1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23
24 int reiserfs_commit_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
26
reiserfs_evict_inode(struct inode * inode)27 void reiserfs_evict_inode(struct inode *inode)
28 {
29 /*
30 * We need blocks for transaction + (user+group) quota
31 * update (possibly delete)
32 */
33 int jbegin_count =
34 JOURNAL_PER_BALANCE_CNT * 2 +
35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36 struct reiserfs_transaction_handle th;
37 int err;
38
39 if (!inode->i_nlink && !is_bad_inode(inode))
40 dquot_initialize(inode);
41
42 truncate_inode_pages_final(&inode->i_data);
43 if (inode->i_nlink)
44 goto no_delete;
45
46 /*
47 * The = 0 happens when we abort creating a new inode
48 * for some reason like lack of space..
49 * also handles bad_inode case
50 */
51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52
53 reiserfs_delete_xattrs(inode);
54
55 reiserfs_write_lock(inode->i_sb);
56
57 if (journal_begin(&th, inode->i_sb, jbegin_count))
58 goto out;
59 reiserfs_update_inode_transaction(inode);
60
61 reiserfs_discard_prealloc(&th, inode);
62
63 err = reiserfs_delete_object(&th, inode);
64
65 /*
66 * Do quota update inside a transaction for journaled quotas.
67 * We must do that after delete_object so that quota updates
68 * go into the same transaction as stat data deletion
69 */
70 if (!err) {
71 int depth = reiserfs_write_unlock_nested(inode->i_sb);
72 dquot_free_inode(inode);
73 reiserfs_write_lock_nested(inode->i_sb, depth);
74 }
75
76 if (journal_end(&th))
77 goto out;
78
79 /*
80 * check return value from reiserfs_delete_object after
81 * ending the transaction
82 */
83 if (err)
84 goto out;
85
86 /*
87 * all items of file are deleted, so we can remove
88 * "save" link
89 * we can't do anything about an error here
90 */
91 remove_save_link(inode, 0 /* not truncate */);
92 out:
93 reiserfs_write_unlock(inode->i_sb);
94 } else {
95 /* no object items are in the tree */
96 ;
97 }
98
99 /* note this must go after the journal_end to prevent deadlock */
100 clear_inode(inode);
101
102 dquot_drop(inode);
103 inode->i_blocks = 0;
104 return;
105
106 no_delete:
107 clear_inode(inode);
108 dquot_drop(inode);
109 }
110
_make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112 __u32 objectid, loff_t offset, int type, int length)
113 {
114 key->version = version;
115
116 key->on_disk_key.k_dir_id = dirid;
117 key->on_disk_key.k_objectid = objectid;
118 set_cpu_key_k_offset(key, offset);
119 set_cpu_key_k_type(key, type);
120 key->key_length = length;
121 }
122
123 /*
124 * take base of inode_key (it comes from inode always) (dirid, objectid)
125 * and version from an inode, set offset and type of key
126 */
make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128 int type, int length)
129 {
130 _make_cpu_key(key, get_inode_item_key_version(inode),
131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133 length);
134 }
135
136 /* when key is 0, do not set version and short key */
make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138 int version,
139 loff_t offset, int type, int length,
140 int entry_count /*or ih_free_space */ )
141 {
142 if (key) {
143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144 ih->ih_key.k_objectid =
145 cpu_to_le32(key->on_disk_key.k_objectid);
146 }
147 put_ih_version(ih, version);
148 set_le_ih_k_offset(ih, offset);
149 set_le_ih_k_type(ih, type);
150 put_ih_item_len(ih, length);
151 /* set_ih_free_space (ih, 0); */
152 /*
153 * for directory items it is entry count, for directs and stat
154 * datas - 0xffff, for indirects - 0
155 */
156 put_ih_entry_count(ih, entry_count);
157 }
158
159 /*
160 * FIXME: we might cache recently accessed indirect item
161 * Ugh. Not too eager for that....
162 * I cut the code until such time as I see a convincing argument (benchmark).
163 * I don't want a bloated inode struct..., and I don't like code complexity....
164 */
165
166 /*
167 * cutting the code is fine, since it really isn't in use yet and is easy
168 * to add back in. But, Vladimir has a really good idea here. Think
169 * about what happens for reading a file. For each page,
170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
171 * an indirect item. This indirect item has X number of pointers, where
172 * X is a big number if we've done the block allocation right. But,
173 * we only use one or two of these pointers during each call to read_folio,
174 * needlessly researching again later on.
175 *
176 * The size of the cache could be dynamic based on the size of the file.
177 *
178 * I'd also like to see us cache the location the stat data item, since
179 * we are needlessly researching for that frequently.
180 *
181 * --chris
182 */
183
184 /*
185 * If this page has a file tail in it, and
186 * it was read in by get_block_create_0, the page data is valid,
187 * but tail is still sitting in a direct item, and we can't write to
188 * it. So, look through this page, and check all the mapped buffers
189 * to make sure they have valid block numbers. Any that don't need
190 * to be unmapped, so that __block_write_begin will correctly call
191 * reiserfs_get_block to convert the tail into an unformatted node
192 */
fix_tail_page_for_writing(struct page * page)193 static inline void fix_tail_page_for_writing(struct page *page)
194 {
195 struct buffer_head *head, *next, *bh;
196
197 if (page && page_has_buffers(page)) {
198 head = page_buffers(page);
199 bh = head;
200 do {
201 next = bh->b_this_page;
202 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203 reiserfs_unmap_buffer(bh);
204 }
205 bh = next;
206 } while (bh != head);
207 }
208 }
209
210 /*
211 * reiserfs_get_block does not need to allocate a block only if it has been
212 * done already or non-hole position has been found in the indirect item
213 */
allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)214 static inline int allocation_needed(int retval, b_blocknr_t allocated,
215 struct item_head *ih,
216 __le32 * item, int pos_in_item)
217 {
218 if (allocated)
219 return 0;
220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221 get_block_num(item, pos_in_item))
222 return 0;
223 return 1;
224 }
225
indirect_item_found(int retval,struct item_head * ih)226 static inline int indirect_item_found(int retval, struct item_head *ih)
227 {
228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
229 }
230
set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)231 static inline void set_block_dev_mapped(struct buffer_head *bh,
232 b_blocknr_t block, struct inode *inode)
233 {
234 map_bh(bh, inode->i_sb, block);
235 }
236
237 /*
238 * files which were created in the earlier version can not be longer,
239 * than 2 gb
240 */
file_capable(struct inode * inode,sector_t block)241 static int file_capable(struct inode *inode, sector_t block)
242 {
243 /* it is new file. */
244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245 /* old file, but 'block' is inside of 2gb */
246 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247 return 1;
248
249 return 0;
250 }
251
restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)252 static int restart_transaction(struct reiserfs_transaction_handle *th,
253 struct inode *inode, struct treepath *path)
254 {
255 struct super_block *s = th->t_super;
256 int err;
257
258 BUG_ON(!th->t_trans_id);
259 BUG_ON(!th->t_refcount);
260
261 pathrelse(path);
262
263 /* we cannot restart while nested */
264 if (th->t_refcount > 1) {
265 return 0;
266 }
267 reiserfs_update_sd(th, inode);
268 err = journal_end(th);
269 if (!err) {
270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271 if (!err)
272 reiserfs_update_inode_transaction(inode);
273 }
274 return err;
275 }
276
277 /*
278 * it is called by get_block when create == 0. Returns block number
279 * for 'block'-th logical block of file. When it hits direct item it
280 * returns 0 (being called from bmap) or read direct item into piece
281 * of page (bh_result)
282 * Please improve the english/clarity in the comment above, as it is
283 * hard to understand.
284 */
_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)285 static int _get_block_create_0(struct inode *inode, sector_t block,
286 struct buffer_head *bh_result, int args)
287 {
288 INITIALIZE_PATH(path);
289 struct cpu_key key;
290 struct buffer_head *bh;
291 struct item_head *ih, tmp_ih;
292 b_blocknr_t blocknr;
293 char *p;
294 int chars;
295 int ret;
296 int result;
297 int done = 0;
298 unsigned long offset;
299
300 /* prepare the key to look for the 'block'-th block of file */
301 make_cpu_key(&key, inode,
302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
303 3);
304
305 result = search_for_position_by_key(inode->i_sb, &key, &path);
306 if (result != POSITION_FOUND) {
307 pathrelse(&path);
308 if (result == IO_ERROR)
309 return -EIO;
310 /*
311 * We do not return -ENOENT if there is a hole but page is
312 * uptodate, because it means that there is some MMAPED data
313 * associated with it that is yet to be written to disk.
314 */
315 if ((args & GET_BLOCK_NO_HOLE)
316 && !PageUptodate(bh_result->b_page)) {
317 return -ENOENT;
318 }
319 return 0;
320 }
321
322 bh = get_last_bh(&path);
323 ih = tp_item_head(&path);
324 if (is_indirect_le_ih(ih)) {
325 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
326
327 /*
328 * FIXME: here we could cache indirect item or part of it in
329 * the inode to avoid search_by_key in case of subsequent
330 * access to file
331 */
332 blocknr = get_block_num(ind_item, path.pos_in_item);
333 ret = 0;
334 if (blocknr) {
335 map_bh(bh_result, inode->i_sb, blocknr);
336 if (path.pos_in_item ==
337 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
338 set_buffer_boundary(bh_result);
339 }
340 } else
341 /*
342 * We do not return -ENOENT if there is a hole but
343 * page is uptodate, because it means that there is
344 * some MMAPED data associated with it that is
345 * yet to be written to disk.
346 */
347 if ((args & GET_BLOCK_NO_HOLE)
348 && !PageUptodate(bh_result->b_page)) {
349 ret = -ENOENT;
350 }
351
352 pathrelse(&path);
353 return ret;
354 }
355 /* requested data are in direct item(s) */
356 if (!(args & GET_BLOCK_READ_DIRECT)) {
357 /*
358 * we are called by bmap. FIXME: we can not map block of file
359 * when it is stored in direct item(s)
360 */
361 pathrelse(&path);
362 return -ENOENT;
363 }
364
365 /*
366 * if we've got a direct item, and the buffer or page was uptodate,
367 * we don't want to pull data off disk again. skip to the
368 * end, where we map the buffer and return
369 */
370 if (buffer_uptodate(bh_result)) {
371 goto finished;
372 } else
373 /*
374 * grab_tail_page can trigger calls to reiserfs_get_block on
375 * up to date pages without any buffers. If the page is up
376 * to date, we don't want read old data off disk. Set the up
377 * to date bit on the buffer instead and jump to the end
378 */
379 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
380 set_buffer_uptodate(bh_result);
381 goto finished;
382 }
383 /* read file tail into part of page */
384 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
385 copy_item_head(&tmp_ih, ih);
386
387 /*
388 * we only want to kmap if we are reading the tail into the page.
389 * this is not the common case, so we don't kmap until we are
390 * sure we need to. But, this means the item might move if
391 * kmap schedules
392 */
393 p = (char *)kmap(bh_result->b_page);
394 p += offset;
395 memset(p, 0, inode->i_sb->s_blocksize);
396 do {
397 if (!is_direct_le_ih(ih)) {
398 BUG();
399 }
400 /*
401 * make sure we don't read more bytes than actually exist in
402 * the file. This can happen in odd cases where i_size isn't
403 * correct, and when direct item padding results in a few
404 * extra bytes at the end of the direct item
405 */
406 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
407 break;
408 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
409 chars =
410 inode->i_size - (le_ih_k_offset(ih) - 1) -
411 path.pos_in_item;
412 done = 1;
413 } else {
414 chars = ih_item_len(ih) - path.pos_in_item;
415 }
416 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
417
418 if (done)
419 break;
420
421 p += chars;
422
423 /*
424 * we done, if read direct item is not the last item of
425 * node FIXME: we could try to check right delimiting key
426 * to see whether direct item continues in the right
427 * neighbor or rely on i_size
428 */
429 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
430 break;
431
432 /* update key to look for the next piece */
433 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
434 result = search_for_position_by_key(inode->i_sb, &key, &path);
435 if (result != POSITION_FOUND)
436 /* i/o error most likely */
437 break;
438 bh = get_last_bh(&path);
439 ih = tp_item_head(&path);
440 } while (1);
441
442 flush_dcache_page(bh_result->b_page);
443 kunmap(bh_result->b_page);
444
445 finished:
446 pathrelse(&path);
447
448 if (result == IO_ERROR)
449 return -EIO;
450
451 /*
452 * this buffer has valid data, but isn't valid for io. mapping it to
453 * block #0 tells the rest of reiserfs it just has a tail in it
454 */
455 map_bh(bh_result, inode->i_sb, 0);
456 set_buffer_uptodate(bh_result);
457 return 0;
458 }
459
460 /*
461 * this is called to create file map. So, _get_block_create_0 will not
462 * read direct item
463 */
reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)464 static int reiserfs_bmap(struct inode *inode, sector_t block,
465 struct buffer_head *bh_result, int create)
466 {
467 if (!file_capable(inode, block))
468 return -EFBIG;
469
470 reiserfs_write_lock(inode->i_sb);
471 /* do not read the direct item */
472 _get_block_create_0(inode, block, bh_result, 0);
473 reiserfs_write_unlock(inode->i_sb);
474 return 0;
475 }
476
477 /*
478 * special version of get_block that is only used by grab_tail_page right
479 * now. It is sent to __block_write_begin, and when you try to get a
480 * block past the end of the file (or a block from a hole) it returns
481 * -ENOENT instead of a valid buffer. __block_write_begin expects to
482 * be able to do i/o on the buffers returned, unless an error value
483 * is also returned.
484 *
485 * So, this allows __block_write_begin to be used for reading a single block
486 * in a page. Where it does not produce a valid page for holes, or past the
487 * end of the file. This turns out to be exactly what we need for reading
488 * tails for conversion.
489 *
490 * The point of the wrapper is forcing a certain value for create, even
491 * though the VFS layer is calling this function with create==1. If you
492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
493 * don't use this function.
494 */
reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)495 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
496 struct buffer_head *bh_result,
497 int create)
498 {
499 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
500 }
501
502 /*
503 * This is special helper for reiserfs_get_block in case we are executing
504 * direct_IO request.
505 */
reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)506 static int reiserfs_get_blocks_direct_io(struct inode *inode,
507 sector_t iblock,
508 struct buffer_head *bh_result,
509 int create)
510 {
511 int ret;
512
513 bh_result->b_page = NULL;
514
515 /*
516 * We set the b_size before reiserfs_get_block call since it is
517 * referenced in convert_tail_for_hole() that may be called from
518 * reiserfs_get_block()
519 */
520 bh_result->b_size = i_blocksize(inode);
521
522 ret = reiserfs_get_block(inode, iblock, bh_result,
523 create | GET_BLOCK_NO_DANGLE);
524 if (ret)
525 goto out;
526
527 /* don't allow direct io onto tail pages */
528 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
529 /*
530 * make sure future calls to the direct io funcs for this
531 * offset in the file fail by unmapping the buffer
532 */
533 clear_buffer_mapped(bh_result);
534 ret = -EINVAL;
535 }
536
537 /*
538 * Possible unpacked tail. Flush the data before pages have
539 * disappeared
540 */
541 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
542 int err;
543
544 reiserfs_write_lock(inode->i_sb);
545
546 err = reiserfs_commit_for_inode(inode);
547 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
548
549 reiserfs_write_unlock(inode->i_sb);
550
551 if (err < 0)
552 ret = err;
553 }
554 out:
555 return ret;
556 }
557
558 /*
559 * helper function for when reiserfs_get_block is called for a hole
560 * but the file tail is still in a direct item
561 * bh_result is the buffer head for the hole
562 * tail_offset is the offset of the start of the tail in the file
563 *
564 * This calls prepare_write, which will start a new transaction
565 * you should not be in a transaction, or have any paths held when you
566 * call this.
567 */
convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)568 static int convert_tail_for_hole(struct inode *inode,
569 struct buffer_head *bh_result,
570 loff_t tail_offset)
571 {
572 unsigned long index;
573 unsigned long tail_end;
574 unsigned long tail_start;
575 struct page *tail_page;
576 struct page *hole_page = bh_result->b_page;
577 int retval = 0;
578
579 if ((tail_offset & (bh_result->b_size - 1)) != 1)
580 return -EIO;
581
582 /* always try to read until the end of the block */
583 tail_start = tail_offset & (PAGE_SIZE - 1);
584 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
585
586 index = tail_offset >> PAGE_SHIFT;
587 /*
588 * hole_page can be zero in case of direct_io, we are sure
589 * that we cannot get here if we write with O_DIRECT into tail page
590 */
591 if (!hole_page || index != hole_page->index) {
592 tail_page = grab_cache_page(inode->i_mapping, index);
593 retval = -ENOMEM;
594 if (!tail_page) {
595 goto out;
596 }
597 } else {
598 tail_page = hole_page;
599 }
600
601 /*
602 * we don't have to make sure the conversion did not happen while
603 * we were locking the page because anyone that could convert
604 * must first take i_mutex.
605 *
606 * We must fix the tail page for writing because it might have buffers
607 * that are mapped, but have a block number of 0. This indicates tail
608 * data that has been read directly into the page, and
609 * __block_write_begin won't trigger a get_block in this case.
610 */
611 fix_tail_page_for_writing(tail_page);
612 retval = __reiserfs_write_begin(tail_page, tail_start,
613 tail_end - tail_start);
614 if (retval)
615 goto unlock;
616
617 /* tail conversion might change the data in the page */
618 flush_dcache_page(tail_page);
619
620 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
621
622 unlock:
623 if (tail_page != hole_page) {
624 unlock_page(tail_page);
625 put_page(tail_page);
626 }
627 out:
628 return retval;
629 }
630
_allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)631 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
632 sector_t block,
633 struct inode *inode,
634 b_blocknr_t * allocated_block_nr,
635 struct treepath *path, int flags)
636 {
637 BUG_ON(!th->t_trans_id);
638
639 #ifdef REISERFS_PREALLOCATE
640 if (!(flags & GET_BLOCK_NO_IMUX)) {
641 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
642 path, block);
643 }
644 #endif
645 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
646 block);
647 }
648
reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)649 int reiserfs_get_block(struct inode *inode, sector_t block,
650 struct buffer_head *bh_result, int create)
651 {
652 int repeat, retval = 0;
653 /* b_blocknr_t is (unsigned) 32 bit int*/
654 b_blocknr_t allocated_block_nr = 0;
655 INITIALIZE_PATH(path);
656 int pos_in_item;
657 struct cpu_key key;
658 struct buffer_head *bh, *unbh = NULL;
659 struct item_head *ih, tmp_ih;
660 __le32 *item;
661 int done;
662 int fs_gen;
663 struct reiserfs_transaction_handle *th = NULL;
664 /*
665 * space reserved in transaction batch:
666 * . 3 balancings in direct->indirect conversion
667 * . 1 block involved into reiserfs_update_sd()
668 * XXX in practically impossible worst case direct2indirect()
669 * can incur (much) more than 3 balancings.
670 * quota update for user, group
671 */
672 int jbegin_count =
673 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
675 int version;
676 int dangle = 1;
677 loff_t new_offset =
678 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
679
680 reiserfs_write_lock(inode->i_sb);
681 version = get_inode_item_key_version(inode);
682
683 if (!file_capable(inode, block)) {
684 reiserfs_write_unlock(inode->i_sb);
685 return -EFBIG;
686 }
687
688 /*
689 * if !create, we aren't changing the FS, so we don't need to
690 * log anything, so we don't need to start a transaction
691 */
692 if (!(create & GET_BLOCK_CREATE)) {
693 int ret;
694 /* find number of block-th logical block of the file */
695 ret = _get_block_create_0(inode, block, bh_result,
696 create | GET_BLOCK_READ_DIRECT);
697 reiserfs_write_unlock(inode->i_sb);
698 return ret;
699 }
700
701 /*
702 * if we're already in a transaction, make sure to close
703 * any new transactions we start in this func
704 */
705 if ((create & GET_BLOCK_NO_DANGLE) ||
706 reiserfs_transaction_running(inode->i_sb))
707 dangle = 0;
708
709 /*
710 * If file is of such a size, that it might have a tail and
711 * tails are enabled we should mark it as possibly needing
712 * tail packing on close
713 */
714 if ((have_large_tails(inode->i_sb)
715 && inode->i_size < i_block_size(inode) * 4)
716 || (have_small_tails(inode->i_sb)
717 && inode->i_size < i_block_size(inode)))
718 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
719
720 /* set the key of the first byte in the 'block'-th block of file */
721 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
722 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
723 start_trans:
724 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
725 if (!th) {
726 retval = -ENOMEM;
727 goto failure;
728 }
729 reiserfs_update_inode_transaction(inode);
730 }
731 research:
732
733 retval = search_for_position_by_key(inode->i_sb, &key, &path);
734 if (retval == IO_ERROR) {
735 retval = -EIO;
736 goto failure;
737 }
738
739 bh = get_last_bh(&path);
740 ih = tp_item_head(&path);
741 item = tp_item_body(&path);
742 pos_in_item = path.pos_in_item;
743
744 fs_gen = get_generation(inode->i_sb);
745 copy_item_head(&tmp_ih, ih);
746
747 if (allocation_needed
748 (retval, allocated_block_nr, ih, item, pos_in_item)) {
749 /* we have to allocate block for the unformatted node */
750 if (!th) {
751 pathrelse(&path);
752 goto start_trans;
753 }
754
755 repeat =
756 _allocate_block(th, block, inode, &allocated_block_nr,
757 &path, create);
758
759 /*
760 * restart the transaction to give the journal a chance to free
761 * some blocks. releases the path, so we have to go back to
762 * research if we succeed on the second try
763 */
764 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
765 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
766 retval = restart_transaction(th, inode, &path);
767 if (retval)
768 goto failure;
769 repeat =
770 _allocate_block(th, block, inode,
771 &allocated_block_nr, NULL, create);
772
773 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
774 goto research;
775 }
776 if (repeat == QUOTA_EXCEEDED)
777 retval = -EDQUOT;
778 else
779 retval = -ENOSPC;
780 goto failure;
781 }
782
783 if (fs_changed(fs_gen, inode->i_sb)
784 && item_moved(&tmp_ih, &path)) {
785 goto research;
786 }
787 }
788
789 if (indirect_item_found(retval, ih)) {
790 b_blocknr_t unfm_ptr;
791 /*
792 * 'block'-th block is in the file already (there is
793 * corresponding cell in some indirect item). But it may be
794 * zero unformatted node pointer (hole)
795 */
796 unfm_ptr = get_block_num(item, pos_in_item);
797 if (unfm_ptr == 0) {
798 /* use allocated block to plug the hole */
799 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
800 if (fs_changed(fs_gen, inode->i_sb)
801 && item_moved(&tmp_ih, &path)) {
802 reiserfs_restore_prepared_buffer(inode->i_sb,
803 bh);
804 goto research;
805 }
806 set_buffer_new(bh_result);
807 if (buffer_dirty(bh_result)
808 && reiserfs_data_ordered(inode->i_sb))
809 reiserfs_add_ordered_list(inode, bh_result);
810 put_block_num(item, pos_in_item, allocated_block_nr);
811 unfm_ptr = allocated_block_nr;
812 journal_mark_dirty(th, bh);
813 reiserfs_update_sd(th, inode);
814 }
815 set_block_dev_mapped(bh_result, unfm_ptr, inode);
816 pathrelse(&path);
817 retval = 0;
818 if (!dangle && th)
819 retval = reiserfs_end_persistent_transaction(th);
820
821 reiserfs_write_unlock(inode->i_sb);
822
823 /*
824 * the item was found, so new blocks were not added to the file
825 * there is no need to make sure the inode is updated with this
826 * transaction
827 */
828 return retval;
829 }
830
831 if (!th) {
832 pathrelse(&path);
833 goto start_trans;
834 }
835
836 /*
837 * desired position is not found or is in the direct item. We have
838 * to append file with holes up to 'block'-th block converting
839 * direct items to indirect one if necessary
840 */
841 done = 0;
842 do {
843 if (is_statdata_le_ih(ih)) {
844 __le32 unp = 0;
845 struct cpu_key tmp_key;
846
847 /* indirect item has to be inserted */
848 make_le_item_head(&tmp_ih, &key, version, 1,
849 TYPE_INDIRECT, UNFM_P_SIZE,
850 0 /* free_space */ );
851
852 /*
853 * we are going to add 'block'-th block to the file.
854 * Use allocated block for that
855 */
856 if (cpu_key_k_offset(&key) == 1) {
857 unp = cpu_to_le32(allocated_block_nr);
858 set_block_dev_mapped(bh_result,
859 allocated_block_nr, inode);
860 set_buffer_new(bh_result);
861 done = 1;
862 }
863 tmp_key = key; /* ;) */
864 set_cpu_key_k_offset(&tmp_key, 1);
865 PATH_LAST_POSITION(&path)++;
866
867 retval =
868 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
869 inode, (char *)&unp);
870 if (retval) {
871 reiserfs_free_block(th, inode,
872 allocated_block_nr, 1);
873 /*
874 * retval == -ENOSPC, -EDQUOT or -EIO
875 * or -EEXIST
876 */
877 goto failure;
878 }
879 } else if (is_direct_le_ih(ih)) {
880 /* direct item has to be converted */
881 loff_t tail_offset;
882
883 tail_offset =
884 ((le_ih_k_offset(ih) -
885 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
886
887 /*
888 * direct item we just found fits into block we have
889 * to map. Convert it into unformatted node: use
890 * bh_result for the conversion
891 */
892 if (tail_offset == cpu_key_k_offset(&key)) {
893 set_block_dev_mapped(bh_result,
894 allocated_block_nr, inode);
895 unbh = bh_result;
896 done = 1;
897 } else {
898 /*
899 * we have to pad file tail stored in direct
900 * item(s) up to block size and convert it
901 * to unformatted node. FIXME: this should
902 * also get into page cache
903 */
904
905 pathrelse(&path);
906 /*
907 * ugly, but we can only end the transaction if
908 * we aren't nested
909 */
910 BUG_ON(!th->t_refcount);
911 if (th->t_refcount == 1) {
912 retval =
913 reiserfs_end_persistent_transaction
914 (th);
915 th = NULL;
916 if (retval)
917 goto failure;
918 }
919
920 retval =
921 convert_tail_for_hole(inode, bh_result,
922 tail_offset);
923 if (retval) {
924 if (retval != -ENOSPC)
925 reiserfs_error(inode->i_sb,
926 "clm-6004",
927 "convert tail failed "
928 "inode %lu, error %d",
929 inode->i_ino,
930 retval);
931 if (allocated_block_nr) {
932 /*
933 * the bitmap, the super,
934 * and the stat data == 3
935 */
936 if (!th)
937 th = reiserfs_persistent_transaction(inode->i_sb, 3);
938 if (th)
939 reiserfs_free_block(th,
940 inode,
941 allocated_block_nr,
942 1);
943 }
944 goto failure;
945 }
946 goto research;
947 }
948 retval =
949 direct2indirect(th, inode, &path, unbh,
950 tail_offset);
951 if (retval) {
952 reiserfs_unmap_buffer(unbh);
953 reiserfs_free_block(th, inode,
954 allocated_block_nr, 1);
955 goto failure;
956 }
957 /*
958 * it is important the set_buffer_uptodate is done
959 * after the direct2indirect. The buffer might
960 * contain valid data newer than the data on disk
961 * (read by read_folio, changed, and then sent here by
962 * writepage). direct2indirect needs to know if unbh
963 * was already up to date, so it can decide if the
964 * data in unbh needs to be replaced with data from
965 * the disk
966 */
967 set_buffer_uptodate(unbh);
968
969 /*
970 * unbh->b_page == NULL in case of DIRECT_IO request,
971 * this means buffer will disappear shortly, so it
972 * should not be added to
973 */
974 if (unbh->b_page) {
975 /*
976 * we've converted the tail, so we must
977 * flush unbh before the transaction commits
978 */
979 reiserfs_add_tail_list(inode, unbh);
980
981 /*
982 * mark it dirty now to prevent commit_write
983 * from adding this buffer to the inode's
984 * dirty buffer list
985 */
986 /*
987 * AKPM: changed __mark_buffer_dirty to
988 * mark_buffer_dirty(). It's still atomic,
989 * but it sets the page dirty too, which makes
990 * it eligible for writeback at any time by the
991 * VM (which was also the case with
992 * __mark_buffer_dirty())
993 */
994 mark_buffer_dirty(unbh);
995 }
996 } else {
997 /*
998 * append indirect item with holes if needed, when
999 * appending pointer to 'block'-th block use block,
1000 * which is already allocated
1001 */
1002 struct cpu_key tmp_key;
1003 /*
1004 * We use this in case we need to allocate
1005 * only one block which is a fastpath
1006 */
1007 unp_t unf_single = 0;
1008 unp_t *un;
1009 __u64 max_to_insert =
1010 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011 UNFM_P_SIZE;
1012 __u64 blocks_needed;
1013
1014 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015 "vs-804: invalid position for append");
1016 /*
1017 * indirect item has to be appended,
1018 * set up key of that position
1019 * (key type is unimportant)
1020 */
1021 make_cpu_key(&tmp_key, inode,
1022 le_key_k_offset(version,
1023 &ih->ih_key) +
1024 op_bytes_number(ih,
1025 inode->i_sb->s_blocksize),
1026 TYPE_INDIRECT, 3);
1027
1028 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029 "green-805: invalid offset");
1030 blocks_needed =
1031 1 +
1032 ((cpu_key_k_offset(&key) -
1033 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034 s_blocksize_bits);
1035
1036 if (blocks_needed == 1) {
1037 un = &unf_single;
1038 } else {
1039 un = kcalloc(min(blocks_needed, max_to_insert),
1040 UNFM_P_SIZE, GFP_NOFS);
1041 if (!un) {
1042 un = &unf_single;
1043 blocks_needed = 1;
1044 max_to_insert = 0;
1045 }
1046 }
1047 if (blocks_needed <= max_to_insert) {
1048 /*
1049 * we are going to add target block to
1050 * the file. Use allocated block for that
1051 */
1052 un[blocks_needed - 1] =
1053 cpu_to_le32(allocated_block_nr);
1054 set_block_dev_mapped(bh_result,
1055 allocated_block_nr, inode);
1056 set_buffer_new(bh_result);
1057 done = 1;
1058 } else {
1059 /* paste hole to the indirect item */
1060 /*
1061 * If kcalloc failed, max_to_insert becomes
1062 * zero and it means we only have space for
1063 * one block
1064 */
1065 blocks_needed =
1066 max_to_insert ? max_to_insert : 1;
1067 }
1068 retval =
1069 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070 (char *)un,
1071 UNFM_P_SIZE *
1072 blocks_needed);
1073
1074 if (blocks_needed != 1)
1075 kfree(un);
1076
1077 if (retval) {
1078 reiserfs_free_block(th, inode,
1079 allocated_block_nr, 1);
1080 goto failure;
1081 }
1082 if (!done) {
1083 /*
1084 * We need to mark new file size in case
1085 * this function will be interrupted/aborted
1086 * later on. And we may do this only for
1087 * holes.
1088 */
1089 inode->i_size +=
1090 inode->i_sb->s_blocksize * blocks_needed;
1091 }
1092 }
1093
1094 if (done == 1)
1095 break;
1096
1097 /*
1098 * this loop could log more blocks than we had originally
1099 * asked for. So, we have to allow the transaction to end
1100 * if it is too big or too full. Update the inode so things
1101 * are consistent if we crash before the function returns
1102 * release the path so that anybody waiting on the path before
1103 * ending their transaction will be able to continue.
1104 */
1105 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106 retval = restart_transaction(th, inode, &path);
1107 if (retval)
1108 goto failure;
1109 }
1110 /*
1111 * inserting indirect pointers for a hole can take a
1112 * long time. reschedule if needed and also release the write
1113 * lock for others.
1114 */
1115 reiserfs_cond_resched(inode->i_sb);
1116
1117 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118 if (retval == IO_ERROR) {
1119 retval = -EIO;
1120 goto failure;
1121 }
1122 if (retval == POSITION_FOUND) {
1123 reiserfs_warning(inode->i_sb, "vs-825",
1124 "%K should not be found", &key);
1125 retval = -EEXIST;
1126 if (allocated_block_nr)
1127 reiserfs_free_block(th, inode,
1128 allocated_block_nr, 1);
1129 pathrelse(&path);
1130 goto failure;
1131 }
1132 bh = get_last_bh(&path);
1133 ih = tp_item_head(&path);
1134 item = tp_item_body(&path);
1135 pos_in_item = path.pos_in_item;
1136 } while (1);
1137
1138 retval = 0;
1139
1140 failure:
1141 if (th && (!dangle || (retval && !th->t_trans_id))) {
1142 int err;
1143 if (th->t_trans_id)
1144 reiserfs_update_sd(th, inode);
1145 err = reiserfs_end_persistent_transaction(th);
1146 if (err)
1147 retval = err;
1148 }
1149
1150 reiserfs_write_unlock(inode->i_sb);
1151 reiserfs_check_path(&path);
1152 return retval;
1153 }
1154
reiserfs_readahead(struct readahead_control * rac)1155 static void reiserfs_readahead(struct readahead_control *rac)
1156 {
1157 mpage_readahead(rac, reiserfs_get_block);
1158 }
1159
1160 /*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
real_space_diff(struct inode * inode,int sd_size)1165 static int real_space_diff(struct inode *inode, int sd_size)
1166 {
1167 int bytes;
1168 loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171 return sd_size;
1172
1173 /*
1174 * End of file is also in full block with indirect reference, so round
1175 * up to the next block.
1176 *
1177 * there is just no way to know if the tail is actually packed
1178 * on the file, so we have to assume it isn't. When we pack the
1179 * tail, we add 4 bytes to pretend there really is an unformatted
1180 * node pointer
1181 */
1182 bytes =
1183 ((inode->i_size +
1184 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185 sd_size;
1186 return bytes;
1187 }
1188
to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1189 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190 int sd_size)
1191 {
1192 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193 return inode->i_size +
1194 (loff_t) (real_space_diff(inode, sd_size));
1195 }
1196 return ((loff_t) real_space_diff(inode, sd_size)) +
1197 (((loff_t) blocks) << 9);
1198 }
1199
1200 /* Compute number of blocks used by file in ReiserFS counting */
to_fake_used_blocks(struct inode * inode,int sd_size)1201 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202 {
1203 loff_t bytes = inode_get_bytes(inode);
1204 loff_t real_space = real_space_diff(inode, sd_size);
1205
1206 /* keeps fsck and non-quota versions of reiserfs happy */
1207 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208 bytes += (loff_t) 511;
1209 }
1210
1211 /*
1212 * files from before the quota patch might i_blocks such that
1213 * bytes < real_space. Deal with that here to prevent it from
1214 * going negative.
1215 */
1216 if (bytes < real_space)
1217 return 0;
1218 return (bytes - real_space) >> 9;
1219 }
1220
1221 /*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228 /* called by read_locked_inode */
init_inode(struct inode * inode,struct treepath * path)1229 static void init_inode(struct inode *inode, struct treepath *path)
1230 {
1231 struct buffer_head *bh;
1232 struct item_head *ih;
1233 __u32 rdev;
1234
1235 bh = PATH_PLAST_BUFFER(path);
1236 ih = tp_item_head(path);
1237
1238 copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241 REISERFS_I(inode)->i_flags = 0;
1242 REISERFS_I(inode)->i_prealloc_block = 0;
1243 REISERFS_I(inode)->i_prealloc_count = 0;
1244 REISERFS_I(inode)->i_trans_id = 0;
1245 REISERFS_I(inode)->i_jl = NULL;
1246 reiserfs_init_xattr_rwsem(inode);
1247
1248 if (stat_data_v1(ih)) {
1249 struct stat_data_v1 *sd =
1250 (struct stat_data_v1 *)ih_item_body(bh, ih);
1251 unsigned long blocks;
1252
1253 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254 set_inode_sd_version(inode, STAT_DATA_V1);
1255 inode->i_mode = sd_v1_mode(sd);
1256 set_nlink(inode, sd_v1_nlink(sd));
1257 i_uid_write(inode, sd_v1_uid(sd));
1258 i_gid_write(inode, sd_v1_gid(sd));
1259 inode->i_size = sd_v1_size(sd);
1260 inode->i_atime.tv_sec = sd_v1_atime(sd);
1261 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1262 inode_set_ctime(inode, sd_v1_ctime(sd), 0);
1263 inode->i_atime.tv_nsec = 0;
1264 inode->i_mtime.tv_nsec = 0;
1265
1266 inode->i_blocks = sd_v1_blocks(sd);
1267 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1268 blocks = (inode->i_size + 511) >> 9;
1269 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1270
1271 /*
1272 * there was a bug in <=3.5.23 when i_blocks could take
1273 * negative values. Starting from 3.5.17 this value could
1274 * even be stored in stat data. For such files we set
1275 * i_blocks based on file size. Just 2 notes: this can be
1276 * wrong for sparse files. On-disk value will be only
1277 * updated if file's inode will ever change
1278 */
1279 if (inode->i_blocks > blocks) {
1280 inode->i_blocks = blocks;
1281 }
1282
1283 rdev = sd_v1_rdev(sd);
1284 REISERFS_I(inode)->i_first_direct_byte =
1285 sd_v1_first_direct_byte(sd);
1286
1287 /*
1288 * an early bug in the quota code can give us an odd
1289 * number for the block count. This is incorrect, fix it here.
1290 */
1291 if (inode->i_blocks & 1) {
1292 inode->i_blocks++;
1293 }
1294 inode_set_bytes(inode,
1295 to_real_used_space(inode, inode->i_blocks,
1296 SD_V1_SIZE));
1297 /*
1298 * nopack is initially zero for v1 objects. For v2 objects,
1299 * nopack is initialised from sd_attrs
1300 */
1301 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1302 } else {
1303 /*
1304 * new stat data found, but object may have old items
1305 * (directories and symlinks)
1306 */
1307 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1308
1309 inode->i_mode = sd_v2_mode(sd);
1310 set_nlink(inode, sd_v2_nlink(sd));
1311 i_uid_write(inode, sd_v2_uid(sd));
1312 inode->i_size = sd_v2_size(sd);
1313 i_gid_write(inode, sd_v2_gid(sd));
1314 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1315 inode->i_atime.tv_sec = sd_v2_atime(sd);
1316 inode_set_ctime(inode, sd_v2_ctime(sd), 0);
1317 inode->i_mtime.tv_nsec = 0;
1318 inode->i_atime.tv_nsec = 0;
1319 inode->i_blocks = sd_v2_blocks(sd);
1320 rdev = sd_v2_rdev(sd);
1321 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1322 inode->i_generation =
1323 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1324 else
1325 inode->i_generation = sd_v2_generation(sd);
1326
1327 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1328 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1329 else
1330 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1331 REISERFS_I(inode)->i_first_direct_byte = 0;
1332 set_inode_sd_version(inode, STAT_DATA_V2);
1333 inode_set_bytes(inode,
1334 to_real_used_space(inode, inode->i_blocks,
1335 SD_V2_SIZE));
1336 /*
1337 * read persistent inode attributes from sd and initialise
1338 * generic inode flags from them
1339 */
1340 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1341 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1342 }
1343
1344 pathrelse(path);
1345 if (S_ISREG(inode->i_mode)) {
1346 inode->i_op = &reiserfs_file_inode_operations;
1347 inode->i_fop = &reiserfs_file_operations;
1348 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1349 } else if (S_ISDIR(inode->i_mode)) {
1350 inode->i_op = &reiserfs_dir_inode_operations;
1351 inode->i_fop = &reiserfs_dir_operations;
1352 } else if (S_ISLNK(inode->i_mode)) {
1353 inode->i_op = &reiserfs_symlink_inode_operations;
1354 inode_nohighmem(inode);
1355 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1356 } else {
1357 inode->i_blocks = 0;
1358 inode->i_op = &reiserfs_special_inode_operations;
1359 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1360 }
1361 }
1362
1363 /* update new stat data with inode fields */
inode2sd(void * sd,struct inode * inode,loff_t size)1364 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1365 {
1366 struct stat_data *sd_v2 = (struct stat_data *)sd;
1367
1368 set_sd_v2_mode(sd_v2, inode->i_mode);
1369 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1370 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1371 set_sd_v2_size(sd_v2, size);
1372 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1373 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1374 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1375 set_sd_v2_ctime(sd_v2, inode_get_ctime(inode).tv_sec);
1376 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1377 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1378 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1379 else
1380 set_sd_v2_generation(sd_v2, inode->i_generation);
1381 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1382 }
1383
1384 /* used to copy inode's fields to old stat data */
inode2sd_v1(void * sd,struct inode * inode,loff_t size)1385 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1386 {
1387 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1388
1389 set_sd_v1_mode(sd_v1, inode->i_mode);
1390 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1391 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1392 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1393 set_sd_v1_size(sd_v1, size);
1394 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1395 set_sd_v1_ctime(sd_v1, inode_get_ctime(inode).tv_sec);
1396 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1397
1398 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1399 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1400 else
1401 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1402
1403 /* Sigh. i_first_direct_byte is back */
1404 set_sd_v1_first_direct_byte(sd_v1,
1405 REISERFS_I(inode)->i_first_direct_byte);
1406 }
1407
1408 /*
1409 * NOTE, you must prepare the buffer head before sending it here,
1410 * and then log it after the call
1411 */
update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1412 static void update_stat_data(struct treepath *path, struct inode *inode,
1413 loff_t size)
1414 {
1415 struct buffer_head *bh;
1416 struct item_head *ih;
1417
1418 bh = PATH_PLAST_BUFFER(path);
1419 ih = tp_item_head(path);
1420
1421 if (!is_statdata_le_ih(ih))
1422 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1423 INODE_PKEY(inode), ih);
1424
1425 /* path points to old stat data */
1426 if (stat_data_v1(ih)) {
1427 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1428 } else {
1429 inode2sd(ih_item_body(bh, ih), inode, size);
1430 }
1431
1432 return;
1433 }
1434
reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1435 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1436 struct inode *inode, loff_t size)
1437 {
1438 struct cpu_key key;
1439 INITIALIZE_PATH(path);
1440 struct buffer_head *bh;
1441 int fs_gen;
1442 struct item_head *ih, tmp_ih;
1443 int retval;
1444
1445 BUG_ON(!th->t_trans_id);
1446
1447 /* key type is unimportant */
1448 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1449
1450 for (;;) {
1451 int pos;
1452 /* look for the object's stat data */
1453 retval = search_item(inode->i_sb, &key, &path);
1454 if (retval == IO_ERROR) {
1455 reiserfs_error(inode->i_sb, "vs-13050",
1456 "i/o failure occurred trying to "
1457 "update %K stat data", &key);
1458 return;
1459 }
1460 if (retval == ITEM_NOT_FOUND) {
1461 pos = PATH_LAST_POSITION(&path);
1462 pathrelse(&path);
1463 if (inode->i_nlink == 0) {
1464 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1465 return;
1466 }
1467 reiserfs_warning(inode->i_sb, "vs-13060",
1468 "stat data of object %k (nlink == %d) "
1469 "not found (pos %d)",
1470 INODE_PKEY(inode), inode->i_nlink,
1471 pos);
1472 reiserfs_check_path(&path);
1473 return;
1474 }
1475
1476 /*
1477 * sigh, prepare_for_journal might schedule. When it
1478 * schedules the FS might change. We have to detect that,
1479 * and loop back to the search if the stat data item has moved
1480 */
1481 bh = get_last_bh(&path);
1482 ih = tp_item_head(&path);
1483 copy_item_head(&tmp_ih, ih);
1484 fs_gen = get_generation(inode->i_sb);
1485 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1486
1487 /* Stat_data item has been moved after scheduling. */
1488 if (fs_changed(fs_gen, inode->i_sb)
1489 && item_moved(&tmp_ih, &path)) {
1490 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1491 continue;
1492 }
1493 break;
1494 }
1495 update_stat_data(&path, inode, size);
1496 journal_mark_dirty(th, bh);
1497 pathrelse(&path);
1498 return;
1499 }
1500
1501 /*
1502 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1503 * does a make_bad_inode when things go wrong. But, we need to make sure
1504 * and clear the key in the private portion of the inode, otherwise a
1505 * corresponding iput might try to delete whatever object the inode last
1506 * represented.
1507 */
reiserfs_make_bad_inode(struct inode * inode)1508 static void reiserfs_make_bad_inode(struct inode *inode)
1509 {
1510 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1511 make_bad_inode(inode);
1512 }
1513
1514 /*
1515 * initially this function was derived from minix or ext2's analog and
1516 * evolved as the prototype did
1517 */
reiserfs_init_locked_inode(struct inode * inode,void * p)1518 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1519 {
1520 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1521 inode->i_ino = args->objectid;
1522 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1523 return 0;
1524 }
1525
1526 /*
1527 * looks for stat data in the tree, and fills up the fields of in-core
1528 * inode stat data fields
1529 */
reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1530 void reiserfs_read_locked_inode(struct inode *inode,
1531 struct reiserfs_iget_args *args)
1532 {
1533 INITIALIZE_PATH(path_to_sd);
1534 struct cpu_key key;
1535 unsigned long dirino;
1536 int retval;
1537
1538 dirino = args->dirid;
1539
1540 /*
1541 * set version 1, version 2 could be used too, because stat data
1542 * key is the same in both versions
1543 */
1544 _make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1545
1546 /* look for the object's stat data */
1547 retval = search_item(inode->i_sb, &key, &path_to_sd);
1548 if (retval == IO_ERROR) {
1549 reiserfs_error(inode->i_sb, "vs-13070",
1550 "i/o failure occurred trying to find "
1551 "stat data of %K", &key);
1552 reiserfs_make_bad_inode(inode);
1553 return;
1554 }
1555
1556 /* a stale NFS handle can trigger this without it being an error */
1557 if (retval != ITEM_FOUND) {
1558 pathrelse(&path_to_sd);
1559 reiserfs_make_bad_inode(inode);
1560 clear_nlink(inode);
1561 return;
1562 }
1563
1564 init_inode(inode, &path_to_sd);
1565
1566 /*
1567 * It is possible that knfsd is trying to access inode of a file
1568 * that is being removed from the disk by some other thread. As we
1569 * update sd on unlink all that is required is to check for nlink
1570 * here. This bug was first found by Sizif when debugging
1571 * SquidNG/Butterfly, forgotten, and found again after Philippe
1572 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1573
1574 * More logical fix would require changes in fs/inode.c:iput() to
1575 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1576 * in iget() to return NULL if I_FREEING inode is found in
1577 * hash-table.
1578 */
1579
1580 /*
1581 * Currently there is one place where it's ok to meet inode with
1582 * nlink==0: processing of open-unlinked and half-truncated files
1583 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1584 */
1585 if ((inode->i_nlink == 0) &&
1586 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1587 reiserfs_warning(inode->i_sb, "vs-13075",
1588 "dead inode read from disk %K. "
1589 "This is likely to be race with knfsd. Ignore",
1590 &key);
1591 reiserfs_make_bad_inode(inode);
1592 }
1593
1594 /* init inode should be relsing */
1595 reiserfs_check_path(&path_to_sd);
1596
1597 /*
1598 * Stat data v1 doesn't support ACLs.
1599 */
1600 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1601 cache_no_acl(inode);
1602 }
1603
1604 /*
1605 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1606 *
1607 * @inode: inode from hash table to check
1608 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1609 *
1610 * This function is called by iget5_locked() to distinguish reiserfs inodes
1611 * having the same inode numbers. Such inodes can only exist due to some
1612 * error condition. One of them should be bad. Inodes with identical
1613 * inode numbers (objectids) are distinguished by parent directory ids.
1614 *
1615 */
reiserfs_find_actor(struct inode * inode,void * opaque)1616 int reiserfs_find_actor(struct inode *inode, void *opaque)
1617 {
1618 struct reiserfs_iget_args *args;
1619
1620 args = opaque;
1621 /* args is already in CPU order */
1622 return (inode->i_ino == args->objectid) &&
1623 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1624 }
1625
reiserfs_iget(struct super_block * s,const struct cpu_key * key)1626 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1627 {
1628 struct inode *inode;
1629 struct reiserfs_iget_args args;
1630 int depth;
1631
1632 args.objectid = key->on_disk_key.k_objectid;
1633 args.dirid = key->on_disk_key.k_dir_id;
1634 depth = reiserfs_write_unlock_nested(s);
1635 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1636 reiserfs_find_actor, reiserfs_init_locked_inode,
1637 (void *)(&args));
1638 reiserfs_write_lock_nested(s, depth);
1639 if (!inode)
1640 return ERR_PTR(-ENOMEM);
1641
1642 if (inode->i_state & I_NEW) {
1643 reiserfs_read_locked_inode(inode, &args);
1644 unlock_new_inode(inode);
1645 }
1646
1647 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1648 /* either due to i/o error or a stale NFS handle */
1649 iput(inode);
1650 inode = NULL;
1651 }
1652 return inode;
1653 }
1654
reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1655 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1656 u32 objectid, u32 dir_id, u32 generation)
1657
1658 {
1659 struct cpu_key key;
1660 struct inode *inode;
1661
1662 key.on_disk_key.k_objectid = objectid;
1663 key.on_disk_key.k_dir_id = dir_id;
1664 reiserfs_write_lock(sb);
1665 inode = reiserfs_iget(sb, &key);
1666 if (inode && !IS_ERR(inode) && generation != 0 &&
1667 generation != inode->i_generation) {
1668 iput(inode);
1669 inode = NULL;
1670 }
1671 reiserfs_write_unlock(sb);
1672
1673 return d_obtain_alias(inode);
1674 }
1675
reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1676 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1677 int fh_len, int fh_type)
1678 {
1679 /*
1680 * fhtype happens to reflect the number of u32s encoded.
1681 * due to a bug in earlier code, fhtype might indicate there
1682 * are more u32s then actually fitted.
1683 * so if fhtype seems to be more than len, reduce fhtype.
1684 * Valid types are:
1685 * 2 - objectid + dir_id - legacy support
1686 * 3 - objectid + dir_id + generation
1687 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1688 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1689 * 6 - as above plus generation of directory
1690 * 6 does not fit in NFSv2 handles
1691 */
1692 if (fh_type > fh_len) {
1693 if (fh_type != 6 || fh_len != 5)
1694 reiserfs_warning(sb, "reiserfs-13077",
1695 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1696 fh_type, fh_len);
1697 fh_type = fh_len;
1698 }
1699 if (fh_len < 2)
1700 return NULL;
1701
1702 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1703 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1704 }
1705
reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1706 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1707 int fh_len, int fh_type)
1708 {
1709 if (fh_type > fh_len)
1710 fh_type = fh_len;
1711 if (fh_type < 4)
1712 return NULL;
1713
1714 return reiserfs_get_dentry(sb,
1715 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1716 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1717 (fh_type == 6) ? fid->raw[5] : 0);
1718 }
1719
reiserfs_encode_fh(struct inode * inode,__u32 * data,int * lenp,struct inode * parent)1720 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1721 struct inode *parent)
1722 {
1723 int maxlen = *lenp;
1724
1725 if (parent && (maxlen < 5)) {
1726 *lenp = 5;
1727 return FILEID_INVALID;
1728 } else if (maxlen < 3) {
1729 *lenp = 3;
1730 return FILEID_INVALID;
1731 }
1732
1733 data[0] = inode->i_ino;
1734 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1735 data[2] = inode->i_generation;
1736 *lenp = 3;
1737 if (parent) {
1738 data[3] = parent->i_ino;
1739 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1740 *lenp = 5;
1741 if (maxlen >= 6) {
1742 data[5] = parent->i_generation;
1743 *lenp = 6;
1744 }
1745 }
1746 return *lenp;
1747 }
1748
1749 /*
1750 * looks for stat data, then copies fields to it, marks the buffer
1751 * containing stat data as dirty
1752 */
1753 /*
1754 * reiserfs inodes are never really dirty, since the dirty inode call
1755 * always logs them. This call allows the VFS inode marking routines
1756 * to properly mark inodes for datasync and such, but only actually
1757 * does something when called for a synchronous update.
1758 */
reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1759 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1760 {
1761 struct reiserfs_transaction_handle th;
1762 int jbegin_count = 1;
1763
1764 if (sb_rdonly(inode->i_sb))
1765 return -EROFS;
1766 /*
1767 * memory pressure can sometimes initiate write_inode calls with
1768 * sync == 1,
1769 * these cases are just when the system needs ram, not when the
1770 * inode needs to reach disk for safety, and they can safely be
1771 * ignored because the altered inode has already been logged.
1772 */
1773 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1774 reiserfs_write_lock(inode->i_sb);
1775 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1776 reiserfs_update_sd(&th, inode);
1777 journal_end_sync(&th);
1778 }
1779 reiserfs_write_unlock(inode->i_sb);
1780 }
1781 return 0;
1782 }
1783
1784 /*
1785 * stat data of new object is inserted already, this inserts the item
1786 * containing "." and ".." entries
1787 */
reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1788 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1789 struct inode *inode,
1790 struct item_head *ih, struct treepath *path,
1791 struct inode *dir)
1792 {
1793 struct super_block *sb = th->t_super;
1794 char empty_dir[EMPTY_DIR_SIZE];
1795 char *body = empty_dir;
1796 struct cpu_key key;
1797 int retval;
1798
1799 BUG_ON(!th->t_trans_id);
1800
1801 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1802 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1803 TYPE_DIRENTRY, 3 /*key length */ );
1804
1805 /*
1806 * compose item head for new item. Directories consist of items of
1807 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1808 * is done by reiserfs_new_inode
1809 */
1810 if (old_format_only(sb)) {
1811 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1812 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1813
1814 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1815 ih->ih_key.k_objectid,
1816 INODE_PKEY(dir)->k_dir_id,
1817 INODE_PKEY(dir)->k_objectid);
1818 } else {
1819 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1820 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1821
1822 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1823 ih->ih_key.k_objectid,
1824 INODE_PKEY(dir)->k_dir_id,
1825 INODE_PKEY(dir)->k_objectid);
1826 }
1827
1828 /* look for place in the tree for new item */
1829 retval = search_item(sb, &key, path);
1830 if (retval == IO_ERROR) {
1831 reiserfs_error(sb, "vs-13080",
1832 "i/o failure occurred creating new directory");
1833 return -EIO;
1834 }
1835 if (retval == ITEM_FOUND) {
1836 pathrelse(path);
1837 reiserfs_warning(sb, "vs-13070",
1838 "object with this key exists (%k)",
1839 &(ih->ih_key));
1840 return -EEXIST;
1841 }
1842
1843 /* insert item, that is empty directory item */
1844 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1845 }
1846
1847 /*
1848 * stat data of object has been inserted, this inserts the item
1849 * containing the body of symlink
1850 */
reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1851 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1852 struct inode *inode,
1853 struct item_head *ih,
1854 struct treepath *path, const char *symname,
1855 int item_len)
1856 {
1857 struct super_block *sb = th->t_super;
1858 struct cpu_key key;
1859 int retval;
1860
1861 BUG_ON(!th->t_trans_id);
1862
1863 _make_cpu_key(&key, KEY_FORMAT_3_5,
1864 le32_to_cpu(ih->ih_key.k_dir_id),
1865 le32_to_cpu(ih->ih_key.k_objectid),
1866 1, TYPE_DIRECT, 3 /*key length */ );
1867
1868 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1869 0 /*free_space */ );
1870
1871 /* look for place in the tree for new item */
1872 retval = search_item(sb, &key, path);
1873 if (retval == IO_ERROR) {
1874 reiserfs_error(sb, "vs-13080",
1875 "i/o failure occurred creating new symlink");
1876 return -EIO;
1877 }
1878 if (retval == ITEM_FOUND) {
1879 pathrelse(path);
1880 reiserfs_warning(sb, "vs-13080",
1881 "object with this key exists (%k)",
1882 &(ih->ih_key));
1883 return -EEXIST;
1884 }
1885
1886 /* insert item, that is body of symlink */
1887 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1888 }
1889
1890 /*
1891 * inserts the stat data into the tree, and then calls
1892 * reiserfs_new_directory (to insert ".", ".." item if new object is
1893 * directory) or reiserfs_new_symlink (to insert symlink body if new
1894 * object is symlink) or nothing (if new object is regular file)
1895
1896 * NOTE! uid and gid must already be set in the inode. If we return
1897 * non-zero due to an error, we have to drop the quota previously allocated
1898 * for the fresh inode. This can only be done outside a transaction, so
1899 * if we return non-zero, we also end the transaction.
1900 *
1901 * @th: active transaction handle
1902 * @dir: parent directory for new inode
1903 * @mode: mode of new inode
1904 * @symname: symlink contents if inode is symlink
1905 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1906 * symlinks
1907 * @inode: inode to be filled
1908 * @security: optional security context to associate with this inode
1909 */
reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,umode_t mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1910 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1911 struct inode *dir, umode_t mode, const char *symname,
1912 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1913 strlen (symname) for symlinks) */
1914 loff_t i_size, struct dentry *dentry,
1915 struct inode *inode,
1916 struct reiserfs_security_handle *security)
1917 {
1918 struct super_block *sb = dir->i_sb;
1919 struct reiserfs_iget_args args;
1920 INITIALIZE_PATH(path_to_key);
1921 struct cpu_key key;
1922 struct item_head ih;
1923 struct stat_data sd;
1924 int retval;
1925 int err;
1926 int depth;
1927
1928 BUG_ON(!th->t_trans_id);
1929
1930 depth = reiserfs_write_unlock_nested(sb);
1931 err = dquot_alloc_inode(inode);
1932 reiserfs_write_lock_nested(sb, depth);
1933 if (err)
1934 goto out_end_trans;
1935 if (!dir->i_nlink) {
1936 err = -EPERM;
1937 goto out_bad_inode;
1938 }
1939
1940 /* item head of new item */
1941 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1942 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1943 if (!ih.ih_key.k_objectid) {
1944 err = -ENOMEM;
1945 goto out_bad_inode;
1946 }
1947 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1948 if (old_format_only(sb))
1949 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1950 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1951 else
1952 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1953 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1954 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1955 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1956
1957 depth = reiserfs_write_unlock_nested(inode->i_sb);
1958 err = insert_inode_locked4(inode, args.objectid,
1959 reiserfs_find_actor, &args);
1960 reiserfs_write_lock_nested(inode->i_sb, depth);
1961 if (err) {
1962 err = -EINVAL;
1963 goto out_bad_inode;
1964 }
1965
1966 if (old_format_only(sb))
1967 /*
1968 * not a perfect generation count, as object ids can be reused,
1969 * but this is as good as reiserfs can do right now.
1970 * note that the private part of inode isn't filled in yet,
1971 * we have to use the directory.
1972 */
1973 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1974 else
1975 #if defined( USE_INODE_GENERATION_COUNTER )
1976 inode->i_generation =
1977 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1978 #else
1979 inode->i_generation = ++event;
1980 #endif
1981
1982 /* fill stat data */
1983 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1984
1985 /* uid and gid must already be set by the caller for quota init */
1986
1987 inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode);
1988 inode->i_size = i_size;
1989 inode->i_blocks = 0;
1990 inode->i_bytes = 0;
1991 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1992 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1993
1994 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1995 REISERFS_I(inode)->i_flags = 0;
1996 REISERFS_I(inode)->i_prealloc_block = 0;
1997 REISERFS_I(inode)->i_prealloc_count = 0;
1998 REISERFS_I(inode)->i_trans_id = 0;
1999 REISERFS_I(inode)->i_jl = NULL;
2000 REISERFS_I(inode)->i_attrs =
2001 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2002 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2003 reiserfs_init_xattr_rwsem(inode);
2004
2005 /* key to search for correct place for new stat data */
2006 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2007 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2008 TYPE_STAT_DATA, 3 /*key length */ );
2009
2010 /* find proper place for inserting of stat data */
2011 retval = search_item(sb, &key, &path_to_key);
2012 if (retval == IO_ERROR) {
2013 err = -EIO;
2014 goto out_bad_inode;
2015 }
2016 if (retval == ITEM_FOUND) {
2017 pathrelse(&path_to_key);
2018 err = -EEXIST;
2019 goto out_bad_inode;
2020 }
2021 if (old_format_only(sb)) {
2022 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2023 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2024 pathrelse(&path_to_key);
2025 err = -EINVAL;
2026 goto out_bad_inode;
2027 }
2028 inode2sd_v1(&sd, inode, inode->i_size);
2029 } else {
2030 inode2sd(&sd, inode, inode->i_size);
2031 }
2032 /*
2033 * store in in-core inode the key of stat data and version all
2034 * object items will have (directory items will have old offset
2035 * format, other new objects will consist of new items)
2036 */
2037 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2038 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2039 else
2040 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2041 if (old_format_only(sb))
2042 set_inode_sd_version(inode, STAT_DATA_V1);
2043 else
2044 set_inode_sd_version(inode, STAT_DATA_V2);
2045
2046 /* insert the stat data into the tree */
2047 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2048 if (REISERFS_I(dir)->new_packing_locality)
2049 th->displace_new_blocks = 1;
2050 #endif
2051 retval =
2052 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2053 (char *)(&sd));
2054 if (retval) {
2055 err = retval;
2056 reiserfs_check_path(&path_to_key);
2057 goto out_bad_inode;
2058 }
2059 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2060 if (!th->displace_new_blocks)
2061 REISERFS_I(dir)->new_packing_locality = 0;
2062 #endif
2063 if (S_ISDIR(mode)) {
2064 /* insert item with "." and ".." */
2065 retval =
2066 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2067 }
2068
2069 if (S_ISLNK(mode)) {
2070 /* insert body of symlink */
2071 if (!old_format_only(sb))
2072 i_size = ROUND_UP(i_size);
2073 retval =
2074 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2075 i_size);
2076 }
2077 if (retval) {
2078 err = retval;
2079 reiserfs_check_path(&path_to_key);
2080 journal_end(th);
2081 goto out_inserted_sd;
2082 }
2083
2084 /*
2085 * Mark it private if we're creating the privroot
2086 * or something under it.
2087 */
2088 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root)
2089 reiserfs_init_priv_inode(inode);
2090
2091 if (reiserfs_posixacl(inode->i_sb)) {
2092 reiserfs_write_unlock(inode->i_sb);
2093 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2094 reiserfs_write_lock(inode->i_sb);
2095 if (retval) {
2096 err = retval;
2097 reiserfs_check_path(&path_to_key);
2098 journal_end(th);
2099 goto out_inserted_sd;
2100 }
2101 } else if (inode->i_sb->s_flags & SB_POSIXACL) {
2102 reiserfs_warning(inode->i_sb, "jdm-13090",
2103 "ACLs aren't enabled in the fs, "
2104 "but vfs thinks they are!");
2105 }
2106
2107 if (security->name) {
2108 reiserfs_write_unlock(inode->i_sb);
2109 retval = reiserfs_security_write(th, inode, security);
2110 reiserfs_write_lock(inode->i_sb);
2111 if (retval) {
2112 err = retval;
2113 reiserfs_check_path(&path_to_key);
2114 retval = journal_end(th);
2115 if (retval)
2116 err = retval;
2117 goto out_inserted_sd;
2118 }
2119 }
2120
2121 reiserfs_update_sd(th, inode);
2122 reiserfs_check_path(&path_to_key);
2123
2124 return 0;
2125
2126 out_bad_inode:
2127 /* Invalidate the object, nothing was inserted yet */
2128 INODE_PKEY(inode)->k_objectid = 0;
2129
2130 /* Quota change must be inside a transaction for journaling */
2131 depth = reiserfs_write_unlock_nested(inode->i_sb);
2132 dquot_free_inode(inode);
2133 reiserfs_write_lock_nested(inode->i_sb, depth);
2134
2135 out_end_trans:
2136 journal_end(th);
2137 /*
2138 * Drop can be outside and it needs more credits so it's better
2139 * to have it outside
2140 */
2141 depth = reiserfs_write_unlock_nested(inode->i_sb);
2142 dquot_drop(inode);
2143 reiserfs_write_lock_nested(inode->i_sb, depth);
2144 inode->i_flags |= S_NOQUOTA;
2145 make_bad_inode(inode);
2146
2147 out_inserted_sd:
2148 clear_nlink(inode);
2149 th->t_trans_id = 0; /* so the caller can't use this handle later */
2150 if (inode->i_state & I_NEW)
2151 unlock_new_inode(inode);
2152 iput(inode);
2153 return err;
2154 }
2155
2156 /*
2157 * finds the tail page in the page cache,
2158 * reads the last block in.
2159 *
2160 * On success, page_result is set to a locked, pinned page, and bh_result
2161 * is set to an up to date buffer for the last block in the file. returns 0.
2162 *
2163 * tail conversion is not done, so bh_result might not be valid for writing
2164 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2165 * trying to write the block.
2166 *
2167 * on failure, nonzero is returned, page_result and bh_result are untouched.
2168 */
grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2169 static int grab_tail_page(struct inode *inode,
2170 struct page **page_result,
2171 struct buffer_head **bh_result)
2172 {
2173
2174 /*
2175 * we want the page with the last byte in the file,
2176 * not the page that will hold the next byte for appending
2177 */
2178 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2179 unsigned long pos = 0;
2180 unsigned long start = 0;
2181 unsigned long blocksize = inode->i_sb->s_blocksize;
2182 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2183 struct buffer_head *bh;
2184 struct buffer_head *head;
2185 struct page *page;
2186 int error;
2187
2188 /*
2189 * we know that we are only called with inode->i_size > 0.
2190 * we also know that a file tail can never be as big as a block
2191 * If i_size % blocksize == 0, our file is currently block aligned
2192 * and it won't need converting or zeroing after a truncate.
2193 */
2194 if ((offset & (blocksize - 1)) == 0) {
2195 return -ENOENT;
2196 }
2197 page = grab_cache_page(inode->i_mapping, index);
2198 error = -ENOMEM;
2199 if (!page) {
2200 goto out;
2201 }
2202 /* start within the page of the last block in the file */
2203 start = (offset / blocksize) * blocksize;
2204
2205 error = __block_write_begin(page, start, offset - start,
2206 reiserfs_get_block_create_0);
2207 if (error)
2208 goto unlock;
2209
2210 head = page_buffers(page);
2211 bh = head;
2212 do {
2213 if (pos >= start) {
2214 break;
2215 }
2216 bh = bh->b_this_page;
2217 pos += blocksize;
2218 } while (bh != head);
2219
2220 if (!buffer_uptodate(bh)) {
2221 /*
2222 * note, this should never happen, prepare_write should be
2223 * taking care of this for us. If the buffer isn't up to
2224 * date, I've screwed up the code to find the buffer, or the
2225 * code to call prepare_write
2226 */
2227 reiserfs_error(inode->i_sb, "clm-6000",
2228 "error reading block %lu", bh->b_blocknr);
2229 error = -EIO;
2230 goto unlock;
2231 }
2232 *bh_result = bh;
2233 *page_result = page;
2234
2235 out:
2236 return error;
2237
2238 unlock:
2239 unlock_page(page);
2240 put_page(page);
2241 return error;
2242 }
2243
2244 /*
2245 * vfs version of truncate file. Must NOT be called with
2246 * a transaction already started.
2247 *
2248 * some code taken from block_truncate_page
2249 */
reiserfs_truncate_file(struct inode * inode,int update_timestamps)2250 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2251 {
2252 struct reiserfs_transaction_handle th;
2253 /* we want the offset for the first byte after the end of the file */
2254 unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2255 unsigned blocksize = inode->i_sb->s_blocksize;
2256 unsigned length;
2257 struct page *page = NULL;
2258 int error;
2259 struct buffer_head *bh = NULL;
2260 int err2;
2261
2262 reiserfs_write_lock(inode->i_sb);
2263
2264 if (inode->i_size > 0) {
2265 error = grab_tail_page(inode, &page, &bh);
2266 if (error) {
2267 /*
2268 * -ENOENT means we truncated past the end of the
2269 * file, and get_block_create_0 could not find a
2270 * block to read in, which is ok.
2271 */
2272 if (error != -ENOENT)
2273 reiserfs_error(inode->i_sb, "clm-6001",
2274 "grab_tail_page failed %d",
2275 error);
2276 page = NULL;
2277 bh = NULL;
2278 }
2279 }
2280
2281 /*
2282 * so, if page != NULL, we have a buffer head for the offset at
2283 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2284 * then we have an unformatted node. Otherwise, we have a direct item,
2285 * and no zeroing is required on disk. We zero after the truncate,
2286 * because the truncate might pack the item anyway
2287 * (it will unmap bh if it packs).
2288 *
2289 * it is enough to reserve space in transaction for 2 balancings:
2290 * one for "save" link adding and another for the first
2291 * cut_from_item. 1 is for update_sd
2292 */
2293 error = journal_begin(&th, inode->i_sb,
2294 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2295 if (error)
2296 goto out;
2297 reiserfs_update_inode_transaction(inode);
2298 if (update_timestamps)
2299 /*
2300 * we are doing real truncate: if the system crashes
2301 * before the last transaction of truncating gets committed
2302 * - on reboot the file either appears truncated properly
2303 * or not truncated at all
2304 */
2305 add_save_link(&th, inode, 1);
2306 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2307 error = journal_end(&th);
2308 if (error)
2309 goto out;
2310
2311 /* check reiserfs_do_truncate after ending the transaction */
2312 if (err2) {
2313 error = err2;
2314 goto out;
2315 }
2316
2317 if (update_timestamps) {
2318 error = remove_save_link(inode, 1 /* truncate */);
2319 if (error)
2320 goto out;
2321 }
2322
2323 if (page) {
2324 length = offset & (blocksize - 1);
2325 /* if we are not on a block boundary */
2326 if (length) {
2327 length = blocksize - length;
2328 zero_user(page, offset, length);
2329 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2330 mark_buffer_dirty(bh);
2331 }
2332 }
2333 unlock_page(page);
2334 put_page(page);
2335 }
2336
2337 reiserfs_write_unlock(inode->i_sb);
2338
2339 return 0;
2340 out:
2341 if (page) {
2342 unlock_page(page);
2343 put_page(page);
2344 }
2345
2346 reiserfs_write_unlock(inode->i_sb);
2347
2348 return error;
2349 }
2350
map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2351 static int map_block_for_writepage(struct inode *inode,
2352 struct buffer_head *bh_result,
2353 unsigned long block)
2354 {
2355 struct reiserfs_transaction_handle th;
2356 int fs_gen;
2357 struct item_head tmp_ih;
2358 struct item_head *ih;
2359 struct buffer_head *bh;
2360 __le32 *item;
2361 struct cpu_key key;
2362 INITIALIZE_PATH(path);
2363 int pos_in_item;
2364 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2365 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2366 int retval;
2367 int use_get_block = 0;
2368 int bytes_copied = 0;
2369 int copy_size;
2370 int trans_running = 0;
2371
2372 /*
2373 * catch places below that try to log something without
2374 * starting a trans
2375 */
2376 th.t_trans_id = 0;
2377
2378 if (!buffer_uptodate(bh_result)) {
2379 return -EIO;
2380 }
2381
2382 kmap(bh_result->b_page);
2383 start_over:
2384 reiserfs_write_lock(inode->i_sb);
2385 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2386
2387 research:
2388 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2389 if (retval != POSITION_FOUND) {
2390 use_get_block = 1;
2391 goto out;
2392 }
2393
2394 bh = get_last_bh(&path);
2395 ih = tp_item_head(&path);
2396 item = tp_item_body(&path);
2397 pos_in_item = path.pos_in_item;
2398
2399 /* we've found an unformatted node */
2400 if (indirect_item_found(retval, ih)) {
2401 if (bytes_copied > 0) {
2402 reiserfs_warning(inode->i_sb, "clm-6002",
2403 "bytes_copied %d", bytes_copied);
2404 }
2405 if (!get_block_num(item, pos_in_item)) {
2406 /* crap, we are writing to a hole */
2407 use_get_block = 1;
2408 goto out;
2409 }
2410 set_block_dev_mapped(bh_result,
2411 get_block_num(item, pos_in_item), inode);
2412 } else if (is_direct_le_ih(ih)) {
2413 char *p;
2414 p = page_address(bh_result->b_page);
2415 p += (byte_offset - 1) & (PAGE_SIZE - 1);
2416 copy_size = ih_item_len(ih) - pos_in_item;
2417
2418 fs_gen = get_generation(inode->i_sb);
2419 copy_item_head(&tmp_ih, ih);
2420
2421 if (!trans_running) {
2422 /* vs-3050 is gone, no need to drop the path */
2423 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2424 if (retval)
2425 goto out;
2426 reiserfs_update_inode_transaction(inode);
2427 trans_running = 1;
2428 if (fs_changed(fs_gen, inode->i_sb)
2429 && item_moved(&tmp_ih, &path)) {
2430 reiserfs_restore_prepared_buffer(inode->i_sb,
2431 bh);
2432 goto research;
2433 }
2434 }
2435
2436 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2437
2438 if (fs_changed(fs_gen, inode->i_sb)
2439 && item_moved(&tmp_ih, &path)) {
2440 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2441 goto research;
2442 }
2443
2444 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2445 copy_size);
2446
2447 journal_mark_dirty(&th, bh);
2448 bytes_copied += copy_size;
2449 set_block_dev_mapped(bh_result, 0, inode);
2450
2451 /* are there still bytes left? */
2452 if (bytes_copied < bh_result->b_size &&
2453 (byte_offset + bytes_copied) < inode->i_size) {
2454 set_cpu_key_k_offset(&key,
2455 cpu_key_k_offset(&key) +
2456 copy_size);
2457 goto research;
2458 }
2459 } else {
2460 reiserfs_warning(inode->i_sb, "clm-6003",
2461 "bad item inode %lu", inode->i_ino);
2462 retval = -EIO;
2463 goto out;
2464 }
2465 retval = 0;
2466
2467 out:
2468 pathrelse(&path);
2469 if (trans_running) {
2470 int err = journal_end(&th);
2471 if (err)
2472 retval = err;
2473 trans_running = 0;
2474 }
2475 reiserfs_write_unlock(inode->i_sb);
2476
2477 /* this is where we fill in holes in the file. */
2478 if (use_get_block) {
2479 retval = reiserfs_get_block(inode, block, bh_result,
2480 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2481 | GET_BLOCK_NO_DANGLE);
2482 if (!retval) {
2483 if (!buffer_mapped(bh_result)
2484 || bh_result->b_blocknr == 0) {
2485 /* get_block failed to find a mapped unformatted node. */
2486 use_get_block = 0;
2487 goto start_over;
2488 }
2489 }
2490 }
2491 kunmap(bh_result->b_page);
2492
2493 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2494 /*
2495 * we've copied data from the page into the direct item, so the
2496 * buffer in the page is now clean, mark it to reflect that.
2497 */
2498 lock_buffer(bh_result);
2499 clear_buffer_dirty(bh_result);
2500 unlock_buffer(bh_result);
2501 }
2502 return retval;
2503 }
2504
2505 /*
2506 * mason@suse.com: updated in 2.5.54 to follow the same general io
2507 * start/recovery path as __block_write_full_folio, along with special
2508 * code to handle reiserfs tails.
2509 */
reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2510 static int reiserfs_write_full_page(struct page *page,
2511 struct writeback_control *wbc)
2512 {
2513 struct inode *inode = page->mapping->host;
2514 unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2515 int error = 0;
2516 unsigned long block;
2517 sector_t last_block;
2518 struct buffer_head *head, *bh;
2519 int partial = 0;
2520 int nr = 0;
2521 int checked = PageChecked(page);
2522 struct reiserfs_transaction_handle th;
2523 struct super_block *s = inode->i_sb;
2524 int bh_per_page = PAGE_SIZE / s->s_blocksize;
2525 th.t_trans_id = 0;
2526
2527 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2528 if (checked && (current->flags & PF_MEMALLOC)) {
2529 redirty_page_for_writepage(wbc, page);
2530 unlock_page(page);
2531 return 0;
2532 }
2533
2534 /*
2535 * The page dirty bit is cleared before writepage is called, which
2536 * means we have to tell create_empty_buffers to make dirty buffers
2537 * The page really should be up to date at this point, so tossing
2538 * in the BH_Uptodate is just a sanity check.
2539 */
2540 if (!page_has_buffers(page)) {
2541 create_empty_buffers(page, s->s_blocksize,
2542 (1 << BH_Dirty) | (1 << BH_Uptodate));
2543 }
2544 head = page_buffers(page);
2545
2546 /*
2547 * last page in the file, zero out any contents past the
2548 * last byte in the file
2549 */
2550 if (page->index >= end_index) {
2551 unsigned last_offset;
2552
2553 last_offset = inode->i_size & (PAGE_SIZE - 1);
2554 /* no file contents in this page */
2555 if (page->index >= end_index + 1 || !last_offset) {
2556 unlock_page(page);
2557 return 0;
2558 }
2559 zero_user_segment(page, last_offset, PAGE_SIZE);
2560 }
2561 bh = head;
2562 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2563 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2564 /* first map all the buffers, logging any direct items we find */
2565 do {
2566 if (block > last_block) {
2567 /*
2568 * This can happen when the block size is less than
2569 * the page size. The corresponding bytes in the page
2570 * were zero filled above
2571 */
2572 clear_buffer_dirty(bh);
2573 set_buffer_uptodate(bh);
2574 } else if ((checked || buffer_dirty(bh)) &&
2575 (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2576 /*
2577 * not mapped yet, or it points to a direct item, search
2578 * the btree for the mapping info, and log any direct
2579 * items found
2580 */
2581 if ((error = map_block_for_writepage(inode, bh, block))) {
2582 goto fail;
2583 }
2584 }
2585 bh = bh->b_this_page;
2586 block++;
2587 } while (bh != head);
2588
2589 /*
2590 * we start the transaction after map_block_for_writepage,
2591 * because it can create holes in the file (an unbounded operation).
2592 * starting it here, we can make a reliable estimate for how many
2593 * blocks we're going to log
2594 */
2595 if (checked) {
2596 ClearPageChecked(page);
2597 reiserfs_write_lock(s);
2598 error = journal_begin(&th, s, bh_per_page + 1);
2599 if (error) {
2600 reiserfs_write_unlock(s);
2601 goto fail;
2602 }
2603 reiserfs_update_inode_transaction(inode);
2604 }
2605 /* now go through and lock any dirty buffers on the page */
2606 do {
2607 get_bh(bh);
2608 if (!buffer_mapped(bh))
2609 continue;
2610 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2611 continue;
2612
2613 if (checked) {
2614 reiserfs_prepare_for_journal(s, bh, 1);
2615 journal_mark_dirty(&th, bh);
2616 continue;
2617 }
2618 /*
2619 * from this point on, we know the buffer is mapped to a
2620 * real block and not a direct item
2621 */
2622 if (wbc->sync_mode != WB_SYNC_NONE) {
2623 lock_buffer(bh);
2624 } else {
2625 if (!trylock_buffer(bh)) {
2626 redirty_page_for_writepage(wbc, page);
2627 continue;
2628 }
2629 }
2630 if (test_clear_buffer_dirty(bh)) {
2631 mark_buffer_async_write(bh);
2632 } else {
2633 unlock_buffer(bh);
2634 }
2635 } while ((bh = bh->b_this_page) != head);
2636
2637 if (checked) {
2638 error = journal_end(&th);
2639 reiserfs_write_unlock(s);
2640 if (error)
2641 goto fail;
2642 }
2643 BUG_ON(PageWriteback(page));
2644 set_page_writeback(page);
2645 unlock_page(page);
2646
2647 /*
2648 * since any buffer might be the only dirty buffer on the page,
2649 * the first submit_bh can bring the page out of writeback.
2650 * be careful with the buffers.
2651 */
2652 do {
2653 struct buffer_head *next = bh->b_this_page;
2654 if (buffer_async_write(bh)) {
2655 submit_bh(REQ_OP_WRITE, bh);
2656 nr++;
2657 }
2658 put_bh(bh);
2659 bh = next;
2660 } while (bh != head);
2661
2662 error = 0;
2663 done:
2664 if (nr == 0) {
2665 /*
2666 * if this page only had a direct item, it is very possible for
2667 * no io to be required without there being an error. Or,
2668 * someone else could have locked them and sent them down the
2669 * pipe without locking the page
2670 */
2671 bh = head;
2672 do {
2673 if (!buffer_uptodate(bh)) {
2674 partial = 1;
2675 break;
2676 }
2677 bh = bh->b_this_page;
2678 } while (bh != head);
2679 if (!partial)
2680 SetPageUptodate(page);
2681 end_page_writeback(page);
2682 }
2683 return error;
2684
2685 fail:
2686 /*
2687 * catches various errors, we need to make sure any valid dirty blocks
2688 * get to the media. The page is currently locked and not marked for
2689 * writeback
2690 */
2691 ClearPageUptodate(page);
2692 bh = head;
2693 do {
2694 get_bh(bh);
2695 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2696 lock_buffer(bh);
2697 mark_buffer_async_write(bh);
2698 } else {
2699 /*
2700 * clear any dirty bits that might have come from
2701 * getting attached to a dirty page
2702 */
2703 clear_buffer_dirty(bh);
2704 }
2705 bh = bh->b_this_page;
2706 } while (bh != head);
2707 SetPageError(page);
2708 BUG_ON(PageWriteback(page));
2709 set_page_writeback(page);
2710 unlock_page(page);
2711 do {
2712 struct buffer_head *next = bh->b_this_page;
2713 if (buffer_async_write(bh)) {
2714 clear_buffer_dirty(bh);
2715 submit_bh(REQ_OP_WRITE, bh);
2716 nr++;
2717 }
2718 put_bh(bh);
2719 bh = next;
2720 } while (bh != head);
2721 goto done;
2722 }
2723
reiserfs_read_folio(struct file * f,struct folio * folio)2724 static int reiserfs_read_folio(struct file *f, struct folio *folio)
2725 {
2726 return block_read_full_folio(folio, reiserfs_get_block);
2727 }
2728
reiserfs_writepage(struct page * page,struct writeback_control * wbc)2729 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2730 {
2731 struct inode *inode = page->mapping->host;
2732 reiserfs_wait_on_write_block(inode->i_sb);
2733 return reiserfs_write_full_page(page, wbc);
2734 }
2735
reiserfs_truncate_failed_write(struct inode * inode)2736 static void reiserfs_truncate_failed_write(struct inode *inode)
2737 {
2738 truncate_inode_pages(inode->i_mapping, inode->i_size);
2739 reiserfs_truncate_file(inode, 0);
2740 }
2741
reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2742 static int reiserfs_write_begin(struct file *file,
2743 struct address_space *mapping,
2744 loff_t pos, unsigned len,
2745 struct page **pagep, void **fsdata)
2746 {
2747 struct inode *inode;
2748 struct page *page;
2749 pgoff_t index;
2750 int ret;
2751 int old_ref = 0;
2752
2753 inode = mapping->host;
2754 index = pos >> PAGE_SHIFT;
2755 page = grab_cache_page_write_begin(mapping, index);
2756 if (!page)
2757 return -ENOMEM;
2758 *pagep = page;
2759
2760 reiserfs_wait_on_write_block(inode->i_sb);
2761 fix_tail_page_for_writing(page);
2762 if (reiserfs_transaction_running(inode->i_sb)) {
2763 struct reiserfs_transaction_handle *th;
2764 th = (struct reiserfs_transaction_handle *)current->
2765 journal_info;
2766 BUG_ON(!th->t_refcount);
2767 BUG_ON(!th->t_trans_id);
2768 old_ref = th->t_refcount;
2769 th->t_refcount++;
2770 }
2771 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2772 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2773 struct reiserfs_transaction_handle *th = current->journal_info;
2774 /*
2775 * this gets a little ugly. If reiserfs_get_block returned an
2776 * error and left a transacstion running, we've got to close
2777 * it, and we've got to free handle if it was a persistent
2778 * transaction.
2779 *
2780 * But, if we had nested into an existing transaction, we need
2781 * to just drop the ref count on the handle.
2782 *
2783 * If old_ref == 0, the transaction is from reiserfs_get_block,
2784 * and it was a persistent trans. Otherwise, it was nested
2785 * above.
2786 */
2787 if (th->t_refcount > old_ref) {
2788 if (old_ref)
2789 th->t_refcount--;
2790 else {
2791 int err;
2792 reiserfs_write_lock(inode->i_sb);
2793 err = reiserfs_end_persistent_transaction(th);
2794 reiserfs_write_unlock(inode->i_sb);
2795 if (err)
2796 ret = err;
2797 }
2798 }
2799 }
2800 if (ret) {
2801 unlock_page(page);
2802 put_page(page);
2803 /* Truncate allocated blocks */
2804 reiserfs_truncate_failed_write(inode);
2805 }
2806 return ret;
2807 }
2808
__reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2809 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2810 {
2811 struct inode *inode = page->mapping->host;
2812 int ret;
2813 int old_ref = 0;
2814 int depth;
2815
2816 depth = reiserfs_write_unlock_nested(inode->i_sb);
2817 reiserfs_wait_on_write_block(inode->i_sb);
2818 reiserfs_write_lock_nested(inode->i_sb, depth);
2819
2820 fix_tail_page_for_writing(page);
2821 if (reiserfs_transaction_running(inode->i_sb)) {
2822 struct reiserfs_transaction_handle *th;
2823 th = (struct reiserfs_transaction_handle *)current->
2824 journal_info;
2825 BUG_ON(!th->t_refcount);
2826 BUG_ON(!th->t_trans_id);
2827 old_ref = th->t_refcount;
2828 th->t_refcount++;
2829 }
2830
2831 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2832 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2833 struct reiserfs_transaction_handle *th = current->journal_info;
2834 /*
2835 * this gets a little ugly. If reiserfs_get_block returned an
2836 * error and left a transacstion running, we've got to close
2837 * it, and we've got to free handle if it was a persistent
2838 * transaction.
2839 *
2840 * But, if we had nested into an existing transaction, we need
2841 * to just drop the ref count on the handle.
2842 *
2843 * If old_ref == 0, the transaction is from reiserfs_get_block,
2844 * and it was a persistent trans. Otherwise, it was nested
2845 * above.
2846 */
2847 if (th->t_refcount > old_ref) {
2848 if (old_ref)
2849 th->t_refcount--;
2850 else {
2851 int err;
2852 reiserfs_write_lock(inode->i_sb);
2853 err = reiserfs_end_persistent_transaction(th);
2854 reiserfs_write_unlock(inode->i_sb);
2855 if (err)
2856 ret = err;
2857 }
2858 }
2859 }
2860 return ret;
2861
2862 }
2863
reiserfs_aop_bmap(struct address_space * as,sector_t block)2864 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2865 {
2866 return generic_block_bmap(as, block, reiserfs_bmap);
2867 }
2868
reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2869 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2870 loff_t pos, unsigned len, unsigned copied,
2871 struct page *page, void *fsdata)
2872 {
2873 struct folio *folio = page_folio(page);
2874 struct inode *inode = page->mapping->host;
2875 int ret = 0;
2876 int update_sd = 0;
2877 struct reiserfs_transaction_handle *th;
2878 unsigned start;
2879 bool locked = false;
2880
2881 reiserfs_wait_on_write_block(inode->i_sb);
2882 if (reiserfs_transaction_running(inode->i_sb))
2883 th = current->journal_info;
2884 else
2885 th = NULL;
2886
2887 start = pos & (PAGE_SIZE - 1);
2888 if (unlikely(copied < len)) {
2889 if (!folio_test_uptodate(folio))
2890 copied = 0;
2891
2892 folio_zero_new_buffers(folio, start + copied, start + len);
2893 }
2894 flush_dcache_folio(folio);
2895
2896 reiserfs_commit_page(inode, page, start, start + copied);
2897
2898 /*
2899 * generic_commit_write does this for us, but does not update the
2900 * transaction tracking stuff when the size changes. So, we have
2901 * to do the i_size updates here.
2902 */
2903 if (pos + copied > inode->i_size) {
2904 struct reiserfs_transaction_handle myth;
2905 reiserfs_write_lock(inode->i_sb);
2906 locked = true;
2907 /*
2908 * If the file have grown beyond the border where it
2909 * can have a tail, unmark it as needing a tail
2910 * packing
2911 */
2912 if ((have_large_tails(inode->i_sb)
2913 && inode->i_size > i_block_size(inode) * 4)
2914 || (have_small_tails(inode->i_sb)
2915 && inode->i_size > i_block_size(inode)))
2916 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2917
2918 ret = journal_begin(&myth, inode->i_sb, 1);
2919 if (ret)
2920 goto journal_error;
2921
2922 reiserfs_update_inode_transaction(inode);
2923 inode->i_size = pos + copied;
2924 /*
2925 * this will just nest into our transaction. It's important
2926 * to use mark_inode_dirty so the inode gets pushed around on
2927 * the dirty lists, and so that O_SYNC works as expected
2928 */
2929 mark_inode_dirty(inode);
2930 reiserfs_update_sd(&myth, inode);
2931 update_sd = 1;
2932 ret = journal_end(&myth);
2933 if (ret)
2934 goto journal_error;
2935 }
2936 if (th) {
2937 if (!locked) {
2938 reiserfs_write_lock(inode->i_sb);
2939 locked = true;
2940 }
2941 if (!update_sd)
2942 mark_inode_dirty(inode);
2943 ret = reiserfs_end_persistent_transaction(th);
2944 if (ret)
2945 goto out;
2946 }
2947
2948 out:
2949 if (locked)
2950 reiserfs_write_unlock(inode->i_sb);
2951 unlock_page(page);
2952 put_page(page);
2953
2954 if (pos + len > inode->i_size)
2955 reiserfs_truncate_failed_write(inode);
2956
2957 return ret == 0 ? copied : ret;
2958
2959 journal_error:
2960 reiserfs_write_unlock(inode->i_sb);
2961 locked = false;
2962 if (th) {
2963 if (!update_sd)
2964 reiserfs_update_sd(th, inode);
2965 ret = reiserfs_end_persistent_transaction(th);
2966 }
2967 goto out;
2968 }
2969
reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2970 int reiserfs_commit_write(struct file *f, struct page *page,
2971 unsigned from, unsigned to)
2972 {
2973 struct inode *inode = page->mapping->host;
2974 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2975 int ret = 0;
2976 int update_sd = 0;
2977 struct reiserfs_transaction_handle *th = NULL;
2978 int depth;
2979
2980 depth = reiserfs_write_unlock_nested(inode->i_sb);
2981 reiserfs_wait_on_write_block(inode->i_sb);
2982 reiserfs_write_lock_nested(inode->i_sb, depth);
2983
2984 if (reiserfs_transaction_running(inode->i_sb)) {
2985 th = current->journal_info;
2986 }
2987 reiserfs_commit_page(inode, page, from, to);
2988
2989 /*
2990 * generic_commit_write does this for us, but does not update the
2991 * transaction tracking stuff when the size changes. So, we have
2992 * to do the i_size updates here.
2993 */
2994 if (pos > inode->i_size) {
2995 struct reiserfs_transaction_handle myth;
2996 /*
2997 * If the file have grown beyond the border where it
2998 * can have a tail, unmark it as needing a tail
2999 * packing
3000 */
3001 if ((have_large_tails(inode->i_sb)
3002 && inode->i_size > i_block_size(inode) * 4)
3003 || (have_small_tails(inode->i_sb)
3004 && inode->i_size > i_block_size(inode)))
3005 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3006
3007 ret = journal_begin(&myth, inode->i_sb, 1);
3008 if (ret)
3009 goto journal_error;
3010
3011 reiserfs_update_inode_transaction(inode);
3012 inode->i_size = pos;
3013 /*
3014 * this will just nest into our transaction. It's important
3015 * to use mark_inode_dirty so the inode gets pushed around
3016 * on the dirty lists, and so that O_SYNC works as expected
3017 */
3018 mark_inode_dirty(inode);
3019 reiserfs_update_sd(&myth, inode);
3020 update_sd = 1;
3021 ret = journal_end(&myth);
3022 if (ret)
3023 goto journal_error;
3024 }
3025 if (th) {
3026 if (!update_sd)
3027 mark_inode_dirty(inode);
3028 ret = reiserfs_end_persistent_transaction(th);
3029 if (ret)
3030 goto out;
3031 }
3032
3033 out:
3034 return ret;
3035
3036 journal_error:
3037 if (th) {
3038 if (!update_sd)
3039 reiserfs_update_sd(th, inode);
3040 ret = reiserfs_end_persistent_transaction(th);
3041 }
3042
3043 return ret;
3044 }
3045
sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)3046 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3047 {
3048 if (reiserfs_attrs(inode->i_sb)) {
3049 if (sd_attrs & REISERFS_SYNC_FL)
3050 inode->i_flags |= S_SYNC;
3051 else
3052 inode->i_flags &= ~S_SYNC;
3053 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3054 inode->i_flags |= S_IMMUTABLE;
3055 else
3056 inode->i_flags &= ~S_IMMUTABLE;
3057 if (sd_attrs & REISERFS_APPEND_FL)
3058 inode->i_flags |= S_APPEND;
3059 else
3060 inode->i_flags &= ~S_APPEND;
3061 if (sd_attrs & REISERFS_NOATIME_FL)
3062 inode->i_flags |= S_NOATIME;
3063 else
3064 inode->i_flags &= ~S_NOATIME;
3065 if (sd_attrs & REISERFS_NOTAIL_FL)
3066 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3067 else
3068 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3069 }
3070 }
3071
3072 /*
3073 * decide if this buffer needs to stay around for data logging or ordered
3074 * write purposes
3075 */
invalidate_folio_can_drop(struct inode * inode,struct buffer_head * bh)3076 static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3077 {
3078 int ret = 1;
3079 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3080
3081 lock_buffer(bh);
3082 spin_lock(&j->j_dirty_buffers_lock);
3083 if (!buffer_mapped(bh)) {
3084 goto free_jh;
3085 }
3086 /*
3087 * the page is locked, and the only places that log a data buffer
3088 * also lock the page.
3089 */
3090 if (reiserfs_file_data_log(inode)) {
3091 /*
3092 * very conservative, leave the buffer pinned if
3093 * anyone might need it.
3094 */
3095 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3096 ret = 0;
3097 }
3098 } else if (buffer_dirty(bh)) {
3099 struct reiserfs_journal_list *jl;
3100 struct reiserfs_jh *jh = bh->b_private;
3101
3102 /*
3103 * why is this safe?
3104 * reiserfs_setattr updates i_size in the on disk
3105 * stat data before allowing vmtruncate to be called.
3106 *
3107 * If buffer was put onto the ordered list for this
3108 * transaction, we know for sure either this transaction
3109 * or an older one already has updated i_size on disk,
3110 * and this ordered data won't be referenced in the file
3111 * if we crash.
3112 *
3113 * if the buffer was put onto the ordered list for an older
3114 * transaction, we need to leave it around
3115 */
3116 if (jh && (jl = jh->jl)
3117 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3118 ret = 0;
3119 }
3120 free_jh:
3121 if (ret && bh->b_private) {
3122 reiserfs_free_jh(bh);
3123 }
3124 spin_unlock(&j->j_dirty_buffers_lock);
3125 unlock_buffer(bh);
3126 return ret;
3127 }
3128
3129 /* clm -- taken from fs/buffer.c:block_invalidate_folio */
reiserfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3130 static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3131 size_t length)
3132 {
3133 struct buffer_head *head, *bh, *next;
3134 struct inode *inode = folio->mapping->host;
3135 unsigned int curr_off = 0;
3136 unsigned int stop = offset + length;
3137 int partial_page = (offset || length < folio_size(folio));
3138 int ret = 1;
3139
3140 BUG_ON(!folio_test_locked(folio));
3141
3142 if (!partial_page)
3143 folio_clear_checked(folio);
3144
3145 head = folio_buffers(folio);
3146 if (!head)
3147 goto out;
3148
3149 bh = head;
3150 do {
3151 unsigned int next_off = curr_off + bh->b_size;
3152 next = bh->b_this_page;
3153
3154 if (next_off > stop)
3155 goto out;
3156
3157 /*
3158 * is this block fully invalidated?
3159 */
3160 if (offset <= curr_off) {
3161 if (invalidate_folio_can_drop(inode, bh))
3162 reiserfs_unmap_buffer(bh);
3163 else
3164 ret = 0;
3165 }
3166 curr_off = next_off;
3167 bh = next;
3168 } while (bh != head);
3169
3170 /*
3171 * We release buffers only if the entire page is being invalidated.
3172 * The get_block cached value has been unconditionally invalidated,
3173 * so real IO is not possible anymore.
3174 */
3175 if (!partial_page && ret) {
3176 ret = filemap_release_folio(folio, 0);
3177 /* maybe should BUG_ON(!ret); - neilb */
3178 }
3179 out:
3180 return;
3181 }
3182
reiserfs_dirty_folio(struct address_space * mapping,struct folio * folio)3183 static bool reiserfs_dirty_folio(struct address_space *mapping,
3184 struct folio *folio)
3185 {
3186 if (reiserfs_file_data_log(mapping->host)) {
3187 folio_set_checked(folio);
3188 return filemap_dirty_folio(mapping, folio);
3189 }
3190 return block_dirty_folio(mapping, folio);
3191 }
3192
3193 /*
3194 * Returns true if the folio's buffers were dropped. The folio is locked.
3195 *
3196 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3197 * in the buffers at folio_buffers(folio).
3198 *
3199 * even in -o notail mode, we can't be sure an old mount without -o notail
3200 * didn't create files with tails.
3201 */
reiserfs_release_folio(struct folio * folio,gfp_t unused_gfp_flags)3202 static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3203 {
3204 struct inode *inode = folio->mapping->host;
3205 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3206 struct buffer_head *head;
3207 struct buffer_head *bh;
3208 bool ret = true;
3209
3210 WARN_ON(folio_test_checked(folio));
3211 spin_lock(&j->j_dirty_buffers_lock);
3212 head = folio_buffers(folio);
3213 bh = head;
3214 do {
3215 if (bh->b_private) {
3216 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3217 reiserfs_free_jh(bh);
3218 } else {
3219 ret = false;
3220 break;
3221 }
3222 }
3223 bh = bh->b_this_page;
3224 } while (bh != head);
3225 if (ret)
3226 ret = try_to_free_buffers(folio);
3227 spin_unlock(&j->j_dirty_buffers_lock);
3228 return ret;
3229 }
3230
3231 /*
3232 * We thank Mingming Cao for helping us understand in great detail what
3233 * to do in this section of the code.
3234 */
reiserfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3235 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3236 {
3237 struct file *file = iocb->ki_filp;
3238 struct inode *inode = file->f_mapping->host;
3239 size_t count = iov_iter_count(iter);
3240 ssize_t ret;
3241
3242 ret = blockdev_direct_IO(iocb, inode, iter,
3243 reiserfs_get_blocks_direct_io);
3244
3245 /*
3246 * In case of error extending write may have instantiated a few
3247 * blocks outside i_size. Trim these off again.
3248 */
3249 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3250 loff_t isize = i_size_read(inode);
3251 loff_t end = iocb->ki_pos + count;
3252
3253 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3254 truncate_setsize(inode, isize);
3255 reiserfs_vfs_truncate_file(inode);
3256 }
3257 }
3258
3259 return ret;
3260 }
3261
reiserfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)3262 int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3263 struct iattr *attr)
3264 {
3265 struct inode *inode = d_inode(dentry);
3266 unsigned int ia_valid;
3267 int error;
3268
3269 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
3270 if (error)
3271 return error;
3272
3273 /* must be turned off for recursive notify_change calls */
3274 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3275
3276 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
3277 error = dquot_initialize(inode);
3278 if (error)
3279 return error;
3280 }
3281 reiserfs_write_lock(inode->i_sb);
3282 if (attr->ia_valid & ATTR_SIZE) {
3283 /*
3284 * version 2 items will be caught by the s_maxbytes check
3285 * done for us in vmtruncate
3286 */
3287 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3288 attr->ia_size > MAX_NON_LFS) {
3289 reiserfs_write_unlock(inode->i_sb);
3290 error = -EFBIG;
3291 goto out;
3292 }
3293
3294 inode_dio_wait(inode);
3295
3296 /* fill in hole pointers in the expanding truncate case. */
3297 if (attr->ia_size > inode->i_size) {
3298 loff_t pos = attr->ia_size;
3299
3300 if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3301 pos++;
3302 error = generic_cont_expand_simple(inode, pos);
3303 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3304 int err;
3305 struct reiserfs_transaction_handle th;
3306 /* we're changing at most 2 bitmaps, inode + super */
3307 err = journal_begin(&th, inode->i_sb, 4);
3308 if (!err) {
3309 reiserfs_discard_prealloc(&th, inode);
3310 err = journal_end(&th);
3311 }
3312 if (err)
3313 error = err;
3314 }
3315 if (error) {
3316 reiserfs_write_unlock(inode->i_sb);
3317 goto out;
3318 }
3319 /*
3320 * file size is changed, ctime and mtime are
3321 * to be updated
3322 */
3323 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3324 }
3325 }
3326 reiserfs_write_unlock(inode->i_sb);
3327
3328 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3329 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3330 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3331 /* stat data of format v3.5 has 16 bit uid and gid */
3332 error = -EINVAL;
3333 goto out;
3334 }
3335
3336 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3337 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3338 struct reiserfs_transaction_handle th;
3339 int jbegin_count =
3340 2 *
3341 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3342 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3343 2;
3344
3345 error = reiserfs_chown_xattrs(inode, attr);
3346
3347 if (error)
3348 return error;
3349
3350 /*
3351 * (user+group)*(old+new) structure - we count quota
3352 * info and , inode write (sb, inode)
3353 */
3354 reiserfs_write_lock(inode->i_sb);
3355 error = journal_begin(&th, inode->i_sb, jbegin_count);
3356 reiserfs_write_unlock(inode->i_sb);
3357 if (error)
3358 goto out;
3359 error = dquot_transfer(&nop_mnt_idmap, inode, attr);
3360 reiserfs_write_lock(inode->i_sb);
3361 if (error) {
3362 journal_end(&th);
3363 reiserfs_write_unlock(inode->i_sb);
3364 goto out;
3365 }
3366
3367 /*
3368 * Update corresponding info in inode so that everything
3369 * is in one transaction
3370 */
3371 if (attr->ia_valid & ATTR_UID)
3372 inode->i_uid = attr->ia_uid;
3373 if (attr->ia_valid & ATTR_GID)
3374 inode->i_gid = attr->ia_gid;
3375 mark_inode_dirty(inode);
3376 error = journal_end(&th);
3377 reiserfs_write_unlock(inode->i_sb);
3378 if (error)
3379 goto out;
3380 }
3381
3382 if ((attr->ia_valid & ATTR_SIZE) &&
3383 attr->ia_size != i_size_read(inode)) {
3384 error = inode_newsize_ok(inode, attr->ia_size);
3385 if (!error) {
3386 /*
3387 * Could race against reiserfs_file_release
3388 * if called from NFS, so take tailpack mutex.
3389 */
3390 mutex_lock(&REISERFS_I(inode)->tailpack);
3391 truncate_setsize(inode, attr->ia_size);
3392 reiserfs_truncate_file(inode, 1);
3393 mutex_unlock(&REISERFS_I(inode)->tailpack);
3394 }
3395 }
3396
3397 if (!error) {
3398 setattr_copy(&nop_mnt_idmap, inode, attr);
3399 mark_inode_dirty(inode);
3400 }
3401
3402 if (!error && reiserfs_posixacl(inode->i_sb)) {
3403 if (attr->ia_valid & ATTR_MODE)
3404 error = reiserfs_acl_chmod(dentry);
3405 }
3406
3407 out:
3408 return error;
3409 }
3410
3411 const struct address_space_operations reiserfs_address_space_operations = {
3412 .writepage = reiserfs_writepage,
3413 .read_folio = reiserfs_read_folio,
3414 .readahead = reiserfs_readahead,
3415 .release_folio = reiserfs_release_folio,
3416 .invalidate_folio = reiserfs_invalidate_folio,
3417 .write_begin = reiserfs_write_begin,
3418 .write_end = reiserfs_write_end,
3419 .bmap = reiserfs_aop_bmap,
3420 .direct_IO = reiserfs_direct_IO,
3421 .dirty_folio = reiserfs_dirty_folio,
3422 };
3423