1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39 TYPE_MEMORY_REGION)
40
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54 size_t len,
55 MemoryRegion *mr);
56 #else
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)57 static inline void fuzz_dma_read_cb(size_t addr,
58 size_t len,
59 MemoryRegion *mr)
60 {
61 /* Do Nothing */
62 }
63 #endif
64
65 /* Possible bits for global_dirty_log_{start|stop} */
66
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
69
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT (1U << 2)
75
76 #define GLOBAL_DIRTY_MASK (0x7)
77
78 extern unsigned int global_dirty_tracking;
79
80 typedef struct MemoryRegionOps MemoryRegionOps;
81
82 struct ReservedRegion {
83 Range range;
84 unsigned type;
85 };
86
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89 *
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
98 * @unmergeable: this section should not get merged with adjacent sections
99 */
100 struct MemoryRegionSection {
101 Int128 size;
102 MemoryRegion *mr;
103 FlatView *fv;
104 hwaddr offset_within_region;
105 hwaddr offset_within_address_space;
106 bool readonly;
107 bool nonvolatile;
108 bool unmergeable;
109 };
110
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112
113 /* See address_space_translate: bit 0 is read, bit 1 is write. */
114 typedef enum {
115 IOMMU_NONE = 0,
116 IOMMU_RO = 1,
117 IOMMU_WO = 2,
118 IOMMU_RW = 3,
119 } IOMMUAccessFlags;
120
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122
123 struct IOMMUTLBEntry {
124 AddressSpace *target_as;
125 hwaddr iova;
126 hwaddr translated_addr;
127 hwaddr addr_mask; /* 0xfff = 4k translation */
128 IOMMUAccessFlags perm;
129 };
130
131 /*
132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133 * register with one or multiple IOMMU Notifier capability bit(s).
134 *
135 * Normally there're two use cases for the notifiers:
136 *
137 * (1) When the device needs accurate synchronizations of the vIOMMU page
138 * tables, it needs to register with both MAP|UNMAP notifies (which
139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140 *
141 * Regarding to accurate synchronization, it's when the notified
142 * device maintains a shadow page table and must be notified on each
143 * guest MAP (page table entry creation) and UNMAP (invalidation)
144 * events (e.g. VFIO). Both notifications must be accurate so that
145 * the shadow page table is fully in sync with the guest view.
146 *
147 * (2) When the device doesn't need accurate synchronizations of the
148 * vIOMMU page tables, it needs to register only with UNMAP or
149 * DEVIOTLB_UNMAP notifies.
150 *
151 * It's when the device maintains a cache of IOMMU translations
152 * (IOTLB) and is able to fill that cache by requesting translations
153 * from the vIOMMU through a protocol similar to ATS (Address
154 * Translation Service).
155 *
156 * Note that in this mode the vIOMMU will not maintain a shadowed
157 * page table for the address space, and the UNMAP messages can cover
158 * more than the pages that used to get mapped. The IOMMU notifiee
159 * should be able to take care of over-sized invalidations.
160 */
161 typedef enum {
162 IOMMU_NOTIFIER_NONE = 0,
163 /* Notify cache invalidations */
164 IOMMU_NOTIFIER_UNMAP = 0x1,
165 /* Notify entry changes (newly created entries) */
166 IOMMU_NOTIFIER_MAP = 0x2,
167 /* Notify changes on device IOTLB entries */
168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178 IOMMUTLBEntry *data);
179
180 struct IOMMUNotifier {
181 IOMMUNotify notify;
182 IOMMUNotifierFlag notifier_flags;
183 /* Notify for address space range start <= addr <= end */
184 hwaddr start;
185 hwaddr end;
186 int iommu_idx;
187 QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190
191 typedef struct IOMMUTLBEvent {
192 IOMMUNotifierFlag type;
193 IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC (1 << 0)
198
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED (1 << 1)
201
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203 * Resizing RAM while migrating can result in the migration being canceled.
204 */
205 #define RAM_RESIZEABLE (1 << 2)
206
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208 * zero the page and wake waiting processes.
209 * (Set during postcopy)
210 */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218
219
220 /*
221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222 * support 'write-tracking' migration type.
223 * Implies ram_state->ram_wt_enabled.
224 */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226
227 /*
228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229 * pages if applicable) is skipped: will bail out if not supported. When not
230 * set, the OS will do the reservation, if supported for the memory type.
231 */
232 #define RAM_NORESERVE (1 << 7)
233
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD (1 << 12)
248
iommu_notifier_init(IOMMUNotifier * n,IOMMUNotify fn,IOMMUNotifierFlag flags,hwaddr start,hwaddr end,int iommu_idx)249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
250 IOMMUNotifierFlag flags,
251 hwaddr start, hwaddr end,
252 int iommu_idx)
253 {
254 n->notify = fn;
255 n->notifier_flags = flags;
256 n->start = start;
257 n->end = end;
258 n->iommu_idx = iommu_idx;
259 }
260
261 /*
262 * Memory region callbacks
263 */
264 struct MemoryRegionOps {
265 /* Read from the memory region. @addr is relative to @mr; @size is
266 * in bytes. */
267 uint64_t (*read)(void *opaque,
268 hwaddr addr,
269 unsigned size);
270 /* Write to the memory region. @addr is relative to @mr; @size is
271 * in bytes. */
272 void (*write)(void *opaque,
273 hwaddr addr,
274 uint64_t data,
275 unsigned size);
276
277 MemTxResult (*read_with_attrs)(void *opaque,
278 hwaddr addr,
279 uint64_t *data,
280 unsigned size,
281 MemTxAttrs attrs);
282 MemTxResult (*write_with_attrs)(void *opaque,
283 hwaddr addr,
284 uint64_t data,
285 unsigned size,
286 MemTxAttrs attrs);
287
288 enum device_endian endianness;
289 /* Guest-visible constraints: */
290 struct {
291 /* If nonzero, specify bounds on access sizes beyond which a machine
292 * check is thrown.
293 */
294 unsigned min_access_size;
295 unsigned max_access_size;
296 /* If true, unaligned accesses are supported. Otherwise unaligned
297 * accesses throw machine checks.
298 */
299 bool unaligned;
300 /*
301 * If present, and returns #false, the transaction is not accepted
302 * by the device (and results in machine dependent behaviour such
303 * as a machine check exception).
304 */
305 bool (*accepts)(void *opaque, hwaddr addr,
306 unsigned size, bool is_write,
307 MemTxAttrs attrs);
308 } valid;
309 /* Internal implementation constraints: */
310 struct {
311 /* If nonzero, specifies the minimum size implemented. Smaller sizes
312 * will be rounded upwards and a partial result will be returned.
313 */
314 unsigned min_access_size;
315 /* If nonzero, specifies the maximum size implemented. Larger sizes
316 * will be done as a series of accesses with smaller sizes.
317 */
318 unsigned max_access_size;
319 /* If true, unaligned accesses are supported. Otherwise all accesses
320 * are converted to (possibly multiple) naturally aligned accesses.
321 */
322 bool unaligned;
323 } impl;
324 };
325
326 typedef struct MemoryRegionClass {
327 /* private */
328 ObjectClass parent_class;
329 } MemoryRegionClass;
330
331
332 enum IOMMUMemoryRegionAttr {
333 IOMMU_ATTR_SPAPR_TCE_FD
334 };
335
336 /*
337 * IOMMUMemoryRegionClass:
338 *
339 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
340 * and provide an implementation of at least the @translate method here
341 * to handle requests to the memory region. Other methods are optional.
342 *
343 * The IOMMU implementation must use the IOMMU notifier infrastructure
344 * to report whenever mappings are changed, by calling
345 * memory_region_notify_iommu() (or, if necessary, by calling
346 * memory_region_notify_iommu_one() for each registered notifier).
347 *
348 * Conceptually an IOMMU provides a mapping from input address
349 * to an output TLB entry. If the IOMMU is aware of memory transaction
350 * attributes and the output TLB entry depends on the transaction
351 * attributes, we represent this using IOMMU indexes. Each index
352 * selects a particular translation table that the IOMMU has:
353 *
354 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
355 *
356 * @translate takes an input address and an IOMMU index
357 *
358 * and the mapping returned can only depend on the input address and the
359 * IOMMU index.
360 *
361 * Most IOMMUs don't care about the transaction attributes and support
362 * only a single IOMMU index. A more complex IOMMU might have one index
363 * for secure transactions and one for non-secure transactions.
364 */
365 struct IOMMUMemoryRegionClass {
366 /* private: */
367 MemoryRegionClass parent_class;
368
369 /* public: */
370 /**
371 * @translate:
372 *
373 * Return a TLB entry that contains a given address.
374 *
375 * The IOMMUAccessFlags indicated via @flag are optional and may
376 * be specified as IOMMU_NONE to indicate that the caller needs
377 * the full translation information for both reads and writes. If
378 * the access flags are specified then the IOMMU implementation
379 * may use this as an optimization, to stop doing a page table
380 * walk as soon as it knows that the requested permissions are not
381 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
382 * full page table walk and report the permissions in the returned
383 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
384 * return different mappings for reads and writes.)
385 *
386 * The returned information remains valid while the caller is
387 * holding the big QEMU lock or is inside an RCU critical section;
388 * if the caller wishes to cache the mapping beyond that it must
389 * register an IOMMU notifier so it can invalidate its cached
390 * information when the IOMMU mapping changes.
391 *
392 * @iommu: the IOMMUMemoryRegion
393 *
394 * @hwaddr: address to be translated within the memory region
395 *
396 * @flag: requested access permission
397 *
398 * @iommu_idx: IOMMU index for the translation
399 */
400 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
401 IOMMUAccessFlags flag, int iommu_idx);
402 /**
403 * @get_min_page_size:
404 *
405 * Returns minimum supported page size in bytes.
406 *
407 * If this method is not provided then the minimum is assumed to
408 * be TARGET_PAGE_SIZE.
409 *
410 * @iommu: the IOMMUMemoryRegion
411 */
412 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
413 /**
414 * @notify_flag_changed:
415 *
416 * Called when IOMMU Notifier flag changes (ie when the set of
417 * events which IOMMU users are requesting notification for changes).
418 * Optional method -- need not be provided if the IOMMU does not
419 * need to know exactly which events must be notified.
420 *
421 * @iommu: the IOMMUMemoryRegion
422 *
423 * @old_flags: events which previously needed to be notified
424 *
425 * @new_flags: events which now need to be notified
426 *
427 * Returns 0 on success, or a negative errno; in particular
428 * returns -EINVAL if the new flag bitmap is not supported by the
429 * IOMMU memory region. In case of failure, the error object
430 * must be created
431 */
432 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
433 IOMMUNotifierFlag old_flags,
434 IOMMUNotifierFlag new_flags,
435 Error **errp);
436 /**
437 * @replay:
438 *
439 * Called to handle memory_region_iommu_replay().
440 *
441 * The default implementation of memory_region_iommu_replay() is to
442 * call the IOMMU translate method for every page in the address space
443 * with flag == IOMMU_NONE and then call the notifier if translate
444 * returns a valid mapping. If this method is implemented then it
445 * overrides the default behaviour, and must provide the full semantics
446 * of memory_region_iommu_replay(), by calling @notifier for every
447 * translation present in the IOMMU.
448 *
449 * Optional method -- an IOMMU only needs to provide this method
450 * if the default is inefficient or produces undesirable side effects.
451 *
452 * Note: this is not related to record-and-replay functionality.
453 */
454 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
455
456 /**
457 * @get_attr:
458 *
459 * Get IOMMU misc attributes. This is an optional method that
460 * can be used to allow users of the IOMMU to get implementation-specific
461 * information. The IOMMU implements this method to handle calls
462 * by IOMMU users to memory_region_iommu_get_attr() by filling in
463 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
464 * the IOMMU supports. If the method is unimplemented then
465 * memory_region_iommu_get_attr() will always return -EINVAL.
466 *
467 * @iommu: the IOMMUMemoryRegion
468 *
469 * @attr: attribute being queried
470 *
471 * @data: memory to fill in with the attribute data
472 *
473 * Returns 0 on success, or a negative errno; in particular
474 * returns -EINVAL for unrecognized or unimplemented attribute types.
475 */
476 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
477 void *data);
478
479 /**
480 * @attrs_to_index:
481 *
482 * Return the IOMMU index to use for a given set of transaction attributes.
483 *
484 * Optional method: if an IOMMU only supports a single IOMMU index then
485 * the default implementation of memory_region_iommu_attrs_to_index()
486 * will return 0.
487 *
488 * The indexes supported by an IOMMU must be contiguous, starting at 0.
489 *
490 * @iommu: the IOMMUMemoryRegion
491 * @attrs: memory transaction attributes
492 */
493 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
494
495 /**
496 * @num_indexes:
497 *
498 * Return the number of IOMMU indexes this IOMMU supports.
499 *
500 * Optional method: if this method is not provided, then
501 * memory_region_iommu_num_indexes() will return 1, indicating that
502 * only a single IOMMU index is supported.
503 *
504 * @iommu: the IOMMUMemoryRegion
505 */
506 int (*num_indexes)(IOMMUMemoryRegion *iommu);
507 };
508
509 typedef struct RamDiscardListener RamDiscardListener;
510 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
511 MemoryRegionSection *section);
512 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
513 MemoryRegionSection *section);
514
515 struct RamDiscardListener {
516 /*
517 * @notify_populate:
518 *
519 * Notification that previously discarded memory is about to get populated.
520 * Listeners are able to object. If any listener objects, already
521 * successfully notified listeners are notified about a discard again.
522 *
523 * @rdl: the #RamDiscardListener getting notified
524 * @section: the #MemoryRegionSection to get populated. The section
525 * is aligned within the memory region to the minimum granularity
526 * unless it would exceed the registered section.
527 *
528 * Returns 0 on success. If the notification is rejected by the listener,
529 * an error is returned.
530 */
531 NotifyRamPopulate notify_populate;
532
533 /*
534 * @notify_discard:
535 *
536 * Notification that previously populated memory was discarded successfully
537 * and listeners should drop all references to such memory and prevent
538 * new population (e.g., unmap).
539 *
540 * @rdl: the #RamDiscardListener getting notified
541 * @section: the #MemoryRegionSection to get populated. The section
542 * is aligned within the memory region to the minimum granularity
543 * unless it would exceed the registered section.
544 */
545 NotifyRamDiscard notify_discard;
546
547 /*
548 * @double_discard_supported:
549 *
550 * The listener suppors getting @notify_discard notifications that span
551 * already discarded parts.
552 */
553 bool double_discard_supported;
554
555 MemoryRegionSection *section;
556 QLIST_ENTRY(RamDiscardListener) next;
557 };
558
ram_discard_listener_init(RamDiscardListener * rdl,NotifyRamPopulate populate_fn,NotifyRamDiscard discard_fn,bool double_discard_supported)559 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
560 NotifyRamPopulate populate_fn,
561 NotifyRamDiscard discard_fn,
562 bool double_discard_supported)
563 {
564 rdl->notify_populate = populate_fn;
565 rdl->notify_discard = discard_fn;
566 rdl->double_discard_supported = double_discard_supported;
567 }
568
569 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
570 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
571
572 /*
573 * RamDiscardManagerClass:
574 *
575 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
576 * regions are currently populated to be used/accessed by the VM, notifying
577 * after parts were discarded (freeing up memory) and before parts will be
578 * populated (consuming memory), to be used/accessed by the VM.
579 *
580 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
581 * #MemoryRegion isn't mapped into an address space yet (either directly
582 * or via an alias); it cannot change while the #MemoryRegion is
583 * mapped into an address space.
584 *
585 * The #RamDiscardManager is intended to be used by technologies that are
586 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
587 * memory inside a #MemoryRegion), and require proper coordination to only
588 * map the currently populated parts, to hinder parts that are expected to
589 * remain discarded from silently getting populated and consuming memory.
590 * Technologies that support discarding of RAM don't have to bother and can
591 * simply map the whole #MemoryRegion.
592 *
593 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
594 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
595 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
596 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
597 * properly coordinate with listeners before memory is plugged (populated),
598 * and after memory is unplugged (discarded).
599 *
600 * Listeners are called in multiples of the minimum granularity (unless it
601 * would exceed the registered range) and changes are aligned to the minimum
602 * granularity within the #MemoryRegion. Listeners have to prepare for memory
603 * becoming discarded in a different granularity than it was populated and the
604 * other way around.
605 */
606 struct RamDiscardManagerClass {
607 /* private */
608 InterfaceClass parent_class;
609
610 /* public */
611
612 /**
613 * @get_min_granularity:
614 *
615 * Get the minimum granularity in which listeners will get notified
616 * about changes within the #MemoryRegion via the #RamDiscardManager.
617 *
618 * @rdm: the #RamDiscardManager
619 * @mr: the #MemoryRegion
620 *
621 * Returns the minimum granularity.
622 */
623 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
624 const MemoryRegion *mr);
625
626 /**
627 * @is_populated:
628 *
629 * Check whether the given #MemoryRegionSection is completely populated
630 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
631 * There are no alignment requirements.
632 *
633 * @rdm: the #RamDiscardManager
634 * @section: the #MemoryRegionSection
635 *
636 * Returns whether the given range is completely populated.
637 */
638 bool (*is_populated)(const RamDiscardManager *rdm,
639 const MemoryRegionSection *section);
640
641 /**
642 * @replay_populated:
643 *
644 * Call the #ReplayRamPopulate callback for all populated parts within the
645 * #MemoryRegionSection via the #RamDiscardManager.
646 *
647 * In case any call fails, no further calls are made.
648 *
649 * @rdm: the #RamDiscardManager
650 * @section: the #MemoryRegionSection
651 * @replay_fn: the #ReplayRamPopulate callback
652 * @opaque: pointer to forward to the callback
653 *
654 * Returns 0 on success, or a negative error if any notification failed.
655 */
656 int (*replay_populated)(const RamDiscardManager *rdm,
657 MemoryRegionSection *section,
658 ReplayRamPopulate replay_fn, void *opaque);
659
660 /**
661 * @replay_discarded:
662 *
663 * Call the #ReplayRamDiscard callback for all discarded parts within the
664 * #MemoryRegionSection via the #RamDiscardManager.
665 *
666 * @rdm: the #RamDiscardManager
667 * @section: the #MemoryRegionSection
668 * @replay_fn: the #ReplayRamDiscard callback
669 * @opaque: pointer to forward to the callback
670 */
671 void (*replay_discarded)(const RamDiscardManager *rdm,
672 MemoryRegionSection *section,
673 ReplayRamDiscard replay_fn, void *opaque);
674
675 /**
676 * @register_listener:
677 *
678 * Register a #RamDiscardListener for the given #MemoryRegionSection and
679 * immediately notify the #RamDiscardListener about all populated parts
680 * within the #MemoryRegionSection via the #RamDiscardManager.
681 *
682 * In case any notification fails, no further notifications are triggered
683 * and an error is logged.
684 *
685 * @rdm: the #RamDiscardManager
686 * @rdl: the #RamDiscardListener
687 * @section: the #MemoryRegionSection
688 */
689 void (*register_listener)(RamDiscardManager *rdm,
690 RamDiscardListener *rdl,
691 MemoryRegionSection *section);
692
693 /**
694 * @unregister_listener:
695 *
696 * Unregister a previously registered #RamDiscardListener via the
697 * #RamDiscardManager after notifying the #RamDiscardListener about all
698 * populated parts becoming unpopulated within the registered
699 * #MemoryRegionSection.
700 *
701 * @rdm: the #RamDiscardManager
702 * @rdl: the #RamDiscardListener
703 */
704 void (*unregister_listener)(RamDiscardManager *rdm,
705 RamDiscardListener *rdl);
706 };
707
708 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
709 const MemoryRegion *mr);
710
711 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
712 const MemoryRegionSection *section);
713
714 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
715 MemoryRegionSection *section,
716 ReplayRamPopulate replay_fn,
717 void *opaque);
718
719 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
720 MemoryRegionSection *section,
721 ReplayRamDiscard replay_fn,
722 void *opaque);
723
724 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
725 RamDiscardListener *rdl,
726 MemoryRegionSection *section);
727
728 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
729 RamDiscardListener *rdl);
730
731 /**
732 * memory_get_xlat_addr: Extract addresses from a TLB entry
733 *
734 * @iotlb: pointer to an #IOMMUTLBEntry
735 * @vaddr: virtual address
736 * @ram_addr: RAM address
737 * @read_only: indicates if writes are allowed
738 * @mr_has_discard_manager: indicates memory is controlled by a
739 * RamDiscardManager
740 * @errp: pointer to Error*, to store an error if it happens.
741 *
742 * Return: true on success, else false setting @errp with error.
743 */
744 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
745 ram_addr_t *ram_addr, bool *read_only,
746 bool *mr_has_discard_manager, Error **errp);
747
748 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
749 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
750
751 /** MemoryRegion:
752 *
753 * A struct representing a memory region.
754 */
755 struct MemoryRegion {
756 Object parent_obj;
757
758 /* private: */
759
760 /* The following fields should fit in a cache line */
761 bool romd_mode;
762 bool ram;
763 bool subpage;
764 bool readonly; /* For RAM regions */
765 bool nonvolatile;
766 bool rom_device;
767 bool flush_coalesced_mmio;
768 bool unmergeable;
769 uint8_t dirty_log_mask;
770 bool is_iommu;
771 RAMBlock *ram_block;
772 Object *owner;
773 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
774 DeviceState *dev;
775
776 const MemoryRegionOps *ops;
777 void *opaque;
778 MemoryRegion *container;
779 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
780 Int128 size;
781 hwaddr addr;
782 void (*destructor)(MemoryRegion *mr);
783 uint64_t align;
784 bool terminates;
785 bool ram_device;
786 bool enabled;
787 bool warning_printed; /* For reservations */
788 uint8_t vga_logging_count;
789 MemoryRegion *alias;
790 hwaddr alias_offset;
791 int32_t priority;
792 QTAILQ_HEAD(, MemoryRegion) subregions;
793 QTAILQ_ENTRY(MemoryRegion) subregions_link;
794 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
795 const char *name;
796 unsigned ioeventfd_nb;
797 MemoryRegionIoeventfd *ioeventfds;
798 RamDiscardManager *rdm; /* Only for RAM */
799
800 /* For devices designed to perform re-entrant IO into their own IO MRs */
801 bool disable_reentrancy_guard;
802 };
803
804 struct IOMMUMemoryRegion {
805 MemoryRegion parent_obj;
806
807 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
808 IOMMUNotifierFlag iommu_notify_flags;
809 };
810
811 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
812 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
813
814 #define MEMORY_LISTENER_PRIORITY_MIN 0
815 #define MEMORY_LISTENER_PRIORITY_ACCEL 10
816 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10
817
818 /**
819 * struct MemoryListener: callbacks structure for updates to the physical memory map
820 *
821 * Allows a component to adjust to changes in the guest-visible memory map.
822 * Use with memory_listener_register() and memory_listener_unregister().
823 */
824 struct MemoryListener {
825 /**
826 * @begin:
827 *
828 * Called at the beginning of an address space update transaction.
829 * Followed by calls to #MemoryListener.region_add(),
830 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
831 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
832 * increasing address order.
833 *
834 * @listener: The #MemoryListener.
835 */
836 void (*begin)(MemoryListener *listener);
837
838 /**
839 * @commit:
840 *
841 * Called at the end of an address space update transaction,
842 * after the last call to #MemoryListener.region_add(),
843 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
844 * #MemoryListener.log_start() and #MemoryListener.log_stop().
845 *
846 * @listener: The #MemoryListener.
847 */
848 void (*commit)(MemoryListener *listener);
849
850 /**
851 * @region_add:
852 *
853 * Called during an address space update transaction,
854 * for a section of the address space that is new in this address space
855 * space since the last transaction.
856 *
857 * @listener: The #MemoryListener.
858 * @section: The new #MemoryRegionSection.
859 */
860 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
861
862 /**
863 * @region_del:
864 *
865 * Called during an address space update transaction,
866 * for a section of the address space that has disappeared in the address
867 * space since the last transaction.
868 *
869 * @listener: The #MemoryListener.
870 * @section: The old #MemoryRegionSection.
871 */
872 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
873
874 /**
875 * @region_nop:
876 *
877 * Called during an address space update transaction,
878 * for a section of the address space that is in the same place in the address
879 * space as in the last transaction.
880 *
881 * @listener: The #MemoryListener.
882 * @section: The #MemoryRegionSection.
883 */
884 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
885
886 /**
887 * @log_start:
888 *
889 * Called during an address space update transaction, after
890 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
891 * #MemoryListener.region_nop(), if dirty memory logging clients have
892 * become active since the last transaction.
893 *
894 * @listener: The #MemoryListener.
895 * @section: The #MemoryRegionSection.
896 * @old: A bitmap of dirty memory logging clients that were active in
897 * the previous transaction.
898 * @new: A bitmap of dirty memory logging clients that are active in
899 * the current transaction.
900 */
901 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
902 int old_val, int new_val);
903
904 /**
905 * @log_stop:
906 *
907 * Called during an address space update transaction, after
908 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
909 * #MemoryListener.region_nop() and possibly after
910 * #MemoryListener.log_start(), if dirty memory logging clients have
911 * become inactive since the last transaction.
912 *
913 * @listener: The #MemoryListener.
914 * @section: The #MemoryRegionSection.
915 * @old: A bitmap of dirty memory logging clients that were active in
916 * the previous transaction.
917 * @new: A bitmap of dirty memory logging clients that are active in
918 * the current transaction.
919 */
920 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
921 int old_val, int new_val);
922
923 /**
924 * @log_sync:
925 *
926 * Called by memory_region_snapshot_and_clear_dirty() and
927 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
928 * copy of the dirty memory bitmap for a #MemoryRegionSection.
929 *
930 * @listener: The #MemoryListener.
931 * @section: The #MemoryRegionSection.
932 */
933 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
934
935 /**
936 * @log_sync_global:
937 *
938 * This is the global version of @log_sync when the listener does
939 * not have a way to synchronize the log with finer granularity.
940 * When the listener registers with @log_sync_global defined, then
941 * its @log_sync must be NULL. Vice versa.
942 *
943 * @listener: The #MemoryListener.
944 * @last_stage: The last stage to synchronize the log during migration.
945 * The caller should guarantee that the synchronization with true for
946 * @last_stage is triggered for once after all VCPUs have been stopped.
947 */
948 void (*log_sync_global)(MemoryListener *listener, bool last_stage);
949
950 /**
951 * @log_clear:
952 *
953 * Called before reading the dirty memory bitmap for a
954 * #MemoryRegionSection.
955 *
956 * @listener: The #MemoryListener.
957 * @section: The #MemoryRegionSection.
958 */
959 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
960
961 /**
962 * @log_global_start:
963 *
964 * Called by memory_global_dirty_log_start(), which
965 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
966 * the address space. #MemoryListener.log_global_start() is also
967 * called when a #MemoryListener is added, if global dirty logging is
968 * active at that time.
969 *
970 * @listener: The #MemoryListener.
971 * @errp: pointer to Error*, to store an error if it happens.
972 *
973 * Return: true on success, else false setting @errp with error.
974 */
975 bool (*log_global_start)(MemoryListener *listener, Error **errp);
976
977 /**
978 * @log_global_stop:
979 *
980 * Called by memory_global_dirty_log_stop(), which
981 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
982 * the address space.
983 *
984 * @listener: The #MemoryListener.
985 */
986 void (*log_global_stop)(MemoryListener *listener);
987
988 /**
989 * @log_global_after_sync:
990 *
991 * Called after reading the dirty memory bitmap
992 * for any #MemoryRegionSection.
993 *
994 * @listener: The #MemoryListener.
995 */
996 void (*log_global_after_sync)(MemoryListener *listener);
997
998 /**
999 * @eventfd_add:
1000 *
1001 * Called during an address space update transaction,
1002 * for a section of the address space that has had a new ioeventfd
1003 * registration since the last transaction.
1004 *
1005 * @listener: The #MemoryListener.
1006 * @section: The new #MemoryRegionSection.
1007 * @match_data: The @match_data parameter for the new ioeventfd.
1008 * @data: The @data parameter for the new ioeventfd.
1009 * @e: The #EventNotifier parameter for the new ioeventfd.
1010 */
1011 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1012 bool match_data, uint64_t data, EventNotifier *e);
1013
1014 /**
1015 * @eventfd_del:
1016 *
1017 * Called during an address space update transaction,
1018 * for a section of the address space that has dropped an ioeventfd
1019 * registration since the last transaction.
1020 *
1021 * @listener: The #MemoryListener.
1022 * @section: The new #MemoryRegionSection.
1023 * @match_data: The @match_data parameter for the dropped ioeventfd.
1024 * @data: The @data parameter for the dropped ioeventfd.
1025 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1026 */
1027 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1028 bool match_data, uint64_t data, EventNotifier *e);
1029
1030 /**
1031 * @coalesced_io_add:
1032 *
1033 * Called during an address space update transaction,
1034 * for a section of the address space that has had a new coalesced
1035 * MMIO range registration since the last transaction.
1036 *
1037 * @listener: The #MemoryListener.
1038 * @section: The new #MemoryRegionSection.
1039 * @addr: The starting address for the coalesced MMIO range.
1040 * @len: The length of the coalesced MMIO range.
1041 */
1042 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1043 hwaddr addr, hwaddr len);
1044
1045 /**
1046 * @coalesced_io_del:
1047 *
1048 * Called during an address space update transaction,
1049 * for a section of the address space that has dropped a coalesced
1050 * MMIO range since the last transaction.
1051 *
1052 * @listener: The #MemoryListener.
1053 * @section: The new #MemoryRegionSection.
1054 * @addr: The starting address for the coalesced MMIO range.
1055 * @len: The length of the coalesced MMIO range.
1056 */
1057 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1058 hwaddr addr, hwaddr len);
1059 /**
1060 * @priority:
1061 *
1062 * Govern the order in which memory listeners are invoked. Lower priorities
1063 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1064 * or "stop" callbacks.
1065 */
1066 unsigned priority;
1067
1068 /**
1069 * @name:
1070 *
1071 * Name of the listener. It can be used in contexts where we'd like to
1072 * identify one memory listener with the rest.
1073 */
1074 const char *name;
1075
1076 /* private: */
1077 AddressSpace *address_space;
1078 QTAILQ_ENTRY(MemoryListener) link;
1079 QTAILQ_ENTRY(MemoryListener) link_as;
1080 };
1081
1082 typedef struct AddressSpaceMapClient {
1083 QEMUBH *bh;
1084 QLIST_ENTRY(AddressSpaceMapClient) link;
1085 } AddressSpaceMapClient;
1086
1087 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096)
1088
1089 /**
1090 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1091 */
1092 struct AddressSpace {
1093 /* private: */
1094 struct rcu_head rcu;
1095 char *name;
1096 MemoryRegion *root;
1097
1098 /* Accessed via RCU. */
1099 struct FlatView *current_map;
1100
1101 int ioeventfd_nb;
1102 int ioeventfd_notifiers;
1103 struct MemoryRegionIoeventfd *ioeventfds;
1104 QTAILQ_HEAD(, MemoryListener) listeners;
1105 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1106
1107 /*
1108 * Maximum DMA bounce buffer size used for indirect memory map requests.
1109 * This limits the total size of bounce buffer allocations made for
1110 * DMA requests to indirect memory regions within this AddressSpace. DMA
1111 * requests that exceed the limit (e.g. due to overly large requested size
1112 * or concurrent DMA requests having claimed too much buffer space) will be
1113 * rejected and left to the caller to handle.
1114 */
1115 size_t max_bounce_buffer_size;
1116 /* Total size of bounce buffers currently allocated, atomically accessed */
1117 size_t bounce_buffer_size;
1118 /* List of callbacks to invoke when buffers free up */
1119 QemuMutex map_client_list_lock;
1120 QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1121 };
1122
1123 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1124 typedef struct FlatRange FlatRange;
1125
1126 /* Flattened global view of current active memory hierarchy. Kept in sorted
1127 * order.
1128 */
1129 struct FlatView {
1130 struct rcu_head rcu;
1131 unsigned ref;
1132 FlatRange *ranges;
1133 unsigned nr;
1134 unsigned nr_allocated;
1135 struct AddressSpaceDispatch *dispatch;
1136 MemoryRegion *root;
1137 };
1138
address_space_to_flatview(AddressSpace * as)1139 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1140 {
1141 return qatomic_rcu_read(&as->current_map);
1142 }
1143
1144 /**
1145 * typedef flatview_cb: callback for flatview_for_each_range()
1146 *
1147 * @start: start address of the range within the FlatView
1148 * @len: length of the range in bytes
1149 * @mr: MemoryRegion covering this range
1150 * @offset_in_region: offset of the first byte of the range within @mr
1151 * @opaque: data pointer passed to flatview_for_each_range()
1152 *
1153 * Returns: true to stop the iteration, false to keep going.
1154 */
1155 typedef bool (*flatview_cb)(Int128 start,
1156 Int128 len,
1157 const MemoryRegion *mr,
1158 hwaddr offset_in_region,
1159 void *opaque);
1160
1161 /**
1162 * flatview_for_each_range: Iterate through a FlatView
1163 * @fv: the FlatView to iterate through
1164 * @cb: function to call for each range
1165 * @opaque: opaque data pointer to pass to @cb
1166 *
1167 * A FlatView is made up of a list of non-overlapping ranges, each of
1168 * which is a slice of a MemoryRegion. This function iterates through
1169 * each range in @fv, calling @cb. The callback function can terminate
1170 * iteration early by returning 'true'.
1171 */
1172 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1173
MemoryRegionSection_eq(MemoryRegionSection * a,MemoryRegionSection * b)1174 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1175 MemoryRegionSection *b)
1176 {
1177 return a->mr == b->mr &&
1178 a->fv == b->fv &&
1179 a->offset_within_region == b->offset_within_region &&
1180 a->offset_within_address_space == b->offset_within_address_space &&
1181 int128_eq(a->size, b->size) &&
1182 a->readonly == b->readonly &&
1183 a->nonvolatile == b->nonvolatile;
1184 }
1185
1186 /**
1187 * memory_region_section_new_copy: Copy a memory region section
1188 *
1189 * Allocate memory for a new copy, copy the memory region section, and
1190 * properly take a reference on all relevant members.
1191 *
1192 * @s: the #MemoryRegionSection to copy
1193 */
1194 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1195
1196 /**
1197 * memory_region_section_new_copy: Free a copied memory region section
1198 *
1199 * Free a copy of a memory section created via memory_region_section_new_copy().
1200 * properly dropping references on all relevant members.
1201 *
1202 * @s: the #MemoryRegionSection to copy
1203 */
1204 void memory_region_section_free_copy(MemoryRegionSection *s);
1205
1206 /**
1207 * memory_region_init: Initialize a memory region
1208 *
1209 * The region typically acts as a container for other memory regions. Use
1210 * memory_region_add_subregion() to add subregions.
1211 *
1212 * @mr: the #MemoryRegion to be initialized
1213 * @owner: the object that tracks the region's reference count
1214 * @name: used for debugging; not visible to the user or ABI
1215 * @size: size of the region; any subregions beyond this size will be clipped
1216 */
1217 void memory_region_init(MemoryRegion *mr,
1218 Object *owner,
1219 const char *name,
1220 uint64_t size);
1221
1222 /**
1223 * memory_region_ref: Add 1 to a memory region's reference count
1224 *
1225 * Whenever memory regions are accessed outside the BQL, they need to be
1226 * preserved against hot-unplug. MemoryRegions actually do not have their
1227 * own reference count; they piggyback on a QOM object, their "owner".
1228 * This function adds a reference to the owner.
1229 *
1230 * All MemoryRegions must have an owner if they can disappear, even if the
1231 * device they belong to operates exclusively under the BQL. This is because
1232 * the region could be returned at any time by memory_region_find, and this
1233 * is usually under guest control.
1234 *
1235 * @mr: the #MemoryRegion
1236 */
1237 void memory_region_ref(MemoryRegion *mr);
1238
1239 /**
1240 * memory_region_unref: Remove 1 to a memory region's reference count
1241 *
1242 * Whenever memory regions are accessed outside the BQL, they need to be
1243 * preserved against hot-unplug. MemoryRegions actually do not have their
1244 * own reference count; they piggyback on a QOM object, their "owner".
1245 * This function removes a reference to the owner and possibly destroys it.
1246 *
1247 * @mr: the #MemoryRegion
1248 */
1249 void memory_region_unref(MemoryRegion *mr);
1250
1251 /**
1252 * memory_region_init_io: Initialize an I/O memory region.
1253 *
1254 * Accesses into the region will cause the callbacks in @ops to be called.
1255 * if @size is nonzero, subregions will be clipped to @size.
1256 *
1257 * @mr: the #MemoryRegion to be initialized.
1258 * @owner: the object that tracks the region's reference count
1259 * @ops: a structure containing read and write callbacks to be used when
1260 * I/O is performed on the region.
1261 * @opaque: passed to the read and write callbacks of the @ops structure.
1262 * @name: used for debugging; not visible to the user or ABI
1263 * @size: size of the region.
1264 */
1265 void memory_region_init_io(MemoryRegion *mr,
1266 Object *owner,
1267 const MemoryRegionOps *ops,
1268 void *opaque,
1269 const char *name,
1270 uint64_t size);
1271
1272 /**
1273 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1274 * into the region will modify memory
1275 * directly.
1276 *
1277 * @mr: the #MemoryRegion to be initialized.
1278 * @owner: the object that tracks the region's reference count
1279 * @name: Region name, becomes part of RAMBlock name used in migration stream
1280 * must be unique within any device
1281 * @size: size of the region.
1282 * @errp: pointer to Error*, to store an error if it happens.
1283 *
1284 * Note that this function does not do anything to cause the data in the
1285 * RAM memory region to be migrated; that is the responsibility of the caller.
1286 *
1287 * Return: true on success, else false setting @errp with error.
1288 */
1289 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1290 Object *owner,
1291 const char *name,
1292 uint64_t size,
1293 Error **errp);
1294
1295 /**
1296 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1297 * Accesses into the region will
1298 * modify memory directly.
1299 *
1300 * @mr: the #MemoryRegion to be initialized.
1301 * @owner: the object that tracks the region's reference count
1302 * @name: Region name, becomes part of RAMBlock name used in migration stream
1303 * must be unique within any device
1304 * @size: size of the region.
1305 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1306 * RAM_GUEST_MEMFD.
1307 * @errp: pointer to Error*, to store an error if it happens.
1308 *
1309 * Note that this function does not do anything to cause the data in the
1310 * RAM memory region to be migrated; that is the responsibility of the caller.
1311 *
1312 * Return: true on success, else false setting @errp with error.
1313 */
1314 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1315 Object *owner,
1316 const char *name,
1317 uint64_t size,
1318 uint32_t ram_flags,
1319 Error **errp);
1320
1321 /**
1322 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1323 * RAM. Accesses into the region will
1324 * modify memory directly. Only an initial
1325 * portion of this RAM is actually used.
1326 * Changing the size while migrating
1327 * can result in the migration being
1328 * canceled.
1329 *
1330 * @mr: the #MemoryRegion to be initialized.
1331 * @owner: the object that tracks the region's reference count
1332 * @name: Region name, becomes part of RAMBlock name used in migration stream
1333 * must be unique within any device
1334 * @size: used size of the region.
1335 * @max_size: max size of the region.
1336 * @resized: callback to notify owner about used size change.
1337 * @errp: pointer to Error*, to store an error if it happens.
1338 *
1339 * Note that this function does not do anything to cause the data in the
1340 * RAM memory region to be migrated; that is the responsibility of the caller.
1341 *
1342 * Return: true on success, else false setting @errp with error.
1343 */
1344 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1345 Object *owner,
1346 const char *name,
1347 uint64_t size,
1348 uint64_t max_size,
1349 void (*resized)(const char*,
1350 uint64_t length,
1351 void *host),
1352 Error **errp);
1353 #ifdef CONFIG_POSIX
1354
1355 /**
1356 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1357 * mmap-ed backend.
1358 *
1359 * @mr: the #MemoryRegion to be initialized.
1360 * @owner: the object that tracks the region's reference count
1361 * @name: Region name, becomes part of RAMBlock name used in migration stream
1362 * must be unique within any device
1363 * @size: size of the region.
1364 * @align: alignment of the region base address; if 0, the default alignment
1365 * (getpagesize()) will be used.
1366 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1367 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1368 * RAM_READONLY_FD, RAM_GUEST_MEMFD
1369 * @path: the path in which to allocate the RAM.
1370 * @offset: offset within the file referenced by path
1371 * @errp: pointer to Error*, to store an error if it happens.
1372 *
1373 * Note that this function does not do anything to cause the data in the
1374 * RAM memory region to be migrated; that is the responsibility of the caller.
1375 *
1376 * Return: true on success, else false setting @errp with error.
1377 */
1378 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1379 Object *owner,
1380 const char *name,
1381 uint64_t size,
1382 uint64_t align,
1383 uint32_t ram_flags,
1384 const char *path,
1385 ram_addr_t offset,
1386 Error **errp);
1387
1388 /**
1389 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1390 * mmap-ed backend.
1391 *
1392 * @mr: the #MemoryRegion to be initialized.
1393 * @owner: the object that tracks the region's reference count
1394 * @name: the name of the region.
1395 * @size: size of the region.
1396 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1397 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1398 * RAM_READONLY_FD, RAM_GUEST_MEMFD
1399 * @fd: the fd to mmap.
1400 * @offset: offset within the file referenced by fd
1401 * @errp: pointer to Error*, to store an error if it happens.
1402 *
1403 * Note that this function does not do anything to cause the data in the
1404 * RAM memory region to be migrated; that is the responsibility of the caller.
1405 *
1406 * Return: true on success, else false setting @errp with error.
1407 */
1408 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1409 Object *owner,
1410 const char *name,
1411 uint64_t size,
1412 uint32_t ram_flags,
1413 int fd,
1414 ram_addr_t offset,
1415 Error **errp);
1416 #endif
1417
1418 /**
1419 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1420 * user-provided pointer. Accesses into the
1421 * region will modify memory directly.
1422 *
1423 * @mr: the #MemoryRegion to be initialized.
1424 * @owner: the object that tracks the region's reference count
1425 * @name: Region name, becomes part of RAMBlock name used in migration stream
1426 * must be unique within any device
1427 * @size: size of the region.
1428 * @ptr: memory to be mapped; must contain at least @size bytes.
1429 *
1430 * Note that this function does not do anything to cause the data in the
1431 * RAM memory region to be migrated; that is the responsibility of the caller.
1432 */
1433 void memory_region_init_ram_ptr(MemoryRegion *mr,
1434 Object *owner,
1435 const char *name,
1436 uint64_t size,
1437 void *ptr);
1438
1439 /**
1440 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1441 * a user-provided pointer.
1442 *
1443 * A RAM device represents a mapping to a physical device, such as to a PCI
1444 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1445 * into the VM address space and access to the region will modify memory
1446 * directly. However, the memory region should not be included in a memory
1447 * dump (device may not be enabled/mapped at the time of the dump), and
1448 * operations incompatible with manipulating MMIO should be avoided. Replaces
1449 * skip_dump flag.
1450 *
1451 * @mr: the #MemoryRegion to be initialized.
1452 * @owner: the object that tracks the region's reference count
1453 * @name: the name of the region.
1454 * @size: size of the region.
1455 * @ptr: memory to be mapped; must contain at least @size bytes.
1456 *
1457 * Note that this function does not do anything to cause the data in the
1458 * RAM memory region to be migrated; that is the responsibility of the caller.
1459 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1460 */
1461 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1462 Object *owner,
1463 const char *name,
1464 uint64_t size,
1465 void *ptr);
1466
1467 /**
1468 * memory_region_init_alias: Initialize a memory region that aliases all or a
1469 * part of another memory region.
1470 *
1471 * @mr: the #MemoryRegion to be initialized.
1472 * @owner: the object that tracks the region's reference count
1473 * @name: used for debugging; not visible to the user or ABI
1474 * @orig: the region to be referenced; @mr will be equivalent to
1475 * @orig between @offset and @offset + @size - 1.
1476 * @offset: start of the section in @orig to be referenced.
1477 * @size: size of the region.
1478 */
1479 void memory_region_init_alias(MemoryRegion *mr,
1480 Object *owner,
1481 const char *name,
1482 MemoryRegion *orig,
1483 hwaddr offset,
1484 uint64_t size);
1485
1486 /**
1487 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1488 *
1489 * This has the same effect as calling memory_region_init_ram_nomigrate()
1490 * and then marking the resulting region read-only with
1491 * memory_region_set_readonly().
1492 *
1493 * Note that this function does not do anything to cause the data in the
1494 * RAM side of the memory region to be migrated; that is the responsibility
1495 * of the caller.
1496 *
1497 * @mr: the #MemoryRegion to be initialized.
1498 * @owner: the object that tracks the region's reference count
1499 * @name: Region name, becomes part of RAMBlock name used in migration stream
1500 * must be unique within any device
1501 * @size: size of the region.
1502 * @errp: pointer to Error*, to store an error if it happens.
1503 *
1504 * Return: true on success, else false setting @errp with error.
1505 */
1506 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1507 Object *owner,
1508 const char *name,
1509 uint64_t size,
1510 Error **errp);
1511
1512 /**
1513 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1514 * Writes are handled via callbacks.
1515 *
1516 * Note that this function does not do anything to cause the data in the
1517 * RAM side of the memory region to be migrated; that is the responsibility
1518 * of the caller.
1519 *
1520 * @mr: the #MemoryRegion to be initialized.
1521 * @owner: the object that tracks the region's reference count
1522 * @ops: callbacks for write access handling (must not be NULL).
1523 * @opaque: passed to the read and write callbacks of the @ops structure.
1524 * @name: Region name, becomes part of RAMBlock name used in migration stream
1525 * must be unique within any device
1526 * @size: size of the region.
1527 * @errp: pointer to Error*, to store an error if it happens.
1528 *
1529 * Return: true on success, else false setting @errp with error.
1530 */
1531 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1532 Object *owner,
1533 const MemoryRegionOps *ops,
1534 void *opaque,
1535 const char *name,
1536 uint64_t size,
1537 Error **errp);
1538
1539 /**
1540 * memory_region_init_iommu: Initialize a memory region of a custom type
1541 * that translates addresses
1542 *
1543 * An IOMMU region translates addresses and forwards accesses to a target
1544 * memory region.
1545 *
1546 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1547 * @_iommu_mr should be a pointer to enough memory for an instance of
1548 * that subclass, @instance_size is the size of that subclass, and
1549 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1550 * instance of the subclass, and its methods will then be called to handle
1551 * accesses to the memory region. See the documentation of
1552 * #IOMMUMemoryRegionClass for further details.
1553 *
1554 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1555 * @instance_size: the IOMMUMemoryRegion subclass instance size
1556 * @mrtypename: the type name of the #IOMMUMemoryRegion
1557 * @owner: the object that tracks the region's reference count
1558 * @name: used for debugging; not visible to the user or ABI
1559 * @size: size of the region.
1560 */
1561 void memory_region_init_iommu(void *_iommu_mr,
1562 size_t instance_size,
1563 const char *mrtypename,
1564 Object *owner,
1565 const char *name,
1566 uint64_t size);
1567
1568 /**
1569 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1570 * region will modify memory directly.
1571 *
1572 * @mr: the #MemoryRegion to be initialized
1573 * @owner: the object that tracks the region's reference count (must be
1574 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1575 * @name: name of the memory region
1576 * @size: size of the region in bytes
1577 * @errp: pointer to Error*, to store an error if it happens.
1578 *
1579 * This function allocates RAM for a board model or device, and
1580 * arranges for it to be migrated (by calling vmstate_register_ram()
1581 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1582 * @owner is NULL).
1583 *
1584 * TODO: Currently we restrict @owner to being either NULL (for
1585 * global RAM regions with no owner) or devices, so that we can
1586 * give the RAM block a unique name for migration purposes.
1587 * We should lift this restriction and allow arbitrary Objects.
1588 * If you pass a non-NULL non-device @owner then we will assert.
1589 *
1590 * Return: true on success, else false setting @errp with error.
1591 */
1592 bool memory_region_init_ram(MemoryRegion *mr,
1593 Object *owner,
1594 const char *name,
1595 uint64_t size,
1596 Error **errp);
1597
1598 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
1599 Object *owner,
1600 const char *name,
1601 uint64_t size,
1602 Error **errp);
1603
1604 /**
1605 * memory_region_init_rom: Initialize a ROM memory region.
1606 *
1607 * This has the same effect as calling memory_region_init_ram()
1608 * and then marking the resulting region read-only with
1609 * memory_region_set_readonly(). This includes arranging for the
1610 * contents to be migrated.
1611 *
1612 * TODO: Currently we restrict @owner to being either NULL (for
1613 * global RAM regions with no owner) or devices, so that we can
1614 * give the RAM block a unique name for migration purposes.
1615 * We should lift this restriction and allow arbitrary Objects.
1616 * If you pass a non-NULL non-device @owner then we will assert.
1617 *
1618 * @mr: the #MemoryRegion to be initialized.
1619 * @owner: the object that tracks the region's reference count
1620 * @name: Region name, becomes part of RAMBlock name used in migration stream
1621 * must be unique within any device
1622 * @size: size of the region.
1623 * @errp: pointer to Error*, to store an error if it happens.
1624 *
1625 * Return: true on success, else false setting @errp with error.
1626 */
1627 bool memory_region_init_rom(MemoryRegion *mr,
1628 Object *owner,
1629 const char *name,
1630 uint64_t size,
1631 Error **errp);
1632
1633 /**
1634 * memory_region_init_rom_device: Initialize a ROM memory region.
1635 * Writes are handled via callbacks.
1636 *
1637 * This function initializes a memory region backed by RAM for reads
1638 * and callbacks for writes, and arranges for the RAM backing to
1639 * be migrated (by calling vmstate_register_ram()
1640 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1641 * @owner is NULL).
1642 *
1643 * TODO: Currently we restrict @owner to being either NULL (for
1644 * global RAM regions with no owner) or devices, so that we can
1645 * give the RAM block a unique name for migration purposes.
1646 * We should lift this restriction and allow arbitrary Objects.
1647 * If you pass a non-NULL non-device @owner then we will assert.
1648 *
1649 * @mr: the #MemoryRegion to be initialized.
1650 * @owner: the object that tracks the region's reference count
1651 * @ops: callbacks for write access handling (must not be NULL).
1652 * @opaque: passed to the read and write callbacks of the @ops structure.
1653 * @name: Region name, becomes part of RAMBlock name used in migration stream
1654 * must be unique within any device
1655 * @size: size of the region.
1656 * @errp: pointer to Error*, to store an error if it happens.
1657 *
1658 * Return: true on success, else false setting @errp with error.
1659 */
1660 bool memory_region_init_rom_device(MemoryRegion *mr,
1661 Object *owner,
1662 const MemoryRegionOps *ops,
1663 void *opaque,
1664 const char *name,
1665 uint64_t size,
1666 Error **errp);
1667
1668
1669 /**
1670 * memory_region_owner: get a memory region's owner.
1671 *
1672 * @mr: the memory region being queried.
1673 */
1674 Object *memory_region_owner(MemoryRegion *mr);
1675
1676 /**
1677 * memory_region_size: get a memory region's size.
1678 *
1679 * @mr: the memory region being queried.
1680 */
1681 uint64_t memory_region_size(MemoryRegion *mr);
1682
1683 /**
1684 * memory_region_is_ram: check whether a memory region is random access
1685 *
1686 * Returns %true if a memory region is random access.
1687 *
1688 * @mr: the memory region being queried
1689 */
memory_region_is_ram(MemoryRegion * mr)1690 static inline bool memory_region_is_ram(MemoryRegion *mr)
1691 {
1692 return mr->ram;
1693 }
1694
1695 /**
1696 * memory_region_is_ram_device: check whether a memory region is a ram device
1697 *
1698 * Returns %true if a memory region is a device backed ram region
1699 *
1700 * @mr: the memory region being queried
1701 */
1702 bool memory_region_is_ram_device(MemoryRegion *mr);
1703
1704 /**
1705 * memory_region_is_romd: check whether a memory region is in ROMD mode
1706 *
1707 * Returns %true if a memory region is a ROM device and currently set to allow
1708 * direct reads.
1709 *
1710 * @mr: the memory region being queried
1711 */
memory_region_is_romd(MemoryRegion * mr)1712 static inline bool memory_region_is_romd(MemoryRegion *mr)
1713 {
1714 return mr->rom_device && mr->romd_mode;
1715 }
1716
1717 /**
1718 * memory_region_is_protected: check whether a memory region is protected
1719 *
1720 * Returns %true if a memory region is protected RAM and cannot be accessed
1721 * via standard mechanisms, e.g. DMA.
1722 *
1723 * @mr: the memory region being queried
1724 */
1725 bool memory_region_is_protected(MemoryRegion *mr);
1726
1727 /**
1728 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1729 * associated
1730 *
1731 * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1732 *
1733 * @mr: the memory region being queried
1734 */
1735 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1736
1737 /**
1738 * memory_region_get_iommu: check whether a memory region is an iommu
1739 *
1740 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1741 * otherwise NULL.
1742 *
1743 * @mr: the memory region being queried
1744 */
memory_region_get_iommu(MemoryRegion * mr)1745 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1746 {
1747 if (mr->alias) {
1748 return memory_region_get_iommu(mr->alias);
1749 }
1750 if (mr->is_iommu) {
1751 return (IOMMUMemoryRegion *) mr;
1752 }
1753 return NULL;
1754 }
1755
1756 /**
1757 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1758 * if an iommu or NULL if not
1759 *
1760 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1761 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1762 *
1763 * @iommu_mr: the memory region being queried
1764 */
memory_region_get_iommu_class_nocheck(IOMMUMemoryRegion * iommu_mr)1765 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1766 IOMMUMemoryRegion *iommu_mr)
1767 {
1768 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1769 }
1770
1771 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1772
1773 /**
1774 * memory_region_iommu_get_min_page_size: get minimum supported page size
1775 * for an iommu
1776 *
1777 * Returns minimum supported page size for an iommu.
1778 *
1779 * @iommu_mr: the memory region being queried
1780 */
1781 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1782
1783 /**
1784 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1785 *
1786 * Note: for any IOMMU implementation, an in-place mapping change
1787 * should be notified with an UNMAP followed by a MAP.
1788 *
1789 * @iommu_mr: the memory region that was changed
1790 * @iommu_idx: the IOMMU index for the translation table which has changed
1791 * @event: TLB event with the new entry in the IOMMU translation table.
1792 * The entry replaces all old entries for the same virtual I/O address
1793 * range.
1794 */
1795 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1796 int iommu_idx,
1797 const IOMMUTLBEvent event);
1798
1799 /**
1800 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1801 * entry to a single notifier
1802 *
1803 * This works just like memory_region_notify_iommu(), but it only
1804 * notifies a specific notifier, not all of them.
1805 *
1806 * @notifier: the notifier to be notified
1807 * @event: TLB event with the new entry in the IOMMU translation table.
1808 * The entry replaces all old entries for the same virtual I/O address
1809 * range.
1810 */
1811 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1812 const IOMMUTLBEvent *event);
1813
1814 /**
1815 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1816 * translation that covers the
1817 * range of a notifier
1818 *
1819 * @notifier: the notifier to be notified
1820 */
1821 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1822
1823
1824 /**
1825 * memory_region_register_iommu_notifier: register a notifier for changes to
1826 * IOMMU translation entries.
1827 *
1828 * Returns 0 on success, or a negative errno otherwise. In particular,
1829 * -EINVAL indicates that at least one of the attributes of the notifier
1830 * is not supported (flag/range) by the IOMMU memory region. In case of error
1831 * the error object must be created.
1832 *
1833 * @mr: the memory region to observe
1834 * @n: the IOMMUNotifier to be added; the notify callback receives a
1835 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1836 * ceases to be valid on exit from the notifier.
1837 * @errp: pointer to Error*, to store an error if it happens.
1838 */
1839 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1840 IOMMUNotifier *n, Error **errp);
1841
1842 /**
1843 * memory_region_iommu_replay: replay existing IOMMU translations to
1844 * a notifier with the minimum page granularity returned by
1845 * mr->iommu_ops->get_page_size().
1846 *
1847 * Note: this is not related to record-and-replay functionality.
1848 *
1849 * @iommu_mr: the memory region to observe
1850 * @n: the notifier to which to replay iommu mappings
1851 */
1852 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1853
1854 /**
1855 * memory_region_unregister_iommu_notifier: unregister a notifier for
1856 * changes to IOMMU translation entries.
1857 *
1858 * @mr: the memory region which was observed and for which notify_stopped()
1859 * needs to be called
1860 * @n: the notifier to be removed.
1861 */
1862 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1863 IOMMUNotifier *n);
1864
1865 /**
1866 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1867 * defined on the IOMMU.
1868 *
1869 * Returns 0 on success, or a negative errno otherwise. In particular,
1870 * -EINVAL indicates that the IOMMU does not support the requested
1871 * attribute.
1872 *
1873 * @iommu_mr: the memory region
1874 * @attr: the requested attribute
1875 * @data: a pointer to the requested attribute data
1876 */
1877 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1878 enum IOMMUMemoryRegionAttr attr,
1879 void *data);
1880
1881 /**
1882 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1883 * use for translations with the given memory transaction attributes.
1884 *
1885 * @iommu_mr: the memory region
1886 * @attrs: the memory transaction attributes
1887 */
1888 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1889 MemTxAttrs attrs);
1890
1891 /**
1892 * memory_region_iommu_num_indexes: return the total number of IOMMU
1893 * indexes that this IOMMU supports.
1894 *
1895 * @iommu_mr: the memory region
1896 */
1897 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1898
1899 /**
1900 * memory_region_name: get a memory region's name
1901 *
1902 * Returns the string that was used to initialize the memory region.
1903 *
1904 * @mr: the memory region being queried
1905 */
1906 const char *memory_region_name(const MemoryRegion *mr);
1907
1908 /**
1909 * memory_region_is_logging: return whether a memory region is logging writes
1910 *
1911 * Returns %true if the memory region is logging writes for the given client
1912 *
1913 * @mr: the memory region being queried
1914 * @client: the client being queried
1915 */
1916 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1917
1918 /**
1919 * memory_region_get_dirty_log_mask: return the clients for which a
1920 * memory region is logging writes.
1921 *
1922 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1923 * are the bit indices.
1924 *
1925 * @mr: the memory region being queried
1926 */
1927 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1928
1929 /**
1930 * memory_region_is_rom: check whether a memory region is ROM
1931 *
1932 * Returns %true if a memory region is read-only memory.
1933 *
1934 * @mr: the memory region being queried
1935 */
memory_region_is_rom(MemoryRegion * mr)1936 static inline bool memory_region_is_rom(MemoryRegion *mr)
1937 {
1938 return mr->ram && mr->readonly;
1939 }
1940
1941 /**
1942 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1943 *
1944 * Returns %true is a memory region is non-volatile memory.
1945 *
1946 * @mr: the memory region being queried
1947 */
memory_region_is_nonvolatile(MemoryRegion * mr)1948 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1949 {
1950 return mr->nonvolatile;
1951 }
1952
1953 /**
1954 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1955 *
1956 * Returns a file descriptor backing a file-based RAM memory region,
1957 * or -1 if the region is not a file-based RAM memory region.
1958 *
1959 * @mr: the RAM or alias memory region being queried.
1960 */
1961 int memory_region_get_fd(MemoryRegion *mr);
1962
1963 /**
1964 * memory_region_from_host: Convert a pointer into a RAM memory region
1965 * and an offset within it.
1966 *
1967 * Given a host pointer inside a RAM memory region (created with
1968 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1969 * the MemoryRegion and the offset within it.
1970 *
1971 * Use with care; by the time this function returns, the returned pointer is
1972 * not protected by RCU anymore. If the caller is not within an RCU critical
1973 * section and does not hold the BQL, it must have other means of
1974 * protecting the pointer, such as a reference to the region that includes
1975 * the incoming ram_addr_t.
1976 *
1977 * @ptr: the host pointer to be converted
1978 * @offset: the offset within memory region
1979 */
1980 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1981
1982 /**
1983 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1984 *
1985 * Returns a host pointer to a RAM memory region (created with
1986 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1987 *
1988 * Use with care; by the time this function returns, the returned pointer is
1989 * not protected by RCU anymore. If the caller is not within an RCU critical
1990 * section and does not hold the BQL, it must have other means of
1991 * protecting the pointer, such as a reference to the region that includes
1992 * the incoming ram_addr_t.
1993 *
1994 * @mr: the memory region being queried.
1995 */
1996 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1997
1998 /* memory_region_ram_resize: Resize a RAM region.
1999 *
2000 * Resizing RAM while migrating can result in the migration being canceled.
2001 * Care has to be taken if the guest might have already detected the memory.
2002 *
2003 * @mr: a memory region created with @memory_region_init_resizeable_ram.
2004 * @newsize: the new size the region
2005 * @errp: pointer to Error*, to store an error if it happens.
2006 */
2007 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2008 Error **errp);
2009
2010 /**
2011 * memory_region_msync: Synchronize selected address range of
2012 * a memory mapped region
2013 *
2014 * @mr: the memory region to be msync
2015 * @addr: the initial address of the range to be sync
2016 * @size: the size of the range to be sync
2017 */
2018 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2019
2020 /**
2021 * memory_region_writeback: Trigger cache writeback for
2022 * selected address range
2023 *
2024 * @mr: the memory region to be updated
2025 * @addr: the initial address of the range to be written back
2026 * @size: the size of the range to be written back
2027 */
2028 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2029
2030 /**
2031 * memory_region_set_log: Turn dirty logging on or off for a region.
2032 *
2033 * Turns dirty logging on or off for a specified client (display, migration).
2034 * Only meaningful for RAM regions.
2035 *
2036 * @mr: the memory region being updated.
2037 * @log: whether dirty logging is to be enabled or disabled.
2038 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2039 */
2040 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2041
2042 /**
2043 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2044 *
2045 * Marks a range of bytes as dirty, after it has been dirtied outside
2046 * guest code.
2047 *
2048 * @mr: the memory region being dirtied.
2049 * @addr: the address (relative to the start of the region) being dirtied.
2050 * @size: size of the range being dirtied.
2051 */
2052 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2053 hwaddr size);
2054
2055 /**
2056 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2057 *
2058 * This function is called when the caller wants to clear the remote
2059 * dirty bitmap of a memory range within the memory region. This can
2060 * be used by e.g. KVM to manually clear dirty log when
2061 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2062 * kernel.
2063 *
2064 * @mr: the memory region to clear the dirty log upon
2065 * @start: start address offset within the memory region
2066 * @len: length of the memory region to clear dirty bitmap
2067 */
2068 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2069 hwaddr len);
2070
2071 /**
2072 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2073 * bitmap and clear it.
2074 *
2075 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2076 * returns the snapshot. The snapshot can then be used to query dirty
2077 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2078 * querying the same page multiple times, which is especially useful for
2079 * display updates where the scanlines often are not page aligned.
2080 *
2081 * The dirty bitmap region which gets copied into the snapshot (and
2082 * cleared afterwards) can be larger than requested. The boundaries
2083 * are rounded up/down so complete bitmap longs (covering 64 pages on
2084 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2085 * isn't a problem for display updates as the extra pages are outside
2086 * the visible area, and in case the visible area changes a full
2087 * display redraw is due anyway. Should other use cases for this
2088 * function emerge we might have to revisit this implementation
2089 * detail.
2090 *
2091 * Use g_free to release DirtyBitmapSnapshot.
2092 *
2093 * @mr: the memory region being queried.
2094 * @addr: the address (relative to the start of the region) being queried.
2095 * @size: the size of the range being queried.
2096 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2097 */
2098 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2099 hwaddr addr,
2100 hwaddr size,
2101 unsigned client);
2102
2103 /**
2104 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2105 * in the specified dirty bitmap snapshot.
2106 *
2107 * @mr: the memory region being queried.
2108 * @snap: the dirty bitmap snapshot
2109 * @addr: the address (relative to the start of the region) being queried.
2110 * @size: the size of the range being queried.
2111 */
2112 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2113 DirtyBitmapSnapshot *snap,
2114 hwaddr addr, hwaddr size);
2115
2116 /**
2117 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2118 * client.
2119 *
2120 * Marks a range of pages as no longer dirty.
2121 *
2122 * @mr: the region being updated.
2123 * @addr: the start of the subrange being cleaned.
2124 * @size: the size of the subrange being cleaned.
2125 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2126 * %DIRTY_MEMORY_VGA.
2127 */
2128 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2129 hwaddr size, unsigned client);
2130
2131 /**
2132 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2133 * TBs (for self-modifying code).
2134 *
2135 * The MemoryRegionOps->write() callback of a ROM device must use this function
2136 * to mark byte ranges that have been modified internally, such as by directly
2137 * accessing the memory returned by memory_region_get_ram_ptr().
2138 *
2139 * This function marks the range dirty and invalidates TBs so that TCG can
2140 * detect self-modifying code.
2141 *
2142 * @mr: the region being flushed.
2143 * @addr: the start, relative to the start of the region, of the range being
2144 * flushed.
2145 * @size: the size, in bytes, of the range being flushed.
2146 */
2147 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2148
2149 /**
2150 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2151 *
2152 * Allows a memory region to be marked as read-only (turning it into a ROM).
2153 * only useful on RAM regions.
2154 *
2155 * @mr: the region being updated.
2156 * @readonly: whether rhe region is to be ROM or RAM.
2157 */
2158 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2159
2160 /**
2161 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2162 *
2163 * Allows a memory region to be marked as non-volatile.
2164 * only useful on RAM regions.
2165 *
2166 * @mr: the region being updated.
2167 * @nonvolatile: whether rhe region is to be non-volatile.
2168 */
2169 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2170
2171 /**
2172 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2173 *
2174 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2175 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2176 * device is mapped to guest memory and satisfies read access directly.
2177 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2178 * Writes are always handled by the #MemoryRegion.write function.
2179 *
2180 * @mr: the memory region to be updated
2181 * @romd_mode: %true to put the region into ROMD mode
2182 */
2183 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2184
2185 /**
2186 * memory_region_set_coalescing: Enable memory coalescing for the region.
2187 *
2188 * Enabled writes to a region to be queued for later processing. MMIO ->write
2189 * callbacks may be delayed until a non-coalesced MMIO is issued.
2190 * Only useful for IO regions. Roughly similar to write-combining hardware.
2191 *
2192 * @mr: the memory region to be write coalesced
2193 */
2194 void memory_region_set_coalescing(MemoryRegion *mr);
2195
2196 /**
2197 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2198 * a region.
2199 *
2200 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2201 * Multiple calls can be issued coalesced disjoint ranges.
2202 *
2203 * @mr: the memory region to be updated.
2204 * @offset: the start of the range within the region to be coalesced.
2205 * @size: the size of the subrange to be coalesced.
2206 */
2207 void memory_region_add_coalescing(MemoryRegion *mr,
2208 hwaddr offset,
2209 uint64_t size);
2210
2211 /**
2212 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2213 *
2214 * Disables any coalescing caused by memory_region_set_coalescing() or
2215 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2216 * hardware.
2217 *
2218 * @mr: the memory region to be updated.
2219 */
2220 void memory_region_clear_coalescing(MemoryRegion *mr);
2221
2222 /**
2223 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2224 * accesses.
2225 *
2226 * Ensure that pending coalesced MMIO request are flushed before the memory
2227 * region is accessed. This property is automatically enabled for all regions
2228 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2229 *
2230 * @mr: the memory region to be updated.
2231 */
2232 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2233
2234 /**
2235 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2236 * accesses.
2237 *
2238 * Clear the automatic coalesced MMIO flushing enabled via
2239 * memory_region_set_flush_coalesced. Note that this service has no effect on
2240 * memory regions that have MMIO coalescing enabled for themselves. For them,
2241 * automatic flushing will stop once coalescing is disabled.
2242 *
2243 * @mr: the memory region to be updated.
2244 */
2245 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2246
2247 /**
2248 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2249 * is written to a location.
2250 *
2251 * Marks a word in an IO region (initialized with memory_region_init_io())
2252 * as a trigger for an eventfd event. The I/O callback will not be called.
2253 * The caller must be prepared to handle failure (that is, take the required
2254 * action if the callback _is_ called).
2255 *
2256 * @mr: the memory region being updated.
2257 * @addr: the address within @mr that is to be monitored
2258 * @size: the size of the access to trigger the eventfd
2259 * @match_data: whether to match against @data, instead of just @addr
2260 * @data: the data to match against the guest write
2261 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2262 **/
2263 void memory_region_add_eventfd(MemoryRegion *mr,
2264 hwaddr addr,
2265 unsigned size,
2266 bool match_data,
2267 uint64_t data,
2268 EventNotifier *e);
2269
2270 /**
2271 * memory_region_del_eventfd: Cancel an eventfd.
2272 *
2273 * Cancels an eventfd trigger requested by a previous
2274 * memory_region_add_eventfd() call.
2275 *
2276 * @mr: the memory region being updated.
2277 * @addr: the address within @mr that is to be monitored
2278 * @size: the size of the access to trigger the eventfd
2279 * @match_data: whether to match against @data, instead of just @addr
2280 * @data: the data to match against the guest write
2281 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2282 */
2283 void memory_region_del_eventfd(MemoryRegion *mr,
2284 hwaddr addr,
2285 unsigned size,
2286 bool match_data,
2287 uint64_t data,
2288 EventNotifier *e);
2289
2290 /**
2291 * memory_region_add_subregion: Add a subregion to a container.
2292 *
2293 * Adds a subregion at @offset. The subregion may not overlap with other
2294 * subregions (except for those explicitly marked as overlapping). A region
2295 * may only be added once as a subregion (unless removed with
2296 * memory_region_del_subregion()); use memory_region_init_alias() if you
2297 * want a region to be a subregion in multiple locations.
2298 *
2299 * @mr: the region to contain the new subregion; must be a container
2300 * initialized with memory_region_init().
2301 * @offset: the offset relative to @mr where @subregion is added.
2302 * @subregion: the subregion to be added.
2303 */
2304 void memory_region_add_subregion(MemoryRegion *mr,
2305 hwaddr offset,
2306 MemoryRegion *subregion);
2307 /**
2308 * memory_region_add_subregion_overlap: Add a subregion to a container
2309 * with overlap.
2310 *
2311 * Adds a subregion at @offset. The subregion may overlap with other
2312 * subregions. Conflicts are resolved by having a higher @priority hide a
2313 * lower @priority. Subregions without priority are taken as @priority 0.
2314 * A region may only be added once as a subregion (unless removed with
2315 * memory_region_del_subregion()); use memory_region_init_alias() if you
2316 * want a region to be a subregion in multiple locations.
2317 *
2318 * @mr: the region to contain the new subregion; must be a container
2319 * initialized with memory_region_init().
2320 * @offset: the offset relative to @mr where @subregion is added.
2321 * @subregion: the subregion to be added.
2322 * @priority: used for resolving overlaps; highest priority wins.
2323 */
2324 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2325 hwaddr offset,
2326 MemoryRegion *subregion,
2327 int priority);
2328
2329 /**
2330 * memory_region_get_ram_addr: Get the ram address associated with a memory
2331 * region
2332 *
2333 * @mr: the region to be queried
2334 */
2335 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2336
2337 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2338 /**
2339 * memory_region_del_subregion: Remove a subregion.
2340 *
2341 * Removes a subregion from its container.
2342 *
2343 * @mr: the container to be updated.
2344 * @subregion: the region being removed; must be a current subregion of @mr.
2345 */
2346 void memory_region_del_subregion(MemoryRegion *mr,
2347 MemoryRegion *subregion);
2348
2349 /*
2350 * memory_region_set_enabled: dynamically enable or disable a region
2351 *
2352 * Enables or disables a memory region. A disabled memory region
2353 * ignores all accesses to itself and its subregions. It does not
2354 * obscure sibling subregions with lower priority - it simply behaves as
2355 * if it was removed from the hierarchy.
2356 *
2357 * Regions default to being enabled.
2358 *
2359 * @mr: the region to be updated
2360 * @enabled: whether to enable or disable the region
2361 */
2362 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2363
2364 /*
2365 * memory_region_set_address: dynamically update the address of a region
2366 *
2367 * Dynamically updates the address of a region, relative to its container.
2368 * May be used on regions are currently part of a memory hierarchy.
2369 *
2370 * @mr: the region to be updated
2371 * @addr: new address, relative to container region
2372 */
2373 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2374
2375 /*
2376 * memory_region_set_size: dynamically update the size of a region.
2377 *
2378 * Dynamically updates the size of a region.
2379 *
2380 * @mr: the region to be updated
2381 * @size: used size of the region.
2382 */
2383 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2384
2385 /*
2386 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2387 *
2388 * Dynamically updates the offset into the target region that an alias points
2389 * to, as if the fourth argument to memory_region_init_alias() has changed.
2390 *
2391 * @mr: the #MemoryRegion to be updated; should be an alias.
2392 * @offset: the new offset into the target memory region
2393 */
2394 void memory_region_set_alias_offset(MemoryRegion *mr,
2395 hwaddr offset);
2396
2397 /*
2398 * memory_region_set_unmergeable: Set a memory region unmergeable
2399 *
2400 * Mark a memory region unmergeable, resulting in the memory region (or
2401 * everything contained in a memory region container) not getting merged when
2402 * simplifying the address space and notifying memory listeners. Consequently,
2403 * memory listeners will never get notified about ranges that are larger than
2404 * the original memory regions.
2405 *
2406 * This is primarily useful when multiple aliases to a RAM memory region are
2407 * mapped into a memory region container, and updates (e.g., enable/disable or
2408 * map/unmap) of individual memory region aliases are not supposed to affect
2409 * other memory regions in the same container.
2410 *
2411 * @mr: the #MemoryRegion to be updated
2412 * @unmergeable: whether to mark the #MemoryRegion unmergeable
2413 */
2414 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2415
2416 /**
2417 * memory_region_present: checks if an address relative to a @container
2418 * translates into #MemoryRegion within @container
2419 *
2420 * Answer whether a #MemoryRegion within @container covers the address
2421 * @addr.
2422 *
2423 * @container: a #MemoryRegion within which @addr is a relative address
2424 * @addr: the area within @container to be searched
2425 */
2426 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2427
2428 /**
2429 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2430 * into another memory region, which does not necessarily imply that it is
2431 * mapped into an address space.
2432 *
2433 * @mr: a #MemoryRegion which should be checked if it's mapped
2434 */
2435 bool memory_region_is_mapped(MemoryRegion *mr);
2436
2437 /**
2438 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2439 * #MemoryRegion
2440 *
2441 * The #RamDiscardManager cannot change while a memory region is mapped.
2442 *
2443 * @mr: the #MemoryRegion
2444 */
2445 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2446
2447 /**
2448 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2449 * #RamDiscardManager assigned
2450 *
2451 * @mr: the #MemoryRegion
2452 */
memory_region_has_ram_discard_manager(MemoryRegion * mr)2453 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2454 {
2455 return !!memory_region_get_ram_discard_manager(mr);
2456 }
2457
2458 /**
2459 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2460 * #MemoryRegion
2461 *
2462 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2463 * that does not cover RAM, or a #MemoryRegion that already has a
2464 * #RamDiscardManager assigned.
2465 *
2466 * @mr: the #MemoryRegion
2467 * @rdm: #RamDiscardManager to set
2468 */
2469 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2470 RamDiscardManager *rdm);
2471
2472 /**
2473 * memory_region_find: translate an address/size relative to a
2474 * MemoryRegion into a #MemoryRegionSection.
2475 *
2476 * Locates the first #MemoryRegion within @mr that overlaps the range
2477 * given by @addr and @size.
2478 *
2479 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2480 * It will have the following characteristics:
2481 * - @size = 0 iff no overlap was found
2482 * - @mr is non-%NULL iff an overlap was found
2483 *
2484 * Remember that in the return value the @offset_within_region is
2485 * relative to the returned region (in the .@mr field), not to the
2486 * @mr argument.
2487 *
2488 * Similarly, the .@offset_within_address_space is relative to the
2489 * address space that contains both regions, the passed and the
2490 * returned one. However, in the special case where the @mr argument
2491 * has no container (and thus is the root of the address space), the
2492 * following will hold:
2493 * - @offset_within_address_space >= @addr
2494 * - @offset_within_address_space + .@size <= @addr + @size
2495 *
2496 * @mr: a MemoryRegion within which @addr is a relative address
2497 * @addr: start of the area within @as to be searched
2498 * @size: size of the area to be searched
2499 */
2500 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2501 hwaddr addr, uint64_t size);
2502
2503 /**
2504 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2505 *
2506 * Synchronizes the dirty page log for all address spaces.
2507 *
2508 * @last_stage: whether this is the last stage of live migration
2509 */
2510 void memory_global_dirty_log_sync(bool last_stage);
2511
2512 /**
2513 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2514 *
2515 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2516 * This function must be called after the dirty log bitmap is cleared, and
2517 * before dirty guest memory pages are read. If you are using
2518 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2519 * care of doing this.
2520 */
2521 void memory_global_after_dirty_log_sync(void);
2522
2523 /**
2524 * memory_region_transaction_begin: Start a transaction.
2525 *
2526 * During a transaction, changes will be accumulated and made visible
2527 * only when the transaction ends (is committed).
2528 */
2529 void memory_region_transaction_begin(void);
2530
2531 /**
2532 * memory_region_transaction_commit: Commit a transaction and make changes
2533 * visible to the guest.
2534 */
2535 void memory_region_transaction_commit(void);
2536
2537 /**
2538 * memory_listener_register: register callbacks to be called when memory
2539 * sections are mapped or unmapped into an address
2540 * space
2541 *
2542 * @listener: an object containing the callbacks to be called
2543 * @filter: if non-%NULL, only regions in this address space will be observed
2544 */
2545 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2546
2547 /**
2548 * memory_listener_unregister: undo the effect of memory_listener_register()
2549 *
2550 * @listener: an object containing the callbacks to be removed
2551 */
2552 void memory_listener_unregister(MemoryListener *listener);
2553
2554 /**
2555 * memory_global_dirty_log_start: begin dirty logging for all regions
2556 *
2557 * @flags: purpose of starting dirty log, migration or dirty rate
2558 * @errp: pointer to Error*, to store an error if it happens.
2559 *
2560 * Return: true on success, else false setting @errp with error.
2561 */
2562 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2563
2564 /**
2565 * memory_global_dirty_log_stop: end dirty logging for all regions
2566 *
2567 * @flags: purpose of stopping dirty log, migration or dirty rate
2568 */
2569 void memory_global_dirty_log_stop(unsigned int flags);
2570
2571 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2572
2573 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2574 unsigned size, bool is_write,
2575 MemTxAttrs attrs);
2576
2577 /**
2578 * memory_region_dispatch_read: perform a read directly to the specified
2579 * MemoryRegion.
2580 *
2581 * @mr: #MemoryRegion to access
2582 * @addr: address within that region
2583 * @pval: pointer to uint64_t which the data is written to
2584 * @op: size, sign, and endianness of the memory operation
2585 * @attrs: memory transaction attributes to use for the access
2586 */
2587 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2588 hwaddr addr,
2589 uint64_t *pval,
2590 MemOp op,
2591 MemTxAttrs attrs);
2592 /**
2593 * memory_region_dispatch_write: perform a write directly to the specified
2594 * MemoryRegion.
2595 *
2596 * @mr: #MemoryRegion to access
2597 * @addr: address within that region
2598 * @data: data to write
2599 * @op: size, sign, and endianness of the memory operation
2600 * @attrs: memory transaction attributes to use for the access
2601 */
2602 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2603 hwaddr addr,
2604 uint64_t data,
2605 MemOp op,
2606 MemTxAttrs attrs);
2607
2608 /**
2609 * address_space_init: initializes an address space
2610 *
2611 * @as: an uninitialized #AddressSpace
2612 * @root: a #MemoryRegion that routes addresses for the address space
2613 * @name: an address space name. The name is only used for debugging
2614 * output.
2615 */
2616 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2617
2618 /**
2619 * address_space_destroy: destroy an address space
2620 *
2621 * Releases all resources associated with an address space. After an address space
2622 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2623 * as well.
2624 *
2625 * @as: address space to be destroyed
2626 */
2627 void address_space_destroy(AddressSpace *as);
2628
2629 /**
2630 * address_space_remove_listeners: unregister all listeners of an address space
2631 *
2632 * Removes all callbacks previously registered with memory_listener_register()
2633 * for @as.
2634 *
2635 * @as: an initialized #AddressSpace
2636 */
2637 void address_space_remove_listeners(AddressSpace *as);
2638
2639 /**
2640 * address_space_rw: read from or write to an address space.
2641 *
2642 * Return a MemTxResult indicating whether the operation succeeded
2643 * or failed (eg unassigned memory, device rejected the transaction,
2644 * IOMMU fault).
2645 *
2646 * @as: #AddressSpace to be accessed
2647 * @addr: address within that address space
2648 * @attrs: memory transaction attributes
2649 * @buf: buffer with the data transferred
2650 * @len: the number of bytes to read or write
2651 * @is_write: indicates the transfer direction
2652 */
2653 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2654 MemTxAttrs attrs, void *buf,
2655 hwaddr len, bool is_write);
2656
2657 /**
2658 * address_space_write: write to address space.
2659 *
2660 * Return a MemTxResult indicating whether the operation succeeded
2661 * or failed (eg unassigned memory, device rejected the transaction,
2662 * IOMMU fault).
2663 *
2664 * @as: #AddressSpace to be accessed
2665 * @addr: address within that address space
2666 * @attrs: memory transaction attributes
2667 * @buf: buffer with the data transferred
2668 * @len: the number of bytes to write
2669 */
2670 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2671 MemTxAttrs attrs,
2672 const void *buf, hwaddr len);
2673
2674 /**
2675 * address_space_write_rom: write to address space, including ROM.
2676 *
2677 * This function writes to the specified address space, but will
2678 * write data to both ROM and RAM. This is used for non-guest
2679 * writes like writes from the gdb debug stub or initial loading
2680 * of ROM contents.
2681 *
2682 * Note that portions of the write which attempt to write data to
2683 * a device will be silently ignored -- only real RAM and ROM will
2684 * be written to.
2685 *
2686 * Return a MemTxResult indicating whether the operation succeeded
2687 * or failed (eg unassigned memory, device rejected the transaction,
2688 * IOMMU fault).
2689 *
2690 * @as: #AddressSpace to be accessed
2691 * @addr: address within that address space
2692 * @attrs: memory transaction attributes
2693 * @buf: buffer with the data transferred
2694 * @len: the number of bytes to write
2695 */
2696 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2697 MemTxAttrs attrs,
2698 const void *buf, hwaddr len);
2699
2700 /* address_space_ld*: load from an address space
2701 * address_space_st*: store to an address space
2702 *
2703 * These functions perform a load or store of the byte, word,
2704 * longword or quad to the specified address within the AddressSpace.
2705 * The _le suffixed functions treat the data as little endian;
2706 * _be indicates big endian; no suffix indicates "same endianness
2707 * as guest CPU".
2708 *
2709 * The "guest CPU endianness" accessors are deprecated for use outside
2710 * target-* code; devices should be CPU-agnostic and use either the LE
2711 * or the BE accessors.
2712 *
2713 * @as #AddressSpace to be accessed
2714 * @addr: address within that address space
2715 * @val: data value, for stores
2716 * @attrs: memory transaction attributes
2717 * @result: location to write the success/failure of the transaction;
2718 * if NULL, this information is discarded
2719 */
2720
2721 #define SUFFIX
2722 #define ARG1 as
2723 #define ARG1_DECL AddressSpace *as
2724 #include "exec/memory_ldst.h.inc"
2725
2726 #define SUFFIX
2727 #define ARG1 as
2728 #define ARG1_DECL AddressSpace *as
2729 #include "exec/memory_ldst_phys.h.inc"
2730
2731 struct MemoryRegionCache {
2732 uint8_t *ptr;
2733 hwaddr xlat;
2734 hwaddr len;
2735 FlatView *fv;
2736 MemoryRegionSection mrs;
2737 bool is_write;
2738 };
2739
2740 /* address_space_ld*_cached: load from a cached #MemoryRegion
2741 * address_space_st*_cached: store into a cached #MemoryRegion
2742 *
2743 * These functions perform a load or store of the byte, word,
2744 * longword or quad to the specified address. The address is
2745 * a physical address in the AddressSpace, but it must lie within
2746 * a #MemoryRegion that was mapped with address_space_cache_init.
2747 *
2748 * The _le suffixed functions treat the data as little endian;
2749 * _be indicates big endian; no suffix indicates "same endianness
2750 * as guest CPU".
2751 *
2752 * The "guest CPU endianness" accessors are deprecated for use outside
2753 * target-* code; devices should be CPU-agnostic and use either the LE
2754 * or the BE accessors.
2755 *
2756 * @cache: previously initialized #MemoryRegionCache to be accessed
2757 * @addr: address within the address space
2758 * @val: data value, for stores
2759 * @attrs: memory transaction attributes
2760 * @result: location to write the success/failure of the transaction;
2761 * if NULL, this information is discarded
2762 */
2763
2764 #define SUFFIX _cached_slow
2765 #define ARG1 cache
2766 #define ARG1_DECL MemoryRegionCache *cache
2767 #include "exec/memory_ldst.h.inc"
2768
2769 /* Inline fast path for direct RAM access. */
address_space_ldub_cached(MemoryRegionCache * cache,hwaddr addr,MemTxAttrs attrs,MemTxResult * result)2770 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2771 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2772 {
2773 assert(addr < cache->len);
2774 if (likely(cache->ptr)) {
2775 return ldub_p(cache->ptr + addr);
2776 } else {
2777 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2778 }
2779 }
2780
address_space_stb_cached(MemoryRegionCache * cache,hwaddr addr,uint8_t val,MemTxAttrs attrs,MemTxResult * result)2781 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2782 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2783 {
2784 assert(addr < cache->len);
2785 if (likely(cache->ptr)) {
2786 stb_p(cache->ptr + addr, val);
2787 } else {
2788 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2789 }
2790 }
2791
2792 #define ENDIANNESS _le
2793 #include "exec/memory_ldst_cached.h.inc"
2794
2795 #define ENDIANNESS _be
2796 #include "exec/memory_ldst_cached.h.inc"
2797
2798 #define SUFFIX _cached
2799 #define ARG1 cache
2800 #define ARG1_DECL MemoryRegionCache *cache
2801 #include "exec/memory_ldst_phys.h.inc"
2802
2803 /* address_space_cache_init: prepare for repeated access to a physical
2804 * memory region
2805 *
2806 * @cache: #MemoryRegionCache to be filled
2807 * @as: #AddressSpace to be accessed
2808 * @addr: address within that address space
2809 * @len: length of buffer
2810 * @is_write: indicates the transfer direction
2811 *
2812 * Will only work with RAM, and may map a subset of the requested range by
2813 * returning a value that is less than @len. On failure, return a negative
2814 * errno value.
2815 *
2816 * Because it only works with RAM, this function can be used for
2817 * read-modify-write operations. In this case, is_write should be %true.
2818 *
2819 * Note that addresses passed to the address_space_*_cached functions
2820 * are relative to @addr.
2821 */
2822 int64_t address_space_cache_init(MemoryRegionCache *cache,
2823 AddressSpace *as,
2824 hwaddr addr,
2825 hwaddr len,
2826 bool is_write);
2827
2828 /**
2829 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2830 *
2831 * @cache: The #MemoryRegionCache to operate on.
2832 *
2833 * Initializes #MemoryRegionCache structure without memory region attached.
2834 * Cache initialized this way can only be safely destroyed, but not used.
2835 */
address_space_cache_init_empty(MemoryRegionCache * cache)2836 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2837 {
2838 cache->mrs.mr = NULL;
2839 /* There is no real need to initialize fv, but it makes Coverity happy. */
2840 cache->fv = NULL;
2841 }
2842
2843 /**
2844 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2845 *
2846 * @cache: The #MemoryRegionCache to operate on.
2847 * @addr: The first physical address that was written, relative to the
2848 * address that was passed to @address_space_cache_init.
2849 * @access_len: The number of bytes that were written starting at @addr.
2850 */
2851 void address_space_cache_invalidate(MemoryRegionCache *cache,
2852 hwaddr addr,
2853 hwaddr access_len);
2854
2855 /**
2856 * address_space_cache_destroy: free a #MemoryRegionCache
2857 *
2858 * @cache: The #MemoryRegionCache whose memory should be released.
2859 */
2860 void address_space_cache_destroy(MemoryRegionCache *cache);
2861
2862 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2863 * entry. Should be called from an RCU critical section.
2864 */
2865 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2866 bool is_write, MemTxAttrs attrs);
2867
2868 /* address_space_translate: translate an address range into an address space
2869 * into a MemoryRegion and an address range into that section. Should be
2870 * called from an RCU critical section, to avoid that the last reference
2871 * to the returned region disappears after address_space_translate returns.
2872 *
2873 * @fv: #FlatView to be accessed
2874 * @addr: address within that address space
2875 * @xlat: pointer to address within the returned memory region section's
2876 * #MemoryRegion.
2877 * @len: pointer to length
2878 * @is_write: indicates the transfer direction
2879 * @attrs: memory attributes
2880 */
2881 MemoryRegion *flatview_translate(FlatView *fv,
2882 hwaddr addr, hwaddr *xlat,
2883 hwaddr *len, bool is_write,
2884 MemTxAttrs attrs);
2885
address_space_translate(AddressSpace * as,hwaddr addr,hwaddr * xlat,hwaddr * len,bool is_write,MemTxAttrs attrs)2886 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2887 hwaddr addr, hwaddr *xlat,
2888 hwaddr *len, bool is_write,
2889 MemTxAttrs attrs)
2890 {
2891 return flatview_translate(address_space_to_flatview(as),
2892 addr, xlat, len, is_write, attrs);
2893 }
2894
2895 /* address_space_access_valid: check for validity of accessing an address
2896 * space range
2897 *
2898 * Check whether memory is assigned to the given address space range, and
2899 * access is permitted by any IOMMU regions that are active for the address
2900 * space.
2901 *
2902 * For now, addr and len should be aligned to a page size. This limitation
2903 * will be lifted in the future.
2904 *
2905 * @as: #AddressSpace to be accessed
2906 * @addr: address within that address space
2907 * @len: length of the area to be checked
2908 * @is_write: indicates the transfer direction
2909 * @attrs: memory attributes
2910 */
2911 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2912 bool is_write, MemTxAttrs attrs);
2913
2914 /* address_space_map: map a physical memory region into a host virtual address
2915 *
2916 * May map a subset of the requested range, given by and returned in @plen.
2917 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2918 * the mapping are exhausted.
2919 * Use only for reads OR writes - not for read-modify-write operations.
2920 * Use address_space_register_map_client() to know when retrying the map
2921 * operation is likely to succeed.
2922 *
2923 * @as: #AddressSpace to be accessed
2924 * @addr: address within that address space
2925 * @plen: pointer to length of buffer; updated on return
2926 * @is_write: indicates the transfer direction
2927 * @attrs: memory attributes
2928 */
2929 void *address_space_map(AddressSpace *as, hwaddr addr,
2930 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2931
2932 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2933 *
2934 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2935 * the amount of memory that was actually read or written by the caller.
2936 *
2937 * @as: #AddressSpace used
2938 * @buffer: host pointer as returned by address_space_map()
2939 * @len: buffer length as returned by address_space_map()
2940 * @access_len: amount of data actually transferred
2941 * @is_write: indicates the transfer direction
2942 */
2943 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2944 bool is_write, hwaddr access_len);
2945
2946 /*
2947 * address_space_register_map_client: Register a callback to invoke when
2948 * resources for address_space_map() are available again.
2949 *
2950 * address_space_map may fail when there are not enough resources available,
2951 * such as when bounce buffer memory would exceed the limit. The callback can
2952 * be used to retry the address_space_map operation. Note that the callback
2953 * gets automatically removed after firing.
2954 *
2955 * @as: #AddressSpace to be accessed
2956 * @bh: callback to invoke when address_space_map() retry is appropriate
2957 */
2958 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
2959
2960 /*
2961 * address_space_unregister_map_client: Unregister a callback that has
2962 * previously been registered and not fired yet.
2963 *
2964 * @as: #AddressSpace to be accessed
2965 * @bh: callback to unregister
2966 */
2967 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
2968
2969 /* Internal functions, part of the implementation of address_space_read. */
2970 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2971 MemTxAttrs attrs, void *buf, hwaddr len);
2972 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2973 MemTxAttrs attrs, void *buf,
2974 hwaddr len, hwaddr addr1, hwaddr l,
2975 MemoryRegion *mr);
2976 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2977
2978 /* Internal functions, part of the implementation of address_space_read_cached
2979 * and address_space_write_cached. */
2980 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2981 hwaddr addr, void *buf, hwaddr len);
2982 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2983 hwaddr addr, const void *buf,
2984 hwaddr len);
2985
2986 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2987 bool prepare_mmio_access(MemoryRegion *mr);
2988
memory_access_is_direct(MemoryRegion * mr,bool is_write)2989 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2990 {
2991 if (is_write) {
2992 return memory_region_is_ram(mr) && !mr->readonly &&
2993 !mr->rom_device && !memory_region_is_ram_device(mr);
2994 } else {
2995 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2996 memory_region_is_romd(mr);
2997 }
2998 }
2999
3000 /**
3001 * address_space_read: read from an address space.
3002 *
3003 * Return a MemTxResult indicating whether the operation succeeded
3004 * or failed (eg unassigned memory, device rejected the transaction,
3005 * IOMMU fault). Called within RCU critical section.
3006 *
3007 * @as: #AddressSpace to be accessed
3008 * @addr: address within that address space
3009 * @attrs: memory transaction attributes
3010 * @buf: buffer with the data transferred
3011 * @len: length of the data transferred
3012 */
3013 static inline __attribute__((__always_inline__))
address_space_read(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3014 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3015 MemTxAttrs attrs, void *buf,
3016 hwaddr len)
3017 {
3018 MemTxResult result = MEMTX_OK;
3019 hwaddr l, addr1;
3020 void *ptr;
3021 MemoryRegion *mr;
3022 FlatView *fv;
3023
3024 if (__builtin_constant_p(len)) {
3025 if (len) {
3026 RCU_READ_LOCK_GUARD();
3027 fv = address_space_to_flatview(as);
3028 l = len;
3029 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3030 if (len == l && memory_access_is_direct(mr, false)) {
3031 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3032 memcpy(buf, ptr, len);
3033 } else {
3034 result = flatview_read_continue(fv, addr, attrs, buf, len,
3035 addr1, l, mr);
3036 }
3037 }
3038 } else {
3039 result = address_space_read_full(as, addr, attrs, buf, len);
3040 }
3041 return result;
3042 }
3043
3044 /**
3045 * address_space_read_cached: read from a cached RAM region
3046 *
3047 * @cache: Cached region to be addressed
3048 * @addr: address relative to the base of the RAM region
3049 * @buf: buffer with the data transferred
3050 * @len: length of the data transferred
3051 */
3052 static inline MemTxResult
address_space_read_cached(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3053 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3054 void *buf, hwaddr len)
3055 {
3056 assert(addr < cache->len && len <= cache->len - addr);
3057 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3058 if (likely(cache->ptr)) {
3059 memcpy(buf, cache->ptr + addr, len);
3060 return MEMTX_OK;
3061 } else {
3062 return address_space_read_cached_slow(cache, addr, buf, len);
3063 }
3064 }
3065
3066 /**
3067 * address_space_write_cached: write to a cached RAM region
3068 *
3069 * @cache: Cached region to be addressed
3070 * @addr: address relative to the base of the RAM region
3071 * @buf: buffer with the data transferred
3072 * @len: length of the data transferred
3073 */
3074 static inline MemTxResult
address_space_write_cached(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3075 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3076 const void *buf, hwaddr len)
3077 {
3078 assert(addr < cache->len && len <= cache->len - addr);
3079 if (likely(cache->ptr)) {
3080 memcpy(cache->ptr + addr, buf, len);
3081 return MEMTX_OK;
3082 } else {
3083 return address_space_write_cached_slow(cache, addr, buf, len);
3084 }
3085 }
3086
3087 /**
3088 * address_space_set: Fill address space with a constant byte.
3089 *
3090 * Return a MemTxResult indicating whether the operation succeeded
3091 * or failed (eg unassigned memory, device rejected the transaction,
3092 * IOMMU fault).
3093 *
3094 * @as: #AddressSpace to be accessed
3095 * @addr: address within that address space
3096 * @c: constant byte to fill the memory
3097 * @len: the number of bytes to fill with the constant byte
3098 * @attrs: memory transaction attributes
3099 */
3100 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3101 uint8_t c, hwaddr len, MemTxAttrs attrs);
3102
3103 #ifdef COMPILING_PER_TARGET
3104 /* enum device_endian to MemOp. */
devend_memop(enum device_endian end)3105 static inline MemOp devend_memop(enum device_endian end)
3106 {
3107 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3108 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3109
3110 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3111 /* Swap if non-host endianness or native (target) endianness */
3112 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3113 #else
3114 const int non_host_endianness =
3115 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3116
3117 /* In this case, native (target) endianness needs no swap. */
3118 return (end == non_host_endianness) ? MO_BSWAP : 0;
3119 #endif
3120 }
3121 #endif /* COMPILING_PER_TARGET */
3122
3123 /*
3124 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3125 * to manage the actual amount of memory consumed by the VM (then, the memory
3126 * provided by RAM blocks might be bigger than the desired memory consumption).
3127 * This *must* be set if:
3128 * - Discarding parts of a RAM blocks does not result in the change being
3129 * reflected in the VM and the pages getting freed.
3130 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3131 * discards blindly.
3132 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3133 * encrypted VMs).
3134 * Technologies that only temporarily pin the current working set of a
3135 * driver are fine, because we don't expect such pages to be discarded
3136 * (esp. based on guest action like balloon inflation).
3137 *
3138 * This is *not* to be used to protect from concurrent discards (esp.,
3139 * postcopy).
3140 *
3141 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3142 * discards to work reliably is active.
3143 */
3144 int ram_block_discard_disable(bool state);
3145
3146 /*
3147 * See ram_block_discard_disable(): only disable uncoordinated discards,
3148 * keeping coordinated discards (via the RamDiscardManager) enabled.
3149 */
3150 int ram_block_uncoordinated_discard_disable(bool state);
3151
3152 /*
3153 * Inhibit technologies that disable discarding of pages in RAM blocks.
3154 *
3155 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3156 * broken.
3157 */
3158 int ram_block_discard_require(bool state);
3159
3160 /*
3161 * See ram_block_discard_require(): only inhibit technologies that disable
3162 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3163 * technologies that only inhibit uncoordinated discards (via the
3164 * RamDiscardManager).
3165 */
3166 int ram_block_coordinated_discard_require(bool state);
3167
3168 /*
3169 * Test if any discarding of memory in ram blocks is disabled.
3170 */
3171 bool ram_block_discard_is_disabled(void);
3172
3173 /*
3174 * Test if any discarding of memory in ram blocks is required to work reliably.
3175 */
3176 bool ram_block_discard_is_required(void);
3177
3178 #endif
3179
3180 #endif
3181