waiting to do a sync
292 */
btrfs_end_log_trans(struct btrfs_root * root)293 void btrfs_end_log_trans(struct btrfs_root *root)
294 {
295 if (atomic_dec_and_test(&root->log_writers)) {
296 /* atomic_dec_and_test implies a barrier */
297 cond_wake_up_nomb(&root->log_writer_wait);
298 }
299 }
300
301 /*
302 * the walk control struct is used to pass state down the chain when
303 * processing the log tree. The stage field tells us which part
304 * of the log tree processing we are currently doing. The others
305 * are state fields used for that specific part
306 */
307 struct walk_control {
308 /* should we free the extent on disk when done? This is used
309 * at transaction commit time while freeing a log tree
310 */
311 int free;
312
313 /* pin only walk, we record which extents on disk belong to the
314 * log trees
315 */
316 int pin;
317
318 /* what stage of the replay code we're currently in */
319 int stage;
320
321 /*
322 * Ignore any items from the inode currently being processed. Needs
323 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
324 * the LOG_WALK_REPLAY_INODES stage.
325 */
326 bool ignore_cur_inode;
327
328 /* the root we are currently replaying */
329 struct btrfs_root *replay_dest;
330
331 /* the trans handle for the current replay */
332 struct btrfs_trans_handle *trans;
333
334 /* the function that gets used to process blocks we find in the
335 * tree. Note the extent_buffer might not be up to date when it is
336 * passed in, and it must be checked or read if you need the data
337 * inside it
338 */
339 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
340 struct walk_control *wc, u64 gen, int level);
341 };
342
343 /*
344 * process_func used to pin down extents, write them or wait on them
345 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)346 static int process_one_buffer(struct btrfs_root *log,
347 struct extent_buffer *eb,
348 struct walk_control *wc, u64 gen, int level)
349 {
350 struct btrfs_fs_info *fs_info = log->fs_info;
351 int ret = 0;
352
353 /*
354 * If this fs is mixed then we need to be able to process the leaves to
355 * pin down any logged extents, so we have to read the block.
356 */
357 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
358 struct btrfs_tree_parent_check check = {
359 .level = level,
360 .transid = gen
361 };
362
363 ret = btrfs_read_extent_buffer(eb, &check);
364 if (ret)
365 return ret;
366 }
367
368 if (wc->pin) {
369 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
370 eb->len);
371 if (ret)
372 return ret;
373
374 if (btrfs_buffer_uptodate(eb, gen, 0) &&
375 btrfs_header_level(eb) == 0)
376 ret = btrfs_exclude_logged_extents(eb);
377 }
378 return ret;
379 }
380
381 /*
382 * Item overwrite used by replay and tree logging. eb, slot and key all refer
383 * to the src data we are copying out.
384 *
385 * root is the tree we are copying into, and path is a scratch
386 * path for use in this function (it should be released on entry and
387 * will be released on exit).
388 *
389 * If the key is already in the destination tree the existing item is
390 * overwritten. If the existing item isn't big enough, it is extended.
391 * If it is too large, it is truncated.
392 *
393 * If the key isn't in the destination yet, a new item is inserted.
394 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)395 static int overwrite_item(struct btrfs_trans_handle *trans,
396 struct btrfs_root *root,
397 struct btrfs_path *path,
398 struct extent_buffer *eb, int slot,
399 struct btrfs_key *key)
400 {
401 int ret;
402 u32 item_size;
403 u64 saved_i_size = 0;
404 int save_old_i_size = 0;
405 unsigned long src_ptr;
406 unsigned long dst_ptr;
407 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
408
409 /*
410 * This is only used during log replay, so the root is always from a
411 * fs/subvolume tree. In case we ever need to support a log root, then
412 * we'll have to clone the leaf in the path, release the path and use
413 * the leaf before writing into the log tree. See the comments at
414 * copy_items() for more details.
415 */
416 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
417
418 item_size = btrfs_item_size(eb, slot);
419 src_ptr = btrfs_item_ptr_offset(eb, slot);
420
421 /* Look for the key in the destination tree. */
422 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
423 if (ret < 0)
424 return ret;
425
426 if (ret == 0) {
427 char *src_copy;
428 char *dst_copy;
429 u32 dst_size = btrfs_item_size(path->nodes[0],
430 path->slots[0]);
431 if (dst_size != item_size)
432 goto insert;
433
434 if (item_size == 0) {
435 btrfs_release_path(path);
436 return 0;
437 }
438 dst_copy = kmalloc(item_size, GFP_NOFS);
439 src_copy = kmalloc(item_size, GFP_NOFS);
440 if (!dst_copy || !src_copy) {
441 btrfs_release_path(path);
442 kfree(dst_copy);
443 kfree(src_copy);
444 return -ENOMEM;
445 }
446
447 read_extent_buffer(eb, src_copy, src_ptr, item_size);
448
449 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
450 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
451 item_size);
452 ret = memcmp(dst_copy, src_copy, item_size);
453
454 kfree(dst_copy);
455 kfree(src_copy);
456 /*
457 * they have the same contents, just return, this saves
458 * us from cowing blocks in the destination tree and doing
459 * extra writes that may not have been done by a previous
460 * sync
461 */
462 if (ret == 0) {
463 btrfs_release_path(path);
464 return 0;
465 }
466
467 /*
468 * We need to load the old nbytes into the inode so when we
469 * replay the extents we've logged we get the right nbytes.
470 */
471 if (inode_item) {
472 struct btrfs_inode_item *item;
473 u64 nbytes;
474 u32 mode;
475
476 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
477 struct btrfs_inode_item);
478 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
479 item = btrfs_item_ptr(eb, slot,
480 struct btrfs_inode_item);
481 btrfs_set_inode_nbytes(eb, item, nbytes);
482
483 /*
484 * If this is a directory we need to reset the i_size to
485 * 0 so that we can set it up properly when replaying
486 * the rest of the items in this log.
487 */
488 mode = btrfs_inode_mode(eb, item);
489 if (S_ISDIR(mode))
490 btrfs_set_inode_size(eb, item, 0);
491 }
492 } else if (inode_item) {
493 struct btrfs_inode_item *item;
494 u32 mode;
495
496 /*
497 * New inode, set nbytes to 0 so that the nbytes comes out
498 * properly when we replay the extents.
499 */
500 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
501 btrfs_set_inode_nbytes(eb, item, 0);
502
503 /*
504 * If this is a directory we need to reset the i_size to 0 so
505 * that we can set it up properly when replaying the rest of
506 * the items in this log.
507 */
508 mode = btrfs_inode_mode(eb, item);
509 if (S_ISDIR(mode))
510 btrfs_set_inode_size(eb, item, 0);
511 }
512 insert:
513 btrfs_release_path(path);
514 /* try to insert the key into the destination tree */
515 path->skip_release_on_error = 1;
516 ret = btrfs_insert_empty_item(trans, root, path,
517 key, item_size);
518 path->skip_release_on_error = 0;
519
520 /* make sure any existing item is the correct size */
521 if (ret == -EEXIST || ret == -EOVERFLOW) {
522 u32 found_size;
523 found_size = btrfs_item_size(path->nodes[0],
524 path->slots[0]);
525 if (found_size > item_size)
526 btrfs_truncate_item(trans, path, item_size, 1);
527 else if (found_size < item_size)
528 btrfs_extend_item(trans, path, item_size - found_size);
529 } else if (ret) {
530 return ret;
531 }
532 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
533 path->slots[0]);
534
535 /* don't overwrite an existing inode if the generation number
536 * was logged as zero. This is done when the tree logging code
537 * is just logging an inode to make sure it exists after recovery.
538 *
539 * Also, don't overwrite i_size on directories during replay.
540 * log replay inserts and removes directory items based on the
541 * state of the tree found in the subvolume, and i_size is modified
542 * as it goes
543 */
544 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
545 struct btrfs_inode_item *src_item;
546 struct btrfs_inode_item *dst_item;
547
548 src_item = (struct btrfs_inode_item *)src_ptr;
549 dst_item = (struct btrfs_inode_item *)dst_ptr;
550
551 if (btrfs_inode_generation(eb, src_item) == 0) {
552 struct extent_buffer *dst_eb = path->nodes[0];
553 const u64 ino_size = btrfs_inode_size(eb, src_item);
554
555 /*
556 * For regular files an ino_size == 0 is used only when
557 * logging that an inode exists, as part of a directory
558 * fsync, and the inode wasn't fsynced before. In this
559 * case don't set the size of the inode in the fs/subvol
560 * tree, otherwise we would be throwing valid data away.
561 */
562 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
563 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
564 ino_size != 0)
565 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
566 goto no_copy;
567 }
568
569 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
570 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
571 save_old_i_size = 1;
572 saved_i_size = btrfs_inode_size(path->nodes[0],
573 dst_item);
574 }
575 }
576
577 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
578 src_ptr, item_size);
579
580 if (save_old_i_size) {
581 struct btrfs_inode_item *dst_item;
582 dst_item = (struct btrfs_inode_item *)dst_ptr;
583 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
584 }
585
586 /* make sure the generation is filled in */
587 if (key->type == BTRFS_INODE_ITEM_KEY) {
588 struct btrfs_inode_item *dst_item;
589 dst_item = (struct btrfs_inode_item *)dst_ptr;
590 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
591 btrfs_set_inode_generation(path->nodes[0], dst_item,
592 trans->transid);
593 }
594 }
595 no_copy:
596 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
597 btrfs_release_path(path);
598 return 0;
599 }
600
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)601 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
602 struct fscrypt_str *name)
603 {
604 char *buf;
605
606 buf = kmalloc(len, GFP_NOFS);
607 if (!buf)
608 return -ENOMEM;
609
610 read_extent_buffer(eb, buf, (unsigned long)start, len);
611 name->name = buf;
612 name->len = len;
613 return 0;
614 }
615
616 /*
617 * simple helper to read an inode off the disk from a given root
618 * This can only be called for subvolume roots and not for the log
619 */
read_one_inode(struct btrfs_root * root,u64 objectid)620 static noinline struct inode *read_one_inode(struct btrfs_root *root,
621 u64 objectid)
622 {
623 struct inode *inode;
624
625 inode = btrfs_iget_logging(objectid, root);
626 if (IS_ERR(inode))
627 inode = NULL;
628 return inode;
629 }
630
631 /* replays a single extent in 'eb' at 'slot' with 'key' into the
632 * subvolume 'root'. path is released on entry and should be released
633 * on exit.
634 *
635 * extents in the log tree have not been allocated out of the extent
636 * tree yet. So, this completes the allocation, taking a reference
637 * as required if the extent already exists or creating a new extent
638 * if it isn't in the extent allocation tree yet.
639 *
640 * The extent is inserted into the file, dropping any existing extents
641 * from the file that overlap the new one.
642 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)643 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
644 struct btrfs_root *root,
645 struct btrfs_path *path,
646 struct extent_buffer *eb, int slot,
647 struct btrfs_key *key)
648 {
649 struct btrfs_drop_extents_args drop_args = { 0 };
650 struct btrfs_fs_info *fs_info = root->fs_info;
651 int found_type;
652 u64 extent_end;
653 u64 start = key->offset;
654 u64 nbytes = 0;
655 struct btrfs_file_extent_item *item;
656 struct inode *inode = NULL;
657 unsigned long size;
658 int ret = 0;
659
660 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
661 found_type = btrfs_file_extent_type(eb, item);
662
663 if (found_type == BTRFS_FILE_EXTENT_REG ||
664 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 nbytes = btrfs_file_extent_num_bytes(eb, item);
666 extent_end = start + nbytes;
667
668 /*
669 * We don't add to the inodes nbytes if we are prealloc or a
670 * hole.
671 */
672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
673 nbytes = 0;
674 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
675 size = btrfs_file_extent_ram_bytes(eb, item);
676 nbytes = btrfs_file_extent_ram_bytes(eb, item);
677 extent_end = ALIGN(start + size,
678 fs_info->sectorsize);
679 } else {
680 ret = 0;
681 goto out;
682 }
683
684 inode = read_one_inode(root, key->objectid);
685 if (!inode) {
686 ret = -EIO;
687 goto out;
688 }
689
690 /*
691 * first check to see if we already have this extent in the
692 * file. This must be done before the btrfs_drop_extents run
693 * so we don't try to drop this extent.
694 */
695 ret = btrfs_lookup_file_extent(trans, root, path,
696 btrfs_ino(BTRFS_I(inode)), start, 0);
697
698 if (ret == 0 &&
699 (found_type == BTRFS_FILE_EXTENT_REG ||
700 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
701 struct btrfs_file_extent_item cmp1;
702 struct btrfs_file_extent_item cmp2;
703 struct btrfs_file_extent_item *existing;
704 struct extent_buffer *leaf;
705
706 leaf = path->nodes[0];
707 existing = btrfs_item_ptr(leaf, path->slots[0],
708 struct btrfs_file_extent_item);
709
710 read_extent_buffer(eb, &cmp1, (unsigned long)item,
711 sizeof(cmp1));
712 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
713 sizeof(cmp2));
714
715 /*
716 * we already have a pointer to this exact extent,
717 * we don't have to do anything
718 */
719 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
720 btrfs_release_path(path);
721 goto out;
722 }
723 }
724 btrfs_release_path(path);
725
726 /* drop any overlapping extents */
727 drop_args.start = start;
728 drop_args.end = extent_end;
729 drop_args.drop_cache = true;
730 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
731 if (ret)
732 goto out;
733
734 if (found_type == BTRFS_FILE_EXTENT_REG ||
735 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
736 u64 offset;
737 unsigned long dest_offset;
738 struct btrfs_key ins;
739
740 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
741 btrfs_fs_incompat(fs_info, NO_HOLES))
742 goto update_inode;
743
744 ret = btrfs_insert_empty_item(trans, root, path, key,
745 sizeof(*item));
746 if (ret)
747 goto out;
748 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
749 path->slots[0]);
750 copy_extent_buffer(path->nodes[0], eb, dest_offset,
751 (unsigned long)item, sizeof(*item));
752
753 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
754 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
755 ins.type = BTRFS_EXTENT_ITEM_KEY;
756 offset = key->offset - btrfs_file_extent_offset(eb, item);
757
758 /*
759 * Manually record dirty extent, as here we did a shallow
760 * file extent item copy and skip normal backref update,
761 * but modifying extent tree all by ourselves.
762 * So need to manually record dirty extent for qgroup,
763 * as the owner of the file extent changed from log tree
764 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
765 */
766 ret = btrfs_qgroup_trace_extent(trans,
767 btrfs_file_extent_disk_bytenr(eb, item),
768 btrfs_file_extent_disk_num_bytes(eb, item));
769 if (ret < 0)
770 goto out;
771
772 if (ins.objectid > 0) {
773 struct btrfs_ref ref = { 0 };
774 u64 csum_start;
775 u64 csum_end;
776 LIST_HEAD(ordered_sums);
777
778 /*
779 * is this extent already allocated in the extent
780 * allocation tree? If so, just add a reference
781 */
782 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
783 ins.offset);
784 if (ret < 0) {
785 goto out;
786 } else if (ret == 0) {
787 btrfs_init_generic_ref(&ref,
788 BTRFS_ADD_DELAYED_REF,
789 ins.objectid, ins.offset, 0);
790 btrfs_init_data_ref(&ref,
791 root->root_key.objectid,
792 key->objectid, offset, 0, false);
793 ret = btrfs_inc_extent_ref(trans, &ref);
794 if (ret)
795 goto out;
796 } else {
797 /*
798 * insert the extent pointer in the extent
799 * allocation tree
800 */
801 ret = btrfs_alloc_logged_file_extent(trans,
802 root->root_key.objectid,
803 key->objectid, offset, &ins);
804 if (ret)
805 goto out;
806 }
807 btrfs_release_path(path);
808
809 if (btrfs_file_extent_compression(eb, item)) {
810 csum_start = ins.objectid;
811 csum_end = csum_start + ins.offset;
812 } else {
813 csum_start = ins.objectid +
814 btrfs_file_extent_offset(eb, item);
815 csum_end = csum_start +
816 btrfs_file_extent_num_bytes(eb, item);
817 }
818
819 ret = btrfs_lookup_csums_list(root->log_root,
820 csum_start, csum_end - 1,
821 &ordered_sums, 0, false);
822 if (ret)
823 goto out;
824 /*
825 * Now delete all existing cums in the csum root that
826 * cover our range. We do this because we can have an
827 * extent that is completely referenced by one file
828 * extent item and partially referenced by another
829 * file extent item (like after using the clone or
830 * extent_same ioctls). In this case if we end up doing
831 * the replay of the one that partially references the
832 * extent first, and we do not do the csum deletion
833 * below, we can get 2 csum items in the csum tree that
834 * overlap each other. For example, imagine our log has
835 * the two following file extent items:
836 *
837 * key (257 EXTENT_DATA 409600)
838 * extent data disk byte 12845056 nr 102400
839 * extent data offset 20480 nr 20480 ram 102400
840 *
841 * key (257 EXTENT_DATA 819200)
842 * extent data disk byte 12845056 nr 102400
843 * extent data offset 0 nr 102400 ram 102400
844 *
845 * Where the second one fully references the 100K extent
846 * that starts at disk byte 12845056, and the log tree
847 * has a single csum item that covers the entire range
848 * of the extent:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 *
852 * After the first file extent item is replayed, the
853 * csum tree gets the following csum item:
854 *
855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
856 *
857 * Which covers the 20K sub-range starting at offset 20K
858 * of our extent. Now when we replay the second file
859 * extent item, if we do not delete existing csum items
860 * that cover any of its blocks, we end up getting two
861 * csum items in our csum tree that overlap each other:
862 *
863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
865 *
866 * Which is a problem, because after this anyone trying
867 * to lookup up for the checksum of any block of our
868 * extent starting at an offset of 40K or higher, will
869 * end up looking at the second csum item only, which
870 * does not contain the checksum for any block starting
871 * at offset 40K or higher of our extent.
872 */
873 while (!list_empty(&ordered_sums)) {
874 struct btrfs_ordered_sum *sums;
875 struct btrfs_root *csum_root;
876
877 sums = list_entry(ordered_sums.next,
878 struct btrfs_ordered_sum,
879 list);
880 csum_root = btrfs_csum_root(fs_info,
881 sums->logical);
882 if (!ret)
883 ret = btrfs_del_csums(trans, csum_root,
884 sums->logical,
885 sums->len);
886 if (!ret)
887 ret = btrfs_csum_file_blocks(trans,
888 csum_root,
889 sums);
890 list_del(&sums->list);
891 kfree(sums);
892 }
893 if (ret)
894 goto out;
895 } else {
896 btrfs_release_path(path);
897 }
898 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
899 /* inline extents are easy, we just overwrite them */
900 ret = overwrite_item(trans, root, path, eb, slot, key);
901 if (ret)
902 goto out;
903 }
904
905 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
906 extent_end - start);
907 if (ret)
908 goto out;
909
910 update_inode:
911 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
912 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
913 out:
914 iput(inode);
915 return ret;
916 }
917
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)918 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
919 struct btrfs_inode *dir,
920 struct btrfs_inode *inode,
921 const struct fscrypt_str *name)
922 {
923 int ret;
924
925 ret = btrfs_unlink_inode(trans, dir, inode, name);
926 if (ret)
927 return ret;
928 /*
929 * Whenever we need to check if a name exists or not, we check the
930 * fs/subvolume tree. So after an unlink we must run delayed items, so
931 * that future checks for a name during log replay see that the name
932 * does not exists anymore.
933 */
934 return btrfs_run_delayed_items(trans);
935 }
936
937 /*
938 * when cleaning up conflicts between the directory names in the
939 * subvolume, directory names in the log and directory names in the
940 * inode back references, we may have to unlink inodes from directories.
941 *
942 * This is a helper function to do the unlink of a specific directory
943 * item
944 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)945 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
946 struct btrfs_path *path,
947 struct btrfs_inode *dir,
948 struct btrfs_dir_item *di)
949 {
950 struct btrfs_root *root = dir->root;
951 struct inode *inode;
952 struct fscrypt_str name;
953 struct extent_buffer *leaf;
954 struct btrfs_key location;
955 int ret;
956
957 leaf = path->nodes[0];
958
959 btrfs_dir_item_key_to_cpu(leaf, di, &location);
960 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
961 if (ret)
962 return -ENOMEM;
963
964 btrfs_release_path(path);
965
966 inode = read_one_inode(root, location.objectid);
967 if (!inode) {
968 ret = -EIO;
969 goto out;
970 }
971
972 ret = link_to_fixup_dir(trans, root, path, location.objectid);
973 if (ret)
974 goto out;
975
976 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
977 out:
978 kfree(name.name);
979 iput(inode);
980 return ret;
981 }
982
983 /*
984 * See if a given name and sequence number found in an inode back reference are
985 * already in a directory and correctly point to this inode.
986 *
987 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
988 * exists.
989 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)990 static noinline int inode_in_dir(struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 dirid, u64 objectid, u64 index,
993 struct fscrypt_str *name)
994 {
995 struct btrfs_dir_item *di;
996 struct btrfs_key location;
997 int ret = 0;
998
999 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1000 index, name, 0);
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
1003 goto out;
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid != objectid)
1007 goto out;
1008 } else {
1009 goto out;
1010 }
1011
1012 btrfs_release_path(path);
1013 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1014 if (IS_ERR(di)) {
1015 ret = PTR_ERR(di);
1016 goto out;
1017 } else if (di) {
1018 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1019 if (location.objectid == objectid)
1020 ret = 1;
1021 }
1022 out:
1023 btrfs_release_path(path);
1024 return ret;
1025 }
1026
1027 /*
1028 * helper function to check a log tree for a named back reference in
1029 * an inode. This is used to decide if a back reference that is
1030 * found in the subvolume conflicts with what we find in the log.
1031 *
1032 * inode backreferences may have multiple refs in a single item,
1033 * during replay we process one reference at a time, and we don't
1034 * want to delete valid links to a file from the subvolume if that
1035 * link is also in the log.
1036 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1037 static noinline int backref_in_log(struct btrfs_root *log,
1038 struct btrfs_key *key,
1039 u64 ref_objectid,
1040 const struct fscrypt_str *name)
1041 {
1042 struct btrfs_path *path;
1043 int ret;
1044
1045 path = btrfs_alloc_path();
1046 if (!path)
1047 return -ENOMEM;
1048
1049 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1050 if (ret < 0) {
1051 goto out;
1052 } else if (ret == 1) {
1053 ret = 0;
1054 goto out;
1055 }
1056
1057 if (key->type == BTRFS_INODE_EXTREF_KEY)
1058 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1059 path->slots[0],
1060 ref_objectid, name);
1061 else
1062 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1063 path->slots[0], name);
1064 out:
1065 btrfs_free_path(path);
1066 return ret;
1067 }
1068
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1069 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root,
1071 struct btrfs_path *path,
1072 struct btrfs_root *log_root,
1073 struct btrfs_inode *dir,
1074 struct btrfs_inode *inode,
1075 u64 inode_objectid, u64 parent_objectid,
1076 u64 ref_index, struct fscrypt_str *name)
1077 {
1078 int ret;
1079 struct extent_buffer *leaf;
1080 struct btrfs_dir_item *di;
1081 struct btrfs_key search_key;
1082 struct btrfs_inode_extref *extref;
1083
1084 again:
1085 /* Search old style refs */
1086 search_key.objectid = inode_objectid;
1087 search_key.type = BTRFS_INODE_REF_KEY;
1088 search_key.offset = parent_objectid;
1089 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1090 if (ret == 0) {
1091 struct btrfs_inode_ref *victim_ref;
1092 unsigned long ptr;
1093 unsigned long ptr_end;
1094
1095 leaf = path->nodes[0];
1096
1097 /* are we trying to overwrite a back ref for the root directory
1098 * if so, just jump out, we're done
1099 */
1100 if (search_key.objectid == search_key.offset)
1101 return 1;
1102
1103 /* check all the names in this back reference to see
1104 * if they are in the log. if so, we allow them to stay
1105 * otherwise they must be unlinked as a conflict
1106 */
1107 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1108 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1109 while (ptr < ptr_end) {
1110 struct fscrypt_str victim_name;
1111
1112 victim_ref = (struct btrfs_inode_ref *)ptr;
1113 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1114 btrfs_inode_ref_name_len(leaf, victim_ref),
1115 &victim_name);
1116 if (ret)
1117 return ret;
1118
1119 ret = backref_in_log(log_root, &search_key,
1120 parent_objectid, &victim_name);
1121 if (ret < 0) {
1122 kfree(victim_name.name);
1123 return ret;
1124 } else if (!ret) {
1125 inc_nlink(&inode->vfs_inode);
1126 btrfs_release_path(path);
1127
1128 ret = unlink_inode_for_log_replay(trans, dir, inode,
1129 &victim_name);
1130 kfree(victim_name.name);
1131 if (ret)
1132 return ret;
1133 goto again;
1134 }
1135 kfree(victim_name.name);
1136
1137 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1138 }
1139 }
1140 btrfs_release_path(path);
1141
1142 /* Same search but for extended refs */
1143 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1144 inode_objectid, parent_objectid, 0,
1145 0);
1146 if (IS_ERR(extref)) {
1147 return PTR_ERR(extref);
1148 } else if (extref) {
1149 u32 item_size;
1150 u32 cur_offset = 0;
1151 unsigned long base;
1152 struct inode *victim_parent;
1153
1154 leaf = path->nodes[0];
1155
1156 item_size = btrfs_item_size(leaf, path->slots[0]);
1157 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1158
1159 while (cur_offset < item_size) {
1160 struct fscrypt_str victim_name;
1161
1162 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1163
1164 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1165 goto next;
1166
1167 ret = read_alloc_one_name(leaf, &extref->name,
1168 btrfs_inode_extref_name_len(leaf, extref),
1169 &victim_name);
1170 if (ret)
1171 return ret;
1172
1173 search_key.objectid = inode_objectid;
1174 search_key.type = BTRFS_INODE_EXTREF_KEY;
1175 search_key.offset = btrfs_extref_hash(parent_objectid,
1176 victim_name.name,
1177 victim_name.len);
1178 ret = backref_in_log(log_root, &search_key,
1179 parent_objectid, &victim_name);
1180 if (ret < 0) {
1181 kfree(victim_name.name);
1182 return ret;
1183 } else if (!ret) {
1184 ret = -ENOENT;
1185 victim_parent = read_one_inode(root,
1186 parent_objectid);
1187 if (victim_parent) {
1188 inc_nlink(&inode->vfs_inode);
1189 btrfs_release_path(path);
1190
1191 ret = unlink_inode_for_log_replay(trans,
1192 BTRFS_I(victim_parent),
1193 inode, &victim_name);
1194 }
1195 iput(victim_parent);
1196 kfree(victim_name.name);
1197 if (ret)
1198 return ret;
1199 goto again;
1200 }
1201 kfree(victim_name.name);
1202 next:
1203 cur_offset += victim_name.len + sizeof(*extref);
1204 }
1205 }
1206 btrfs_release_path(path);
1207
1208 /* look for a conflicting sequence number */
1209 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1210 ref_index, name, 0);
1211 if (IS_ERR(di)) {
1212 return PTR_ERR(di);
1213 } else if (di) {
1214 ret = drop_one_dir_item(trans, path, dir, di);
1215 if (ret)
1216 return ret;
1217 }
1218 btrfs_release_path(path);
1219
1220 /* look for a conflicting name */
1221 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1222 if (IS_ERR(di)) {
1223 return PTR_ERR(di);
1224 } else if (di) {
1225 ret = drop_one_dir_item(trans, path, dir, di);
1226 if (ret)
1227 return ret;
1228 }
1229 btrfs_release_path(path);
1230
1231 return 0;
1232 }
1233
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1234 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1235 struct fscrypt_str *name, u64 *index,
1236 u64 *parent_objectid)
1237 {
1238 struct btrfs_inode_extref *extref;
1239 int ret;
1240
1241 extref = (struct btrfs_inode_extref *)ref_ptr;
1242
1243 ret = read_alloc_one_name(eb, &extref->name,
1244 btrfs_inode_extref_name_len(eb, extref), name);
1245 if (ret)
1246 return ret;
1247
1248 if (index)
1249 *index = btrfs_inode_extref_index(eb, extref);
1250 if (parent_objectid)
1251 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1252
1253 return 0;
1254 }
1255
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1256 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1257 struct fscrypt_str *name, u64 *index)
1258 {
1259 struct btrfs_inode_ref *ref;
1260 int ret;
1261
1262 ref = (struct btrfs_inode_ref *)ref_ptr;
1263
1264 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1265 name);
1266 if (ret)
1267 return ret;
1268
1269 if (index)
1270 *index = btrfs_inode_ref_index(eb, ref);
1271
1272 return 0;
1273 }
1274
1275 /*
1276 * Take an inode reference item from the log tree and iterate all names from the
1277 * inode reference item in the subvolume tree with the same key (if it exists).
1278 * For any name that is not in the inode reference item from the log tree, do a
1279 * proper unlink of that name (that is, remove its entry from the inode
1280 * reference item and both dir index keys).
1281 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1282 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1283 struct btrfs_root *root,
1284 struct btrfs_path *path,
1285 struct btrfs_inode *inode,
1286 struct extent_buffer *log_eb,
1287 int log_slot,
1288 struct btrfs_key *key)
1289 {
1290 int ret;
1291 unsigned long ref_ptr;
1292 unsigned long ref_end;
1293 struct extent_buffer *eb;
1294
1295 again:
1296 btrfs_release_path(path);
1297 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1298 if (ret > 0) {
1299 ret = 0;
1300 goto out;
1301 }
1302 if (ret < 0)
1303 goto out;
1304
1305 eb = path->nodes[0];
1306 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1307 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1308 while (ref_ptr < ref_end) {
1309 struct fscrypt_str name;
1310 u64 parent_id;
1311
1312 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1313 ret = extref_get_fields(eb, ref_ptr, &name,
1314 NULL, &parent_id);
1315 } else {
1316 parent_id = key->offset;
1317 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1318 }
1319 if (ret)
1320 goto out;
1321
1322 if (key->type == BTRFS_INODE_EXTREF_KEY)
1323 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1324 parent_id, &name);
1325 else
1326 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1327
1328 if (!ret) {
1329 struct inode *dir;
1330
1331 btrfs_release_path(path);
1332 dir = read_one_inode(root, parent_id);
1333 if (!dir) {
1334 ret = -ENOENT;
1335 kfree(name.name);
1336 goto out;
1337 }
1338 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1339 inode, &name);
1340 kfree(name.name);
1341 iput(dir);
1342 if (ret)
1343 goto out;
1344 goto again;
1345 }
1346
1347 kfree(name.name);
1348 ref_ptr += name.len;
1349 if (key->type == BTRFS_INODE_EXTREF_KEY)
1350 ref_ptr += sizeof(struct btrfs_inode_extref);
1351 else
1352 ref_ptr += sizeof(struct btrfs_inode_ref);
1353 }
1354 ret = 0;
1355 out:
1356 btrfs_release_path(path);
1357 return ret;
1358 }
1359
1360 /*
1361 * replay one inode back reference item found in the log tree.
1362 * eb, slot and key refer to the buffer and key found in the log tree.
1363 * root is the destination we are replaying into, and path is for temp
1364 * use by this function. (it should be released on return).
1365 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1366 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root,
1368 struct btrfs_root *log,
1369 struct btrfs_path *path,
1370 struct extent_buffer *eb, int slot,
1371 struct btrfs_key *key)
1372 {
1373 struct inode *dir = NULL;
1374 struct inode *inode = NULL;
1375 unsigned long ref_ptr;
1376 unsigned long ref_end;
1377 struct fscrypt_str name = { 0 };
1378 int ret;
1379 int log_ref_ver = 0;
1380 u64 parent_objectid;
1381 u64 inode_objectid;
1382 u64 ref_index = 0;
1383 int ref_struct_size;
1384
1385 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1386 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1387
1388 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1389 struct btrfs_inode_extref *r;
1390
1391 ref_struct_size = sizeof(struct btrfs_inode_extref);
1392 log_ref_ver = 1;
1393 r = (struct btrfs_inode_extref *)ref_ptr;
1394 parent_objectid = btrfs_inode_extref_parent(eb, r);
1395 } else {
1396 ref_struct_size = sizeof(struct btrfs_inode_ref);
1397 parent_objectid = key->offset;
1398 }
1399 inode_objectid = key->objectid;
1400
1401 /*
1402 * it is possible that we didn't log all the parent directories
1403 * for a given inode. If we don't find the dir, just don't
1404 * copy the back ref in. The link count fixup code will take
1405 * care of the rest
1406 */
1407 dir = read_one_inode(root, parent_objectid);
1408 if (!dir) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412
1413 inode = read_one_inode(root, inode_objectid);
1414 if (!inode) {
1415 ret = -EIO;
1416 goto out;
1417 }
1418
1419 while (ref_ptr < ref_end) {
1420 if (log_ref_ver) {
1421 ret = extref_get_fields(eb, ref_ptr, &name,
1422 &ref_index, &parent_objectid);
1423 /*
1424 * parent object can change from one array
1425 * item to another.
1426 */
1427 if (!dir)
1428 dir = read_one_inode(root, parent_objectid);
1429 if (!dir) {
1430 ret = -ENOENT;
1431 goto out;
1432 }
1433 } else {
1434 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1435 }
1436 if (ret)
1437 goto out;
1438
1439 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1440 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1441 if (ret < 0) {
1442 goto out;
1443 } else if (ret == 0) {
1444 /*
1445 * look for a conflicting back reference in the
1446 * metadata. if we find one we have to unlink that name
1447 * of the file before we add our new link. Later on, we
1448 * overwrite any existing back reference, and we don't
1449 * want to create dangling pointers in the directory.
1450 */
1451 ret = __add_inode_ref(trans, root, path, log,
1452 BTRFS_I(dir), BTRFS_I(inode),
1453 inode_objectid, parent_objectid,
1454 ref_index, &name);
1455 if (ret) {
1456 if (ret == 1)
1457 ret = 0;
1458 goto out;
1459 }
1460
1461 /* insert our name */
1462 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1463 &name, 0, ref_index);
1464 if (ret)
1465 goto out;
1466
1467 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1468 if (ret)
1469 goto out;
1470 }
1471 /* Else, ret == 1, we already have a perfect match, we're done. */
1472
1473 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1474 kfree(name.name);
1475 name.name = NULL;
1476 if (log_ref_ver) {
1477 iput(dir);
1478 dir = NULL;
1479 }
1480 }
1481
1482 /*
1483 * Before we overwrite the inode reference item in the subvolume tree
1484 * with the item from the log tree, we must unlink all names from the
1485 * parent directory that are in the subvolume's tree inode reference
1486 * item, otherwise we end up with an inconsistent subvolume tree where
1487 * dir index entries exist for a name but there is no inode reference
1488 * item with the same name.
1489 */
1490 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1491 key);
1492 if (ret)
1493 goto out;
1494
1495 /* finally write the back reference in the inode */
1496 ret = overwrite_item(trans, root, path, eb, slot, key);
1497 out:
1498 btrfs_release_path(path);
1499 kfree(name.name);
1500 iput(dir);
1501 iput(inode);
1502 return ret;
1503 }
1504
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1505 static int count_inode_extrefs(struct btrfs_root *root,
1506 struct btrfs_inode *inode, struct btrfs_path *path)
1507 {
1508 int ret = 0;
1509 int name_len;
1510 unsigned int nlink = 0;
1511 u32 item_size;
1512 u32 cur_offset = 0;
1513 u64 inode_objectid = btrfs_ino(inode);
1514 u64 offset = 0;
1515 unsigned long ptr;
1516 struct btrfs_inode_extref *extref;
1517 struct extent_buffer *leaf;
1518
1519 while (1) {
1520 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1521 &extref, &offset);
1522 if (ret)
1523 break;
1524
1525 leaf = path->nodes[0];
1526 item_size = btrfs_item_size(leaf, path->slots[0]);
1527 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1528 cur_offset = 0;
1529
1530 while (cur_offset < item_size) {
1531 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1532 name_len = btrfs_inode_extref_name_len(leaf, extref);
1533
1534 nlink++;
1535
1536 cur_offset += name_len + sizeof(*extref);
1537 }
1538
1539 offset++;
1540 btrfs_release_path(path);
1541 }
1542 btrfs_release_path(path);
1543
1544 if (ret < 0 && ret != -ENOENT)
1545 return ret;
1546 return nlink;
1547 }
1548
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1549 static int count_inode_refs(struct btrfs_root *root,
1550 struct btrfs_inode *inode, struct btrfs_path *path)
1551 {
1552 int ret;
1553 struct btrfs_key key;
1554 unsigned int nlink = 0;
1555 unsigned long ptr;
1556 unsigned long ptr_end;
1557 int name_len;
1558 u64 ino = btrfs_ino(inode);
1559
1560 key.objectid = ino;
1561 key.type = BTRFS_INODE_REF_KEY;
1562 key.offset = (u64)-1;
1563
1564 while (1) {
1565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1566 if (ret < 0)
1567 break;
1568 if (ret > 0) {
1569 if (path->slots[0] == 0)
1570 break;
1571 path->slots[0]--;
1572 }
1573 process_slot:
1574 btrfs_item_key_to_cpu(path->nodes[0], &key,
1575 path->slots[0]);
1576 if (key.objectid != ino ||
1577 key.type != BTRFS_INODE_REF_KEY)
1578 break;
1579 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1580 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1581 path->slots[0]);
1582 while (ptr < ptr_end) {
1583 struct btrfs_inode_ref *ref;
1584
1585 ref = (struct btrfs_inode_ref *)ptr;
1586 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1587 ref);
1588 ptr = (unsigned long)(ref + 1) + name_len;
1589 nlink++;
1590 }
1591
1592 if (key.offset == 0)
1593 break;
1594 if (path->slots[0] > 0) {
1595 path->slots[0]--;
1596 goto process_slot;
1597 }
1598 key.offset--;
1599 btrfs_release_path(path);
1600 }
1601 btrfs_release_path(path);
1602
1603 return nlink;
1604 }
1605
1606 /*
1607 * There are a few corners where the link count of the file can't
1608 * be properly maintained during replay. So, instead of adding
1609 * lots of complexity to the log code, we just scan the backrefs
1610 * for any file that has been through replay.
1611 *
1612 * The scan will update the link count on the inode to reflect the
1613 * number of back refs found. If it goes down to zero, the iput
1614 * will free the inode.
1615 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1616 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1617 struct btrfs_root *root,
1618 struct inode *inode)
1619 {
1620 struct btrfs_path *path;
1621 int ret;
1622 u64 nlink = 0;
1623 u64 ino = btrfs_ino(BTRFS_I(inode));
1624
1625 path = btrfs_alloc_path();
1626 if (!path)
1627 return -ENOMEM;
1628
1629 ret = count_inode_refs(root, BTRFS_I(inode), path);
1630 if (ret < 0)
1631 goto out;
1632
1633 nlink = ret;
1634
1635 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1636 if (ret < 0)
1637 goto out;
1638
1639 nlink += ret;
1640
1641 ret = 0;
1642
1643 if (nlink != inode->i_nlink) {
1644 set_nlink(inode, nlink);
1645 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1646 if (ret)
1647 goto out;
1648 }
1649 BTRFS_I(inode)->index_cnt = (u64)-1;
1650
1651 if (inode->i_nlink == 0) {
1652 if (S_ISDIR(inode->i_mode)) {
1653 ret = replay_dir_deletes(trans, root, NULL, path,
1654 ino, 1);
1655 if (ret)
1656 goto out;
1657 }
1658 ret = btrfs_insert_orphan_item(trans, root, ino);
1659 if (ret == -EEXIST)
1660 ret = 0;
1661 }
1662
1663 out:
1664 btrfs_free_path(path);
1665 return ret;
1666 }
1667
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1668 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1669 struct btrfs_root *root,
1670 struct btrfs_path *path)
1671 {
1672 int ret;
1673 struct btrfs_key key;
1674 struct inode *inode;
1675
1676 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1677 key.type = BTRFS_ORPHAN_ITEM_KEY;
1678 key.offset = (u64)-1;
1679 while (1) {
1680 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1681 if (ret < 0)
1682 break;
1683
1684 if (ret == 1) {
1685 ret = 0;
1686 if (path->slots[0] == 0)
1687 break;
1688 path->slots[0]--;
1689 }
1690
1691 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1692 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1693 key.type != BTRFS_ORPHAN_ITEM_KEY)
1694 break;
1695
1696 ret = btrfs_del_item(trans, root, path);
1697 if (ret)
1698 break;
1699
1700 btrfs_release_path(path);
1701 inode = read_one_inode(root, key.offset);
1702 if (!inode) {
1703 ret = -EIO;
1704 break;
1705 }
1706
1707 ret = fixup_inode_link_count(trans, root, inode);
1708 iput(inode);
1709 if (ret)
1710 break;
1711
1712 /*
1713 * fixup on a directory may create new entries,
1714 * make sure we always look for the highset possible
1715 * offset
1716 */
1717 key.offset = (u64)-1;
1718 }
1719 btrfs_release_path(path);
1720 return ret;
1721 }
1722
1723
1724 /*
1725 * record a given inode in the fixup dir so we can check its link
1726 * count when replay is done. The link count is incremented here
1727 * so the inode won't go away until we check it
1728 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1729 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1730 struct btrfs_root *root,
1731 struct btrfs_path *path,
1732 u64 objectid)
1733 {
1734 struct btrfs_key key;
1735 int ret = 0;
1736 struct inode *inode;
1737
1738 inode = read_one_inode(root, objectid);
1739 if (!inode)
1740 return -EIO;
1741
1742 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1743 key.type = BTRFS_ORPHAN_ITEM_KEY;
1744 key.offset = objectid;
1745
1746 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1747
1748 btrfs_release_path(path);
1749 if (ret == 0) {
1750 if (!inode->i_nlink)
1751 set_nlink(inode, 1);
1752 else
1753 inc_nlink(inode);
1754 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1755 } else if (ret == -EEXIST) {
1756 ret = 0;
1757 }
1758 iput(inode);
1759
1760 return ret;
1761 }
1762
1763 /*
1764 * when replaying the log for a directory, we only insert names
1765 * for inodes that actually exist. This means an fsync on a directory
1766 * does not implicitly fsync all the new files in it
1767 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1768 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1769 struct btrfs_root *root,
1770 u64 dirid, u64 index,
1771 const struct fscrypt_str *name,
1772 struct btrfs_key *location)
1773 {
1774 struct inode *inode;
1775 struct inode *dir;
1776 int ret;
1777
1778 inode = read_one_inode(root, location->objectid);
1779 if (!inode)
1780 return -ENOENT;
1781
1782 dir = read_one_inode(root, dirid);
1783 if (!dir) {
1784 iput(inode);
1785 return -EIO;
1786 }
1787
1788 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1789 1, index);
1790
1791 /* FIXME, put inode into FIXUP list */
1792
1793 iput(inode);
1794 iput(dir);
1795 return ret;
1796 }
1797
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1798 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1799 struct btrfs_inode *dir,
1800 struct btrfs_path *path,
1801 struct btrfs_dir_item *dst_di,
1802 const struct btrfs_key *log_key,
1803 u8 log_flags,
1804 bool exists)
1805 {
1806 struct btrfs_key found_key;
1807
1808 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1809 /* The existing dentry points to the same inode, don't delete it. */
1810 if (found_key.objectid == log_key->objectid &&
1811 found_key.type == log_key->type &&
1812 found_key.offset == log_key->offset &&
1813 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1814 return 1;
1815
1816 /*
1817 * Don't drop the conflicting directory entry if the inode for the new
1818 * entry doesn't exist.
1819 */
1820 if (!exists)
1821 return 0;
1822
1823 return drop_one_dir_item(trans, path, dir, dst_di);
1824 }
1825
1826 /*
1827 * take a single entry in a log directory item and replay it into
1828 * the subvolume.
1829 *
1830 * if a conflicting item exists in the subdirectory already,
1831 * the inode it points to is unlinked and put into the link count
1832 * fix up tree.
1833 *
1834 * If a name from the log points to a file or directory that does
1835 * not exist in the FS, it is skipped. fsyncs on directories
1836 * do not force down inodes inside that directory, just changes to the
1837 * names or unlinks in a directory.
1838 *
1839 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1840 * non-existing inode) and 1 if the name was replayed.
1841 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1842 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1843 struct btrfs_root *root,
1844 struct btrfs_path *path,
1845 struct extent_buffer *eb,
1846 struct btrfs_dir_item *di,
1847 struct btrfs_key *key)
1848 {
1849 struct fscrypt_str name = { 0 };
1850 struct btrfs_dir_item *dir_dst_di;
1851 struct btrfs_dir_item *index_dst_di;
1852 bool dir_dst_matches = false;
1853 bool index_dst_matches = false;
1854 struct btrfs_key log_key;
1855 struct btrfs_key search_key;
1856 struct inode *dir;
1857 u8 log_flags;
1858 bool exists;
1859 int ret;
1860 bool update_size = true;
1861 bool name_added = false;
1862
1863 dir = read_one_inode(root, key->objectid);
1864 if (!dir)
1865 return -EIO;
1866
1867 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1868 if (ret)
1869 goto out;
1870
1871 log_flags = btrfs_dir_flags(eb, di);
1872 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1873 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1874 btrfs_release_path(path);
1875 if (ret < 0)
1876 goto out;
1877 exists = (ret == 0);
1878 ret = 0;
1879
1880 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1881 &name, 1);
1882 if (IS_ERR(dir_dst_di)) {
1883 ret = PTR_ERR(dir_dst_di);
1884 goto out;
1885 } else if (dir_dst_di) {
1886 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1887 dir_dst_di, &log_key,
1888 log_flags, exists);
1889 if (ret < 0)
1890 goto out;
1891 dir_dst_matches = (ret == 1);
1892 }
1893
1894 btrfs_release_path(path);
1895
1896 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1897 key->objectid, key->offset,
1898 &name, 1);
1899 if (IS_ERR(index_dst_di)) {
1900 ret = PTR_ERR(index_dst_di);
1901 goto out;
1902 } else if (index_dst_di) {
1903 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1904 index_dst_di, &log_key,
1905 log_flags, exists);
1906 if (ret < 0)
1907 goto out;
1908 index_dst_matches = (ret == 1);
1909 }
1910
1911 btrfs_release_path(path);
1912
1913 if (dir_dst_matches && index_dst_matches) {
1914 ret = 0;
1915 update_size = false;
1916 goto out;
1917 }
1918
1919 /*
1920 * Check if the inode reference exists in the log for the given name,
1921 * inode and parent inode
1922 */
1923 search_key.objectid = log_key.objectid;
1924 search_key.type = BTRFS_INODE_REF_KEY;
1925 search_key.offset = key->objectid;
1926 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1927 if (ret < 0) {
1928 goto out;
1929 } else if (ret) {
1930 /* The dentry will be added later. */
1931 ret = 0;
1932 update_size = false;
1933 goto out;
1934 }
1935
1936 search_key.objectid = log_key.objectid;
1937 search_key.type = BTRFS_INODE_EXTREF_KEY;
1938 search_key.offset = key->objectid;
1939 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1940 if (ret < 0) {
1941 goto out;
1942 } else if (ret) {
1943 /* The dentry will be added later. */
1944 ret = 0;
1945 update_size = false;
1946 goto out;
1947 }
1948 btrfs_release_path(path);
1949 ret = insert_one_name(trans, root, key->objectid, key->offset,
1950 &name, &log_key);
1951 if (ret && ret != -ENOENT && ret != -EEXIST)
1952 goto out;
1953 if (!ret)
1954 name_added = true;
1955 update_size = false;
1956 ret = 0;
1957
1958 out:
1959 if (!ret && update_size) {
1960 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1961 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1962 }
1963 kfree(name.name);
1964 iput(dir);
1965 if (!ret && name_added)
1966 ret = 1;
1967 return ret;
1968 }
1969
1970 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1971 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1972 struct btrfs_root *root,
1973 struct btrfs_path *path,
1974 struct extent_buffer *eb, int slot,
1975 struct btrfs_key *key)
1976 {
1977 int ret;
1978 struct btrfs_dir_item *di;
1979
1980 /* We only log dir index keys, which only contain a single dir item. */
1981 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1982
1983 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1984 ret = replay_one_name(trans, root, path, eb, di, key);
1985 if (ret < 0)
1986 return ret;
1987
1988 /*
1989 * If this entry refers to a non-directory (directories can not have a
1990 * link count > 1) and it was added in the transaction that was not
1991 * committed, make sure we fixup the link count of the inode the entry
1992 * points to. Otherwise something like the following would result in a
1993 * directory pointing to an inode with a wrong link that does not account
1994 * for this dir entry:
1995 *
1996 * mkdir testdir
1997 * touch testdir/foo
1998 * touch testdir/bar
1999 * sync
2000 *
2001 * ln testdir/bar testdir/bar_link
2002 * ln testdir/foo testdir/foo_link
2003 * xfs_io -c "fsync" testdir/bar
2004 *
2005 * <power failure>
2006 *
2007 * mount fs, log replay happens
2008 *
2009 * File foo would remain with a link count of 1 when it has two entries
2010 * pointing to it in the directory testdir. This would make it impossible
2011 * to ever delete the parent directory has it would result in stale
2012 * dentries that can never be deleted.
2013 */
2014 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2015 struct btrfs_path *fixup_path;
2016 struct btrfs_key di_key;
2017
2018 fixup_path = btrfs_alloc_path();
2019 if (!fixup_path)
2020 return -ENOMEM;
2021
2022 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2023 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2024 btrfs_free_path(fixup_path);
2025 }
2026
2027 return ret;
2028 }
2029
2030 /*
2031 * directory replay has two parts. There are the standard directory
2032 * items in the log copied from the subvolume, and range items
2033 * created in the log while the subvolume was logged.
2034 *
2035 * The range items tell us which parts of the key space the log
2036 * is authoritative for. During replay, if a key in the subvolume
2037 * directory is in a logged range item, but not actually in the log
2038 * that means it was deleted from the directory before the fsync
2039 * and should be removed.
2040 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2041 static noinline int find_dir_range(struct btrfs_root *root,
2042 struct btrfs_path *path,
2043 u64 dirid,
2044 u64 *start_ret, u64 *end_ret)
2045 {
2046 struct btrfs_key key;
2047 u64 found_end;
2048 struct btrfs_dir_log_item *item;
2049 int ret;
2050 int nritems;
2051
2052 if (*start_ret == (u64)-1)
2053 return 1;
2054
2055 key.objectid = dirid;
2056 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2057 key.offset = *start_ret;
2058
2059 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2060 if (ret < 0)
2061 goto out;
2062 if (ret > 0) {
2063 if (path->slots[0] == 0)
2064 goto out;
2065 path->slots[0]--;
2066 }
2067 if (ret != 0)
2068 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2069
2070 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2071 ret = 1;
2072 goto next;
2073 }
2074 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2075 struct btrfs_dir_log_item);
2076 found_end = btrfs_dir_log_end(path->nodes[0], item);
2077
2078 if (*start_ret >= key.offset && *start_ret <= found_end) {
2079 ret = 0;
2080 *start_ret = key.offset;
2081 *end_ret = found_end;
2082 goto out;
2083 }
2084 ret = 1;
2085 next:
2086 /* check the next slot in the tree to see if it is a valid item */
2087 nritems = btrfs_header_nritems(path->nodes[0]);
2088 path->slots[0]++;
2089 if (path->slots[0] >= nritems) {
2090 ret = btrfs_next_leaf(root, path);
2091 if (ret)
2092 goto out;
2093 }
2094
2095 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2096
2097 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2098 ret = 1;
2099 goto out;
2100 }
2101 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2102 struct btrfs_dir_log_item);
2103 found_end = btrfs_dir_log_end(path->nodes[0], item);
2104 *start_ret = key.offset;
2105 *end_ret = found_end;
2106 ret = 0;
2107 out:
2108 btrfs_release_path(path);
2109 return ret;
2110 }
2111
2112 /*
2113 * this looks for a given directory item in the log. If the directory
2114 * item is not in the log, the item is removed and the inode it points
2115 * to is unlinked
2116 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2117 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2118 struct btrfs_root *log,
2119 struct btrfs_path *path,
2120 struct btrfs_path *log_path,
2121 struct inode *dir,
2122 struct btrfs_key *dir_key)
2123 {
2124 struct btrfs_root *root = BTRFS_I(dir)->root;
2125 int ret;
2126 struct extent_buffer *eb;
2127 int slot;
2128 struct btrfs_dir_item *di;
2129 struct fscrypt_str name = { 0 };
2130 struct inode *inode = NULL;
2131 struct btrfs_key location;
2132
2133 /*
2134 * Currently we only log dir index keys. Even if we replay a log created
2135 * by an older kernel that logged both dir index and dir item keys, all
2136 * we need to do is process the dir index keys, we (and our caller) can
2137 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2138 */
2139 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2140
2141 eb = path->nodes[0];
2142 slot = path->slots[0];
2143 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2144 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2145 if (ret)
2146 goto out;
2147
2148 if (log) {
2149 struct btrfs_dir_item *log_di;
2150
2151 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2152 dir_key->objectid,
2153 dir_key->offset, &name, 0);
2154 if (IS_ERR(log_di)) {
2155 ret = PTR_ERR(log_di);
2156 goto out;
2157 } else if (log_di) {
2158 /* The dentry exists in the log, we have nothing to do. */
2159 ret = 0;
2160 goto out;
2161 }
2162 }
2163
2164 btrfs_dir_item_key_to_cpu(eb, di, &location);
2165 btrfs_release_path(path);
2166 btrfs_release_path(log_path);
2167 inode = read_one_inode(root, location.objectid);
2168 if (!inode) {
2169 ret = -EIO;
2170 goto out;
2171 }
2172
2173 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2174 if (ret)
2175 goto out;
2176
2177 inc_nlink(inode);
2178 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2179 &name);
2180 /*
2181 * Unlike dir item keys, dir index keys can only have one name (entry) in
2182 * them, as there are no key collisions since each key has a unique offset
2183 * (an index number), so we're done.
2184 */
2185 out:
2186 btrfs_release_path(path);
2187 btrfs_release_path(log_path);
2188 kfree(name.name);
2189 iput(inode);
2190 return ret;
2191 }
2192
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2193 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root,
2195 struct btrfs_root *log,
2196 struct btrfs_path *path,
2197 const u64 ino)
2198 {
2199 struct btrfs_key search_key;
2200 struct btrfs_path *log_path;
2201 int i;
2202 int nritems;
2203 int ret;
2204
2205 log_path = btrfs_alloc_path();
2206 if (!log_path)
2207 return -ENOMEM;
2208
2209 search_key.objectid = ino;
2210 search_key.type = BTRFS_XATTR_ITEM_KEY;
2211 search_key.offset = 0;
2212 again:
2213 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2214 if (ret < 0)
2215 goto out;
2216 process_leaf:
2217 nritems = btrfs_header_nritems(path->nodes[0]);
2218 for (i = path->slots[0]; i < nritems; i++) {
2219 struct btrfs_key key;
2220 struct btrfs_dir_item *di;
2221 struct btrfs_dir_item *log_di;
2222 u32 total_size;
2223 u32 cur;
2224
2225 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2226 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2227 ret = 0;
2228 goto out;
2229 }
2230
2231 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2232 total_size = btrfs_item_size(path->nodes[0], i);
2233 cur = 0;
2234 while (cur < total_size) {
2235 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2236 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2237 u32 this_len = sizeof(*di) + name_len + data_len;
2238 char *name;
2239
2240 name = kmalloc(name_len, GFP_NOFS);
2241 if (!name) {
2242 ret = -ENOMEM;
2243 goto out;
2244 }
2245 read_extent_buffer(path->nodes[0], name,
2246 (unsigned long)(di + 1), name_len);
2247
2248 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2249 name, name_len, 0);
2250 btrfs_release_path(log_path);
2251 if (!log_di) {
2252 /* Doesn't exist in log tree, so delete it. */
2253 btrfs_release_path(path);
2254 di = btrfs_lookup_xattr(trans, root, path, ino,
2255 name, name_len, -1);
2256 kfree(name);
2257 if (IS_ERR(di)) {
2258 ret = PTR_ERR(di);
2259 goto out;
2260 }
2261 ASSERT(di);
2262 ret = btrfs_delete_one_dir_name(trans, root,
2263 path, di);
2264 if (ret)
2265 goto out;
2266 btrfs_release_path(path);
2267 search_key = key;
2268 goto again;
2269 }
2270 kfree(name);
2271 if (IS_ERR(log_di)) {
2272 ret = PTR_ERR(log_di);
2273 goto out;
2274 }
2275 cur += this_len;
2276 di = (struct btrfs_dir_item *)((char *)di + this_len);
2277 }
2278 }
2279 ret = btrfs_next_leaf(root, path);
2280 if (ret > 0)
2281 ret = 0;
2282 else if (ret == 0)
2283 goto process_leaf;
2284 out:
2285 btrfs_free_path(log_path);
2286 btrfs_release_path(path);
2287 return ret;
2288 }
2289
2290
2291 /*
2292 * deletion replay happens before we copy any new directory items
2293 * out of the log or out of backreferences from inodes. It
2294 * scans the log to find ranges of keys that log is authoritative for,
2295 * and then scans the directory to find items in those ranges that are
2296 * not present in the log.
2297 *
2298 * Anything we don't find in the log is unlinked and removed from the
2299 * directory.
2300 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2301 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2302 struct btrfs_root *root,
2303 struct btrfs_root *log,
2304 struct btrfs_path *path,
2305 u64 dirid, int del_all)
2306 {
2307 u64 range_start;
2308 u64 range_end;
2309 int ret = 0;
2310 struct btrfs_key dir_key;
2311 struct btrfs_key found_key;
2312 struct btrfs_path *log_path;
2313 struct inode *dir;
2314
2315 dir_key.objectid = dirid;
2316 dir_key.type = BTRFS_DIR_INDEX_KEY;
2317 log_path = btrfs_alloc_path();
2318 if (!log_path)
2319 return -ENOMEM;
2320
2321 dir = read_one_inode(root, dirid);
2322 /* it isn't an error if the inode isn't there, that can happen
2323 * because we replay the deletes before we copy in the inode item
2324 * from the log
2325 */
2326 if (!dir) {
2327 btrfs_free_path(log_path);
2328 return 0;
2329 }
2330
2331 range_start = 0;
2332 range_end = 0;
2333 while (1) {
2334 if (del_all)
2335 range_end = (u64)-1;
2336 else {
2337 ret = find_dir_range(log, path, dirid,
2338 &range_start, &range_end);
2339 if (ret < 0)
2340 goto out;
2341 else if (ret > 0)
2342 break;
2343 }
2344
2345 dir_key.offset = range_start;
2346 while (1) {
2347 int nritems;
2348 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2349 0, 0);
2350 if (ret < 0)
2351 goto out;
2352
2353 nritems = btrfs_header_nritems(path->nodes[0]);
2354 if (path->slots[0] >= nritems) {
2355 ret = btrfs_next_leaf(root, path);
2356 if (ret == 1)
2357 break;
2358 else if (ret < 0)
2359 goto out;
2360 }
2361 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2362 path->slots[0]);
2363 if (found_key.objectid != dirid ||
2364 found_key.type != dir_key.type) {
2365 ret = 0;
2366 goto out;
2367 }
2368
2369 if (found_key.offset > range_end)
2370 break;
2371
2372 ret = check_item_in_log(trans, log, path,
2373 log_path, dir,
2374 &found_key);
2375 if (ret)
2376 goto out;
2377 if (found_key.offset == (u64)-1)
2378 break;
2379 dir_key.offset = found_key.offset + 1;
2380 }
2381 btrfs_release_path(path);
2382 if (range_end == (u64)-1)
2383 break;
2384 range_start = range_end + 1;
2385 }
2386 ret = 0;
2387 out:
2388 btrfs_release_path(path);
2389 btrfs_free_path(log_path);
2390 iput(dir);
2391 return ret;
2392 }
2393
2394 /*
2395 * the process_func used to replay items from the log tree. This
2396 * gets called in two different stages. The first stage just looks
2397 * for inodes and makes sure they are all copied into the subvolume.
2398 *
2399 * The second stage copies all the other item types from the log into
2400 * the subvolume. The two stage approach is slower, but gets rid of
2401 * lots of complexity around inodes referencing other inodes that exist
2402 * only in the log (references come from either directory items or inode
2403 * back refs).
2404 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2405 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2406 struct walk_control *wc, u64 gen, int level)
2407 {
2408 int nritems;
2409 struct btrfs_tree_parent_check check = {
2410 .transid = gen,
2411 .level = level
2412 };
2413 struct btrfs_path *path;
2414 struct btrfs_root *root = wc->replay_dest;
2415 struct btrfs_key key;
2416 int i;
2417 int ret;
2418
2419 ret = btrfs_read_extent_buffer(eb, &check);
2420 if (ret)
2421 return ret;
2422
2423 level = btrfs_header_level(eb);
2424
2425 if (level != 0)
2426 return 0;
2427
2428 path = btrfs_alloc_path();
2429 if (!path)
2430 return -ENOMEM;
2431
2432 nritems = btrfs_header_nritems(eb);
2433 for (i = 0; i < nritems; i++) {
2434 btrfs_item_key_to_cpu(eb, &key, i);
2435
2436 /* inode keys are done during the first stage */
2437 if (key.type == BTRFS_INODE_ITEM_KEY &&
2438 wc->stage == LOG_WALK_REPLAY_INODES) {
2439 struct btrfs_inode_item *inode_item;
2440 u32 mode;
2441
2442 inode_item = btrfs_item_ptr(eb, i,
2443 struct btrfs_inode_item);
2444 /*
2445 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2446 * and never got linked before the fsync, skip it, as
2447 * replaying it is pointless since it would be deleted
2448 * later. We skip logging tmpfiles, but it's always
2449 * possible we are replaying a log created with a kernel
2450 * that used to log tmpfiles.
2451 */
2452 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2453 wc->ignore_cur_inode = true;
2454 continue;
2455 } else {
2456 wc->ignore_cur_inode = false;
2457 }
2458 ret = replay_xattr_deletes(wc->trans, root, log,
2459 path, key.objectid);
2460 if (ret)
2461 break;
2462 mode = btrfs_inode_mode(eb, inode_item);
2463 if (S_ISDIR(mode)) {
2464 ret = replay_dir_deletes(wc->trans,
2465 root, log, path, key.objectid, 0);
2466 if (ret)
2467 break;
2468 }
2469 ret = overwrite_item(wc->trans, root, path,
2470 eb, i, &key);
2471 if (ret)
2472 break;
2473
2474 /*
2475 * Before replaying extents, truncate the inode to its
2476 * size. We need to do it now and not after log replay
2477 * because before an fsync we can have prealloc extents
2478 * added beyond the inode's i_size. If we did it after,
2479 * through orphan cleanup for example, we would drop
2480 * those prealloc extents just after replaying them.
2481 */
2482 if (S_ISREG(mode)) {
2483 struct btrfs_drop_extents_args drop_args = { 0 };
2484 struct inode *inode;
2485 u64 from;
2486
2487 inode = read_one_inode(root, key.objectid);
2488 if (!inode) {
2489 ret = -EIO;
2490 break;
2491 }
2492 from = ALIGN(i_size_read(inode),
2493 root->fs_info->sectorsize);
2494 drop_args.start = from;
2495 drop_args.end = (u64)-1;
2496 drop_args.drop_cache = true;
2497 ret = btrfs_drop_extents(wc->trans, root,
2498 BTRFS_I(inode),
2499 &drop_args);
2500 if (!ret) {
2501 inode_sub_bytes(inode,
2502 drop_args.bytes_found);
2503 /* Update the inode's nbytes. */
2504 ret = btrfs_update_inode(wc->trans,
2505 root, BTRFS_I(inode));
2506 }
2507 iput(inode);
2508 if (ret)
2509 break;
2510 }
2511
2512 ret = link_to_fixup_dir(wc->trans, root,
2513 path, key.objectid);
2514 if (ret)
2515 break;
2516 }
2517
2518 if (wc->ignore_cur_inode)
2519 continue;
2520
2521 if (key.type == BTRFS_DIR_INDEX_KEY &&
2522 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2523 ret = replay_one_dir_item(wc->trans, root, path,
2524 eb, i, &key);
2525 if (ret)
2526 break;
2527 }
2528
2529 if (wc->stage < LOG_WALK_REPLAY_ALL)
2530 continue;
2531
2532 /* these keys are simply copied */
2533 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2534 ret = overwrite_item(wc->trans, root, path,
2535 eb, i, &key);
2536 if (ret)
2537 break;
2538 } else if (key.type == BTRFS_INODE_REF_KEY ||
2539 key.type == BTRFS_INODE_EXTREF_KEY) {
2540 ret = add_inode_ref(wc->trans, root, log, path,
2541 eb, i, &key);
2542 if (ret && ret != -ENOENT)
2543 break;
2544 ret = 0;
2545 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2546 ret = replay_one_extent(wc->trans, root, path,
2547 eb, i, &key);
2548 if (ret)
2549 break;
2550 }
2551 /*
2552 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2553 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2554 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2555 * older kernel with such keys, ignore them.
2556 */
2557 }
2558 btrfs_free_path(path);
2559 return ret;
2560 }
2561
2562 /*
2563 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2564 */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2565 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2566 {
2567 struct btrfs_block_group *cache;
2568
2569 cache = btrfs_lookup_block_group(fs_info, start);
2570 if (!cache) {
2571 btrfs_err(fs_info, "unable to find block group for %llu", start);
2572 return;
2573 }
2574
2575 spin_lock(&cache->space_info->lock);
2576 spin_lock(&cache->lock);
2577 cache->reserved -= fs_info->nodesize;
2578 cache->space_info->bytes_reserved -= fs_info->nodesize;
2579 spin_unlock(&cache->lock);
2580 spin_unlock(&cache->space_info->lock);
2581
2582 btrfs_put_block_group(cache);
2583 }
2584
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2585 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2586 struct extent_buffer *eb)
2587 {
2588 int ret;
2589
2590 btrfs_tree_lock(eb);
2591 btrfs_clear_buffer_dirty(trans, eb);
2592 wait_on_extent_buffer_writeback(eb);
2593 btrfs_tree_unlock(eb);
2594
2595 if (trans) {
2596 ret = btrfs_pin_reserved_extent(trans, eb->start, eb->len);
2597 if (ret)
2598 return ret;
2599 btrfs_redirty_list_add(trans->transaction, eb);
2600 } else {
2601 unaccount_log_buffer(eb->fs_info, eb->start);
2602 }
2603
2604 return 0;
2605 }
2606
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2607 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2608 struct btrfs_root *root,
2609 struct btrfs_path *path, int *level,
2610 struct walk_control *wc)
2611 {
2612 struct btrfs_fs_info *fs_info = root->fs_info;
2613 u64 bytenr;
2614 u64 ptr_gen;
2615 struct extent_buffer *next;
2616 struct extent_buffer *cur;
2617 int ret = 0;
2618
2619 while (*level > 0) {
2620 struct btrfs_tree_parent_check check = { 0 };
2621
2622 cur = path->nodes[*level];
2623
2624 WARN_ON(btrfs_header_level(cur) != *level);
2625
2626 if (path->slots[*level] >=
2627 btrfs_header_nritems(cur))
2628 break;
2629
2630 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2631 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2632 check.transid = ptr_gen;
2633 check.level = *level - 1;
2634 check.has_first_key = true;
2635 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2636
2637 next = btrfs_find_create_tree_block(fs_info, bytenr,
2638 btrfs_header_owner(cur),
2639 *level - 1);
2640 if (IS_ERR(next))
2641 return PTR_ERR(next);
2642
2643 if (*level == 1) {
2644 ret = wc->process_func(root, next, wc, ptr_gen,
2645 *level - 1);
2646 if (ret) {
2647 free_extent_buffer(next);
2648 return ret;
2649 }
2650
2651 path->slots[*level]++;
2652 if (wc->free) {
2653 ret = btrfs_read_extent_buffer(next, &check);
2654 if (ret) {
2655 free_extent_buffer(next);
2656 return ret;
2657 }
2658
2659 ret = clean_log_buffer(trans, next);
2660 if (ret) {
2661 free_extent_buffer(next);
2662 return ret;
2663 }
2664 }
2665 free_extent_buffer(next);
2666 continue;
2667 }
2668 ret = btrfs_read_extent_buffer(next, &check);
2669 if (ret) {
2670 free_extent_buffer(next);
2671 return ret;
2672 }
2673
2674 if (path->nodes[*level-1])
2675 free_extent_buffer(path->nodes[*level-1]);
2676 path->nodes[*level-1] = next;
2677 *level = btrfs_header_level(next);
2678 path->slots[*level] = 0;
2679 cond_resched();
2680 }
2681 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2682
2683 cond_resched();
2684 return 0;
2685 }
2686
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2687 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root,
2689 struct btrfs_path *path, int *level,
2690 struct walk_control *wc)
2691 {
2692 int i;
2693 int slot;
2694 int ret;
2695
2696 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2697 slot = path->slots[i];
2698 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2699 path->slots[i]++;
2700 *level = i;
2701 WARN_ON(*level == 0);
2702 return 0;
2703 } else {
2704 ret = wc->process_func(root, path->nodes[*level], wc,
2705 btrfs_header_generation(path->nodes[*level]),
2706 *level);
2707 if (ret)
2708 return ret;
2709
2710 if (wc->free) {
2711 ret = clean_log_buffer(trans, path->nodes[*level]);
2712 if (ret)
2713 return ret;
2714 }
2715 free_extent_buffer(path->nodes[*level]);
2716 path->nodes[*level] = NULL;
2717 *level = i + 1;
2718 }
2719 }
2720 return 1;
2721 }
2722
2723 /*
2724 * drop the reference count on the tree rooted at 'snap'. This traverses
2725 * the tree freeing any blocks that have a ref count of zero after being
2726 * decremented.
2727 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2728 static int walk_log_tree(struct btrfs_trans_handle *trans,
2729 struct btrfs_root *log, struct walk_control *wc)
2730 {
2731 int ret = 0;
2732 int wret;
2733 int level;
2734 struct btrfs_path *path;
2735 int orig_level;
2736
2737 path = btrfs_alloc_path();
2738 if (!path)
2739 return -ENOMEM;
2740
2741 level = btrfs_header_level(log->node);
2742 orig_level = level;
2743 path->nodes[level] = log->node;
2744 atomic_inc(&log->node->refs);
2745 path->slots[level] = 0;
2746
2747 while (1) {
2748 wret = walk_down_log_tree(trans, log, path, &level, wc);
2749 if (wret > 0)
2750 break;
2751 if (wret < 0) {
2752 ret = wret;
2753 goto out;
2754 }
2755
2756 wret = walk_up_log_tree(trans, log, path, &level, wc);
2757 if (wret > 0)
2758 break;
2759 if (wret < 0) {
2760 ret = wret;
2761 goto out;
2762 }
2763 }
2764
2765 /* was the root node processed? if not, catch it here */
2766 if (path->nodes[orig_level]) {
2767 ret = wc->process_func(log, path->nodes[orig_level], wc,
2768 btrfs_header_generation(path->nodes[orig_level]),
2769 orig_level);
2770 if (ret)
2771 goto out;
2772 if (wc->free)
2773 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2774 }
2775
2776 out:
2777 btrfs_free_path(path);
2778 return ret;
2779 }
2780
2781 /*
2782 * helper function to update the item for a given subvolumes log root
2783 * in the tree of log roots
2784 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2785 static int update_log_root(struct btrfs_trans_handle *trans,
2786 struct btrfs_root *log,
2787 struct btrfs_root_item *root_item)
2788 {
2789 struct btrfs_fs_info *fs_info = log->fs_info;
2790 int ret;
2791
2792 if (log->log_transid == 1) {
2793 /* insert root item on the first sync */
2794 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2795 &log->root_key, root_item);
2796 } else {
2797 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2798 &log->root_key, root_item);
2799 }
2800 return ret;
2801 }
2802
wait_log_commit(struct btrfs_root * root,int transid)2803 static void wait_log_commit(struct btrfs_root *root, int transid)
2804 {
2805 DEFINE_WAIT(wait);
2806 int index = transid % 2;
2807
2808 /*
2809 * we only allow two pending log transactions at a time,
2810 * so we know that if ours is more than 2 older than the
2811 * current transaction, we're done
2812 */
2813 for (;;) {
2814 prepare_to_wait(&root->log_commit_wait[index],
2815 &wait, TASK_UNINTERRUPTIBLE);
2816
2817 if (!(root->log_transid_committed < transid &&
2818 atomic_read(&root->log_commit[index])))
2819 break;
2820
2821 mutex_unlock(&root->log_mutex);
2822 schedule();
2823 mutex_lock(&root->log_mutex);
2824 }
2825 finish_wait(&root->log_commit_wait[index], &wait);
2826 }
2827
wait_for_writer(struct btrfs_root * root)2828 static void wait_for_writer(struct btrfs_root *root)
2829 {
2830 DEFINE_WAIT(wait);
2831
2832 for (;;) {
2833 prepare_to_wait(&root->log_writer_wait, &wait,
2834 TASK_UNINTERRUPTIBLE);
2835 if (!atomic_read(&root->log_writers))
2836 break;
2837
2838 mutex_unlock(&root->log_mutex);
2839 schedule();
2840 mutex_lock(&root->log_mutex);
2841 }
2842 finish_wait(&root->log_writer_wait, &wait);
2843 }
2844
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2845 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2846 struct btrfs_log_ctx *ctx)
2847 {
2848 mutex_lock(&root->log_mutex);
2849 list_del_init(&ctx->list);
2850 mutex_unlock(&root->log_mutex);
2851 }
2852
2853 /*
2854 * Invoked in log mutex context, or be sure there is no other task which
2855 * can access the list.
2856 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2857 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2858 int index, int error)
2859 {
2860 struct btrfs_log_ctx *ctx;
2861 struct btrfs_log_ctx *safe;
2862
2863 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2864 list_del_init(&ctx->list);
2865 ctx->log_ret = error;
2866 }
2867 }
2868
2869 /*
2870 * btrfs_sync_log does sends a given tree log down to the disk and
2871 * updates the super blocks to record it. When this call is done,
2872 * you know that any inodes previously logged are safely on disk only
2873 * if it returns 0.
2874 *
2875 * Any other return value means you need to call btrfs_commit_transaction.
2876 * Some of the edge cases for fsyncing directories that have had unlinks
2877 * or renames done in the past mean that sometimes the only safe
2878 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2879 * that has happened.
2880 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2881 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2882 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2883 {
2884 int index1;
2885 int index2;
2886 int mark;
2887 int ret;
2888 struct btrfs_fs_info *fs_info = root->fs_info;
2889 struct btrfs_root *log = root->log_root;
2890 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2891 struct btrfs_root_item new_root_item;
2892 int log_transid = 0;
2893 struct btrfs_log_ctx root_log_ctx;
2894 struct blk_plug plug;
2895 u64 log_root_start;
2896 u64 log_root_level;
2897
2898 mutex_lock(&root->log_mutex);
2899 log_transid = ctx->log_transid;
2900 if (root->log_transid_committed >= log_transid) {
2901 mutex_unlock(&root->log_mutex);
2902 return ctx->log_ret;
2903 }
2904
2905 index1 = log_transid % 2;
2906 if (atomic_read(&root->log_commit[index1])) {
2907 wait_log_commit(root, log_transid);
2908 mutex_unlock(&root->log_mutex);
2909 return ctx->log_ret;
2910 }
2911 ASSERT(log_transid == root->log_transid);
2912 atomic_set(&root->log_commit[index1], 1);
2913
2914 /* wait for previous tree log sync to complete */
2915 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2916 wait_log_commit(root, log_transid - 1);
2917
2918 while (1) {
2919 int batch = atomic_read(&root->log_batch);
2920 /* when we're on an ssd, just kick the log commit out */
2921 if (!btrfs_test_opt(fs_info, SSD) &&
2922 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2923 mutex_unlock(&root->log_mutex);
2924 schedule_timeout_uninterruptible(1);
2925 mutex_lock(&root->log_mutex);
2926 }
2927 wait_for_writer(root);
2928 if (batch == atomic_read(&root->log_batch))
2929 break;
2930 }
2931
2932 /* bail out if we need to do a full commit */
2933 if (btrfs_need_log_full_commit(trans)) {
2934 ret = BTRFS_LOG_FORCE_COMMIT;
2935 mutex_unlock(&root->log_mutex);
2936 goto out;
2937 }
2938
2939 if (log_transid % 2 == 0)
2940 mark = EXTENT_DIRTY;
2941 else
2942 mark = EXTENT_NEW;
2943
2944 /* we start IO on all the marked extents here, but we don't actually
2945 * wait for them until later.
2946 */
2947 blk_start_plug(&plug);
2948 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2949 /*
2950 * -EAGAIN happens when someone, e.g., a concurrent transaction
2951 * commit, writes a dirty extent in this tree-log commit. This
2952 * concurrent write will create a hole writing out the extents,
2953 * and we cannot proceed on a zoned filesystem, requiring
2954 * sequential writing. While we can bail out to a full commit
2955 * here, but we can continue hoping the concurrent writing fills
2956 * the hole.
2957 */
2958 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2959 ret = 0;
2960 if (ret) {
2961 blk_finish_plug(&plug);
2962 btrfs_set_log_full_commit(trans);
2963 mutex_unlock(&root->log_mutex);
2964 goto out;
2965 }
2966
2967 /*
2968 * We _must_ update under the root->log_mutex in order to make sure we
2969 * have a consistent view of the log root we are trying to commit at
2970 * this moment.
2971 *
2972 * We _must_ copy this into a local copy, because we are not holding the
2973 * log_root_tree->log_mutex yet. This is important because when we
2974 * commit the log_root_tree we must have a consistent view of the
2975 * log_root_tree when we update the super block to point at the
2976 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2977 * with the commit and possibly point at the new block which we may not
2978 * have written out.
2979 */
2980 btrfs_set_root_node(&log->root_item, log->node);
2981 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
2982
2983 root->log_transid++;
2984 log->log_transid = root->log_transid;
2985 root->log_start_pid = 0;
2986 /*
2987 * IO has been started, blocks of the log tree have WRITTEN flag set
2988 * in their headers. new modifications of the log will be written to
2989 * new positions. so it's safe to allow log writers to go in.
2990 */
2991 mutex_unlock(&root->log_mutex);
2992
2993 if (btrfs_is_zoned(fs_info)) {
2994 mutex_lock(&fs_info->tree_root->log_mutex);
2995 if (!log_root_tree->node) {
2996 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
2997 if (ret) {
2998 mutex_unlock(&fs_info->tree_root->log_mutex);
2999 blk_finish_plug(&plug);
3000 goto out;
3001 }
3002 }
3003 mutex_unlock(&fs_info->tree_root->log_mutex);
3004 }
3005
3006 btrfs_init_log_ctx(&root_log_ctx, NULL);
3007
3008 mutex_lock(&log_root_tree->log_mutex);
3009
3010 index2 = log_root_tree->log_transid % 2;
3011 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3012 root_log_ctx.log_transid = log_root_tree->log_transid;
3013
3014 /*
3015 * Now we are safe to update the log_root_tree because we're under the
3016 * log_mutex, and we're a current writer so we're holding the commit
3017 * open until we drop the log_mutex.
3018 */
3019 ret = update_log_root(trans, log, &new_root_item);
3020 if (ret) {
3021 if (!list_empty(&root_log_ctx.list))
3022 list_del_init(&root_log_ctx.list);
3023
3024 blk_finish_plug(&plug);
3025 btrfs_set_log_full_commit(trans);
3026 if (ret != -ENOSPC)
3027 btrfs_err(fs_info,
3028 "failed to update log for root %llu ret %d",
3029 root->root_key.objectid, ret);
3030 btrfs_wait_tree_log_extents(log, mark);
3031 mutex_unlock(&log_root_tree->log_mutex);
3032 goto out;
3033 }
3034
3035 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3036 blk_finish_plug(&plug);
3037 list_del_init(&root_log_ctx.list);
3038 mutex_unlock(&log_root_tree->log_mutex);
3039 ret = root_log_ctx.log_ret;
3040 goto out;
3041 }
3042
3043 index2 = root_log_ctx.log_transid % 2;
3044 if (atomic_read(&log_root_tree->log_commit[index2])) {
3045 blk_finish_plug(&plug);
3046 ret = btrfs_wait_tree_log_extents(log, mark);
3047 wait_log_commit(log_root_tree,
3048 root_log_ctx.log_transid);
3049 mutex_unlock(&log_root_tree->log_mutex);
3050 if (!ret)
3051 ret = root_log_ctx.log_ret;
3052 goto out;
3053 }
3054 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3055 atomic_set(&log_root_tree->log_commit[index2], 1);
3056
3057 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3058 wait_log_commit(log_root_tree,
3059 root_log_ctx.log_transid - 1);
3060 }
3061
3062 /*
3063 * now that we've moved on to the tree of log tree roots,
3064 * check the full commit flag again
3065 */
3066 if (btrfs_need_log_full_commit(trans)) {
3067 blk_finish_plug(&plug);
3068 btrfs_wait_tree_log_extents(log, mark);
3069 mutex_unlock(&log_root_tree->log_mutex);
3070 ret = BTRFS_LOG_FORCE_COMMIT;
3071 goto out_wake_log_root;
3072 }
3073
3074 ret = btrfs_write_marked_extents(fs_info,
3075 &log_root_tree->dirty_log_pages,
3076 EXTENT_DIRTY | EXTENT_NEW);
3077 blk_finish_plug(&plug);
3078 /*
3079 * As described above, -EAGAIN indicates a hole in the extents. We
3080 * cannot wait for these write outs since the waiting cause a
3081 * deadlock. Bail out to the full commit instead.
3082 */
3083 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3084 btrfs_set_log_full_commit(trans);
3085 btrfs_wait_tree_log_extents(log, mark);
3086 mutex_unlock(&log_root_tree->log_mutex);
3087 goto out_wake_log_root;
3088 } else if (ret) {
3089 btrfs_set_log_full_commit(trans);
3090 mutex_unlock(&log_root_tree->log_mutex);
3091 goto out_wake_log_root;
3092 }
3093 ret = btrfs_wait_tree_log_extents(log, mark);
3094 if (!ret)
3095 ret = btrfs_wait_tree_log_extents(log_root_tree,
3096 EXTENT_NEW | EXTENT_DIRTY);
3097 if (ret) {
3098 btrfs_set_log_full_commit(trans);
3099 mutex_unlock(&log_root_tree->log_mutex);
3100 goto out_wake_log_root;
3101 }
3102
3103 log_root_start = log_root_tree->node->start;
3104 log_root_level = btrfs_header_level(log_root_tree->node);
3105 log_root_tree->log_transid++;
3106 mutex_unlock(&log_root_tree->log_mutex);
3107
3108 /*
3109 * Here we are guaranteed that nobody is going to write the superblock
3110 * for the current transaction before us and that neither we do write
3111 * our superblock before the previous transaction finishes its commit
3112 * and writes its superblock, because:
3113 *
3114 * 1) We are holding a handle on the current transaction, so no body
3115 * can commit it until we release the handle;
3116 *
3117 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3118 * if the previous transaction is still committing, and hasn't yet
3119 * written its superblock, we wait for it to do it, because a
3120 * transaction commit acquires the tree_log_mutex when the commit
3121 * begins and releases it only after writing its superblock.
3122 */
3123 mutex_lock(&fs_info->tree_log_mutex);
3124
3125 /*
3126 * The previous transaction writeout phase could have failed, and thus
3127 * marked the fs in an error state. We must not commit here, as we
3128 * could have updated our generation in the super_for_commit and
3129 * writing the super here would result in transid mismatches. If there
3130 * is an error here just bail.
3131 */
3132 if (BTRFS_FS_ERROR(fs_info)) {
3133 ret = -EIO;
3134 btrfs_set_log_full_commit(trans);
3135 btrfs_abort_transaction(trans, ret);
3136 mutex_unlock(&fs_info->tree_log_mutex);
3137 goto out_wake_log_root;
3138 }
3139
3140 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3141 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3142 ret = write_all_supers(fs_info, 1);
3143 mutex_unlock(&fs_info->tree_log_mutex);
3144 if (ret) {
3145 btrfs_set_log_full_commit(trans);
3146 btrfs_abort_transaction(trans, ret);
3147 goto out_wake_log_root;
3148 }
3149
3150 /*
3151 * We know there can only be one task here, since we have not yet set
3152 * root->log_commit[index1] to 0 and any task attempting to sync the
3153 * log must wait for the previous log transaction to commit if it's
3154 * still in progress or wait for the current log transaction commit if
3155 * someone else already started it. We use <= and not < because the
3156 * first log transaction has an ID of 0.
3157 */
3158 ASSERT(root->last_log_commit <= log_transid);
3159 root->last_log_commit = log_transid;
3160
3161 out_wake_log_root:
3162 mutex_lock(&log_root_tree->log_mutex);
3163 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3164
3165 log_root_tree->log_transid_committed++;
3166 atomic_set(&log_root_tree->log_commit[index2], 0);
3167 mutex_unlock(&log_root_tree->log_mutex);
3168
3169 /*
3170 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3171 * all the updates above are seen by the woken threads. It might not be
3172 * necessary, but proving that seems to be hard.
3173 */
3174 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3175 out:
3176 mutex_lock(&root->log_mutex);
3177 btrfs_remove_all_log_ctxs(root, index1, ret);
3178 root->log_transid_committed++;
3179 atomic_set(&root->log_commit[index1], 0);
3180 mutex_unlock(&root->log_mutex);
3181
3182 /*
3183 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3184 * all the updates above are seen by the woken threads. It might not be
3185 * necessary, but proving that seems to be hard.
3186 */
3187 cond_wake_up(&root->log_commit_wait[index1]);
3188 return ret;
3189 }
3190
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3191 static void free_log_tree(struct btrfs_trans_handle *trans,
3192 struct btrfs_root *log)
3193 {
3194 int ret;
3195 struct walk_control wc = {
3196 .free = 1,
3197 .process_func = process_one_buffer
3198 };
3199
3200 if (log->node) {
3201 ret = walk_log_tree(trans, log, &wc);
3202 if (ret) {
3203 /*
3204 * We weren't able to traverse the entire log tree, the
3205 * typical scenario is getting an -EIO when reading an
3206 * extent buffer of the tree, due to a previous writeback
3207 * failure of it.
3208 */
3209 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3210 &log->fs_info->fs_state);
3211
3212 /*
3213 * Some extent buffers of the log tree may still be dirty
3214 * and not yet written back to storage, because we may
3215 * have updates to a log tree without syncing a log tree,
3216 * such as during rename and link operations. So flush
3217 * them out and wait for their writeback to complete, so
3218 * that we properly cleanup their state and pages.
3219 */
3220 btrfs_write_marked_extents(log->fs_info,
3221 &log->dirty_log_pages,
3222 EXTENT_DIRTY | EXTENT_NEW);
3223 btrfs_wait_tree_log_extents(log,
3224 EXTENT_DIRTY | EXTENT_NEW);
3225
3226 if (trans)
3227 btrfs_abort_transaction(trans, ret);
3228 else
3229 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3230 }
3231 }
3232
3233 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3234 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3235 extent_io_tree_release(&log->log_csum_range);
3236
3237 btrfs_put_root(log);
3238 }
3239
3240 /*
3241 * free all the extents used by the tree log. This should be called
3242 * at commit time of the full transaction
3243 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3244 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3245 {
3246 if (root->log_root) {
3247 free_log_tree(trans, root->log_root);
3248 root->log_root = NULL;
3249 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3250 }
3251 return 0;
3252 }
3253
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3254 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3255 struct btrfs_fs_info *fs_info)
3256 {
3257 if (fs_info->log_root_tree) {
3258 free_log_tree(trans, fs_info->log_root_tree);
3259 fs_info->log_root_tree = NULL;
3260 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3261 }
3262 return 0;
3263 }
3264
3265 /*
3266 * Check if an inode was logged in the current transaction. This correctly deals
3267 * with the case where the inode was logged but has a logged_trans of 0, which
3268 * happens if the inode is evicted and loaded again, as logged_trans is an in
3269 * memory only field (not persisted).
3270 *
3271 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3272 * and < 0 on error.
3273 */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3274 static int inode_logged(const struct btrfs_trans_handle *trans,
3275 struct btrfs_inode *inode,
3276 struct btrfs_path *path_in)
3277 {
3278 struct btrfs_path *path = path_in;
3279 struct btrfs_key key;
3280 int ret;
3281
3282 if (inode->logged_trans == trans->transid)
3283 return 1;
3284
3285 /*
3286 * If logged_trans is not 0, then we know the inode logged was not logged
3287 * in this transaction, so we can return false right away.
3288 */
3289 if (inode->logged_trans > 0)
3290 return 0;
3291
3292 /*
3293 * If no log tree was created for this root in this transaction, then
3294 * the inode can not have been logged in this transaction. In that case
3295 * set logged_trans to anything greater than 0 and less than the current
3296 * transaction's ID, to avoid the search below in a future call in case
3297 * a log tree gets created after this.
3298 */
3299 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3300 inode->logged_trans = trans->transid - 1;
3301 return 0;
3302 }
3303
3304 /*
3305 * We have a log tree and the inode's logged_trans is 0. We can't tell
3306 * for sure if the inode was logged before in this transaction by looking
3307 * only at logged_trans. We could be pessimistic and assume it was, but
3308 * that can lead to unnecessarily logging an inode during rename and link
3309 * operations, and then further updating the log in followup rename and
3310 * link operations, specially if it's a directory, which adds latency
3311 * visible to applications doing a series of rename or link operations.
3312 *
3313 * A logged_trans of 0 here can mean several things:
3314 *
3315 * 1) The inode was never logged since the filesystem was mounted, and may
3316 * or may have not been evicted and loaded again;
3317 *
3318 * 2) The inode was logged in a previous transaction, then evicted and
3319 * then loaded again;
3320 *
3321 * 3) The inode was logged in the current transaction, then evicted and
3322 * then loaded again.
3323 *
3324 * For cases 1) and 2) we don't want to return true, but we need to detect
3325 * case 3) and return true. So we do a search in the log root for the inode
3326 * item.
3327 */
3328 key.objectid = btrfs_ino(inode);
3329 key.type = BTRFS_INODE_ITEM_KEY;
3330 key.offset = 0;
3331
3332 if (!path) {
3333 path = btrfs_alloc_path();
3334 if (!path)
3335 return -ENOMEM;
3336 }
3337
3338 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3339
3340 if (path_in)
3341 btrfs_release_path(path);
3342 else
3343 btrfs_free_path(path);
3344
3345 /*
3346 * Logging an inode always results in logging its inode item. So if we
3347 * did not find the item we know the inode was not logged for sure.
3348 */
3349 if (ret < 0) {
3350 return ret;
3351 } else if (ret > 0) {
3352 /*
3353 * Set logged_trans to a value greater than 0 and less then the
3354 * current transaction to avoid doing the search in future calls.
3355 */
3356 inode->logged_trans = trans->transid - 1;
3357 return 0;
3358 }
3359
3360 /*
3361 * The inode was previously logged and then evicted, set logged_trans to
3362 * the current transacion's ID, to avoid future tree searches as long as
3363 * the inode is not evicted again.
3364 */
3365 inode->logged_trans = trans->transid;
3366
3367 /*
3368 * If it's a directory, then we must set last_dir_index_offset to the
3369 * maximum possible value, so that the next attempt to log the inode does
3370 * not skip checking if dir index keys found in modified subvolume tree
3371 * leaves have been logged before, otherwise it would result in attempts
3372 * to insert duplicate dir index keys in the log tree. This must be done
3373 * because last_dir_index_offset is an in-memory only field, not persisted
3374 * in the inode item or any other on-disk structure, so its value is lost
3375 * once the inode is evicted.
3376 */
3377 if (S_ISDIR(inode->vfs_inode.i_mode))
3378 inode->last_dir_index_offset = (u64)-1;
3379
3380 return 1;
3381 }
3382
3383 /*
3384 * Delete a directory entry from the log if it exists.
3385 *
3386 * Returns < 0 on error
3387 * 1 if the entry does not exists
3388 * 0 if the entry existed and was successfully deleted
3389 */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3390 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3391 struct btrfs_root *log,
3392 struct btrfs_path *path,
3393 u64 dir_ino,
3394 const struct fscrypt_str *name,
3395 u64 index)
3396 {
3397 struct btrfs_dir_item *di;
3398
3399 /*
3400 * We only log dir index items of a directory, so we don't need to look
3401 * for dir item keys.
3402 */
3403 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3404 index, name, -1);
3405 if (IS_ERR(di))
3406 return PTR_ERR(di);
3407 else if (!di)
3408 return 1;
3409
3410 /*
3411 * We do not need to update the size field of the directory's
3412 * inode item because on log replay we update the field to reflect
3413 * all existing entries in the directory (see overwrite_item()).
3414 */
3415 return btrfs_delete_one_dir_name(trans, log, path, di);
3416 }
3417
3418 /*
3419 * If both a file and directory are logged, and unlinks or renames are
3420 * mixed in, we have a few interesting corners:
3421 *
3422 * create file X in dir Y
3423 * link file X to X.link in dir Y
3424 * fsync file X
3425 * unlink file X but leave X.link
3426 * fsync dir Y
3427 *
3428 * After a crash we would expect only X.link to exist. But file X
3429 * didn't get fsync'd again so the log has back refs for X and X.link.
3430 *
3431 * We solve this by removing directory entries and inode backrefs from the
3432 * log when a file that was logged in the current transaction is
3433 * unlinked. Any later fsync will include the updated log entries, and
3434 * we'll be able to reconstruct the proper directory items from backrefs.
3435 *
3436 * This optimizations allows us to avoid relogging the entire inode
3437 * or the entire directory.
3438 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3439 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3440 struct btrfs_root *root,
3441 const struct fscrypt_str *name,
3442 struct btrfs_inode *dir, u64 index)
3443 {
3444 struct btrfs_path *path;
3445 int ret;
3446
3447 ret = inode_logged(trans, dir, NULL);
3448 if (ret == 0)
3449 return;
3450 else if (ret < 0) {
3451 btrfs_set_log_full_commit(trans);
3452 return;
3453 }
3454
3455 ret = join_running_log_trans(root);
3456 if (ret)
3457 return;
3458
3459 mutex_lock(&dir->log_mutex);
3460
3461 path = btrfs_alloc_path();
3462 if (!path) {
3463 ret = -ENOMEM;
3464 goto out_unlock;
3465 }
3466
3467 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3468 name, index);
3469 btrfs_free_path(path);
3470 out_unlock:
3471 mutex_unlock(&dir->log_mutex);
3472 if (ret < 0)
3473 btrfs_set_log_full_commit(trans);
3474 btrfs_end_log_trans(root);
3475 }
3476
3477 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3478 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3479 struct btrfs_root *root,
3480 const struct fscrypt_str *name,
3481 struct btrfs_inode *inode, u64 dirid)
3482 {
3483 struct btrfs_root *log;
3484 u64 index;
3485 int ret;
3486
3487 ret = inode_logged(trans, inode, NULL);
3488 if (ret == 0)
3489 return;
3490 else if (ret < 0) {
3491 btrfs_set_log_full_commit(trans);
3492 return;
3493 }
3494
3495 ret = join_running_log_trans(root);
3496 if (ret)
3497 return;
3498 log = root->log_root;
3499 mutex_lock(&inode->log_mutex);
3500
3501 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3502 dirid, &index);
3503 mutex_unlock(&inode->log_mutex);
3504 if (ret < 0 && ret != -ENOENT)
3505 btrfs_set_log_full_commit(trans);
3506 btrfs_end_log_trans(root);
3507 }
3508
3509 /*
3510 * creates a range item in the log for 'dirid'. first_offset and
3511 * last_offset tell us which parts of the key space the log should
3512 * be considered authoritative for.
3513 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3514 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3515 struct btrfs_root *log,
3516 struct btrfs_path *path,
3517 u64 dirid,
3518 u64 first_offset, u64 last_offset)
3519 {
3520 int ret;
3521 struct btrfs_key key;
3522 struct btrfs_dir_log_item *item;
3523
3524 key.objectid = dirid;
3525 key.offset = first_offset;
3526 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3527 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3528 /*
3529 * -EEXIST is fine and can happen sporadically when we are logging a
3530 * directory and have concurrent insertions in the subvolume's tree for
3531 * items from other inodes and that result in pushing off some dir items
3532 * from one leaf to another in order to accommodate for the new items.
3533 * This results in logging the same dir index range key.
3534 */
3535 if (ret && ret != -EEXIST)
3536 return ret;
3537
3538 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3539 struct btrfs_dir_log_item);
3540 if (ret == -EEXIST) {
3541 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3542
3543 /*
3544 * btrfs_del_dir_entries_in_log() might have been called during
3545 * an unlink between the initial insertion of this key and the
3546 * current update, or we might be logging a single entry deletion
3547 * during a rename, so set the new last_offset to the max value.
3548 */
3549 last_offset = max(last_offset, curr_end);
3550 }
3551 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3552 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3553 btrfs_release_path(path);
3554 return 0;
3555 }
3556
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3557 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3558 struct btrfs_inode *inode,
3559 struct extent_buffer *src,
3560 struct btrfs_path *dst_path,
3561 int start_slot,
3562 int count)
3563 {
3564 struct btrfs_root *log = inode->root->log_root;
3565 char *ins_data = NULL;
3566 struct btrfs_item_batch batch;
3567 struct extent_buffer *dst;
3568 unsigned long src_offset;
3569 unsigned long dst_offset;
3570 u64 last_index;
3571 struct btrfs_key key;
3572 u32 item_size;
3573 int ret;
3574 int i;
3575
3576 ASSERT(count > 0);
3577 batch.nr = count;
3578
3579 if (count == 1) {
3580 btrfs_item_key_to_cpu(src, &key, start_slot);
3581 item_size = btrfs_item_size(src, start_slot);
3582 batch.keys = &key;
3583 batch.data_sizes = &item_size;
3584 batch.total_data_size = item_size;
3585 } else {
3586 struct btrfs_key *ins_keys;
3587 u32 *ins_sizes;
3588
3589 ins_data = kmalloc(count * sizeof(u32) +
3590 count * sizeof(struct btrfs_key), GFP_NOFS);
3591 if (!ins_data)
3592 return -ENOMEM;
3593
3594 ins_sizes = (u32 *)ins_data;
3595 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3596 batch.keys = ins_keys;
3597 batch.data_sizes = ins_sizes;
3598 batch.total_data_size = 0;
3599
3600 for (i = 0; i < count; i++) {
3601 const int slot = start_slot + i;
3602
3603 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3604 ins_sizes[i] = btrfs_item_size(src, slot);
3605 batch.total_data_size += ins_sizes[i];
3606 }
3607 }
3608
3609 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3610 if (ret)
3611 goto out;
3612
3613 dst = dst_path->nodes[0];
3614 /*
3615 * Copy all the items in bulk, in a single copy operation. Item data is
3616 * organized such that it's placed at the end of a leaf and from right
3617 * to left. For example, the data for the second item ends at an offset
3618 * that matches the offset where the data for the first item starts, the
3619 * data for the third item ends at an offset that matches the offset
3620 * where the data of the second items starts, and so on.
3621 * Therefore our source and destination start offsets for copy match the
3622 * offsets of the last items (highest slots).
3623 */
3624 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3625 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3626 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3627 btrfs_release_path(dst_path);
3628
3629 last_index = batch.keys[count - 1].offset;
3630 ASSERT(last_index > inode->last_dir_index_offset);
3631
3632 /*
3633 * If for some unexpected reason the last item's index is not greater
3634 * than the last index we logged, warn and force a transaction commit.
3635 */
3636 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3637 ret = BTRFS_LOG_FORCE_COMMIT;
3638 else
3639 inode->last_dir_index_offset = last_index;
3640
3641 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3642 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3643 out:
3644 kfree(ins_data);
3645
3646 return ret;
3647 }
3648
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3649 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3650 struct btrfs_inode *inode,
3651 struct btrfs_path *path,
3652 struct btrfs_path *dst_path,
3653 struct btrfs_log_ctx *ctx,
3654 u64 *last_old_dentry_offset)
3655 {
3656 struct btrfs_root *log = inode->root->log_root;
3657 struct extent_buffer *src;
3658 const int nritems = btrfs_header_nritems(path->nodes[0]);
3659 const u64 ino = btrfs_ino(inode);
3660 bool last_found = false;
3661 int batch_start = 0;
3662 int batch_size = 0;
3663 int i;
3664
3665 /*
3666 * We need to clone the leaf, release the read lock on it, and use the
3667 * clone before modifying the log tree. See the comment at copy_items()
3668 * about why we need to do this.
3669 */
3670 src = btrfs_clone_extent_buffer(path->nodes[0]);
3671 if (!src)
3672 return -ENOMEM;
3673
3674 i = path->slots[0];
3675 btrfs_release_path(path);
3676 path->nodes[0] = src;
3677 path->slots[0] = i;
3678
3679 for (; i < nritems; i++) {
3680 struct btrfs_dir_item *di;
3681 struct btrfs_key key;
3682 int ret;
3683
3684 btrfs_item_key_to_cpu(src, &key, i);
3685
3686 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3687 last_found = true;
3688 break;
3689 }
3690
3691 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3692
3693 /*
3694 * Skip ranges of items that consist only of dir item keys created
3695 * in past transactions. However if we find a gap, we must log a
3696 * dir index range item for that gap, so that index keys in that
3697 * gap are deleted during log replay.
3698 */
3699 if (btrfs_dir_transid(src, di) < trans->transid) {
3700 if (key.offset > *last_old_dentry_offset + 1) {
3701 ret = insert_dir_log_key(trans, log, dst_path,
3702 ino, *last_old_dentry_offset + 1,
3703 key.offset - 1);
3704 if (ret < 0)
3705 return ret;
3706 }
3707
3708 *last_old_dentry_offset = key.offset;
3709 continue;
3710 }
3711
3712 /* If we logged this dir index item before, we can skip it. */
3713 if (key.offset <= inode->last_dir_index_offset)
3714 continue;
3715
3716 /*
3717 * We must make sure that when we log a directory entry, the
3718 * corresponding inode, after log replay, has a matching link
3719 * count. For example:
3720 *
3721 * touch foo
3722 * mkdir mydir
3723 * sync
3724 * ln foo mydir/bar
3725 * xfs_io -c "fsync" mydir
3726 * <crash>
3727 * <mount fs and log replay>
3728 *
3729 * Would result in a fsync log that when replayed, our file inode
3730 * would have a link count of 1, but we get two directory entries
3731 * pointing to the same inode. After removing one of the names,
3732 * it would not be possible to remove the other name, which
3733 * resulted always in stale file handle errors, and would not be
3734 * possible to rmdir the parent directory, since its i_size could
3735 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3736 * resulting in -ENOTEMPTY errors.
3737 */
3738 if (!ctx->log_new_dentries) {
3739 struct btrfs_key di_key;
3740
3741 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3742 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3743 ctx->log_new_dentries = true;
3744 }
3745
3746 if (batch_size == 0)
3747 batch_start = i;
3748 batch_size++;
3749 }
3750
3751 if (batch_size > 0) {
3752 int ret;
3753
3754 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3755 batch_start, batch_size);
3756 if (ret < 0)
3757 return ret;
3758 }
3759
3760 return last_found ? 1 : 0;
3761 }
3762
3763 /*
3764 * log all the items included in the current transaction for a given
3765 * directory. This also creates the range items in the log tree required
3766 * to replay anything deleted before the fsync
3767 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3768 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3769 struct btrfs_inode *inode,
3770 struct btrfs_path *path,
3771 struct btrfs_path *dst_path,
3772 struct btrfs_log_ctx *ctx,
3773 u64 min_offset, u64 *last_offset_ret)
3774 {
3775 struct btrfs_key min_key;
3776 struct btrfs_root *root = inode->root;
3777 struct btrfs_root *log = root->log_root;
3778 int ret;
3779 u64 last_old_dentry_offset = min_offset - 1;
3780 u64 last_offset = (u64)-1;
3781 u64 ino = btrfs_ino(inode);
3782
3783 min_key.objectid = ino;
3784 min_key.type = BTRFS_DIR_INDEX_KEY;
3785 min_key.offset = min_offset;
3786
3787 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3788
3789 /*
3790 * we didn't find anything from this transaction, see if there
3791 * is anything at all
3792 */
3793 if (ret != 0 || min_key.objectid != ino ||
3794 min_key.type != BTRFS_DIR_INDEX_KEY) {
3795 min_key.objectid = ino;
3796 min_key.type = BTRFS_DIR_INDEX_KEY;
3797 min_key.offset = (u64)-1;
3798 btrfs_release_path(path);
3799 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3800 if (ret < 0) {
3801 btrfs_release_path(path);
3802 return ret;
3803 }
3804 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3805
3806 /* if ret == 0 there are items for this type,
3807 * create a range to tell us the last key of this type.
3808 * otherwise, there are no items in this directory after
3809 * *min_offset, and we create a range to indicate that.
3810 */
3811 if (ret == 0) {
3812 struct btrfs_key tmp;
3813
3814 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3815 path->slots[0]);
3816 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3817 last_old_dentry_offset = tmp.offset;
3818 } else if (ret > 0) {
3819 ret = 0;
3820 }
3821
3822 goto done;
3823 }
3824
3825 /* go backward to find any previous key */
3826 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3827 if (ret == 0) {
3828 struct btrfs_key tmp;
3829
3830 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3831 /*
3832 * The dir index key before the first one we found that needs to
3833 * be logged might be in a previous leaf, and there might be a
3834 * gap between these keys, meaning that we had deletions that
3835 * happened. So the key range item we log (key type
3836 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3837 * previous key's offset plus 1, so that those deletes are replayed.
3838 */
3839 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3840 last_old_dentry_offset = tmp.offset;
3841 } else if (ret < 0) {
3842 goto done;
3843 }
3844
3845 btrfs_release_path(path);
3846
3847 /*
3848 * Find the first key from this transaction again or the one we were at
3849 * in the loop below in case we had to reschedule. We may be logging the
3850 * directory without holding its VFS lock, which happen when logging new
3851 * dentries (through log_new_dir_dentries()) or in some cases when we
3852 * need to log the parent directory of an inode. This means a dir index
3853 * key might be deleted from the inode's root, and therefore we may not
3854 * find it anymore. If we can't find it, just move to the next key. We
3855 * can not bail out and ignore, because if we do that we will simply
3856 * not log dir index keys that come after the one that was just deleted
3857 * and we can end up logging a dir index range that ends at (u64)-1
3858 * (@last_offset is initialized to that), resulting in removing dir
3859 * entries we should not remove at log replay time.
3860 */
3861 search:
3862 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3863 if (ret > 0) {
3864 ret = btrfs_next_item(root, path);
3865 if (ret > 0) {
3866 /* There are no more keys in the inode's root. */
3867 ret = 0;
3868 goto done;
3869 }
3870 }
3871 if (ret < 0)
3872 goto done;
3873
3874 /*
3875 * we have a block from this transaction, log every item in it
3876 * from our directory
3877 */
3878 while (1) {
3879 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3880 &last_old_dentry_offset);
3881 if (ret != 0) {
3882 if (ret > 0)
3883 ret = 0;
3884 goto done;
3885 }
3886 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3887
3888 /*
3889 * look ahead to the next item and see if it is also
3890 * from this directory and from this transaction
3891 */
3892 ret = btrfs_next_leaf(root, path);
3893 if (ret) {
3894 if (ret == 1) {
3895 last_offset = (u64)-1;
3896 ret = 0;
3897 }
3898 goto done;
3899 }
3900 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3901 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3902 last_offset = (u64)-1;
3903 goto done;
3904 }
3905 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3906 /*
3907 * The next leaf was not changed in the current transaction
3908 * and has at least one dir index key.
3909 * We check for the next key because there might have been
3910 * one or more deletions between the last key we logged and
3911 * that next key. So the key range item we log (key type
3912 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3913 * offset minus 1, so that those deletes are replayed.
3914 */
3915 last_offset = min_key.offset - 1;
3916 goto done;
3917 }
3918 if (need_resched()) {
3919 btrfs_release_path(path);
3920 cond_resched();
3921 goto search;
3922 }
3923 }
3924 done:
3925 btrfs_release_path(path);
3926 btrfs_release_path(dst_path);
3927
3928 if (ret == 0) {
3929 *last_offset_ret = last_offset;
3930 /*
3931 * In case the leaf was changed in the current transaction but
3932 * all its dir items are from a past transaction, the last item
3933 * in the leaf is a dir item and there's no gap between that last
3934 * dir item and the first one on the next leaf (which did not
3935 * change in the current transaction), then we don't need to log
3936 * a range, last_old_dentry_offset is == to last_offset.
3937 */
3938 ASSERT(last_old_dentry_offset <= last_offset);
3939 if (last_old_dentry_offset < last_offset)
3940 ret = insert_dir_log_key(trans, log, path, ino,
3941 last_old_dentry_offset + 1,
3942 last_offset);
3943 }
3944
3945 return ret;
3946 }
3947
3948 /*
3949 * If the inode was logged before and it was evicted, then its
3950 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3951 * key offset. If that's the case, search for it and update the inode. This
3952 * is to avoid lookups in the log tree every time we try to insert a dir index
3953 * key from a leaf changed in the current transaction, and to allow us to always
3954 * do batch insertions of dir index keys.
3955 */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)3956 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3957 struct btrfs_path *path,
3958 const struct btrfs_log_ctx *ctx)
3959 {
3960 const u64 ino = btrfs_ino(inode);
3961 struct btrfs_key key;
3962 int ret;
3963
3964 lockdep_assert_held(&inode->log_mutex);
3965
3966 if (inode->last_dir_index_offset != (u64)-1)
3967 return 0;
3968
3969 if (!ctx->logged_before) {
3970 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3971 return 0;
3972 }
3973
3974 key.objectid = ino;
3975 key.type = BTRFS_DIR_INDEX_KEY;
3976 key.offset = (u64)-1;
3977
3978 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3979 /*
3980 * An error happened or we actually have an index key with an offset
3981 * value of (u64)-1. Bail out, we're done.
3982 */
3983 if (ret <= 0)
3984 goto out;
3985
3986 ret = 0;
3987 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3988
3989 /*
3990 * No dir index items, bail out and leave last_dir_index_offset with
3991 * the value right before the first valid index value.
3992 */
3993 if (path->slots[0] == 0)
3994 goto out;
3995
3996 /*
3997 * btrfs_search_slot() left us at one slot beyond the slot with the last
3998 * index key, or beyond the last key of the directory that is not an
3999 * index key. If we have an index key before, set last_dir_index_offset
4000 * to its offset value, otherwise leave it with a value right before the
4001 * first valid index value, as it means we have an empty directory.
4002 */
4003 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4004 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4005 inode->last_dir_index_offset = key.offset;
4006
4007 out:
4008 btrfs_release_path(path);
4009
4010 return ret;
4011 }
4012
4013 /*
4014 * logging directories is very similar to logging inodes, We find all the items
4015 * from the current transaction and write them to the log.
4016 *
4017 * The recovery code scans the directory in the subvolume, and if it finds a
4018 * key in the range logged that is not present in the log tree, then it means
4019 * that dir entry was unlinked during the transaction.
4020 *
4021 * In order for that scan to work, we must include one key smaller than
4022 * the smallest logged by this transaction and one key larger than the largest
4023 * key logged by this transaction.
4024 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4025 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4026 struct btrfs_inode *inode,
4027 struct btrfs_path *path,
4028 struct btrfs_path *dst_path,
4029 struct btrfs_log_ctx *ctx)
4030 {
4031 u64 min_key;
4032 u64 max_key;
4033 int ret;
4034
4035 ret = update_last_dir_index_offset(inode, path, ctx);
4036 if (ret)
4037 return ret;
4038
4039 min_key = BTRFS_DIR_START_INDEX;
4040 max_key = 0;
4041
4042 while (1) {
4043 ret = log_dir_items(trans, inode, path, dst_path,
4044 ctx, min_key, &max_key);
4045 if (ret)
4046 return ret;
4047 if (max_key == (u64)-1)
4048 break;
4049 min_key = max_key + 1;
4050 }
4051
4052 return 0;
4053 }
4054
4055 /*
4056 * a helper function to drop items from the log before we relog an
4057 * inode. max_key_type indicates the highest item type to remove.
4058 * This cannot be run for file data extents because it does not
4059 * free the extents they point to.
4060 */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4061 static int drop_inode_items(struct btrfs_trans_handle *trans,
4062 struct btrfs_root *log,
4063 struct btrfs_path *path,
4064 struct btrfs_inode *inode,
4065 int max_key_type)
4066 {
4067 int ret;
4068 struct btrfs_key key;
4069 struct btrfs_key found_key;
4070 int start_slot;
4071
4072 key.objectid = btrfs_ino(inode);
4073 key.type = max_key_type;
4074 key.offset = (u64)-1;
4075
4076 while (1) {
4077 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4078 if (ret < 0) {
4079 break;
4080 } else if (ret > 0) {
4081 if (path->slots[0] == 0)
4082 break;
4083 path->slots[0]--;
4084 }
4085
4086 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4087 path->slots[0]);
4088
4089 if (found_key.objectid != key.objectid)
4090 break;
4091
4092 found_key.offset = 0;
4093 found_key.type = 0;
4094 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4095 if (ret < 0)
4096 break;
4097
4098 ret = btrfs_del_items(trans, log, path, start_slot,
4099 path->slots[0] - start_slot + 1);
4100 /*
4101 * If start slot isn't 0 then we don't need to re-search, we've
4102 * found the last guy with the objectid in this tree.
4103 */
4104 if (ret || start_slot != 0)
4105 break;
4106 btrfs_release_path(path);
4107 }
4108 btrfs_release_path(path);
4109 if (ret > 0)
4110 ret = 0;
4111 return ret;
4112 }
4113
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4114 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4115 struct btrfs_root *log_root,
4116 struct btrfs_inode *inode,
4117 u64 new_size, u32 min_type)
4118 {
4119 struct btrfs_truncate_control control = {
4120 .new_size = new_size,
4121 .ino = btrfs_ino(inode),
4122 .min_type = min_type,
4123 .skip_ref_updates = true,
4124 };
4125
4126 return btrfs_truncate_inode_items(trans, log_root, &control);
4127 }
4128
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4129 static void fill_inode_item(struct btrfs_trans_handle *trans,
4130 struct extent_buffer *leaf,
4131 struct btrfs_inode_item *item,
4132 struct inode *inode, int log_inode_only,
4133 u64 logged_isize)
4134 {
4135 struct btrfs_map_token token;
4136 u64 flags;
4137
4138 btrfs_init_map_token(&token, leaf);
4139
4140 if (log_inode_only) {
4141 /* set the generation to zero so the recover code
4142 * can tell the difference between an logging
4143 * just to say 'this inode exists' and a logging
4144 * to say 'update this inode with these values'
4145 */
4146 btrfs_set_token_inode_generation(&token, item, 0);
4147 btrfs_set_token_inode_size(&token, item, logged_isize);
4148 } else {
4149 btrfs_set_token_inode_generation(&token, item,
4150 BTRFS_I(inode)->generation);
4151 btrfs_set_token_inode_size(&token, item, inode->i_size);
4152 }
4153
4154 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4155 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4156 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4157 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4158
4159 btrfs_set_token_timespec_sec(&token, &item->atime,
4160 inode->i_atime.tv_sec);
4161 btrfs_set_token_timespec_nsec(&token, &item->atime,
4162 inode->i_atime.tv_nsec);
4163
4164 btrfs_set_token_timespec_sec(&token, &item->mtime,
4165 inode->i_mtime.tv_sec);
4166 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4167 inode->i_mtime.tv_nsec);
4168
4169 btrfs_set_token_timespec_sec(&token, &item->ctime,
4170 inode_get_ctime(inode).tv_sec);
4171 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4172 inode_get_ctime(inode).tv_nsec);
4173
4174 /*
4175 * We do not need to set the nbytes field, in fact during a fast fsync
4176 * its value may not even be correct, since a fast fsync does not wait
4177 * for ordered extent completion, which is where we update nbytes, it
4178 * only waits for writeback to complete. During log replay as we find
4179 * file extent items and replay them, we adjust the nbytes field of the
4180 * inode item in subvolume tree as needed (see overwrite_item()).
4181 */
4182
4183 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4184 btrfs_set_token_inode_transid(&token, item, trans->transid);
4185 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4186 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4187 BTRFS_I(inode)->ro_flags);
4188 btrfs_set_token_inode_flags(&token, item, flags);
4189 btrfs_set_token_inode_block_group(&token, item, 0);
4190 }
4191
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4192 static int log_inode_item(struct btrfs_trans_handle *trans,
4193 struct btrfs_root *log, struct btrfs_path *path,
4194 struct btrfs_inode *inode, bool inode_item_dropped)
4195 {
4196 struct btrfs_inode_item *inode_item;
4197 int ret;
4198
4199 /*
4200 * If we are doing a fast fsync and the inode was logged before in the
4201 * current transaction, then we know the inode was previously logged and
4202 * it exists in the log tree. For performance reasons, in this case use
4203 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4204 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4205 * contention in case there are concurrent fsyncs for other inodes of the
4206 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4207 * already exists can also result in unnecessarily splitting a leaf.
4208 */
4209 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4210 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4211 ASSERT(ret <= 0);
4212 if (ret > 0)
4213 ret = -ENOENT;
4214 } else {
4215 /*
4216 * This means it is the first fsync in the current transaction,
4217 * so the inode item is not in the log and we need to insert it.
4218 * We can never get -EEXIST because we are only called for a fast
4219 * fsync and in case an inode eviction happens after the inode was
4220 * logged before in the current transaction, when we load again
4221 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4222 * flags and set ->logged_trans to 0.
4223 */
4224 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4225 sizeof(*inode_item));
4226 ASSERT(ret != -EEXIST);
4227 }
4228 if (ret)
4229 return ret;
4230 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4231 struct btrfs_inode_item);
4232 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4233 0, 0);
4234 btrfs_release_path(path);
4235 return 0;
4236 }
4237
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4238 static int log_csums(struct btrfs_trans_handle *trans,
4239 struct btrfs_inode *inode,
4240 struct btrfs_root *log_root,
4241 struct btrfs_ordered_sum *sums)
4242 {
4243 const u64 lock_end = sums->logical + sums->len - 1;
4244 struct extent_state *cached_state = NULL;
4245 int ret;
4246
4247 /*
4248 * If this inode was not used for reflink operations in the current
4249 * transaction with new extents, then do the fast path, no need to
4250 * worry about logging checksum items with overlapping ranges.
4251 */
4252 if (inode->last_reflink_trans < trans->transid)
4253 return btrfs_csum_file_blocks(trans, log_root, sums);
4254
4255 /*
4256 * Serialize logging for checksums. This is to avoid racing with the
4257 * same checksum being logged by another task that is logging another
4258 * file which happens to refer to the same extent as well. Such races
4259 * can leave checksum items in the log with overlapping ranges.
4260 */
4261 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4262 &cached_state);
4263 if (ret)
4264 return ret;
4265 /*
4266 * Due to extent cloning, we might have logged a csum item that covers a
4267 * subrange of a cloned extent, and later we can end up logging a csum
4268 * item for a larger subrange of the same extent or the entire range.
4269 * This would leave csum items in the log tree that cover the same range
4270 * and break the searches for checksums in the log tree, resulting in
4271 * some checksums missing in the fs/subvolume tree. So just delete (or
4272 * trim and adjust) any existing csum items in the log for this range.
4273 */
4274 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4275 if (!ret)
4276 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4277
4278 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4279 &cached_state);
4280
4281 return ret;
4282 }
4283
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)4284 static noinline int copy_items(struct btrfs_trans_handle *trans,
4285 struct btrfs_inode *inode,
4286 struct btrfs_path *dst_path,
4287 struct btrfs_path *src_path,
4288 int start_slot, int nr, int inode_only,
4289 u64 logged_isize)
4290 {
4291 struct btrfs_root *log = inode->root->log_root;
4292 struct btrfs_file_extent_item *extent;
4293 struct extent_buffer *src;
4294 int ret = 0;
4295 struct btrfs_key *ins_keys;
4296 u32 *ins_sizes;
4297 struct btrfs_item_batch batch;
4298 char *ins_data;
4299 int i;
4300 int dst_index;
4301 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4302 const u64 i_size = i_size_read(&inode->vfs_inode);
4303
4304 /*
4305 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4306 * use the clone. This is because otherwise we would be changing the log
4307 * tree, to insert items from the subvolume tree or insert csum items,
4308 * while holding a read lock on a leaf from the subvolume tree, which
4309 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4310 *
4311 * 1) Modifying the log tree triggers an extent buffer allocation while
4312 * holding a write lock on a parent extent buffer from the log tree.
4313 * Allocating the pages for an extent buffer, or the extent buffer
4314 * struct, can trigger inode eviction and finally the inode eviction
4315 * will trigger a release/remove of a delayed node, which requires
4316 * taking the delayed node's mutex;
4317 *
4318 * 2) Allocating a metadata extent for a log tree can trigger the async
4319 * reclaim thread and make us wait for it to release enough space and
4320 * unblock our reservation ticket. The reclaim thread can start
4321 * flushing delayed items, and that in turn results in the need to
4322 * lock delayed node mutexes and in the need to write lock extent
4323 * buffers of a subvolume tree - all this while holding a write lock
4324 * on the parent extent buffer in the log tree.
4325 *
4326 * So one task in scenario 1) running in parallel with another task in
4327 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4328 * node mutex while having a read lock on a leaf from the subvolume,
4329 * while the other is holding the delayed node's mutex and wants to
4330 * write lock the same subvolume leaf for flushing delayed items.
4331 */
4332 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4333 if (!src)
4334 return -ENOMEM;
4335
4336 i = src_path->slots[0];
4337 btrfs_release_path(src_path);
4338 src_path->nodes[0] = src;
4339 src_path->slots[0] = i;
4340
4341 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4342 nr * sizeof(u32), GFP_NOFS);
4343 if (!ins_data)
4344 return -ENOMEM;
4345
4346 ins_sizes = (u32 *)ins_data;
4347 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4348 batch.keys = ins_keys;
4349 batch.data_sizes = ins_sizes;
4350 batch.total_data_size = 0;
4351 batch.nr = 0;
4352
4353 dst_index = 0;
4354 for (i = 0; i < nr; i++) {
4355 const int src_slot = start_slot + i;
4356 struct btrfs_root *csum_root;
4357 struct btrfs_ordered_sum *sums;
4358 struct btrfs_ordered_sum *sums_next;
4359 LIST_HEAD(ordered_sums);
4360 u64 disk_bytenr;
4361 u64 disk_num_bytes;
4362 u64 extent_offset;
4363 u64 extent_num_bytes;
4364 bool is_old_extent;
4365
4366 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4367
4368 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4369 goto add_to_batch;
4370
4371 extent = btrfs_item_ptr(src, src_slot,
4372 struct btrfs_file_extent_item);
4373
4374 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4375 trans->transid);
4376
4377 /*
4378 * Don't copy extents from past generations. That would make us
4379 * log a lot more metadata for common cases like doing only a
4380 * few random writes into a file and then fsync it for the first
4381 * time or after the full sync flag is set on the inode. We can
4382 * get leaves full of extent items, most of which are from past
4383 * generations, so we can skip them - as long as the inode has
4384 * not been the target of a reflink operation in this transaction,
4385 * as in that case it might have had file extent items with old
4386 * generations copied into it. We also must always log prealloc
4387 * extents that start at or beyond eof, otherwise we would lose
4388 * them on log replay.
4389 */
4390 if (is_old_extent &&
4391 ins_keys[dst_index].offset < i_size &&
4392 inode->last_reflink_trans < trans->transid)
4393 continue;
4394
4395 if (skip_csum)
4396 goto add_to_batch;
4397
4398 /* Only regular extents have checksums. */
4399 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4400 goto add_to_batch;
4401
4402 /*
4403 * If it's an extent created in a past transaction, then its
4404 * checksums are already accessible from the committed csum tree,
4405 * no need to log them.
4406 */
4407 if (is_old_extent)
4408 goto add_to_batch;
4409
4410 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4411 /* If it's an explicit hole, there are no checksums. */
4412 if (disk_bytenr == 0)
4413 goto add_to_batch;
4414
4415 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4416
4417 if (btrfs_file_extent_compression(src, extent)) {
4418 extent_offset = 0;
4419 extent_num_bytes = disk_num_bytes;
4420 } else {
4421 extent_offset = btrfs_file_extent_offset(src, extent);
4422 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4423 }
4424
4425 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4426 disk_bytenr += extent_offset;
4427 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4428 disk_bytenr + extent_num_bytes - 1,
4429 &ordered_sums, 0, false);
4430 if (ret)
4431 goto out;
4432
4433 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4434 if (!ret)
4435 ret = log_csums(trans, inode, log, sums);
4436 list_del(&sums->list);
4437 kfree(sums);
4438 }
4439 if (ret)
4440 goto out;
4441
4442 add_to_batch:
4443 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4444 batch.total_data_size += ins_sizes[dst_index];
4445 batch.nr++;
4446 dst_index++;
4447 }
4448
4449 /*
4450 * We have a leaf full of old extent items that don't need to be logged,
4451 * so we don't need to do anything.
4452 */
4453 if (batch.nr == 0)
4454 goto out;
4455
4456 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4457 if (ret)
4458 goto out;
4459
4460 dst_index = 0;
4461 for (i = 0; i < nr; i++) {
4462 const int src_slot = start_slot + i;
4463 const int dst_slot = dst_path->slots[0] + dst_index;
4464 struct btrfs_key key;
4465 unsigned long src_offset;
4466 unsigned long dst_offset;
4467
4468 /*
4469 * We're done, all the remaining items in the source leaf
4470 * correspond to old file extent items.
4471 */
4472 if (dst_index >= batch.nr)
4473 break;
4474
4475 btrfs_item_key_to_cpu(src, &key, src_slot);
4476
4477 if (key.type != BTRFS_EXTENT_DATA_KEY)
4478 goto copy_item;
4479
4480 extent = btrfs_item_ptr(src, src_slot,
4481 struct btrfs_file_extent_item);
4482
4483 /* See the comment in the previous loop, same logic. */
4484 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4485 key.offset < i_size &&
4486 inode->last_reflink_trans < trans->transid)
4487 continue;
4488
4489 copy_item:
4490 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4491 src_offset = btrfs_item_ptr_offset(src, src_slot);
4492
4493 if (key.type == BTRFS_INODE_ITEM_KEY) {
4494 struct btrfs_inode_item *inode_item;
4495
4496 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4497 struct btrfs_inode_item);
4498 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4499 &inode->vfs_inode,
4500 inode_only == LOG_INODE_EXISTS,
4501 logged_isize);
4502 } else {
4503 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4504 src_offset, ins_sizes[dst_index]);
4505 }
4506
4507 dst_index++;
4508 }
4509
4510 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4511 btrfs_release_path(dst_path);
4512 out:
4513 kfree(ins_data);
4514
4515 return ret;
4516 }
4517
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4518 static int extent_cmp(void *priv, const struct list_head *a,
4519 const struct list_head *b)
4520 {
4521 const struct extent_map *em1, *em2;
4522
4523 em1 = list_entry(a, struct extent_map, list);
4524 em2 = list_entry(b, struct extent_map, list);
4525
4526 if (em1->start < em2->start)
4527 return -1;
4528 else if (em1->start > em2->start)
4529 return 1;
4530 return 0;
4531 }
4532
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4533 static int log_extent_csums(struct btrfs_trans_handle *trans,
4534 struct btrfs_inode *inode,
4535 struct btrfs_root *log_root,
4536 const struct extent_map *em,
4537 struct btrfs_log_ctx *ctx)
4538 {
4539 struct btrfs_ordered_extent *ordered;
4540 struct btrfs_root *csum_root;
4541 u64 csum_offset;
4542 u64 csum_len;
4543 u64 mod_start = em->mod_start;
4544 u64 mod_len = em->mod_len;
4545 LIST_HEAD(ordered_sums);
4546 int ret = 0;
4547
4548 if (inode->flags & BTRFS_INODE_NODATASUM ||
4549 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4550 em->block_start == EXTENT_MAP_HOLE)
4551 return 0;
4552
4553 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4554 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4555 const u64 mod_end = mod_start + mod_len;
4556 struct btrfs_ordered_sum *sums;
4557
4558 if (mod_len == 0)
4559 break;
4560
4561 if (ordered_end <= mod_start)
4562 continue;
4563 if (mod_end <= ordered->file_offset)
4564 break;
4565
4566 /*
4567 * We are going to copy all the csums on this ordered extent, so
4568 * go ahead and adjust mod_start and mod_len in case this ordered
4569 * extent has already been logged.
4570 */
4571 if (ordered->file_offset > mod_start) {
4572 if (ordered_end >= mod_end)
4573 mod_len = ordered->file_offset - mod_start;
4574 /*
4575 * If we have this case
4576 *
4577 * |--------- logged extent ---------|
4578 * |----- ordered extent ----|
4579 *
4580 * Just don't mess with mod_start and mod_len, we'll
4581 * just end up logging more csums than we need and it
4582 * will be ok.
4583 */
4584 } else {
4585 if (ordered_end < mod_end) {
4586 mod_len = mod_end - ordered_end;
4587 mod_start = ordered_end;
4588 } else {
4589 mod_len = 0;
4590 }
4591 }
4592
4593 /*
4594 * To keep us from looping for the above case of an ordered
4595 * extent that falls inside of the logged extent.
4596 */
4597 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4598 continue;
4599
4600 list_for_each_entry(sums, &ordered->list, list) {
4601 ret = log_csums(trans, inode, log_root, sums);
4602 if (ret)
4603 return ret;
4604 }
4605 }
4606
4607 /* We're done, found all csums in the ordered extents. */
4608 if (mod_len == 0)
4609 return 0;
4610
4611 /* If we're compressed we have to save the entire range of csums. */
4612 if (em->compress_type) {
4613 csum_offset = 0;
4614 csum_len = max(em->block_len, em->orig_block_len);
4615 } else {
4616 csum_offset = mod_start - em->start;
4617 csum_len = mod_len;
4618 }
4619
4620 /* block start is already adjusted for the file extent offset. */
4621 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4622 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4623 em->block_start + csum_offset +
4624 csum_len - 1, &ordered_sums, 0, false);
4625 if (ret)
4626 return ret;
4627
4628 while (!list_empty(&ordered_sums)) {
4629 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4630 struct btrfs_ordered_sum,
4631 list);
4632 if (!ret)
4633 ret = log_csums(trans, inode, log_root, sums);
4634 list_del(&sums->list);
4635 kfree(sums);
4636 }
4637
4638 return ret;
4639 }
4640
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4641 static int log_one_extent(struct btrfs_trans_handle *trans,
4642 struct btrfs_inode *inode,
4643 const struct extent_map *em,
4644 struct btrfs_path *path,
4645 struct btrfs_log_ctx *ctx)
4646 {
4647 struct btrfs_drop_extents_args drop_args = { 0 };
4648 struct btrfs_root *log = inode->root->log_root;
4649 struct btrfs_file_extent_item fi = { 0 };
4650 struct extent_buffer *leaf;
4651 struct btrfs_key key;
4652 u64 extent_offset = em->start - em->orig_start;
4653 u64 block_len;
4654 int ret;
4655
4656 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4657 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4658 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4659 else
4660 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4661
4662 block_len = max(em->block_len, em->orig_block_len);
4663 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4664 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4665 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4666 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4667 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4668 extent_offset);
4669 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4670 }
4671
4672 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4673 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4674 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4675 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4676
4677 ret = log_extent_csums(trans, inode, log, em, ctx);
4678 if (ret)
4679 return ret;
4680
4681 /*
4682 * If this is the first time we are logging the inode in the current
4683 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4684 * because it does a deletion search, which always acquires write locks
4685 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4686 * but also adds significant contention in a log tree, since log trees
4687 * are small, with a root at level 2 or 3 at most, due to their short
4688 * life span.
4689 */
4690 if (ctx->logged_before) {
4691 drop_args.path = path;
4692 drop_args.start = em->start;
4693 drop_args.end = em->start + em->len;
4694 drop_args.replace_extent = true;
4695 drop_args.extent_item_size = sizeof(fi);
4696 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4697 if (ret)
4698 return ret;
4699 }
4700
4701 if (!drop_args.extent_inserted) {
4702 key.objectid = btrfs_ino(inode);
4703 key.type = BTRFS_EXTENT_DATA_KEY;
4704 key.offset = em->start;
4705
4706 ret = btrfs_insert_empty_item(trans, log, path, &key,
4707 sizeof(fi));
4708 if (ret)
4709 return ret;
4710 }
4711 leaf = path->nodes[0];
4712 write_extent_buffer(leaf, &fi,
4713 btrfs_item_ptr_offset(leaf, path->slots[0]),
4714 sizeof(fi));
4715 btrfs_mark_buffer_dirty(trans, leaf);
4716
4717 btrfs_release_path(path);
4718
4719 return ret;
4720 }
4721
4722 /*
4723 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4724 * lose them after doing a full/fast fsync and replaying the log. We scan the
4725 * subvolume's root instead of iterating the inode's extent map tree because
4726 * otherwise we can log incorrect extent items based on extent map conversion.
4727 * That can happen due to the fact that extent maps are merged when they
4728 * are not in the extent map tree's list of modified extents.
4729 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4730 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4731 struct btrfs_inode *inode,
4732 struct btrfs_path *path)
4733 {
4734 struct btrfs_root *root = inode->root;
4735 struct btrfs_key key;
4736 const u64 i_size = i_size_read(&inode->vfs_inode);
4737 const u64 ino = btrfs_ino(inode);
4738 struct btrfs_path *dst_path = NULL;
4739 bool dropped_extents = false;
4740 u64 truncate_offset = i_size;
4741 struct extent_buffer *leaf;
4742 int slot;
4743 int ins_nr = 0;
4744 int start_slot = 0;
4745 int ret;
4746
4747 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4748 return 0;
4749
4750 key.objectid = ino;
4751 key.type = BTRFS_EXTENT_DATA_KEY;
4752 key.offset = i_size;
4753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4754 if (ret < 0)
4755 goto out;
4756
4757 /*
4758 * We must check if there is a prealloc extent that starts before the
4759 * i_size and crosses the i_size boundary. This is to ensure later we
4760 * truncate down to the end of that extent and not to the i_size, as
4761 * otherwise we end up losing part of the prealloc extent after a log
4762 * replay and with an implicit hole if there is another prealloc extent
4763 * that starts at an offset beyond i_size.
4764 */
4765 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4766 if (ret < 0)
4767 goto out;
4768
4769 if (ret == 0) {
4770 struct btrfs_file_extent_item *ei;
4771
4772 leaf = path->nodes[0];
4773 slot = path->slots[0];
4774 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4775
4776 if (btrfs_file_extent_type(leaf, ei) ==
4777 BTRFS_FILE_EXTENT_PREALLOC) {
4778 u64 extent_end;
4779
4780 btrfs_item_key_to_cpu(leaf, &key, slot);
4781 extent_end = key.offset +
4782 btrfs_file_extent_num_bytes(leaf, ei);
4783
4784 if (extent_end > i_size)
4785 truncate_offset = extent_end;
4786 }
4787 } else {
4788 ret = 0;
4789 }
4790
4791 while (true) {
4792 leaf = path->nodes[0];
4793 slot = path->slots[0];
4794
4795 if (slot >= btrfs_header_nritems(leaf)) {
4796 if (ins_nr > 0) {
4797 ret = copy_items(trans, inode, dst_path, path,
4798 start_slot, ins_nr, 1, 0);
4799 if (ret < 0)
4800 goto out;
4801 ins_nr = 0;
4802 }
4803 ret = btrfs_next_leaf(root, path);
4804 if (ret < 0)
4805 goto out;
4806 if (ret > 0) {
4807 ret = 0;
4808 break;
4809 }
4810 continue;
4811 }
4812
4813 btrfs_item_key_to_cpu(leaf, &key, slot);
4814 if (key.objectid > ino)
4815 break;
4816 if (WARN_ON_ONCE(key.objectid < ino) ||
4817 key.type < BTRFS_EXTENT_DATA_KEY ||
4818 key.offset < i_size) {
4819 path->slots[0]++;
4820 continue;
4821 }
4822 /*
4823 * Avoid overlapping items in the log tree. The first time we
4824 * get here, get rid of everything from a past fsync. After
4825 * that, if the current extent starts before the end of the last
4826 * extent we copied, truncate the last one. This can happen if
4827 * an ordered extent completion modifies the subvolume tree
4828 * while btrfs_next_leaf() has the tree unlocked.
4829 */
4830 if (!dropped_extents || key.offset < truncate_offset) {
4831 ret = truncate_inode_items(trans, root->log_root, inode,
4832 min(key.offset, truncate_offset),
4833 BTRFS_EXTENT_DATA_KEY);
4834 if (ret)
4835 goto out;
4836 dropped_extents = true;
4837 }
4838 truncate_offset = btrfs_file_extent_end(path);
4839 if (ins_nr == 0)
4840 start_slot = slot;
4841 ins_nr++;
4842 path->slots[0]++;
4843 if (!dst_path) {
4844 dst_path = btrfs_alloc_path();
4845 if (!dst_path) {
4846 ret = -ENOMEM;
4847 goto out;
4848 }
4849 }
4850 }
4851 if (ins_nr > 0)
4852 ret = copy_items(trans, inode, dst_path, path,
4853 start_slot, ins_nr, 1, 0);
4854 out:
4855 btrfs_release_path(path);
4856 btrfs_free_path(dst_path);
4857 return ret;
4858 }
4859
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4860 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4861 struct btrfs_inode *inode,
4862 struct btrfs_path *path,
4863 struct btrfs_log_ctx *ctx)
4864 {
4865 struct btrfs_ordered_extent *ordered;
4866 struct btrfs_ordered_extent *tmp;
4867 struct extent_map *em, *n;
4868 LIST_HEAD(extents);
4869 struct extent_map_tree *tree = &inode->extent_tree;
4870 int ret = 0;
4871 int num = 0;
4872
4873 write_lock(&tree->lock);
4874
4875 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4876 list_del_init(&em->list);
4877 /*
4878 * Just an arbitrary number, this can be really CPU intensive
4879 * once we start getting a lot of extents, and really once we
4880 * have a bunch of extents we just want to commit since it will
4881 * be faster.
4882 */
4883 if (++num > 32768) {
4884 list_del_init(&tree->modified_extents);
4885 ret = -EFBIG;
4886 goto process;
4887 }
4888
4889 if (em->generation < trans->transid)
4890 continue;
4891
4892 /* We log prealloc extents beyond eof later. */
4893 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4894 em->start >= i_size_read(&inode->vfs_inode))
4895 continue;
4896
4897 /* Need a ref to keep it from getting evicted from cache */
4898 refcount_inc(&em->refs);
4899 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4900 list_add_tail(&em->list, &extents);
4901 num++;
4902 }
4903
4904 list_sort(NULL, &extents, extent_cmp);
4905 process:
4906 while (!list_empty(&extents)) {
4907 em = list_entry(extents.next, struct extent_map, list);
4908
4909 list_del_init(&em->list);
4910
4911 /*
4912 * If we had an error we just need to delete everybody from our
4913 * private list.
4914 */
4915 if (ret) {
4916 clear_em_logging(tree, em);
4917 free_extent_map(em);
4918 continue;
4919 }
4920
4921 write_unlock(&tree->lock);
4922
4923 ret = log_one_extent(trans, inode, em, path, ctx);
4924 write_lock(&tree->lock);
4925 clear_em_logging(tree, em);
4926 free_extent_map(em);
4927 }
4928 WARN_ON(!list_empty(&extents));
4929 write_unlock(&tree->lock);
4930
4931 if (!ret)
4932 ret = btrfs_log_prealloc_extents(trans, inode, path);
4933 if (ret)
4934 return ret;
4935
4936 /*
4937 * We have logged all extents successfully, now make sure the commit of
4938 * the current transaction waits for the ordered extents to complete
4939 * before it commits and wipes out the log trees, otherwise we would
4940 * lose data if an ordered extents completes after the transaction
4941 * commits and a power failure happens after the transaction commit.
4942 */
4943 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4944 list_del_init(&ordered->log_list);
4945 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4946
4947 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4948 spin_lock_irq(&inode->ordered_tree.lock);
4949 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4950 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4951 atomic_inc(&trans->transaction->pending_ordered);
4952 }
4953 spin_unlock_irq(&inode->ordered_tree.lock);
4954 }
4955 btrfs_put_ordered_extent(ordered);
4956 }
4957
4958 return 0;
4959 }
4960
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4961 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4962 struct btrfs_path *path, u64 *size_ret)
4963 {
4964 struct btrfs_key key;
4965 int ret;
4966
4967 key.objectid = btrfs_ino(inode);
4968 key.type = BTRFS_INODE_ITEM_KEY;
4969 key.offset = 0;
4970
4971 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4972 if (ret < 0) {
4973 return ret;
4974 } else if (ret > 0) {
4975 *size_ret = 0;
4976 } else {
4977 struct btrfs_inode_item *item;
4978
4979 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4980 struct btrfs_inode_item);
4981 *size_ret = btrfs_inode_size(path->nodes[0], item);
4982 /*
4983 * If the in-memory inode's i_size is smaller then the inode
4984 * size stored in the btree, return the inode's i_size, so
4985 * that we get a correct inode size after replaying the log
4986 * when before a power failure we had a shrinking truncate
4987 * followed by addition of a new name (rename / new hard link).
4988 * Otherwise return the inode size from the btree, to avoid
4989 * data loss when replaying a log due to previously doing a
4990 * write that expands the inode's size and logging a new name
4991 * immediately after.
4992 */
4993 if (*size_ret > inode->vfs_inode.i_size)
4994 *size_ret = inode->vfs_inode.i_size;
4995 }
4996
4997 btrfs_release_path(path);
4998 return 0;
4999 }
5000
5001 /*
5002 * At the moment we always log all xattrs. This is to figure out at log replay
5003 * time which xattrs must have their deletion replayed. If a xattr is missing
5004 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5005 * because if a xattr is deleted, the inode is fsynced and a power failure
5006 * happens, causing the log to be replayed the next time the fs is mounted,
5007 * we want the xattr to not exist anymore (same behaviour as other filesystems
5008 * with a journal, ext3/4, xfs, f2fs, etc).
5009 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)5010 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5011 struct btrfs_inode *inode,
5012 struct btrfs_path *path,
5013 struct btrfs_path *dst_path)
5014 {
5015 struct btrfs_root *root = inode->root;
5016 int ret;
5017 struct btrfs_key key;
5018 const u64 ino = btrfs_ino(inode);
5019 int ins_nr = 0;
5020 int start_slot = 0;
5021 bool found_xattrs = false;
5022
5023 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5024 return 0;
5025
5026 key.objectid = ino;
5027 key.type = BTRFS_XATTR_ITEM_KEY;
5028 key.offset = 0;
5029
5030 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5031 if (ret < 0)
5032 return ret;
5033
5034 while (true) {
5035 int slot = path->slots[0];
5036 struct extent_buffer *leaf = path->nodes[0];
5037 int nritems = btrfs_header_nritems(leaf);
5038
5039 if (slot >= nritems) {
5040 if (ins_nr > 0) {
5041 ret = copy_items(trans, inode, dst_path, path,
5042 start_slot, ins_nr, 1, 0);
5043 if (ret < 0)
5044 return ret;
5045 ins_nr = 0;
5046 }
5047 ret = btrfs_next_leaf(root, path);
5048 if (ret < 0)
5049 return ret;
5050 else if (ret > 0)
5051 break;
5052 continue;
5053 }
5054
5055 btrfs_item_key_to_cpu(leaf, &key, slot);
5056 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5057 break;
5058
5059 if (ins_nr == 0)
5060 start_slot = slot;
5061 ins_nr++;
5062 path->slots[0]++;
5063 found_xattrs = true;
5064 cond_resched();
5065 }
5066 if (ins_nr > 0) {
5067 ret = copy_items(trans, inode, dst_path, path,
5068 start_slot, ins_nr, 1, 0);
5069 if (ret < 0)
5070 return ret;
5071 }
5072
5073 if (!found_xattrs)
5074 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5075
5076 return 0;
5077 }
5078
5079 /*
5080 * When using the NO_HOLES feature if we punched a hole that causes the
5081 * deletion of entire leafs or all the extent items of the first leaf (the one
5082 * that contains the inode item and references) we may end up not processing
5083 * any extents, because there are no leafs with a generation matching the
5084 * current transaction that have extent items for our inode. So we need to find
5085 * if any holes exist and then log them. We also need to log holes after any
5086 * truncate operation that changes the inode's size.
5087 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5088 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5089 struct btrfs_inode *inode,
5090 struct btrfs_path *path)
5091 {
5092 struct btrfs_root *root = inode->root;
5093 struct btrfs_fs_info *fs_info = root->fs_info;
5094 struct btrfs_key key;
5095 const u64 ino = btrfs_ino(inode);
5096 const u64 i_size = i_size_read(&inode->vfs_inode);
5097 u64 prev_extent_end = 0;
5098 int ret;
5099
5100 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5101 return 0;
5102
5103 key.objectid = ino;
5104 key.type = BTRFS_EXTENT_DATA_KEY;
5105 key.offset = 0;
5106
5107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5108 if (ret < 0)
5109 return ret;
5110
5111 while (true) {
5112 struct extent_buffer *leaf = path->nodes[0];
5113
5114 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5115 ret = btrfs_next_leaf(root, path);
5116 if (ret < 0)
5117 return ret;
5118 if (ret > 0) {
5119 ret = 0;
5120 break;
5121 }
5122 leaf = path->nodes[0];
5123 }
5124
5125 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5126 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5127 break;
5128
5129 /* We have a hole, log it. */
5130 if (prev_extent_end < key.offset) {
5131 const u64 hole_len = key.offset - prev_extent_end;
5132
5133 /*
5134 * Release the path to avoid deadlocks with other code
5135 * paths that search the root while holding locks on
5136 * leafs from the log root.
5137 */
5138 btrfs_release_path(path);
5139 ret = btrfs_insert_hole_extent(trans, root->log_root,
5140 ino, prev_extent_end,
5141 hole_len);
5142 if (ret < 0)
5143 return ret;
5144
5145 /*
5146 * Search for the same key again in the root. Since it's
5147 * an extent item and we are holding the inode lock, the
5148 * key must still exist. If it doesn't just emit warning
5149 * and return an error to fall back to a transaction
5150 * commit.
5151 */
5152 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5153 if (ret < 0)
5154 return ret;
5155 if (WARN_ON(ret > 0))
5156 return -ENOENT;
5157 leaf = path->nodes[0];
5158 }
5159
5160 prev_extent_end = btrfs_file_extent_end(path);
5161 path->slots[0]++;
5162 cond_resched();
5163 }
5164
5165 if (prev_extent_end < i_size) {
5166 u64 hole_len;
5167
5168 btrfs_release_path(path);
5169 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5170 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5171 prev_extent_end, hole_len);
5172 if (ret < 0)
5173 return ret;
5174 }
5175
5176 return 0;
5177 }
5178
5179 /*
5180 * When we are logging a new inode X, check if it doesn't have a reference that
5181 * matches the reference from some other inode Y created in a past transaction
5182 * and that was renamed in the current transaction. If we don't do this, then at
5183 * log replay time we can lose inode Y (and all its files if it's a directory):
5184 *
5185 * mkdir /mnt/x
5186 * echo "hello world" > /mnt/x/foobar
5187 * sync
5188 * mv /mnt/x /mnt/y
5189 * mkdir /mnt/x # or touch /mnt/x
5190 * xfs_io -c fsync /mnt/x
5191 * <power fail>
5192 * mount fs, trigger log replay
5193 *
5194 * After the log replay procedure, we would lose the first directory and all its
5195 * files (file foobar).
5196 * For the case where inode Y is not a directory we simply end up losing it:
5197 *
5198 * echo "123" > /mnt/foo
5199 * sync
5200 * mv /mnt/foo /mnt/bar
5201 * echo "abc" > /mnt/foo
5202 * xfs_io -c fsync /mnt/foo
5203 * <power fail>
5204 *
5205 * We also need this for cases where a snapshot entry is replaced by some other
5206 * entry (file or directory) otherwise we end up with an unreplayable log due to
5207 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5208 * if it were a regular entry:
5209 *
5210 * mkdir /mnt/x
5211 * btrfs subvolume snapshot /mnt /mnt/x/snap
5212 * btrfs subvolume delete /mnt/x/snap
5213 * rmdir /mnt/x
5214 * mkdir /mnt/x
5215 * fsync /mnt/x or fsync some new file inside it
5216 * <power fail>
5217 *
5218 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5219 * the same transaction.
5220 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5221 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5222 const int slot,
5223 const struct btrfs_key *key,
5224 struct btrfs_inode *inode,
5225 u64 *other_ino, u64 *other_parent)
5226 {
5227 int ret;
5228 struct btrfs_path *search_path;
5229 char *name = NULL;
5230 u32 name_len = 0;
5231 u32 item_size = btrfs_item_size(eb, slot);
5232 u32 cur_offset = 0;
5233 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5234
5235 search_path = btrfs_alloc_path();
5236 if (!search_path)
5237 return -ENOMEM;
5238 search_path->search_commit_root = 1;
5239 search_path->skip_locking = 1;
5240
5241 while (cur_offset < item_size) {
5242 u64 parent;
5243 u32 this_name_len;
5244 u32 this_len;
5245 unsigned long name_ptr;
5246 struct btrfs_dir_item *di;
5247 struct fscrypt_str name_str;
5248
5249 if (key->type == BTRFS_INODE_REF_KEY) {
5250 struct btrfs_inode_ref *iref;
5251
5252 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5253 parent = key->offset;
5254 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5255 name_ptr = (unsigned long)(iref + 1);
5256 this_len = sizeof(*iref) + this_name_len;
5257 } else {
5258 struct btrfs_inode_extref *extref;
5259
5260 extref = (struct btrfs_inode_extref *)(ptr +
5261 cur_offset);
5262 parent = btrfs_inode_extref_parent(eb, extref);
5263 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5264 name_ptr = (unsigned long)&extref->name;
5265 this_len = sizeof(*extref) + this_name_len;
5266 }
5267
5268 if (this_name_len > name_len) {
5269 char *new_name;
5270
5271 new_name = krealloc(name, this_name_len, GFP_NOFS);
5272 if (!new_name) {
5273 ret = -ENOMEM;
5274 goto out;
5275 }
5276 name_len = this_name_len;
5277 name = new_name;
5278 }
5279
5280 read_extent_buffer(eb, name, name_ptr, this_name_len);
5281
5282 name_str.name = name;
5283 name_str.len = this_name_len;
5284 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5285 parent, &name_str, 0);
5286 if (di && !IS_ERR(di)) {
5287 struct btrfs_key di_key;
5288
5289 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5290 di, &di_key);
5291 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5292 if (di_key.objectid != key->objectid) {
5293 ret = 1;
5294 *other_ino = di_key.objectid;
5295 *other_parent = parent;
5296 } else {
5297 ret = 0;
5298 }
5299 } else {
5300 ret = -EAGAIN;
5301 }
5302 goto out;
5303 } else if (IS_ERR(di)) {
5304 ret = PTR_ERR(di);
5305 goto out;
5306 }
5307 btrfs_release_path(search_path);
5308
5309 cur_offset += this_len;
5310 }
5311 ret = 0;
5312 out:
5313 btrfs_free_path(search_path);
5314 kfree(name);
5315 return ret;
5316 }
5317
5318 /*
5319 * Check if we need to log an inode. This is used in contexts where while
5320 * logging an inode we need to log another inode (either that it exists or in
5321 * full mode). This is used instead of btrfs_inode_in_log() because the later
5322 * requires the inode to be in the log and have the log transaction committed,
5323 * while here we do not care if the log transaction was already committed - our
5324 * caller will commit the log later - and we want to avoid logging an inode
5325 * multiple times when multiple tasks have joined the same log transaction.
5326 */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5327 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5328 struct btrfs_inode *inode)
5329 {
5330 /*
5331 * If a directory was not modified, no dentries added or removed, we can
5332 * and should avoid logging it.
5333 */
5334 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5335 return false;
5336
5337 /*
5338 * If this inode does not have new/updated/deleted xattrs since the last
5339 * time it was logged and is flagged as logged in the current transaction,
5340 * we can skip logging it. As for new/deleted names, those are updated in
5341 * the log by link/unlink/rename operations.
5342 * In case the inode was logged and then evicted and reloaded, its
5343 * logged_trans will be 0, in which case we have to fully log it since
5344 * logged_trans is a transient field, not persisted.
5345 */
5346 if (inode_logged(trans, inode, NULL) == 1 &&
5347 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5348 return false;
5349
5350 return true;
5351 }
5352
5353 struct btrfs_dir_list {
5354 u64 ino;
5355 struct list_head list;
5356 };
5357
5358 /*
5359 * Log the inodes of the new dentries of a directory.
5360 * See process_dir_items_leaf() for details about why it is needed.
5361 * This is a recursive operation - if an existing dentry corresponds to a
5362 * directory, that directory's new entries are logged too (same behaviour as
5363 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5364 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5365 * complains about the following circular lock dependency / possible deadlock:
5366 *
5367 * CPU0 CPU1
5368 * ---- ----
5369 * lock(&type->i_mutex_dir_key#3/2);
5370 * lock(sb_internal#2);
5371 * lock(&type->i_mutex_dir_key#3/2);
5372 * lock(&sb->s_type->i_mutex_key#14);
5373 *
5374 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5375 * sb_start_intwrite() in btrfs_start_transaction().
5376 * Not acquiring the VFS lock of the inodes is still safe because:
5377 *
5378 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5379 * that while logging the inode new references (names) are added or removed
5380 * from the inode, leaving the logged inode item with a link count that does
5381 * not match the number of logged inode reference items. This is fine because
5382 * at log replay time we compute the real number of links and correct the
5383 * link count in the inode item (see replay_one_buffer() and
5384 * link_to_fixup_dir());
5385 *
5386 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5387 * while logging the inode's items new index items (key type
5388 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5389 * has a size that doesn't match the sum of the lengths of all the logged
5390 * names - this is ok, not a problem, because at log replay time we set the
5391 * directory's i_size to the correct value (see replay_one_name() and
5392 * overwrite_item()).
5393 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5394 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5395 struct btrfs_inode *start_inode,
5396 struct btrfs_log_ctx *ctx)
5397 {
5398 struct btrfs_root *root = start_inode->root;
5399 struct btrfs_path *path;
5400 LIST_HEAD(dir_list);
5401 struct btrfs_dir_list *dir_elem;
5402 u64 ino = btrfs_ino(start_inode);
5403 struct btrfs_inode *curr_inode = start_inode;
5404 int ret = 0;
5405
5406 /*
5407 * If we are logging a new name, as part of a link or rename operation,
5408 * don't bother logging new dentries, as we just want to log the names
5409 * of an inode and that any new parents exist.
5410 */
5411 if (ctx->logging_new_name)
5412 return 0;
5413
5414 path = btrfs_alloc_path();
5415 if (!path)
5416 return -ENOMEM;
5417
5418 /* Pairs with btrfs_add_delayed_iput below. */
5419 ihold(&curr_inode->vfs_inode);
5420
5421 while (true) {
5422 struct inode *vfs_inode;
5423 struct btrfs_key key;
5424 struct btrfs_key found_key;
5425 u64 next_index;
5426 bool continue_curr_inode = true;
5427 int iter_ret;
5428
5429 key.objectid = ino;
5430 key.type = BTRFS_DIR_INDEX_KEY;
5431 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5432 next_index = key.offset;
5433 again:
5434 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5435 struct extent_buffer *leaf = path->nodes[0];
5436 struct btrfs_dir_item *di;
5437 struct btrfs_key di_key;
5438 struct inode *di_inode;
5439 int log_mode = LOG_INODE_EXISTS;
5440 int type;
5441
5442 if (found_key.objectid != ino ||
5443 found_key.type != BTRFS_DIR_INDEX_KEY) {
5444 continue_curr_inode = false;
5445 break;
5446 }
5447
5448 next_index = found_key.offset + 1;
5449
5450 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5451 type = btrfs_dir_ftype(leaf, di);
5452 if (btrfs_dir_transid(leaf, di) < trans->transid)
5453 continue;
5454 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5455 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5456 continue;
5457
5458 btrfs_release_path(path);
5459 di_inode = btrfs_iget_logging(di_key.objectid, root);
5460 if (IS_ERR(di_inode)) {
5461 ret = PTR_ERR(di_inode);
5462 goto out;
5463 }
5464
5465 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5466 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5467 break;
5468 }
5469
5470 ctx->log_new_dentries = false;
5471 if (type == BTRFS_FT_DIR)
5472 log_mode = LOG_INODE_ALL;
5473 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5474 log_mode, ctx);
5475 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5476 if (ret)
5477 goto out;
5478 if (ctx->log_new_dentries) {
5479 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5480 if (!dir_elem) {
5481 ret = -ENOMEM;
5482 goto out;
5483 }
5484 dir_elem->ino = di_key.objectid;
5485 list_add_tail(&dir_elem->list, &dir_list);
5486 }
5487 break;
5488 }
5489
5490 btrfs_release_path(path);
5491
5492 if (iter_ret < 0) {
5493 ret = iter_ret;
5494 goto out;
5495 } else if (iter_ret > 0) {
5496 continue_curr_inode = false;
5497 } else {
5498 key = found_key;
5499 }
5500
5501 if (continue_curr_inode && key.offset < (u64)-1) {
5502 key.offset++;
5503 goto again;
5504 }
5505
5506 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5507
5508 if (list_empty(&dir_list))
5509 break;
5510
5511 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5512 ino = dir_elem->ino;
5513 list_del(&dir_elem->list);
5514 kfree(dir_elem);
5515
5516 btrfs_add_delayed_iput(curr_inode);
5517 curr_inode = NULL;
5518
5519 vfs_inode = btrfs_iget_logging(ino, root);
5520 if (IS_ERR(vfs_inode)) {
5521 ret = PTR_ERR(vfs_inode);
5522 break;
5523 }
5524 curr_inode = BTRFS_I(vfs_inode);
5525 }
5526 out:
5527 btrfs_free_path(path);
5528 if (curr_inode)
5529 btrfs_add_delayed_iput(curr_inode);
5530
5531 if (ret) {
5532 struct btrfs_dir_list *next;
5533
5534 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5535 kfree(dir_elem);
5536 }
5537
5538 return ret;
5539 }
5540
5541 struct btrfs_ino_list {
5542 u64 ino;
5543 u64 parent;
5544 struct list_head list;
5545 };
5546
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5547 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5548 {
5549 struct btrfs_ino_list *curr;
5550 struct btrfs_ino_list *next;
5551
5552 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5553 list_del(&curr->list);
5554 kfree(curr);
5555 }
5556 }
5557
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5558 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5559 struct btrfs_path *path)
5560 {
5561 struct btrfs_key key;
5562 int ret;
5563
5564 key.objectid = ino;
5565 key.type = BTRFS_INODE_ITEM_KEY;
5566 key.offset = 0;
5567
5568 path->search_commit_root = 1;
5569 path->skip_locking = 1;
5570
5571 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5572 if (WARN_ON_ONCE(ret > 0)) {
5573 /*
5574 * We have previously found the inode through the commit root
5575 * so this should not happen. If it does, just error out and
5576 * fallback to a transaction commit.
5577 */
5578 ret = -ENOENT;
5579 } else if (ret == 0) {
5580 struct btrfs_inode_item *item;
5581
5582 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5583 struct btrfs_inode_item);
5584 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5585 ret = 1;
5586 }
5587
5588 btrfs_release_path(path);
5589 path->search_commit_root = 0;
5590 path->skip_locking = 0;
5591
5592 return ret;
5593 }
5594
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5595 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5596 struct btrfs_root *root,
5597 struct btrfs_path *path,
5598 u64 ino, u64 parent,
5599 struct btrfs_log_ctx *ctx)
5600 {
5601 struct btrfs_ino_list *ino_elem;
5602 struct inode *inode;
5603
5604 /*
5605 * It's rare to have a lot of conflicting inodes, in practice it is not
5606 * common to have more than 1 or 2. We don't want to collect too many,
5607 * as we could end up logging too many inodes (even if only in
5608 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5609 * commits.
5610 */
5611 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5612 return BTRFS_LOG_FORCE_COMMIT;
5613
5614 inode = btrfs_iget_logging(ino, root);
5615 /*
5616 * If the other inode that had a conflicting dir entry was deleted in
5617 * the current transaction then we either:
5618 *
5619 * 1) Log the parent directory (later after adding it to the list) if
5620 * the inode is a directory. This is because it may be a deleted
5621 * subvolume/snapshot or it may be a regular directory that had
5622 * deleted subvolumes/snapshots (or subdirectories that had them),
5623 * and at the moment we can't deal with dropping subvolumes/snapshots
5624 * during log replay. So we just log the parent, which will result in
5625 * a fallback to a transaction commit if we are dealing with those
5626 * cases (last_unlink_trans will match the current transaction);
5627 *
5628 * 2) Do nothing if it's not a directory. During log replay we simply
5629 * unlink the conflicting dentry from the parent directory and then
5630 * add the dentry for our inode. Like this we can avoid logging the
5631 * parent directory (and maybe fallback to a transaction commit in
5632 * case it has a last_unlink_trans == trans->transid, due to moving
5633 * some inode from it to some other directory).
5634 */
5635 if (IS_ERR(inode)) {
5636 int ret = PTR_ERR(inode);
5637
5638 if (ret != -ENOENT)
5639 return ret;
5640
5641 ret = conflicting_inode_is_dir(root, ino, path);
5642 /* Not a directory or we got an error. */
5643 if (ret <= 0)
5644 return ret;
5645
5646 /* Conflicting inode is a directory, so we'll log its parent. */
5647 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5648 if (!ino_elem)
5649 return -ENOMEM;
5650 ino_elem->ino = ino;
5651 ino_elem->parent = parent;
5652 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5653 ctx->num_conflict_inodes++;
5654
5655 return 0;
5656 }
5657
5658 /*
5659 * If the inode was already logged skip it - otherwise we can hit an
5660 * infinite loop. Example:
5661 *
5662 * From the commit root (previous transaction) we have the following
5663 * inodes:
5664 *
5665 * inode 257 a directory
5666 * inode 258 with references "zz" and "zz_link" on inode 257
5667 * inode 259 with reference "a" on inode 257
5668 *
5669 * And in the current (uncommitted) transaction we have:
5670 *
5671 * inode 257 a directory, unchanged
5672 * inode 258 with references "a" and "a2" on inode 257
5673 * inode 259 with reference "zz_link" on inode 257
5674 * inode 261 with reference "zz" on inode 257
5675 *
5676 * When logging inode 261 the following infinite loop could
5677 * happen if we don't skip already logged inodes:
5678 *
5679 * - we detect inode 258 as a conflicting inode, with inode 261
5680 * on reference "zz", and log it;
5681 *
5682 * - we detect inode 259 as a conflicting inode, with inode 258
5683 * on reference "a", and log it;
5684 *
5685 * - we detect inode 258 as a conflicting inode, with inode 259
5686 * on reference "zz_link", and log it - again! After this we
5687 * repeat the above steps forever.
5688 *
5689 * Here we can use need_log_inode() because we only need to log the
5690 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5691 * so that the log ends up with the new name and without the old name.
5692 */
5693 if (!need_log_inode(trans, BTRFS_I(inode))) {
5694 btrfs_add_delayed_iput(BTRFS_I(inode));
5695 return 0;
5696 }
5697
5698 btrfs_add_delayed_iput(BTRFS_I(inode));
5699
5700 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5701 if (!ino_elem)
5702 return -ENOMEM;
5703 ino_elem->ino = ino;
5704 ino_elem->parent = parent;
5705 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5706 ctx->num_conflict_inodes++;
5707
5708 return 0;
5709 }
5710
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5711 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5712 struct btrfs_root *root,
5713 struct btrfs_log_ctx *ctx)
5714 {
5715 int ret = 0;
5716
5717 /*
5718 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5719 * otherwise we could have unbounded recursion of btrfs_log_inode()
5720 * calls. This check guarantees we can have only 1 level of recursion.
5721 */
5722 if (ctx->logging_conflict_inodes)
5723 return 0;
5724
5725 ctx->logging_conflict_inodes = true;
5726
5727 /*
5728 * New conflicting inodes may be found and added to the list while we
5729 * are logging a conflicting inode, so keep iterating while the list is
5730 * not empty.
5731 */
5732 while (!list_empty(&ctx->conflict_inodes)) {
5733 struct btrfs_ino_list *curr;
5734 struct inode *inode;
5735 u64 ino;
5736 u64 parent;
5737
5738 curr = list_first_entry(&ctx->conflict_inodes,
5739 struct btrfs_ino_list, list);
5740 ino = curr->ino;
5741 parent = curr->parent;
5742 list_del(&curr->list);
5743 kfree(curr);
5744
5745 inode = btrfs_iget_logging(ino, root);
5746 /*
5747 * If the other inode that had a conflicting dir entry was
5748 * deleted in the current transaction, we need to log its parent
5749 * directory. See the comment at add_conflicting_inode().
5750 */
5751 if (IS_ERR(inode)) {
5752 ret = PTR_ERR(inode);
5753 if (ret != -ENOENT)
5754 break;
5755
5756 inode = btrfs_iget_logging(parent, root);
5757 if (IS_ERR(inode)) {
5758 ret = PTR_ERR(inode);
5759 break;
5760 }
5761
5762 /*
5763 * Always log the directory, we cannot make this
5764 * conditional on need_log_inode() because the directory
5765 * might have been logged in LOG_INODE_EXISTS mode or
5766 * the dir index of the conflicting inode is not in a
5767 * dir index key range logged for the directory. So we
5768 * must make sure the deletion is recorded.
5769 */
5770 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5771 LOG_INODE_ALL, ctx);
5772 btrfs_add_delayed_iput(BTRFS_I(inode));
5773 if (ret)
5774 break;
5775 continue;
5776 }
5777
5778 /*
5779 * Here we can use need_log_inode() because we only need to log
5780 * the inode in LOG_INODE_EXISTS mode and rename operations
5781 * update the log, so that the log ends up with the new name and
5782 * without the old name.
5783 *
5784 * We did this check at add_conflicting_inode(), but here we do
5785 * it again because if some other task logged the inode after
5786 * that, we can avoid doing it again.
5787 */
5788 if (!need_log_inode(trans, BTRFS_I(inode))) {
5789 btrfs_add_delayed_iput(BTRFS_I(inode));
5790 continue;
5791 }
5792
5793 /*
5794 * We are safe logging the other inode without acquiring its
5795 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5796 * are safe against concurrent renames of the other inode as
5797 * well because during a rename we pin the log and update the
5798 * log with the new name before we unpin it.
5799 */
5800 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5801 btrfs_add_delayed_iput(BTRFS_I(inode));
5802 if (ret)
5803 break;
5804 }
5805
5806 ctx->logging_conflict_inodes = false;
5807 if (ret)
5808 free_conflicting_inodes(ctx);
5809
5810 return ret;
5811 }
5812
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5813 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5814 struct btrfs_inode *inode,
5815 struct btrfs_key *min_key,
5816 const struct btrfs_key *max_key,
5817 struct btrfs_path *path,
5818 struct btrfs_path *dst_path,
5819 const u64 logged_isize,
5820 const int inode_only,
5821 struct btrfs_log_ctx *ctx,
5822 bool *need_log_inode_item)
5823 {
5824 const u64 i_size = i_size_read(&inode->vfs_inode);
5825 struct btrfs_root *root = inode->root;
5826 int ins_start_slot = 0;
5827 int ins_nr = 0;
5828 int ret;
5829
5830 while (1) {
5831 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5832 if (ret < 0)
5833 return ret;
5834 if (ret > 0) {
5835 ret = 0;
5836 break;
5837 }
5838 again:
5839 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5840 if (min_key->objectid != max_key->objectid)
5841 break;
5842 if (min_key->type > max_key->type)
5843 break;
5844
5845 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5846 *need_log_inode_item = false;
5847 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5848 min_key->offset >= i_size) {
5849 /*
5850 * Extents at and beyond eof are logged with
5851 * btrfs_log_prealloc_extents().
5852 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5853 * and no keys greater than that, so bail out.
5854 */
5855 break;
5856 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5857 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5858 (inode->generation == trans->transid ||
5859 ctx->logging_conflict_inodes)) {
5860 u64 other_ino = 0;
5861 u64 other_parent = 0;
5862
5863 ret = btrfs_check_ref_name_override(path->nodes[0],
5864 path->slots[0], min_key, inode,
5865 &other_ino, &other_parent);
5866 if (ret < 0) {
5867 return ret;
5868 } else if (ret > 0 &&
5869 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5870 if (ins_nr > 0) {
5871 ins_nr++;
5872 } else {
5873 ins_nr = 1;
5874 ins_start_slot = path->slots[0];
5875 }
5876 ret = copy_items(trans, inode, dst_path, path,
5877 ins_start_slot, ins_nr,
5878 inode_only, logged_isize);
5879 if (ret < 0)
5880 return ret;
5881 ins_nr = 0;
5882
5883 btrfs_release_path(path);
5884 ret = add_conflicting_inode(trans, root, path,
5885 other_ino,
5886 other_parent, ctx);
5887 if (ret)
5888 return ret;
5889 goto next_key;
5890 }
5891 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5892 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5893 if (ins_nr == 0)
5894 goto next_slot;
5895 ret = copy_items(trans, inode, dst_path, path,
5896 ins_start_slot,
5897 ins_nr, inode_only, logged_isize);
5898 if (ret < 0)
5899 return ret;
5900 ins_nr = 0;
5901 goto next_slot;
5902 }
5903
5904 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5905 ins_nr++;
5906 goto next_slot;
5907 } else if (!ins_nr) {
5908 ins_start_slot = path->slots[0];
5909 ins_nr = 1;
5910 goto next_slot;
5911 }
5912
5913 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5914 ins_nr, inode_only, logged_isize);
5915 if (ret < 0)
5916 return ret;
5917 ins_nr = 1;
5918 ins_start_slot = path->slots[0];
5919 next_slot:
5920 path->slots[0]++;
5921 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5922 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5923 path->slots[0]);
5924 goto again;
5925 }
5926 if (ins_nr) {
5927 ret = copy_items(trans, inode, dst_path, path,
5928 ins_start_slot, ins_nr, inode_only,
5929 logged_isize);
5930 if (ret < 0)
5931 return ret;
5932 ins_nr = 0;
5933 }
5934 btrfs_release_path(path);
5935 next_key:
5936 if (min_key->offset < (u64)-1) {
5937 min_key->offset++;
5938 } else if (min_key->type < max_key->type) {
5939 min_key->type++;
5940 min_key->offset = 0;
5941 } else {
5942 break;
5943 }
5944
5945 /*
5946 * We may process many leaves full of items for our inode, so
5947 * avoid monopolizing a cpu for too long by rescheduling while
5948 * not holding locks on any tree.
5949 */
5950 cond_resched();
5951 }
5952 if (ins_nr) {
5953 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5954 ins_nr, inode_only, logged_isize);
5955 if (ret)
5956 return ret;
5957 }
5958
5959 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5960 /*
5961 * Release the path because otherwise we might attempt to double
5962 * lock the same leaf with btrfs_log_prealloc_extents() below.
5963 */
5964 btrfs_release_path(path);
5965 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5966 }
5967
5968 return ret;
5969 }
5970
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)5971 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5972 struct btrfs_root *log,
5973 struct btrfs_path *path,
5974 const struct btrfs_item_batch *batch,
5975 const struct btrfs_delayed_item *first_item)
5976 {
5977 const struct btrfs_delayed_item *curr = first_item;
5978 int ret;
5979
5980 ret = btrfs_insert_empty_items(trans, log, path, batch);
5981 if (ret)
5982 return ret;
5983
5984 for (int i = 0; i < batch->nr; i++) {
5985 char *data_ptr;
5986
5987 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5988 write_extent_buffer(path->nodes[0], &curr->data,
5989 (unsigned long)data_ptr, curr->data_len);
5990 curr = list_next_entry(curr, log_list);
5991 path->slots[0]++;
5992 }
5993
5994 btrfs_release_path(path);
5995
5996 return 0;
5997 }
5998
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)5999 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6000 struct btrfs_inode *inode,
6001 struct btrfs_path *path,
6002 const struct list_head *delayed_ins_list,
6003 struct btrfs_log_ctx *ctx)
6004 {
6005 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6006 const int max_batch_size = 195;
6007 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6008 const u64 ino = btrfs_ino(inode);
6009 struct btrfs_root *log = inode->root->log_root;
6010 struct btrfs_item_batch batch = {
6011 .nr = 0,
6012 .total_data_size = 0,
6013 };
6014 const struct btrfs_delayed_item *first = NULL;
6015 const struct btrfs_delayed_item *curr;
6016 char *ins_data;
6017 struct btrfs_key *ins_keys;
6018 u32 *ins_sizes;
6019 u64 curr_batch_size = 0;
6020 int batch_idx = 0;
6021 int ret;
6022
6023 /* We are adding dir index items to the log tree. */
6024 lockdep_assert_held(&inode->log_mutex);
6025
6026 /*
6027 * We collect delayed items before copying index keys from the subvolume
6028 * to the log tree. However just after we collected them, they may have
6029 * been flushed (all of them or just some of them), and therefore we
6030 * could have copied them from the subvolume tree to the log tree.
6031 * So find the first delayed item that was not yet logged (they are
6032 * sorted by index number).
6033 */
6034 list_for_each_entry(curr, delayed_ins_list, log_list) {
6035 if (curr->index > inode->last_dir_index_offset) {
6036 first = curr;
6037 break;
6038 }
6039 }
6040
6041 /* Empty list or all delayed items were already logged. */
6042 if (!first)
6043 return 0;
6044
6045 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6046 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6047 if (!ins_data)
6048 return -ENOMEM;
6049 ins_sizes = (u32 *)ins_data;
6050 batch.data_sizes = ins_sizes;
6051 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6052 batch.keys = ins_keys;
6053
6054 curr = first;
6055 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6056 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6057
6058 if (curr_batch_size + curr_size > leaf_data_size ||
6059 batch.nr == max_batch_size) {
6060 ret = insert_delayed_items_batch(trans, log, path,
6061 &batch, first);
6062 if (ret)
6063 goto out;
6064 batch_idx = 0;
6065 batch.nr = 0;
6066 batch.total_data_size = 0;
6067 curr_batch_size = 0;
6068 first = curr;
6069 }
6070
6071 ins_sizes[batch_idx] = curr->data_len;
6072 ins_keys[batch_idx].objectid = ino;
6073 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6074 ins_keys[batch_idx].offset = curr->index;
6075 curr_batch_size += curr_size;
6076 batch.total_data_size += curr->data_len;
6077 batch.nr++;
6078 batch_idx++;
6079 curr = list_next_entry(curr, log_list);
6080 }
6081
6082 ASSERT(batch.nr >= 1);
6083 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6084
6085 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6086 log_list);
6087 inode->last_dir_index_offset = curr->index;
6088 out:
6089 kfree(ins_data);
6090
6091 return ret;
6092 }
6093
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6094 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6095 struct btrfs_inode *inode,
6096 struct btrfs_path *path,
6097 const struct list_head *delayed_del_list,
6098 struct btrfs_log_ctx *ctx)
6099 {
6100 const u64 ino = btrfs_ino(inode);
6101 const struct btrfs_delayed_item *curr;
6102
6103 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6104 log_list);
6105
6106 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6107 u64 first_dir_index = curr->index;
6108 u64 last_dir_index;
6109 const struct btrfs_delayed_item *next;
6110 int ret;
6111
6112 /*
6113 * Find a range of consecutive dir index items to delete. Like
6114 * this we log a single dir range item spanning several contiguous
6115 * dir items instead of logging one range item per dir index item.
6116 */
6117 next = list_next_entry(curr, log_list);
6118 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6119 if (next->index != curr->index + 1)
6120 break;
6121 curr = next;
6122 next = list_next_entry(next, log_list);
6123 }
6124
6125 last_dir_index = curr->index;
6126 ASSERT(last_dir_index >= first_dir_index);
6127
6128 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6129 ino, first_dir_index, last_dir_index);
6130 if (ret)
6131 return ret;
6132 curr = list_next_entry(curr, log_list);
6133 }
6134
6135 return 0;
6136 }
6137
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6138 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6139 struct btrfs_inode *inode,
6140 struct btrfs_path *path,
6141 struct btrfs_log_ctx *ctx,
6142 const struct list_head *delayed_del_list,
6143 const struct btrfs_delayed_item *first,
6144 const struct btrfs_delayed_item **last_ret)
6145 {
6146 const struct btrfs_delayed_item *next;
6147 struct extent_buffer *leaf = path->nodes[0];
6148 const int last_slot = btrfs_header_nritems(leaf) - 1;
6149 int slot = path->slots[0] + 1;
6150 const u64 ino = btrfs_ino(inode);
6151
6152 next = list_next_entry(first, log_list);
6153
6154 while (slot < last_slot &&
6155 !list_entry_is_head(next, delayed_del_list, log_list)) {
6156 struct btrfs_key key;
6157
6158 btrfs_item_key_to_cpu(leaf, &key, slot);
6159 if (key.objectid != ino ||
6160 key.type != BTRFS_DIR_INDEX_KEY ||
6161 key.offset != next->index)
6162 break;
6163
6164 slot++;
6165 *last_ret = next;
6166 next = list_next_entry(next, log_list);
6167 }
6168
6169 return btrfs_del_items(trans, inode->root->log_root, path,
6170 path->slots[0], slot - path->slots[0]);
6171 }
6172
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6173 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6174 struct btrfs_inode *inode,
6175 struct btrfs_path *path,
6176 const struct list_head *delayed_del_list,
6177 struct btrfs_log_ctx *ctx)
6178 {
6179 struct btrfs_root *log = inode->root->log_root;
6180 const struct btrfs_delayed_item *curr;
6181 u64 last_range_start = 0;
6182 u64 last_range_end = 0;
6183 struct btrfs_key key;
6184
6185 key.objectid = btrfs_ino(inode);
6186 key.type = BTRFS_DIR_INDEX_KEY;
6187 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6188 log_list);
6189
6190 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6191 const struct btrfs_delayed_item *last = curr;
6192 u64 first_dir_index = curr->index;
6193 u64 last_dir_index;
6194 bool deleted_items = false;
6195 int ret;
6196
6197 key.offset = curr->index;
6198 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6199 if (ret < 0) {
6200 return ret;
6201 } else if (ret == 0) {
6202 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6203 delayed_del_list, curr,
6204 &last);
6205 if (ret)
6206 return ret;
6207 deleted_items = true;
6208 }
6209
6210 btrfs_release_path(path);
6211
6212 /*
6213 * If we deleted items from the leaf, it means we have a range
6214 * item logging their range, so no need to add one or update an
6215 * existing one. Otherwise we have to log a dir range item.
6216 */
6217 if (deleted_items)
6218 goto next_batch;
6219
6220 last_dir_index = last->index;
6221 ASSERT(last_dir_index >= first_dir_index);
6222 /*
6223 * If this range starts right after where the previous one ends,
6224 * then we want to reuse the previous range item and change its
6225 * end offset to the end of this range. This is just to minimize
6226 * leaf space usage, by avoiding adding a new range item.
6227 */
6228 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6229 first_dir_index = last_range_start;
6230
6231 ret = insert_dir_log_key(trans, log, path, key.objectid,
6232 first_dir_index, last_dir_index);
6233 if (ret)
6234 return ret;
6235
6236 last_range_start = first_dir_index;
6237 last_range_end = last_dir_index;
6238 next_batch:
6239 curr = list_next_entry(last, log_list);
6240 }
6241
6242 return 0;
6243 }
6244
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6245 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6246 struct btrfs_inode *inode,
6247 struct btrfs_path *path,
6248 const struct list_head *delayed_del_list,
6249 struct btrfs_log_ctx *ctx)
6250 {
6251 /*
6252 * We are deleting dir index items from the log tree or adding range
6253 * items to it.
6254 */
6255 lockdep_assert_held(&inode->log_mutex);
6256
6257 if (list_empty(delayed_del_list))
6258 return 0;
6259
6260 if (ctx->logged_before)
6261 return log_delayed_deletions_incremental(trans, inode, path,
6262 delayed_del_list, ctx);
6263
6264 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6265 ctx);
6266 }
6267
6268 /*
6269 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6270 * items instead of the subvolume tree.
6271 */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6272 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6273 struct btrfs_inode *inode,
6274 const struct list_head *delayed_ins_list,
6275 struct btrfs_log_ctx *ctx)
6276 {
6277 const bool orig_log_new_dentries = ctx->log_new_dentries;
6278 struct btrfs_delayed_item *item;
6279 int ret = 0;
6280
6281 /*
6282 * No need for the log mutex, plus to avoid potential deadlocks or
6283 * lockdep annotations due to nesting of delayed inode mutexes and log
6284 * mutexes.
6285 */
6286 lockdep_assert_not_held(&inode->log_mutex);
6287
6288 ASSERT(!ctx->logging_new_delayed_dentries);
6289 ctx->logging_new_delayed_dentries = true;
6290
6291 list_for_each_entry(item, delayed_ins_list, log_list) {
6292 struct btrfs_dir_item *dir_item;
6293 struct inode *di_inode;
6294 struct btrfs_key key;
6295 int log_mode = LOG_INODE_EXISTS;
6296
6297 dir_item = (struct btrfs_dir_item *)item->data;
6298 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6299
6300 if (key.type == BTRFS_ROOT_ITEM_KEY)
6301 continue;
6302
6303 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6304 if (IS_ERR(di_inode)) {
6305 ret = PTR_ERR(di_inode);
6306 break;
6307 }
6308
6309 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6310 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6311 continue;
6312 }
6313
6314 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6315 log_mode = LOG_INODE_ALL;
6316
6317 ctx->log_new_dentries = false;
6318 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6319
6320 if (!ret && ctx->log_new_dentries)
6321 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6322
6323 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6324
6325 if (ret)
6326 break;
6327 }
6328
6329 ctx->log_new_dentries = orig_log_new_dentries;
6330 ctx->logging_new_delayed_dentries = false;
6331
6332 return ret;
6333 }
6334
6335 /* log a single inode in the tree log.
6336 * At least one parent directory for this inode must exist in the tree
6337 * or be logged already.
6338 *
6339 * Any items from this inode changed by the current transaction are copied
6340 * to the log tree. An extra reference is taken on any extents in this
6341 * file, allowing us to avoid a whole pile of corner cases around logging
6342 * blocks that have been removed from the tree.
6343 *
6344 * See LOG_INODE_ALL and related defines for a description of what inode_only
6345 * does.
6346 *
6347 * This handles both files and directories.
6348 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6349 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6350 struct btrfs_inode *inode,
6351 int inode_only,
6352 struct btrfs_log_ctx *ctx)
6353 {
6354 struct btrfs_path *path;
6355 struct btrfs_path *dst_path;
6356 struct btrfs_key min_key;
6357 struct btrfs_key max_key;
6358 struct btrfs_root *log = inode->root->log_root;
6359 int ret;
6360 bool fast_search = false;
6361 u64 ino = btrfs_ino(inode);
6362 struct extent_map_tree *em_tree = &inode->extent_tree;
6363 u64 logged_isize = 0;
6364 bool need_log_inode_item = true;
6365 bool xattrs_logged = false;
6366 bool inode_item_dropped = true;
6367 bool full_dir_logging = false;
6368 LIST_HEAD(delayed_ins_list);
6369 LIST_HEAD(delayed_del_list);
6370
6371 path = btrfs_alloc_path();
6372 if (!path)
6373 return -ENOMEM;
6374 dst_path = btrfs_alloc_path();
6375 if (!dst_path) {
6376 btrfs_free_path(path);
6377 return -ENOMEM;
6378 }
6379
6380 min_key.objectid = ino;
6381 min_key.type = BTRFS_INODE_ITEM_KEY;
6382 min_key.offset = 0;
6383
6384 max_key.objectid = ino;
6385
6386
6387 /* today the code can only do partial logging of directories */
6388 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6389 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6390 &inode->runtime_flags) &&
6391 inode_only >= LOG_INODE_EXISTS))
6392 max_key.type = BTRFS_XATTR_ITEM_KEY;
6393 else
6394 max_key.type = (u8)-1;
6395 max_key.offset = (u64)-1;
6396
6397 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6398 full_dir_logging = true;
6399
6400 /*
6401 * If we are logging a directory while we are logging dentries of the
6402 * delayed items of some other inode, then we need to flush the delayed
6403 * items of this directory and not log the delayed items directly. This
6404 * is to prevent more than one level of recursion into btrfs_log_inode()
6405 * by having something like this:
6406 *
6407 * $ mkdir -p a/b/c/d/e/f/g/h/...
6408 * $ xfs_io -c "fsync" a
6409 *
6410 * Where all directories in the path did not exist before and are
6411 * created in the current transaction.
6412 * So in such a case we directly log the delayed items of the main
6413 * directory ("a") without flushing them first, while for each of its
6414 * subdirectories we flush their delayed items before logging them.
6415 * This prevents a potential unbounded recursion like this:
6416 *
6417 * btrfs_log_inode()
6418 * log_new_delayed_dentries()
6419 * btrfs_log_inode()
6420 * log_new_delayed_dentries()
6421 * btrfs_log_inode()
6422 * log_new_delayed_dentries()
6423 * (...)
6424 *
6425 * We have thresholds for the maximum number of delayed items to have in
6426 * memory, and once they are hit, the items are flushed asynchronously.
6427 * However the limit is quite high, so lets prevent deep levels of
6428 * recursion to happen by limiting the maximum depth to be 1.
6429 */
6430 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6431 ret = btrfs_commit_inode_delayed_items(trans, inode);
6432 if (ret)
6433 goto out;
6434 }
6435
6436 mutex_lock(&inode->log_mutex);
6437
6438 /*
6439 * For symlinks, we must always log their content, which is stored in an
6440 * inline extent, otherwise we could end up with an empty symlink after
6441 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6442 * one attempts to create an empty symlink).
6443 * We don't need to worry about flushing delalloc, because when we create
6444 * the inline extent when the symlink is created (we never have delalloc
6445 * for symlinks).
6446 */
6447 if (S_ISLNK(inode->vfs_inode.i_mode))
6448 inode_only = LOG_INODE_ALL;
6449
6450 /*
6451 * Before logging the inode item, cache the value returned by
6452 * inode_logged(), because after that we have the need to figure out if
6453 * the inode was previously logged in this transaction.
6454 */
6455 ret = inode_logged(trans, inode, path);
6456 if (ret < 0)
6457 goto out_unlock;
6458 ctx->logged_before = (ret == 1);
6459 ret = 0;
6460
6461 /*
6462 * This is for cases where logging a directory could result in losing a
6463 * a file after replaying the log. For example, if we move a file from a
6464 * directory A to a directory B, then fsync directory A, we have no way
6465 * to known the file was moved from A to B, so logging just A would
6466 * result in losing the file after a log replay.
6467 */
6468 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6469 ret = BTRFS_LOG_FORCE_COMMIT;
6470 goto out_unlock;
6471 }
6472
6473 /*
6474 * a brute force approach to making sure we get the most uptodate
6475 * copies of everything.
6476 */
6477 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6478 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6479 if (ctx->logged_before)
6480 ret = drop_inode_items(trans, log, path, inode,
6481 BTRFS_XATTR_ITEM_KEY);
6482 } else {
6483 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6484 /*
6485 * Make sure the new inode item we write to the log has
6486 * the same isize as the current one (if it exists).
6487 * This is necessary to prevent data loss after log
6488 * replay, and also to prevent doing a wrong expanding
6489 * truncate - for e.g. create file, write 4K into offset
6490 * 0, fsync, write 4K into offset 4096, add hard link,
6491 * fsync some other file (to sync log), power fail - if
6492 * we use the inode's current i_size, after log replay
6493 * we get a 8Kb file, with the last 4Kb extent as a hole
6494 * (zeroes), as if an expanding truncate happened,
6495 * instead of getting a file of 4Kb only.
6496 */
6497 ret = logged_inode_size(log, inode, path, &logged_isize);
6498 if (ret)
6499 goto out_unlock;
6500 }
6501 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6502 &inode->runtime_flags)) {
6503 if (inode_only == LOG_INODE_EXISTS) {
6504 max_key.type = BTRFS_XATTR_ITEM_KEY;
6505 if (ctx->logged_before)
6506 ret = drop_inode_items(trans, log, path,
6507 inode, max_key.type);
6508 } else {
6509 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6510 &inode->runtime_flags);
6511 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6512 &inode->runtime_flags);
6513 if (ctx->logged_before)
6514 ret = truncate_inode_items(trans, log,
6515 inode, 0, 0);
6516 }
6517 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6518 &inode->runtime_flags) ||
6519 inode_only == LOG_INODE_EXISTS) {
6520 if (inode_only == LOG_INODE_ALL)
6521 fast_search = true;
6522 max_key.type = BTRFS_XATTR_ITEM_KEY;
6523 if (ctx->logged_before)
6524 ret = drop_inode_items(trans, log, path, inode,
6525 max_key.type);
6526 } else {
6527 if (inode_only == LOG_INODE_ALL)
6528 fast_search = true;
6529 inode_item_dropped = false;
6530 goto log_extents;
6531 }
6532
6533 }
6534 if (ret)
6535 goto out_unlock;
6536
6537 /*
6538 * If we are logging a directory in full mode, collect the delayed items
6539 * before iterating the subvolume tree, so that we don't miss any new
6540 * dir index items in case they get flushed while or right after we are
6541 * iterating the subvolume tree.
6542 */
6543 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6544 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6545 &delayed_del_list);
6546
6547 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6548 path, dst_path, logged_isize,
6549 inode_only, ctx,
6550 &need_log_inode_item);
6551 if (ret)
6552 goto out_unlock;
6553
6554 btrfs_release_path(path);
6555 btrfs_release_path(dst_path);
6556 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6557 if (ret)
6558 goto out_unlock;
6559 xattrs_logged = true;
6560 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6561 btrfs_release_path(path);
6562 btrfs_release_path(dst_path);
6563 ret = btrfs_log_holes(trans, inode, path);
6564 if (ret)
6565 goto out_unlock;
6566 }
6567 log_extents:
6568 btrfs_release_path(path);
6569 btrfs_release_path(dst_path);
6570 if (need_log_inode_item) {
6571 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6572 if (ret)
6573 goto out_unlock;
6574 /*
6575 * If we are doing a fast fsync and the inode was logged before
6576 * in this transaction, we don't need to log the xattrs because
6577 * they were logged before. If xattrs were added, changed or
6578 * deleted since the last time we logged the inode, then we have
6579 * already logged them because the inode had the runtime flag
6580 * BTRFS_INODE_COPY_EVERYTHING set.
6581 */
6582 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6583 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6584 if (ret)
6585 goto out_unlock;
6586 btrfs_release_path(path);
6587 }
6588 }
6589 if (fast_search) {
6590 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6591 if (ret)
6592 goto out_unlock;
6593 } else if (inode_only == LOG_INODE_ALL) {
6594 struct extent_map *em, *n;
6595
6596 write_lock(&em_tree->lock);
6597 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6598 list_del_init(&em->list);
6599 write_unlock(&em_tree->lock);
6600 }
6601
6602 if (full_dir_logging) {
6603 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6604 if (ret)
6605 goto out_unlock;
6606 ret = log_delayed_insertion_items(trans, inode, path,
6607 &delayed_ins_list, ctx);
6608 if (ret)
6609 goto out_unlock;
6610 ret = log_delayed_deletion_items(trans, inode, path,
6611 &delayed_del_list, ctx);
6612 if (ret)
6613 goto out_unlock;
6614 }
6615
6616 spin_lock(&inode->lock);
6617 inode->logged_trans = trans->transid;
6618 /*
6619 * Don't update last_log_commit if we logged that an inode exists.
6620 * We do this for three reasons:
6621 *
6622 * 1) We might have had buffered writes to this inode that were
6623 * flushed and had their ordered extents completed in this
6624 * transaction, but we did not previously log the inode with
6625 * LOG_INODE_ALL. Later the inode was evicted and after that
6626 * it was loaded again and this LOG_INODE_EXISTS log operation
6627 * happened. We must make sure that if an explicit fsync against
6628 * the inode is performed later, it logs the new extents, an
6629 * updated inode item, etc, and syncs the log. The same logic
6630 * applies to direct IO writes instead of buffered writes.
6631 *
6632 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6633 * is logged with an i_size of 0 or whatever value was logged
6634 * before. If later the i_size of the inode is increased by a
6635 * truncate operation, the log is synced through an fsync of
6636 * some other inode and then finally an explicit fsync against
6637 * this inode is made, we must make sure this fsync logs the
6638 * inode with the new i_size, the hole between old i_size and
6639 * the new i_size, and syncs the log.
6640 *
6641 * 3) If we are logging that an ancestor inode exists as part of
6642 * logging a new name from a link or rename operation, don't update
6643 * its last_log_commit - otherwise if an explicit fsync is made
6644 * against an ancestor, the fsync considers the inode in the log
6645 * and doesn't sync the log, resulting in the ancestor missing after
6646 * a power failure unless the log was synced as part of an fsync
6647 * against any other unrelated inode.
6648 */
6649 if (inode_only != LOG_INODE_EXISTS)
6650 inode->last_log_commit = inode->last_sub_trans;
6651 spin_unlock(&inode->lock);
6652
6653 /*
6654 * Reset the last_reflink_trans so that the next fsync does not need to
6655 * go through the slower path when logging extents and their checksums.
6656 */
6657 if (inode_only == LOG_INODE_ALL)
6658 inode->last_reflink_trans = 0;
6659
6660 out_unlock:
6661 mutex_unlock(&inode->log_mutex);
6662 out:
6663 btrfs_free_path(path);
6664 btrfs_free_path(dst_path);
6665
6666 if (ret)
6667 free_conflicting_inodes(ctx);
6668 else
6669 ret = log_conflicting_inodes(trans, inode->root, ctx);
6670
6671 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6672 if (!ret)
6673 ret = log_new_delayed_dentries(trans, inode,
6674 &delayed_ins_list, ctx);
6675
6676 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6677 &delayed_del_list);
6678 }
6679
6680 return ret;
6681 }
6682
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6683 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6684 struct btrfs_inode *inode,
6685 struct btrfs_log_ctx *ctx)
6686 {
6687 int ret;
6688 struct btrfs_path *path;
6689 struct btrfs_key key;
6690 struct btrfs_root *root = inode->root;
6691 const u64 ino = btrfs_ino(inode);
6692
6693 path = btrfs_alloc_path();
6694 if (!path)
6695 return -ENOMEM;
6696 path->skip_locking = 1;
6697 path->search_commit_root = 1;
6698
6699 key.objectid = ino;
6700 key.type = BTRFS_INODE_REF_KEY;
6701 key.offset = 0;
6702 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6703 if (ret < 0)
6704 goto out;
6705
6706 while (true) {
6707 struct extent_buffer *leaf = path->nodes[0];
6708 int slot = path->slots[0];
6709 u32 cur_offset = 0;
6710 u32 item_size;
6711 unsigned long ptr;
6712
6713 if (slot >= btrfs_header_nritems(leaf)) {
6714 ret = btrfs_next_leaf(root, path);
6715 if (ret < 0)
6716 goto out;
6717 else if (ret > 0)
6718 break;
6719 continue;
6720 }
6721
6722 btrfs_item_key_to_cpu(leaf, &key, slot);
6723 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6724 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6725 break;
6726
6727 item_size = btrfs_item_size(leaf, slot);
6728 ptr = btrfs_item_ptr_offset(leaf, slot);
6729 while (cur_offset < item_size) {
6730 struct btrfs_key inode_key;
6731 struct inode *dir_inode;
6732
6733 inode_key.type = BTRFS_INODE_ITEM_KEY;
6734 inode_key.offset = 0;
6735
6736 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6737 struct btrfs_inode_extref *extref;
6738
6739 extref = (struct btrfs_inode_extref *)
6740 (ptr + cur_offset);
6741 inode_key.objectid = btrfs_inode_extref_parent(
6742 leaf, extref);
6743 cur_offset += sizeof(*extref);
6744 cur_offset += btrfs_inode_extref_name_len(leaf,
6745 extref);
6746 } else {
6747 inode_key.objectid = key.offset;
6748 cur_offset = item_size;
6749 }
6750
6751 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6752 /*
6753 * If the parent inode was deleted, return an error to
6754 * fallback to a transaction commit. This is to prevent
6755 * getting an inode that was moved from one parent A to
6756 * a parent B, got its former parent A deleted and then
6757 * it got fsync'ed, from existing at both parents after
6758 * a log replay (and the old parent still existing).
6759 * Example:
6760 *
6761 * mkdir /mnt/A
6762 * mkdir /mnt/B
6763 * touch /mnt/B/bar
6764 * sync
6765 * mv /mnt/B/bar /mnt/A/bar
6766 * mv -T /mnt/A /mnt/B
6767 * fsync /mnt/B/bar
6768 * <power fail>
6769 *
6770 * If we ignore the old parent B which got deleted,
6771 * after a log replay we would have file bar linked
6772 * at both parents and the old parent B would still
6773 * exist.
6774 */
6775 if (IS_ERR(dir_inode)) {
6776 ret = PTR_ERR(dir_inode);
6777 goto out;
6778 }
6779
6780 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6781 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6782 continue;
6783 }
6784
6785 ctx->log_new_dentries = false;
6786 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6787 LOG_INODE_ALL, ctx);
6788 if (!ret && ctx->log_new_dentries)
6789 ret = log_new_dir_dentries(trans,
6790 BTRFS_I(dir_inode), ctx);
6791 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6792 if (ret)
6793 goto out;
6794 }
6795 path->slots[0]++;
6796 }
6797 ret = 0;
6798 out:
6799 btrfs_free_path(path);
6800 return ret;
6801 }
6802
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6803 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6804 struct btrfs_root *root,
6805 struct btrfs_path *path,
6806 struct btrfs_log_ctx *ctx)
6807 {
6808 struct btrfs_key found_key;
6809
6810 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6811
6812 while (true) {
6813 struct extent_buffer *leaf;
6814 int slot;
6815 struct btrfs_key search_key;
6816 struct inode *inode;
6817 u64 ino;
6818 int ret = 0;
6819
6820 btrfs_release_path(path);
6821
6822 ino = found_key.offset;
6823
6824 search_key.objectid = found_key.offset;
6825 search_key.type = BTRFS_INODE_ITEM_KEY;
6826 search_key.offset = 0;
6827 inode = btrfs_iget_logging(ino, root);
6828 if (IS_ERR(inode))
6829 return PTR_ERR(inode);
6830
6831 if (BTRFS_I(inode)->generation >= trans->transid &&
6832 need_log_inode(trans, BTRFS_I(inode)))
6833 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6834 LOG_INODE_EXISTS, ctx);
6835 btrfs_add_delayed_iput(BTRFS_I(inode));
6836 if (ret)
6837 return ret;
6838
6839 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6840 break;
6841
6842 search_key.type = BTRFS_INODE_REF_KEY;
6843 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6844 if (ret < 0)
6845 return ret;
6846
6847 leaf = path->nodes[0];
6848 slot = path->slots[0];
6849 if (slot >= btrfs_header_nritems(leaf)) {
6850 ret = btrfs_next_leaf(root, path);
6851 if (ret < 0)
6852 return ret;
6853 else if (ret > 0)
6854 return -ENOENT;
6855 leaf = path->nodes[0];
6856 slot = path->slots[0];
6857 }
6858
6859 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6860 if (found_key.objectid != search_key.objectid ||
6861 found_key.type != BTRFS_INODE_REF_KEY)
6862 return -ENOENT;
6863 }
6864 return 0;
6865 }
6866
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6867 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6868 struct btrfs_inode *inode,
6869 struct dentry *parent,
6870 struct btrfs_log_ctx *ctx)
6871 {
6872 struct btrfs_root *root = inode->root;
6873 struct dentry *old_parent = NULL;
6874 struct super_block *sb = inode->vfs_inode.i_sb;
6875 int ret = 0;
6876
6877 while (true) {
6878 if (!parent || d_really_is_negative(parent) ||
6879 sb != parent->d_sb)
6880 break;
6881
6882 inode = BTRFS_I(d_inode(parent));
6883 if (root != inode->root)
6884 break;
6885
6886 if (inode->generation >= trans->transid &&
6887 need_log_inode(trans, inode)) {
6888 ret = btrfs_log_inode(trans, inode,
6889 LOG_INODE_EXISTS, ctx);
6890 if (ret)
6891 break;
6892 }
6893 if (IS_ROOT(parent))
6894 break;
6895
6896 parent = dget_parent(parent);
6897 dput(old_parent);
6898 old_parent = parent;
6899 }
6900 dput(old_parent);
6901
6902 return ret;
6903 }
6904
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6905 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6906 struct btrfs_inode *inode,
6907 struct dentry *parent,
6908 struct btrfs_log_ctx *ctx)
6909 {
6910 struct btrfs_root *root = inode->root;
6911 const u64 ino = btrfs_ino(inode);
6912 struct btrfs_path *path;
6913 struct btrfs_key search_key;
6914 int ret;
6915
6916 /*
6917 * For a single hard link case, go through a fast path that does not
6918 * need to iterate the fs/subvolume tree.
6919 */
6920 if (inode->vfs_inode.i_nlink < 2)
6921 return log_new_ancestors_fast(trans, inode, parent, ctx);
6922
6923 path = btrfs_alloc_path();
6924 if (!path)
6925 return -ENOMEM;
6926
6927 search_key.objectid = ino;
6928 search_key.type = BTRFS_INODE_REF_KEY;
6929 search_key.offset = 0;
6930 again:
6931 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6932 if (ret < 0)
6933 goto out;
6934 if (ret == 0)
6935 path->slots[0]++;
6936
6937 while (true) {
6938 struct extent_buffer *leaf = path->nodes[0];
6939 int slot = path->slots[0];
6940 struct btrfs_key found_key;
6941
6942 if (slot >= btrfs_header_nritems(leaf)) {
6943 ret = btrfs_next_leaf(root, path);
6944 if (ret < 0)
6945 goto out;
6946 else if (ret > 0)
6947 break;
6948 continue;
6949 }
6950
6951 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6952 if (found_key.objectid != ino ||
6953 found_key.type > BTRFS_INODE_EXTREF_KEY)
6954 break;
6955
6956 /*
6957 * Don't deal with extended references because they are rare
6958 * cases and too complex to deal with (we would need to keep
6959 * track of which subitem we are processing for each item in
6960 * this loop, etc). So just return some error to fallback to
6961 * a transaction commit.
6962 */
6963 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6964 ret = -EMLINK;
6965 goto out;
6966 }
6967
6968 /*
6969 * Logging ancestors needs to do more searches on the fs/subvol
6970 * tree, so it releases the path as needed to avoid deadlocks.
6971 * Keep track of the last inode ref key and resume from that key
6972 * after logging all new ancestors for the current hard link.
6973 */
6974 memcpy(&search_key, &found_key, sizeof(search_key));
6975
6976 ret = log_new_ancestors(trans, root, path, ctx);
6977 if (ret)
6978 goto out;
6979 btrfs_release_path(path);
6980 goto again;
6981 }
6982 ret = 0;
6983 out:
6984 btrfs_free_path(path);
6985 return ret;
6986 }
6987
6988 /*
6989 * helper function around btrfs_log_inode to make sure newly created
6990 * parent directories also end up in the log. A minimal inode and backref
6991 * only logging is done of any parent directories that are older than
6992 * the last committed transaction
6993 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)6994 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6995 struct btrfs_inode *inode,
6996 struct dentry *parent,
6997 int inode_only,
6998 struct btrfs_log_ctx *ctx)
6999 {
7000 struct btrfs_root *root = inode->root;
7001 struct btrfs_fs_info *fs_info = root->fs_info;
7002 int ret = 0;
7003 bool log_dentries = false;
7004
7005 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7006 ret = BTRFS_LOG_FORCE_COMMIT;
7007 goto end_no_trans;
7008 }
7009
7010 if (btrfs_root_refs(&root->root_item) == 0) {
7011 ret = BTRFS_LOG_FORCE_COMMIT;
7012 goto end_no_trans;
7013 }
7014
7015 /*
7016 * Skip already logged inodes or inodes corresponding to tmpfiles
7017 * (since logging them is pointless, a link count of 0 means they
7018 * will never be accessible).
7019 */
7020 if ((btrfs_inode_in_log(inode, trans->transid) &&
7021 list_empty(&ctx->ordered_extents)) ||
7022 inode->vfs_inode.i_nlink == 0) {
7023 ret = BTRFS_NO_LOG_SYNC;
7024 goto end_no_trans;
7025 }
7026
7027 ret = start_log_trans(trans, root, ctx);
7028 if (ret)
7029 goto end_no_trans;
7030
7031 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7032 if (ret)
7033 goto end_trans;
7034
7035 /*
7036 * for regular files, if its inode is already on disk, we don't
7037 * have to worry about the parents at all. This is because
7038 * we can use the last_unlink_trans field to record renames
7039 * and other fun in this file.
7040 */
7041 if (S_ISREG(inode->vfs_inode.i_mode) &&
7042 inode->generation < trans->transid &&
7043 inode->last_unlink_trans < trans->transid) {
7044 ret = 0;
7045 goto end_trans;
7046 }
7047
7048 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7049 log_dentries = true;
7050
7051 /*
7052 * On unlink we must make sure all our current and old parent directory
7053 * inodes are fully logged. This is to prevent leaving dangling
7054 * directory index entries in directories that were our parents but are
7055 * not anymore. Not doing this results in old parent directory being
7056 * impossible to delete after log replay (rmdir will always fail with
7057 * error -ENOTEMPTY).
7058 *
7059 * Example 1:
7060 *
7061 * mkdir testdir
7062 * touch testdir/foo
7063 * ln testdir/foo testdir/bar
7064 * sync
7065 * unlink testdir/bar
7066 * xfs_io -c fsync testdir/foo
7067 * <power failure>
7068 * mount fs, triggers log replay
7069 *
7070 * If we don't log the parent directory (testdir), after log replay the
7071 * directory still has an entry pointing to the file inode using the bar
7072 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7073 * the file inode has a link count of 1.
7074 *
7075 * Example 2:
7076 *
7077 * mkdir testdir
7078 * touch foo
7079 * ln foo testdir/foo2
7080 * ln foo testdir/foo3
7081 * sync
7082 * unlink testdir/foo3
7083 * xfs_io -c fsync foo
7084 * <power failure>
7085 * mount fs, triggers log replay
7086 *
7087 * Similar as the first example, after log replay the parent directory
7088 * testdir still has an entry pointing to the inode file with name foo3
7089 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7090 * and has a link count of 2.
7091 */
7092 if (inode->last_unlink_trans >= trans->transid) {
7093 ret = btrfs_log_all_parents(trans, inode, ctx);
7094 if (ret)
7095 goto end_trans;
7096 }
7097
7098 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7099 if (ret)
7100 goto end_trans;
7101
7102 if (log_dentries)
7103 ret = log_new_dir_dentries(trans, inode, ctx);
7104 else
7105 ret = 0;
7106 end_trans:
7107 if (ret < 0) {
7108 btrfs_set_log_full_commit(trans);
7109 ret = BTRFS_LOG_FORCE_COMMIT;
7110 }
7111
7112 if (ret)
7113 btrfs_remove_log_ctx(root, ctx);
7114 btrfs_end_log_trans(root);
7115 end_no_trans:
7116 return ret;
7117 }
7118
7119 /*
7120 * it is not safe to log dentry if the chunk root has added new
7121 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7122 * If this returns 1, you must commit the transaction to safely get your
7123 * data on disk.
7124 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7125 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7126 struct dentry *dentry,
7127 struct btrfs_log_ctx *ctx)
7128 {
7129 struct dentry *parent = dget_parent(dentry);
7130 int ret;
7131
7132 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7133 LOG_INODE_ALL, ctx);
7134 dput(parent);
7135
7136 return ret;
7137 }
7138
7139 /*
7140 * should be called during mount to recover any replay any log trees
7141 * from the FS
7142 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7143 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7144 {
7145 int ret;
7146 struct btrfs_path *path;
7147 struct btrfs_trans_handle *trans;
7148 struct btrfs_key key;
7149 struct btrfs_key found_key;
7150 struct btrfs_root *log;
7151 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7152 struct walk_control wc = {
7153 .process_func = process_one_buffer,
7154 .stage = LOG_WALK_PIN_ONLY,
7155 };
7156
7157 path = btrfs_alloc_path();
7158 if (!path)
7159 return -ENOMEM;
7160
7161 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7162
7163 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7164 if (IS_ERR(trans)) {
7165 ret = PTR_ERR(trans);
7166 goto error;
7167 }
7168
7169 wc.trans = trans;
7170 wc.pin = 1;
7171
7172 ret = walk_log_tree(trans, log_root_tree, &wc);
7173 if (ret) {
7174 btrfs_abort_transaction(trans, ret);
7175 goto error;
7176 }
7177
7178 again:
7179 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7180 key.offset = (u64)-1;
7181 key.type = BTRFS_ROOT_ITEM_KEY;
7182
7183 while (1) {
7184 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7185
7186 if (ret < 0) {
7187 btrfs_abort_transaction(trans, ret);
7188 goto error;
7189 }
7190 if (ret > 0) {
7191 if (path->slots[0] == 0)
7192 break;
7193 path->slots[0]--;
7194 }
7195 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7196 path->slots[0]);
7197 btrfs_release_path(path);
7198 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7199 break;
7200
7201 log = btrfs_read_tree_root(log_root_tree, &found_key);
7202 if (IS_ERR(log)) {
7203 ret = PTR_ERR(log);
7204 btrfs_abort_transaction(trans, ret);
7205 goto error;
7206 }
7207
7208 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7209 true);
7210 if (IS_ERR(wc.replay_dest)) {
7211 ret = PTR_ERR(wc.replay_dest);
7212
7213 /*
7214 * We didn't find the subvol, likely because it was
7215 * deleted. This is ok, simply skip this log and go to
7216 * the next one.
7217 *
7218 * We need to exclude the root because we can't have
7219 * other log replays overwriting this log as we'll read
7220 * it back in a few more times. This will keep our
7221 * block from being modified, and we'll just bail for
7222 * each subsequent pass.
7223 */
7224 if (ret == -ENOENT)
7225 ret = btrfs_pin_extent_for_log_replay(trans,
7226 log->node->start,
7227 log->node->len);
7228 btrfs_put_root(log);
7229
7230 if (!ret)
7231 goto next;
7232 btrfs_abort_transaction(trans, ret);
7233 goto error;
7234 }
7235
7236 wc.replay_dest->log_root = log;
7237 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7238 if (ret)
7239 /* The loop needs to continue due to the root refs */
7240 btrfs_abort_transaction(trans, ret);
7241 else
7242 ret = walk_log_tree(trans, log, &wc);
7243
7244 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7245 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7246 path);
7247 if (ret)
7248 btrfs_abort_transaction(trans, ret);
7249 }
7250
7251 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7252 struct btrfs_root *root = wc.replay_dest;
7253
7254 btrfs_release_path(path);
7255
7256 /*
7257 * We have just replayed everything, and the highest
7258 * objectid of fs roots probably has changed in case
7259 * some inode_item's got replayed.
7260 *
7261 * root->objectid_mutex is not acquired as log replay
7262 * could only happen during mount.
7263 */
7264 ret = btrfs_init_root_free_objectid(root);
7265 if (ret)
7266 btrfs_abort_transaction(trans, ret);
7267 }
7268
7269 wc.replay_dest->log_root = NULL;
7270 btrfs_put_root(wc.replay_dest);
7271 btrfs_put_root(log);
7272
7273 if (ret)
7274 goto error;
7275 next:
7276 if (found_key.offset == 0)
7277 break;
7278 key.offset = found_key.offset - 1;
7279 }
7280 btrfs_release_path(path);
7281
7282 /* step one is to pin it all, step two is to replay just inodes */
7283 if (wc.pin) {
7284 wc.pin = 0;
7285 wc.process_func = replay_one_buffer;
7286 wc.stage = LOG_WALK_REPLAY_INODES;
7287 goto again;
7288 }
7289 /* step three is to replay everything */
7290 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7291 wc.stage++;
7292 goto again;
7293 }
7294
7295 btrfs_free_path(path);
7296
7297 /* step 4: commit the transaction, which also unpins the blocks */
7298 ret = btrfs_commit_transaction(trans);
7299 if (ret)
7300 return ret;
7301
7302 log_root_tree->log_root = NULL;
7303 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7304 btrfs_put_root(log_root_tree);
7305
7306 return 0;
7307 error:
7308 if (wc.trans)
7309 btrfs_end_transaction(wc.trans);
7310 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7311 btrfs_free_path(path);
7312 return ret;
7313 }
7314
7315 /*
7316 * there are some corner cases where we want to force a full
7317 * commit instead of allowing a directory to be logged.
7318 *
7319 * They revolve around files there were unlinked from the directory, and
7320 * this function updates the parent directory so that a full commit is
7321 * properly done if it is fsync'd later after the unlinks are done.
7322 *
7323 * Must be called before the unlink operations (updates to the subvolume tree,
7324 * inodes, etc) are done.
7325 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7326 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7327 struct btrfs_inode *dir, struct btrfs_inode *inode,
7328 bool for_rename)
7329 {
7330 /*
7331 * when we're logging a file, if it hasn't been renamed
7332 * or unlinked, and its inode is fully committed on disk,
7333 * we don't have to worry about walking up the directory chain
7334 * to log its parents.
7335 *
7336 * So, we use the last_unlink_trans field to put this transid
7337 * into the file. When the file is logged we check it and
7338 * don't log the parents if the file is fully on disk.
7339 */
7340 mutex_lock(&inode->log_mutex);
7341 inode->last_unlink_trans = trans->transid;
7342 mutex_unlock(&inode->log_mutex);
7343
7344 if (!for_rename)
7345 return;
7346
7347 /*
7348 * If this directory was already logged, any new names will be logged
7349 * with btrfs_log_new_name() and old names will be deleted from the log
7350 * tree with btrfs_del_dir_entries_in_log() or with
7351 * btrfs_del_inode_ref_in_log().
7352 */
7353 if (inode_logged(trans, dir, NULL) == 1)
7354 return;
7355
7356 /*
7357 * If the inode we're about to unlink was logged before, the log will be
7358 * properly updated with the new name with btrfs_log_new_name() and the
7359 * old name removed with btrfs_del_dir_entries_in_log() or with
7360 * btrfs_del_inode_ref_in_log().
7361 */
7362 if (inode_logged(trans, inode, NULL) == 1)
7363 return;
7364
7365 /*
7366 * when renaming files across directories, if the directory
7367 * there we're unlinking from gets fsync'd later on, there's
7368 * no way to find the destination directory later and fsync it
7369 * properly. So, we have to be conservative and force commits
7370 * so the new name gets discovered.
7371 */
7372 mutex_lock(&dir->log_mutex);
7373 dir->last_unlink_trans = trans->transid;
7374 mutex_unlock(&dir->log_mutex);
7375 }
7376
7377 /*
7378 * Make sure that if someone attempts to fsync the parent directory of a deleted
7379 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7380 * that after replaying the log tree of the parent directory's root we will not
7381 * see the snapshot anymore and at log replay time we will not see any log tree
7382 * corresponding to the deleted snapshot's root, which could lead to replaying
7383 * it after replaying the log tree of the parent directory (which would replay
7384 * the snapshot delete operation).
7385 *
7386 * Must be called before the actual snapshot destroy operation (updates to the
7387 * parent root and tree of tree roots trees, etc) are done.
7388 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7389 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7390 struct btrfs_inode *dir)
7391 {
7392 mutex_lock(&dir->log_mutex);
7393 dir->last_unlink_trans = trans->transid;
7394 mutex_unlock(&dir->log_mutex);
7395 }
7396
7397 /*
7398 * Update the log after adding a new name for an inode.
7399 *
7400 * @trans: Transaction handle.
7401 * @old_dentry: The dentry associated with the old name and the old
7402 * parent directory.
7403 * @old_dir: The inode of the previous parent directory for the case
7404 * of a rename. For a link operation, it must be NULL.
7405 * @old_dir_index: The index number associated with the old name, meaningful
7406 * only for rename operations (when @old_dir is not NULL).
7407 * Ignored for link operations.
7408 * @parent: The dentry associated with the directory under which the
7409 * new name is located.
7410 *
7411 * Call this after adding a new name for an inode, as a result of a link or
7412 * rename operation, and it will properly update the log to reflect the new name.
7413 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7414 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7415 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7416 u64 old_dir_index, struct dentry *parent)
7417 {
7418 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7419 struct btrfs_root *root = inode->root;
7420 struct btrfs_log_ctx ctx;
7421 bool log_pinned = false;
7422 int ret;
7423
7424 /*
7425 * this will force the logging code to walk the dentry chain
7426 * up for the file
7427 */
7428 if (!S_ISDIR(inode->vfs_inode.i_mode))
7429 inode->last_unlink_trans = trans->transid;
7430
7431 /*
7432 * if this inode hasn't been logged and directory we're renaming it
7433 * from hasn't been logged, we don't need to log it
7434 */
7435 ret = inode_logged(trans, inode, NULL);
7436 if (ret < 0) {
7437 goto out;
7438 } else if (ret == 0) {
7439 if (!old_dir)
7440 return;
7441 /*
7442 * If the inode was not logged and we are doing a rename (old_dir is not
7443 * NULL), check if old_dir was logged - if it was not we can return and
7444 * do nothing.
7445 */
7446 ret = inode_logged(trans, old_dir, NULL);
7447 if (ret < 0)
7448 goto out;
7449 else if (ret == 0)
7450 return;
7451 }
7452 ret = 0;
7453
7454 /*
7455 * If we are doing a rename (old_dir is not NULL) from a directory that
7456 * was previously logged, make sure that on log replay we get the old
7457 * dir entry deleted. This is needed because we will also log the new
7458 * name of the renamed inode, so we need to make sure that after log
7459 * replay we don't end up with both the new and old dir entries existing.
7460 */
7461 if (old_dir && old_dir->logged_trans == trans->transid) {
7462 struct btrfs_root *log = old_dir->root->log_root;
7463 struct btrfs_path *path;
7464 struct fscrypt_name fname;
7465
7466 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7467
7468 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7469 &old_dentry->d_name, 0, &fname);
7470 if (ret)
7471 goto out;
7472 /*
7473 * We have two inodes to update in the log, the old directory and
7474 * the inode that got renamed, so we must pin the log to prevent
7475 * anyone from syncing the log until we have updated both inodes
7476 * in the log.
7477 */
7478 ret = join_running_log_trans(root);
7479 /*
7480 * At least one of the inodes was logged before, so this should
7481 * not fail, but if it does, it's not serious, just bail out and
7482 * mark the log for a full commit.
7483 */
7484 if (WARN_ON_ONCE(ret < 0)) {
7485 fscrypt_free_filename(&fname);
7486 goto out;
7487 }
7488
7489 log_pinned = true;
7490
7491 path = btrfs_alloc_path();
7492 if (!path) {
7493 ret = -ENOMEM;
7494 fscrypt_free_filename(&fname);
7495 goto out;
7496 }
7497
7498 /*
7499 * Other concurrent task might be logging the old directory,
7500 * as it can be triggered when logging other inode that had or
7501 * still has a dentry in the old directory. We lock the old
7502 * directory's log_mutex to ensure the deletion of the old
7503 * name is persisted, because during directory logging we
7504 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7505 * the old name's dir index item is in the delayed items, so
7506 * it could be missed by an in progress directory logging.
7507 */
7508 mutex_lock(&old_dir->log_mutex);
7509 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7510 &fname.disk_name, old_dir_index);
7511 if (ret > 0) {
7512 /*
7513 * The dentry does not exist in the log, so record its
7514 * deletion.
7515 */
7516 btrfs_release_path(path);
7517 ret = insert_dir_log_key(trans, log, path,
7518 btrfs_ino(old_dir),
7519 old_dir_index, old_dir_index);
7520 }
7521 mutex_unlock(&old_dir->log_mutex);
7522
7523 btrfs_free_path(path);
7524 fscrypt_free_filename(&fname);
7525 if (ret < 0)
7526 goto out;
7527 }
7528
7529 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7530 ctx.logging_new_name = true;
7531 /*
7532 * We don't care about the return value. If we fail to log the new name
7533 * then we know the next attempt to sync the log will fallback to a full
7534 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7535 * we don't need to worry about getting a log committed that has an
7536 * inconsistent state after a rename operation.
7537 */
7538 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7539 ASSERT(list_empty(&ctx.conflict_inodes));
7540 out:
7541 /*
7542 * If an error happened mark the log for a full commit because it's not
7543 * consistent and up to date or we couldn't find out if one of the
7544 * inodes was logged before in this transaction. Do it before unpinning
7545 * the log, to avoid any races with someone else trying to commit it.
7546 */
7547 if (ret < 0)
7548 btrfs_set_log_full_commit(trans);
7549 if (log_pinned)
7550 btrfs_end_log_trans(root);
7551 }
7552
7553