1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 #define PERF_GUEST_ACTIVE 0x01
30 #define PERF_GUEST_USER 0x02
31
32 struct perf_guest_info_callbacks {
33 unsigned int (*state)(void);
34 unsigned long (*get_ip)(void);
35 unsigned int (*handle_intel_pt_intr)(void);
36 };
37
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66
67 struct perf_callchain_entry {
68 __u64 nr;
69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71
72 struct perf_callchain_entry_ctx {
73 struct perf_callchain_entry *entry;
74 u32 max_stack;
75 u32 nr;
76 short contexts;
77 bool contexts_maxed;
78 };
79
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 unsigned long off, unsigned long len);
82
83 struct perf_raw_frag {
84 union {
85 struct perf_raw_frag *next;
86 unsigned long pad;
87 };
88 perf_copy_f copy;
89 void *data;
90 u32 size;
91 } __packed;
92
93 struct perf_raw_record {
94 struct perf_raw_frag frag;
95 u32 size;
96 };
97
perf_raw_frag_last(const struct perf_raw_frag * frag)98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 return frag->pad < sizeof(u64);
101 }
102
103 /*
104 * branch stack layout:
105 * nr: number of taken branches stored in entries[]
106 * hw_idx: The low level index of raw branch records
107 * for the most recent branch.
108 * -1ULL means invalid/unknown.
109 *
110 * Note that nr can vary from sample to sample
111 * branches (to, from) are stored from most recent
112 * to least recent, i.e., entries[0] contains the most
113 * recent branch.
114 * The entries[] is an abstraction of raw branch records,
115 * which may not be stored in age order in HW, e.g. Intel LBR.
116 * The hw_idx is to expose the low level index of raw
117 * branch record for the most recent branch aka entries[0].
118 * The hw_idx index is between -1 (unknown) and max depth,
119 * which can be retrieved in /sys/devices/cpu/caps/branches.
120 * For the architectures whose raw branch records are
121 * already stored in age order, the hw_idx should be 0.
122 */
123 struct perf_branch_stack {
124 __u64 nr;
125 __u64 hw_idx;
126 struct perf_branch_entry entries[];
127 };
128
129 struct task_struct;
130
131 /*
132 * extra PMU register associated with an event
133 */
134 struct hw_perf_event_extra {
135 u64 config; /* register value */
136 unsigned int reg; /* register address or index */
137 int alloc; /* extra register already allocated */
138 int idx; /* index in shared_regs->regs[] */
139 };
140
141 /**
142 * hw_perf_event::flag values
143 *
144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145 * usage.
146 */
147 #define PERF_EVENT_FLAG_ARCH 0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000
149
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151
152 /**
153 * struct hw_perf_event - performance event hardware details:
154 */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 union {
158 struct { /* hardware */
159 u64 config;
160 u64 last_tag;
161 unsigned long config_base;
162 unsigned long event_base;
163 int event_base_rdpmc;
164 int idx;
165 int last_cpu;
166 int flags;
167
168 struct hw_perf_event_extra extra_reg;
169 struct hw_perf_event_extra branch_reg;
170 };
171 struct { /* software */
172 struct hrtimer hrtimer;
173 };
174 struct { /* tracepoint */
175 /* for tp_event->class */
176 struct list_head tp_list;
177 };
178 struct { /* amd_power */
179 u64 pwr_acc;
180 u64 ptsc;
181 };
182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
183 struct { /* breakpoint */
184 /*
185 * Crufty hack to avoid the chicken and egg
186 * problem hw_breakpoint has with context
187 * creation and event initalization.
188 */
189 struct arch_hw_breakpoint info;
190 struct rhlist_head bp_list;
191 };
192 #endif
193 struct { /* amd_iommu */
194 u8 iommu_bank;
195 u8 iommu_cntr;
196 u16 padding;
197 u64 conf;
198 u64 conf1;
199 };
200 };
201 /*
202 * If the event is a per task event, this will point to the task in
203 * question. See the comment in perf_event_alloc().
204 */
205 struct task_struct *target;
206
207 /*
208 * PMU would store hardware filter configuration
209 * here.
210 */
211 void *addr_filters;
212
213 /* Last sync'ed generation of filters */
214 unsigned long addr_filters_gen;
215
216 /*
217 * hw_perf_event::state flags; used to track the PERF_EF_* state.
218 */
219 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
220 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
221 #define PERF_HES_ARCH 0x04
222
223 int state;
224
225 /*
226 * The last observed hardware counter value, updated with a
227 * local64_cmpxchg() such that pmu::read() can be called nested.
228 */
229 local64_t prev_count;
230
231 /*
232 * The period to start the next sample with.
233 */
234 u64 sample_period;
235
236 union {
237 struct { /* Sampling */
238 /*
239 * The period we started this sample with.
240 */
241 u64 last_period;
242
243 /*
244 * However much is left of the current period;
245 * note that this is a full 64bit value and
246 * allows for generation of periods longer
247 * than hardware might allow.
248 */
249 local64_t period_left;
250 };
251 struct { /* Topdown events counting for context switch */
252 u64 saved_metric;
253 u64 saved_slots;
254 };
255 };
256
257 /*
258 * State for throttling the event, see __perf_event_overflow() and
259 * perf_adjust_freq_unthr_context().
260 */
261 u64 interrupts_seq;
262 u64 interrupts;
263
264 /*
265 * State for freq target events, see __perf_event_overflow() and
266 * perf_adjust_freq_unthr_context().
267 */
268 u64 freq_time_stamp;
269 u64 freq_count_stamp;
270 #endif
271 };
272
273 struct perf_event;
274 struct perf_event_pmu_context;
275
276 /*
277 * Common implementation detail of pmu::{start,commit,cancel}_txn
278 */
279 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
280 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
281
282 /**
283 * pmu::capabilities flags
284 */
285 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
286 #define PERF_PMU_CAP_NO_NMI 0x0002
287 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
288 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
289 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
290 #define PERF_PMU_CAP_ITRACE 0x0020
291 #define PERF_PMU_CAP_NO_EXCLUDE 0x0040
292 #define PERF_PMU_CAP_AUX_OUTPUT 0x0080
293 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100
294
295 struct perf_output_handle;
296
297 #define PMU_NULL_DEV ((void *)(~0UL))
298
299 /**
300 * struct pmu - generic performance monitoring unit
301 */
302 struct pmu {
303 struct list_head entry;
304
305 struct module *module;
306 struct device *dev;
307 struct device *parent;
308 const struct attribute_group **attr_groups;
309 const struct attribute_group **attr_update;
310 const char *name;
311 int type;
312
313 /*
314 * various common per-pmu feature flags
315 */
316 int capabilities;
317
318 int __percpu *pmu_disable_count;
319 struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
320 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
321 int task_ctx_nr;
322 int hrtimer_interval_ms;
323
324 /* number of address filters this PMU can do */
325 unsigned int nr_addr_filters;
326
327 /*
328 * Fully disable/enable this PMU, can be used to protect from the PMI
329 * as well as for lazy/batch writing of the MSRs.
330 */
331 void (*pmu_enable) (struct pmu *pmu); /* optional */
332 void (*pmu_disable) (struct pmu *pmu); /* optional */
333
334 /*
335 * Try and initialize the event for this PMU.
336 *
337 * Returns:
338 * -ENOENT -- @event is not for this PMU
339 *
340 * -ENODEV -- @event is for this PMU but PMU not present
341 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
342 * -EINVAL -- @event is for this PMU but @event is not valid
343 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
344 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
345 *
346 * 0 -- @event is for this PMU and valid
347 *
348 * Other error return values are allowed.
349 */
350 int (*event_init) (struct perf_event *event);
351
352 /*
353 * Notification that the event was mapped or unmapped. Called
354 * in the context of the mapping task.
355 */
356 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
357 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
358
359 /*
360 * Flags for ->add()/->del()/ ->start()/->stop(). There are
361 * matching hw_perf_event::state flags.
362 */
363 #define PERF_EF_START 0x01 /* start the counter when adding */
364 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
365 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
366
367 /*
368 * Adds/Removes a counter to/from the PMU, can be done inside a
369 * transaction, see the ->*_txn() methods.
370 *
371 * The add/del callbacks will reserve all hardware resources required
372 * to service the event, this includes any counter constraint
373 * scheduling etc.
374 *
375 * Called with IRQs disabled and the PMU disabled on the CPU the event
376 * is on.
377 *
378 * ->add() called without PERF_EF_START should result in the same state
379 * as ->add() followed by ->stop().
380 *
381 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
382 * ->stop() that must deal with already being stopped without
383 * PERF_EF_UPDATE.
384 */
385 int (*add) (struct perf_event *event, int flags);
386 void (*del) (struct perf_event *event, int flags);
387
388 /*
389 * Starts/Stops a counter present on the PMU.
390 *
391 * The PMI handler should stop the counter when perf_event_overflow()
392 * returns !0. ->start() will be used to continue.
393 *
394 * Also used to change the sample period.
395 *
396 * Called with IRQs disabled and the PMU disabled on the CPU the event
397 * is on -- will be called from NMI context with the PMU generates
398 * NMIs.
399 *
400 * ->stop() with PERF_EF_UPDATE will read the counter and update
401 * period/count values like ->read() would.
402 *
403 * ->start() with PERF_EF_RELOAD will reprogram the counter
404 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
405 */
406 void (*start) (struct perf_event *event, int flags);
407 void (*stop) (struct perf_event *event, int flags);
408
409 /*
410 * Updates the counter value of the event.
411 *
412 * For sampling capable PMUs this will also update the software period
413 * hw_perf_event::period_left field.
414 */
415 void (*read) (struct perf_event *event);
416
417 /*
418 * Group events scheduling is treated as a transaction, add
419 * group events as a whole and perform one schedulability test.
420 * If the test fails, roll back the whole group
421 *
422 * Start the transaction, after this ->add() doesn't need to
423 * do schedulability tests.
424 *
425 * Optional.
426 */
427 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
428 /*
429 * If ->start_txn() disabled the ->add() schedulability test
430 * then ->commit_txn() is required to perform one. On success
431 * the transaction is closed. On error the transaction is kept
432 * open until ->cancel_txn() is called.
433 *
434 * Optional.
435 */
436 int (*commit_txn) (struct pmu *pmu);
437 /*
438 * Will cancel the transaction, assumes ->del() is called
439 * for each successful ->add() during the transaction.
440 *
441 * Optional.
442 */
443 void (*cancel_txn) (struct pmu *pmu);
444
445 /*
446 * Will return the value for perf_event_mmap_page::index for this event,
447 * if no implementation is provided it will default to 0 (see
448 * perf_event_idx_default).
449 */
450 int (*event_idx) (struct perf_event *event); /*optional */
451
452 /*
453 * context-switches callback
454 */
455 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx,
456 bool sched_in);
457
458 /*
459 * Kmem cache of PMU specific data
460 */
461 struct kmem_cache *task_ctx_cache;
462
463 /*
464 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
465 * can be synchronized using this function. See Intel LBR callstack support
466 * implementation and Perf core context switch handling callbacks for usage
467 * examples.
468 */
469 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc,
470 struct perf_event_pmu_context *next_epc);
471 /* optional */
472
473 /*
474 * Set up pmu-private data structures for an AUX area
475 */
476 void *(*setup_aux) (struct perf_event *event, void **pages,
477 int nr_pages, bool overwrite);
478 /* optional */
479
480 /*
481 * Free pmu-private AUX data structures
482 */
483 void (*free_aux) (void *aux); /* optional */
484
485 /*
486 * Take a snapshot of the AUX buffer without touching the event
487 * state, so that preempting ->start()/->stop() callbacks does
488 * not interfere with their logic. Called in PMI context.
489 *
490 * Returns the size of AUX data copied to the output handle.
491 *
492 * Optional.
493 */
494 long (*snapshot_aux) (struct perf_event *event,
495 struct perf_output_handle *handle,
496 unsigned long size);
497
498 /*
499 * Validate address range filters: make sure the HW supports the
500 * requested configuration and number of filters; return 0 if the
501 * supplied filters are valid, -errno otherwise.
502 *
503 * Runs in the context of the ioctl()ing process and is not serialized
504 * with the rest of the PMU callbacks.
505 */
506 int (*addr_filters_validate) (struct list_head *filters);
507 /* optional */
508
509 /*
510 * Synchronize address range filter configuration:
511 * translate hw-agnostic filters into hardware configuration in
512 * event::hw::addr_filters.
513 *
514 * Runs as a part of filter sync sequence that is done in ->start()
515 * callback by calling perf_event_addr_filters_sync().
516 *
517 * May (and should) traverse event::addr_filters::list, for which its
518 * caller provides necessary serialization.
519 */
520 void (*addr_filters_sync) (struct perf_event *event);
521 /* optional */
522
523 /*
524 * Check if event can be used for aux_output purposes for
525 * events of this PMU.
526 *
527 * Runs from perf_event_open(). Should return 0 for "no match"
528 * or non-zero for "match".
529 */
530 int (*aux_output_match) (struct perf_event *event);
531 /* optional */
532
533 /*
534 * Skip programming this PMU on the given CPU. Typically needed for
535 * big.LITTLE things.
536 */
537 bool (*filter) (struct pmu *pmu, int cpu); /* optional */
538
539 /*
540 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
541 */
542 int (*check_period) (struct perf_event *event, u64 value); /* optional */
543 };
544
545 enum perf_addr_filter_action_t {
546 PERF_ADDR_FILTER_ACTION_STOP = 0,
547 PERF_ADDR_FILTER_ACTION_START,
548 PERF_ADDR_FILTER_ACTION_FILTER,
549 };
550
551 /**
552 * struct perf_addr_filter - address range filter definition
553 * @entry: event's filter list linkage
554 * @path: object file's path for file-based filters
555 * @offset: filter range offset
556 * @size: filter range size (size==0 means single address trigger)
557 * @action: filter/start/stop
558 *
559 * This is a hardware-agnostic filter configuration as specified by the user.
560 */
561 struct perf_addr_filter {
562 struct list_head entry;
563 struct path path;
564 unsigned long offset;
565 unsigned long size;
566 enum perf_addr_filter_action_t action;
567 };
568
569 /**
570 * struct perf_addr_filters_head - container for address range filters
571 * @list: list of filters for this event
572 * @lock: spinlock that serializes accesses to the @list and event's
573 * (and its children's) filter generations.
574 * @nr_file_filters: number of file-based filters
575 *
576 * A child event will use parent's @list (and therefore @lock), so they are
577 * bundled together; see perf_event_addr_filters().
578 */
579 struct perf_addr_filters_head {
580 struct list_head list;
581 raw_spinlock_t lock;
582 unsigned int nr_file_filters;
583 };
584
585 struct perf_addr_filter_range {
586 unsigned long start;
587 unsigned long size;
588 };
589
590 /**
591 * enum perf_event_state - the states of an event:
592 */
593 enum perf_event_state {
594 PERF_EVENT_STATE_DEAD = -4,
595 PERF_EVENT_STATE_EXIT = -3,
596 PERF_EVENT_STATE_ERROR = -2,
597 PERF_EVENT_STATE_OFF = -1,
598 PERF_EVENT_STATE_INACTIVE = 0,
599 PERF_EVENT_STATE_ACTIVE = 1,
600 };
601
602 struct file;
603 struct perf_sample_data;
604
605 typedef void (*perf_overflow_handler_t)(struct perf_event *,
606 struct perf_sample_data *,
607 struct pt_regs *regs);
608
609 /*
610 * Event capabilities. For event_caps and groups caps.
611 *
612 * PERF_EV_CAP_SOFTWARE: Is a software event.
613 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
614 * from any CPU in the package where it is active.
615 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
616 * cannot be a group leader. If an event with this flag is detached from the
617 * group it is scheduled out and moved into an unrecoverable ERROR state.
618 */
619 #define PERF_EV_CAP_SOFTWARE BIT(0)
620 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
621 #define PERF_EV_CAP_SIBLING BIT(2)
622
623 #define SWEVENT_HLIST_BITS 8
624 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
625
626 struct swevent_hlist {
627 struct hlist_head heads[SWEVENT_HLIST_SIZE];
628 struct rcu_head rcu_head;
629 };
630
631 #define PERF_ATTACH_CONTEXT 0x01
632 #define PERF_ATTACH_GROUP 0x02
633 #define PERF_ATTACH_TASK 0x04
634 #define PERF_ATTACH_TASK_DATA 0x08
635 #define PERF_ATTACH_ITRACE 0x10
636 #define PERF_ATTACH_SCHED_CB 0x20
637 #define PERF_ATTACH_CHILD 0x40
638
639 struct bpf_prog;
640 struct perf_cgroup;
641 struct perf_buffer;
642
643 struct pmu_event_list {
644 raw_spinlock_t lock;
645 struct list_head list;
646 };
647
648 /*
649 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
650 * as such iteration must hold either lock. However, since ctx->lock is an IRQ
651 * safe lock, and is only held by the CPU doing the modification, having IRQs
652 * disabled is sufficient since it will hold-off the IPIs.
653 */
654 #ifdef CONFIG_PROVE_LOCKING
655 #define lockdep_assert_event_ctx(event) \
656 WARN_ON_ONCE(__lockdep_enabled && \
657 (this_cpu_read(hardirqs_enabled) && \
658 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
659 #else
660 #define lockdep_assert_event_ctx(event)
661 #endif
662
663 #define for_each_sibling_event(sibling, event) \
664 lockdep_assert_event_ctx(event); \
665 if ((event)->group_leader == (event)) \
666 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
667
668 /**
669 * struct perf_event - performance event kernel representation:
670 */
671 struct perf_event {
672 #ifdef CONFIG_PERF_EVENTS
673 /*
674 * entry onto perf_event_context::event_list;
675 * modifications require ctx->lock
676 * RCU safe iterations.
677 */
678 struct list_head event_entry;
679
680 /*
681 * Locked for modification by both ctx->mutex and ctx->lock; holding
682 * either sufficies for read.
683 */
684 struct list_head sibling_list;
685 struct list_head active_list;
686 /*
687 * Node on the pinned or flexible tree located at the event context;
688 */
689 struct rb_node group_node;
690 u64 group_index;
691 /*
692 * We need storage to track the entries in perf_pmu_migrate_context; we
693 * cannot use the event_entry because of RCU and we want to keep the
694 * group in tact which avoids us using the other two entries.
695 */
696 struct list_head migrate_entry;
697
698 struct hlist_node hlist_entry;
699 struct list_head active_entry;
700 int nr_siblings;
701
702 /* Not serialized. Only written during event initialization. */
703 int event_caps;
704 /* The cumulative AND of all event_caps for events in this group. */
705 int group_caps;
706
707 unsigned int group_generation;
708 struct perf_event *group_leader;
709 /*
710 * event->pmu will always point to pmu in which this event belongs.
711 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
712 * different pmu events is created.
713 */
714 struct pmu *pmu;
715 void *pmu_private;
716
717 enum perf_event_state state;
718 unsigned int attach_state;
719 local64_t count;
720 atomic64_t child_count;
721
722 /*
723 * These are the total time in nanoseconds that the event
724 * has been enabled (i.e. eligible to run, and the task has
725 * been scheduled in, if this is a per-task event)
726 * and running (scheduled onto the CPU), respectively.
727 */
728 u64 total_time_enabled;
729 u64 total_time_running;
730 u64 tstamp;
731
732 struct perf_event_attr attr;
733 u16 header_size;
734 u16 id_header_size;
735 u16 read_size;
736 struct hw_perf_event hw;
737
738 struct perf_event_context *ctx;
739 /*
740 * event->pmu_ctx points to perf_event_pmu_context in which the event
741 * is added. This pmu_ctx can be of other pmu for sw event when that
742 * sw event is part of a group which also contains non-sw events.
743 */
744 struct perf_event_pmu_context *pmu_ctx;
745 atomic_long_t refcount;
746
747 /*
748 * These accumulate total time (in nanoseconds) that children
749 * events have been enabled and running, respectively.
750 */
751 atomic64_t child_total_time_enabled;
752 atomic64_t child_total_time_running;
753
754 /*
755 * Protect attach/detach and child_list:
756 */
757 struct mutex child_mutex;
758 struct list_head child_list;
759 struct perf_event *parent;
760
761 int oncpu;
762 int cpu;
763
764 struct list_head owner_entry;
765 struct task_struct *owner;
766
767 /* mmap bits */
768 struct mutex mmap_mutex;
769 atomic_t mmap_count;
770
771 struct perf_buffer *rb;
772 struct list_head rb_entry;
773 unsigned long rcu_batches;
774 int rcu_pending;
775
776 /* poll related */
777 wait_queue_head_t waitq;
778 struct fasync_struct *fasync;
779
780 /* delayed work for NMIs and such */
781 unsigned int pending_wakeup;
782 unsigned int pending_kill;
783 unsigned int pending_disable;
784 unsigned int pending_sigtrap;
785 unsigned long pending_addr; /* SIGTRAP */
786 struct irq_work pending_irq;
787 struct callback_head pending_task;
788 unsigned int pending_work;
789 struct rcuwait pending_work_wait;
790
791 atomic_t event_limit;
792
793 /* address range filters */
794 struct perf_addr_filters_head addr_filters;
795 /* vma address array for file-based filders */
796 struct perf_addr_filter_range *addr_filter_ranges;
797 unsigned long addr_filters_gen;
798
799 /* for aux_output events */
800 struct perf_event *aux_event;
801
802 void (*destroy)(struct perf_event *);
803 struct rcu_head rcu_head;
804
805 struct pid_namespace *ns;
806 u64 id;
807
808 atomic64_t lost_samples;
809
810 u64 (*clock)(void);
811 perf_overflow_handler_t overflow_handler;
812 void *overflow_handler_context;
813 #ifdef CONFIG_BPF_SYSCALL
814 perf_overflow_handler_t orig_overflow_handler;
815 struct bpf_prog *prog;
816 u64 bpf_cookie;
817 #endif
818
819 #ifdef CONFIG_EVENT_TRACING
820 struct trace_event_call *tp_event;
821 struct event_filter *filter;
822 #ifdef CONFIG_FUNCTION_TRACER
823 struct ftrace_ops ftrace_ops;
824 #endif
825 #endif
826
827 #ifdef CONFIG_CGROUP_PERF
828 struct perf_cgroup *cgrp; /* cgroup event is attach to */
829 #endif
830
831 #ifdef CONFIG_SECURITY
832 void *security;
833 #endif
834 struct list_head sb_list;
835
836 /*
837 * Certain events gets forwarded to another pmu internally by over-
838 * writing kernel copy of event->attr.type without user being aware
839 * of it. event->orig_type contains original 'type' requested by
840 * user.
841 */
842 __u32 orig_type;
843 #endif /* CONFIG_PERF_EVENTS */
844 };
845
846 /*
847 * ,-----------------------[1:n]------------------------.
848 * V V
849 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
850 * | |
851 * `--[n:1]-> pmu <-[1:n]--'
852 *
853 *
854 * struct perf_event_pmu_context lifetime is refcount based and RCU freed
855 * (similar to perf_event_context). Locking is as if it were a member of
856 * perf_event_context; specifically:
857 *
858 * modification, both: ctx->mutex && ctx->lock
859 * reading, either: ctx->mutex || ctx->lock
860 *
861 * There is one exception to this; namely put_pmu_ctx() isn't always called
862 * with ctx->mutex held; this means that as long as we can guarantee the epc
863 * has events the above rules hold.
864 *
865 * Specificially, sys_perf_event_open()'s group_leader case depends on
866 * ctx->mutex pinning the configuration. Since we hold a reference on
867 * group_leader (through the filedesc) it can't go away, therefore it's
868 * associated pmu_ctx must exist and cannot change due to ctx->mutex.
869 *
870 * perf_event holds a refcount on perf_event_context
871 * perf_event holds a refcount on perf_event_pmu_context
872 */
873 struct perf_event_pmu_context {
874 struct pmu *pmu;
875 struct perf_event_context *ctx;
876
877 struct list_head pmu_ctx_entry;
878
879 struct list_head pinned_active;
880 struct list_head flexible_active;
881
882 /* Used to avoid freeing per-cpu perf_event_pmu_context */
883 unsigned int embedded : 1;
884
885 unsigned int nr_events;
886 unsigned int nr_cgroups;
887
888 atomic_t refcount; /* event <-> epc */
889 struct rcu_head rcu_head;
890
891 void *task_ctx_data; /* pmu specific data */
892 /*
893 * Set when one or more (plausibly active) event can't be scheduled
894 * due to pmu overcommit or pmu constraints, except tolerant to
895 * events not necessary to be active due to scheduling constraints,
896 * such as cgroups.
897 */
898 int rotate_necessary;
899 };
900
901 struct perf_event_groups {
902 struct rb_root tree;
903 u64 index;
904 };
905
906
907 /**
908 * struct perf_event_context - event context structure
909 *
910 * Used as a container for task events and CPU events as well:
911 */
912 struct perf_event_context {
913 /*
914 * Protect the states of the events in the list,
915 * nr_active, and the list:
916 */
917 raw_spinlock_t lock;
918 /*
919 * Protect the list of events. Locking either mutex or lock
920 * is sufficient to ensure the list doesn't change; to change
921 * the list you need to lock both the mutex and the spinlock.
922 */
923 struct mutex mutex;
924
925 struct list_head pmu_ctx_list;
926 struct perf_event_groups pinned_groups;
927 struct perf_event_groups flexible_groups;
928 struct list_head event_list;
929
930 int nr_events;
931 int nr_user;
932 int is_active;
933
934 int nr_task_data;
935 int nr_stat;
936 int nr_freq;
937 int rotate_disable;
938
939 refcount_t refcount; /* event <-> ctx */
940 struct task_struct *task;
941
942 /*
943 * Context clock, runs when context enabled.
944 */
945 u64 time;
946 u64 timestamp;
947 u64 timeoffset;
948
949 /*
950 * These fields let us detect when two contexts have both
951 * been cloned (inherited) from a common ancestor.
952 */
953 struct perf_event_context *parent_ctx;
954 u64 parent_gen;
955 u64 generation;
956 int pin_count;
957 #ifdef CONFIG_CGROUP_PERF
958 int nr_cgroups; /* cgroup evts */
959 #endif
960 struct rcu_head rcu_head;
961
962 /*
963 * Sum (event->pending_sigtrap + event->pending_work)
964 *
965 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
966 * that until the signal is delivered.
967 */
968 local_t nr_pending;
969 };
970
971 /*
972 * Number of contexts where an event can trigger:
973 * task, softirq, hardirq, nmi.
974 */
975 #define PERF_NR_CONTEXTS 4
976
977 struct perf_cpu_pmu_context {
978 struct perf_event_pmu_context epc;
979 struct perf_event_pmu_context *task_epc;
980
981 struct list_head sched_cb_entry;
982 int sched_cb_usage;
983
984 int active_oncpu;
985 int exclusive;
986
987 raw_spinlock_t hrtimer_lock;
988 struct hrtimer hrtimer;
989 ktime_t hrtimer_interval;
990 unsigned int hrtimer_active;
991 };
992
993 /**
994 * struct perf_event_cpu_context - per cpu event context structure
995 */
996 struct perf_cpu_context {
997 struct perf_event_context ctx;
998 struct perf_event_context *task_ctx;
999 int online;
1000
1001 #ifdef CONFIG_CGROUP_PERF
1002 struct perf_cgroup *cgrp;
1003 #endif
1004
1005 /*
1006 * Per-CPU storage for iterators used in visit_groups_merge. The default
1007 * storage is of size 2 to hold the CPU and any CPU event iterators.
1008 */
1009 int heap_size;
1010 struct perf_event **heap;
1011 struct perf_event *heap_default[2];
1012 };
1013
1014 struct perf_output_handle {
1015 struct perf_event *event;
1016 struct perf_buffer *rb;
1017 unsigned long wakeup;
1018 unsigned long size;
1019 u64 aux_flags;
1020 union {
1021 void *addr;
1022 unsigned long head;
1023 };
1024 int page;
1025 };
1026
1027 struct bpf_perf_event_data_kern {
1028 bpf_user_pt_regs_t *regs;
1029 struct perf_sample_data *data;
1030 struct perf_event *event;
1031 };
1032
1033 #ifdef CONFIG_CGROUP_PERF
1034
1035 /*
1036 * perf_cgroup_info keeps track of time_enabled for a cgroup.
1037 * This is a per-cpu dynamically allocated data structure.
1038 */
1039 struct perf_cgroup_info {
1040 u64 time;
1041 u64 timestamp;
1042 u64 timeoffset;
1043 int active;
1044 };
1045
1046 struct perf_cgroup {
1047 struct cgroup_subsys_state css;
1048 struct perf_cgroup_info __percpu *info;
1049 };
1050
1051 /*
1052 * Must ensure cgroup is pinned (css_get) before calling
1053 * this function. In other words, we cannot call this function
1054 * if there is no cgroup event for the current CPU context.
1055 */
1056 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)1057 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1058 {
1059 return container_of(task_css_check(task, perf_event_cgrp_id,
1060 ctx ? lockdep_is_held(&ctx->lock)
1061 : true),
1062 struct perf_cgroup, css);
1063 }
1064 #endif /* CONFIG_CGROUP_PERF */
1065
1066 #ifdef CONFIG_PERF_EVENTS
1067
1068 extern struct perf_event_context *perf_cpu_task_ctx(void);
1069
1070 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1071 struct perf_event *event);
1072 extern void perf_aux_output_end(struct perf_output_handle *handle,
1073 unsigned long size);
1074 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1075 unsigned long size);
1076 extern void *perf_get_aux(struct perf_output_handle *handle);
1077 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1078 extern void perf_event_itrace_started(struct perf_event *event);
1079
1080 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1081 extern void perf_pmu_unregister(struct pmu *pmu);
1082
1083 extern void __perf_event_task_sched_in(struct task_struct *prev,
1084 struct task_struct *task);
1085 extern void __perf_event_task_sched_out(struct task_struct *prev,
1086 struct task_struct *next);
1087 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1088 extern void perf_event_exit_task(struct task_struct *child);
1089 extern void perf_event_free_task(struct task_struct *task);
1090 extern void perf_event_delayed_put(struct task_struct *task);
1091 extern struct file *perf_event_get(unsigned int fd);
1092 extern const struct perf_event *perf_get_event(struct file *file);
1093 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1094 extern void perf_event_print_debug(void);
1095 extern void perf_pmu_disable(struct pmu *pmu);
1096 extern void perf_pmu_enable(struct pmu *pmu);
1097 extern void perf_sched_cb_dec(struct pmu *pmu);
1098 extern void perf_sched_cb_inc(struct pmu *pmu);
1099 extern int perf_event_task_disable(void);
1100 extern int perf_event_task_enable(void);
1101
1102 extern void perf_pmu_resched(struct pmu *pmu);
1103
1104 extern int perf_event_refresh(struct perf_event *event, int refresh);
1105 extern void perf_event_update_userpage(struct perf_event *event);
1106 extern int perf_event_release_kernel(struct perf_event *event);
1107 extern struct perf_event *
1108 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1109 int cpu,
1110 struct task_struct *task,
1111 perf_overflow_handler_t callback,
1112 void *context);
1113 extern void perf_pmu_migrate_context(struct pmu *pmu,
1114 int src_cpu, int dst_cpu);
1115 int perf_event_read_local(struct perf_event *event, u64 *value,
1116 u64 *enabled, u64 *running);
1117 extern u64 perf_event_read_value(struct perf_event *event,
1118 u64 *enabled, u64 *running);
1119
1120 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1121
branch_sample_no_flags(const struct perf_event * event)1122 static inline bool branch_sample_no_flags(const struct perf_event *event)
1123 {
1124 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1125 }
1126
branch_sample_no_cycles(const struct perf_event * event)1127 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1128 {
1129 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1130 }
1131
branch_sample_type(const struct perf_event * event)1132 static inline bool branch_sample_type(const struct perf_event *event)
1133 {
1134 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1135 }
1136
branch_sample_hw_index(const struct perf_event * event)1137 static inline bool branch_sample_hw_index(const struct perf_event *event)
1138 {
1139 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1140 }
1141
branch_sample_priv(const struct perf_event * event)1142 static inline bool branch_sample_priv(const struct perf_event *event)
1143 {
1144 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1145 }
1146
1147
1148 struct perf_sample_data {
1149 /*
1150 * Fields set by perf_sample_data_init() unconditionally,
1151 * group so as to minimize the cachelines touched.
1152 */
1153 u64 sample_flags;
1154 u64 period;
1155 u64 dyn_size;
1156
1157 /*
1158 * Fields commonly set by __perf_event_header__init_id(),
1159 * group so as to minimize the cachelines touched.
1160 */
1161 u64 type;
1162 struct {
1163 u32 pid;
1164 u32 tid;
1165 } tid_entry;
1166 u64 time;
1167 u64 id;
1168 struct {
1169 u32 cpu;
1170 u32 reserved;
1171 } cpu_entry;
1172
1173 /*
1174 * The other fields, optionally {set,used} by
1175 * perf_{prepare,output}_sample().
1176 */
1177 u64 ip;
1178 struct perf_callchain_entry *callchain;
1179 struct perf_raw_record *raw;
1180 struct perf_branch_stack *br_stack;
1181 union perf_sample_weight weight;
1182 union perf_mem_data_src data_src;
1183 u64 txn;
1184
1185 struct perf_regs regs_user;
1186 struct perf_regs regs_intr;
1187 u64 stack_user_size;
1188
1189 u64 stream_id;
1190 u64 cgroup;
1191 u64 addr;
1192 u64 phys_addr;
1193 u64 data_page_size;
1194 u64 code_page_size;
1195 u64 aux_size;
1196 } ____cacheline_aligned;
1197
1198 /* default value for data source */
1199 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1200 PERF_MEM_S(LVL, NA) |\
1201 PERF_MEM_S(SNOOP, NA) |\
1202 PERF_MEM_S(LOCK, NA) |\
1203 PERF_MEM_S(TLB, NA) |\
1204 PERF_MEM_S(LVLNUM, NA))
1205
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1206 static inline void perf_sample_data_init(struct perf_sample_data *data,
1207 u64 addr, u64 period)
1208 {
1209 /* remaining struct members initialized in perf_prepare_sample() */
1210 data->sample_flags = PERF_SAMPLE_PERIOD;
1211 data->period = period;
1212 data->dyn_size = 0;
1213
1214 if (addr) {
1215 data->addr = addr;
1216 data->sample_flags |= PERF_SAMPLE_ADDR;
1217 }
1218 }
1219
perf_sample_save_callchain(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)1220 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1221 struct perf_event *event,
1222 struct pt_regs *regs)
1223 {
1224 int size = 1;
1225
1226 data->callchain = perf_callchain(event, regs);
1227 size += data->callchain->nr;
1228
1229 data->dyn_size += size * sizeof(u64);
1230 data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1231 }
1232
perf_sample_save_raw_data(struct perf_sample_data * data,struct perf_raw_record * raw)1233 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1234 struct perf_raw_record *raw)
1235 {
1236 struct perf_raw_frag *frag = &raw->frag;
1237 u32 sum = 0;
1238 int size;
1239
1240 do {
1241 sum += frag->size;
1242 if (perf_raw_frag_last(frag))
1243 break;
1244 frag = frag->next;
1245 } while (1);
1246
1247 size = round_up(sum + sizeof(u32), sizeof(u64));
1248 raw->size = size - sizeof(u32);
1249 frag->pad = raw->size - sum;
1250
1251 data->raw = raw;
1252 data->dyn_size += size;
1253 data->sample_flags |= PERF_SAMPLE_RAW;
1254 }
1255
perf_sample_save_brstack(struct perf_sample_data * data,struct perf_event * event,struct perf_branch_stack * brs)1256 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1257 struct perf_event *event,
1258 struct perf_branch_stack *brs)
1259 {
1260 int size = sizeof(u64); /* nr */
1261
1262 if (branch_sample_hw_index(event))
1263 size += sizeof(u64);
1264 size += brs->nr * sizeof(struct perf_branch_entry);
1265
1266 data->br_stack = brs;
1267 data->dyn_size += size;
1268 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1269 }
1270
perf_sample_data_size(struct perf_sample_data * data,struct perf_event * event)1271 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1272 struct perf_event *event)
1273 {
1274 u32 size = sizeof(struct perf_event_header);
1275
1276 size += event->header_size + event->id_header_size;
1277 size += data->dyn_size;
1278
1279 return size;
1280 }
1281
1282 /*
1283 * Clear all bitfields in the perf_branch_entry.
1284 * The to and from fields are not cleared because they are
1285 * systematically modified by caller.
1286 */
perf_clear_branch_entry_bitfields(struct perf_branch_entry * br)1287 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1288 {
1289 br->mispred = 0;
1290 br->predicted = 0;
1291 br->in_tx = 0;
1292 br->abort = 0;
1293 br->cycles = 0;
1294 br->type = 0;
1295 br->spec = PERF_BR_SPEC_NA;
1296 br->reserved = 0;
1297 }
1298
1299 extern void perf_output_sample(struct perf_output_handle *handle,
1300 struct perf_event_header *header,
1301 struct perf_sample_data *data,
1302 struct perf_event *event);
1303 extern void perf_prepare_sample(struct perf_sample_data *data,
1304 struct perf_event *event,
1305 struct pt_regs *regs);
1306 extern void perf_prepare_header(struct perf_event_header *header,
1307 struct perf_sample_data *data,
1308 struct perf_event *event,
1309 struct pt_regs *regs);
1310
1311 extern int perf_event_overflow(struct perf_event *event,
1312 struct perf_sample_data *data,
1313 struct pt_regs *regs);
1314
1315 extern void perf_event_output_forward(struct perf_event *event,
1316 struct perf_sample_data *data,
1317 struct pt_regs *regs);
1318 extern void perf_event_output_backward(struct perf_event *event,
1319 struct perf_sample_data *data,
1320 struct pt_regs *regs);
1321 extern int perf_event_output(struct perf_event *event,
1322 struct perf_sample_data *data,
1323 struct pt_regs *regs);
1324
1325 static inline bool
__is_default_overflow_handler(perf_overflow_handler_t overflow_handler)1326 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1327 {
1328 if (likely(overflow_handler == perf_event_output_forward))
1329 return true;
1330 if (unlikely(overflow_handler == perf_event_output_backward))
1331 return true;
1332 return false;
1333 }
1334
1335 #define is_default_overflow_handler(event) \
1336 __is_default_overflow_handler((event)->overflow_handler)
1337
1338 #ifdef CONFIG_BPF_SYSCALL
uses_default_overflow_handler(struct perf_event * event)1339 static inline bool uses_default_overflow_handler(struct perf_event *event)
1340 {
1341 if (likely(is_default_overflow_handler(event)))
1342 return true;
1343
1344 return __is_default_overflow_handler(event->orig_overflow_handler);
1345 }
1346 #else
1347 #define uses_default_overflow_handler(event) \
1348 is_default_overflow_handler(event)
1349 #endif
1350
1351 extern void
1352 perf_event_header__init_id(struct perf_event_header *header,
1353 struct perf_sample_data *data,
1354 struct perf_event *event);
1355 extern void
1356 perf_event__output_id_sample(struct perf_event *event,
1357 struct perf_output_handle *handle,
1358 struct perf_sample_data *sample);
1359
1360 extern void
1361 perf_log_lost_samples(struct perf_event *event, u64 lost);
1362
event_has_any_exclude_flag(struct perf_event * event)1363 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1364 {
1365 struct perf_event_attr *attr = &event->attr;
1366
1367 return attr->exclude_idle || attr->exclude_user ||
1368 attr->exclude_kernel || attr->exclude_hv ||
1369 attr->exclude_guest || attr->exclude_host;
1370 }
1371
is_sampling_event(struct perf_event * event)1372 static inline bool is_sampling_event(struct perf_event *event)
1373 {
1374 return event->attr.sample_period != 0;
1375 }
1376
1377 /*
1378 * Return 1 for a software event, 0 for a hardware event
1379 */
is_software_event(struct perf_event * event)1380 static inline int is_software_event(struct perf_event *event)
1381 {
1382 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1383 }
1384
1385 /*
1386 * Return 1 for event in sw context, 0 for event in hw context
1387 */
in_software_context(struct perf_event * event)1388 static inline int in_software_context(struct perf_event *event)
1389 {
1390 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1391 }
1392
is_exclusive_pmu(struct pmu * pmu)1393 static inline int is_exclusive_pmu(struct pmu *pmu)
1394 {
1395 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1396 }
1397
1398 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1399
1400 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1401 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1402
1403 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1404 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1405 #endif
1406
1407 /*
1408 * When generating a perf sample in-line, instead of from an interrupt /
1409 * exception, we lack a pt_regs. This is typically used from software events
1410 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1411 *
1412 * We typically don't need a full set, but (for x86) do require:
1413 * - ip for PERF_SAMPLE_IP
1414 * - cs for user_mode() tests
1415 * - sp for PERF_SAMPLE_CALLCHAIN
1416 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1417 *
1418 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1419 * things like PERF_SAMPLE_REGS_INTR.
1420 */
perf_fetch_caller_regs(struct pt_regs * regs)1421 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1422 {
1423 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1424 }
1425
1426 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1427 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1428 {
1429 if (static_key_false(&perf_swevent_enabled[event_id]))
1430 __perf_sw_event(event_id, nr, regs, addr);
1431 }
1432
1433 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1434
1435 /*
1436 * 'Special' version for the scheduler, it hard assumes no recursion,
1437 * which is guaranteed by us not actually scheduling inside other swevents
1438 * because those disable preemption.
1439 */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1440 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1441 {
1442 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1443
1444 perf_fetch_caller_regs(regs);
1445 ___perf_sw_event(event_id, nr, regs, addr);
1446 }
1447
1448 extern struct static_key_false perf_sched_events;
1449
__perf_sw_enabled(int swevt)1450 static __always_inline bool __perf_sw_enabled(int swevt)
1451 {
1452 return static_key_false(&perf_swevent_enabled[swevt]);
1453 }
1454
perf_event_task_migrate(struct task_struct * task)1455 static inline void perf_event_task_migrate(struct task_struct *task)
1456 {
1457 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1458 task->sched_migrated = 1;
1459 }
1460
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1461 static inline void perf_event_task_sched_in(struct task_struct *prev,
1462 struct task_struct *task)
1463 {
1464 if (static_branch_unlikely(&perf_sched_events))
1465 __perf_event_task_sched_in(prev, task);
1466
1467 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1468 task->sched_migrated) {
1469 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1470 task->sched_migrated = 0;
1471 }
1472 }
1473
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1474 static inline void perf_event_task_sched_out(struct task_struct *prev,
1475 struct task_struct *next)
1476 {
1477 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1478 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1479
1480 #ifdef CONFIG_CGROUP_PERF
1481 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1482 perf_cgroup_from_task(prev, NULL) !=
1483 perf_cgroup_from_task(next, NULL))
1484 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1485 #endif
1486
1487 if (static_branch_unlikely(&perf_sched_events))
1488 __perf_event_task_sched_out(prev, next);
1489 }
1490
1491 extern void perf_event_mmap(struct vm_area_struct *vma);
1492
1493 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1494 bool unregister, const char *sym);
1495 extern void perf_event_bpf_event(struct bpf_prog *prog,
1496 enum perf_bpf_event_type type,
1497 u16 flags);
1498
1499 #ifdef CONFIG_GUEST_PERF_EVENTS
1500 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1501
1502 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1503 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1504 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1505
perf_guest_state(void)1506 static inline unsigned int perf_guest_state(void)
1507 {
1508 return static_call(__perf_guest_state)();
1509 }
perf_guest_get_ip(void)1510 static inline unsigned long perf_guest_get_ip(void)
1511 {
1512 return static_call(__perf_guest_get_ip)();
1513 }
perf_guest_handle_intel_pt_intr(void)1514 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1515 {
1516 return static_call(__perf_guest_handle_intel_pt_intr)();
1517 }
1518 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1519 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1520 #else
perf_guest_state(void)1521 static inline unsigned int perf_guest_state(void) { return 0; }
perf_guest_get_ip(void)1522 static inline unsigned long perf_guest_get_ip(void) { return 0; }
perf_guest_handle_intel_pt_intr(void)1523 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1524 #endif /* CONFIG_GUEST_PERF_EVENTS */
1525
1526 extern void perf_event_exec(void);
1527 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1528 extern void perf_event_namespaces(struct task_struct *tsk);
1529 extern void perf_event_fork(struct task_struct *tsk);
1530 extern void perf_event_text_poke(const void *addr,
1531 const void *old_bytes, size_t old_len,
1532 const void *new_bytes, size_t new_len);
1533
1534 /* Callchains */
1535 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1536
1537 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1538 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1539 extern struct perf_callchain_entry *
1540 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1541 u32 max_stack, bool crosstask, bool add_mark);
1542 extern int get_callchain_buffers(int max_stack);
1543 extern void put_callchain_buffers(void);
1544 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1545 extern void put_callchain_entry(int rctx);
1546
1547 extern int sysctl_perf_event_max_stack;
1548 extern int sysctl_perf_event_max_contexts_per_stack;
1549
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1550 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1551 {
1552 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1553 struct perf_callchain_entry *entry = ctx->entry;
1554 entry->ip[entry->nr++] = ip;
1555 ++ctx->contexts;
1556 return 0;
1557 } else {
1558 ctx->contexts_maxed = true;
1559 return -1; /* no more room, stop walking the stack */
1560 }
1561 }
1562
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1563 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1564 {
1565 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1566 struct perf_callchain_entry *entry = ctx->entry;
1567 entry->ip[entry->nr++] = ip;
1568 ++ctx->nr;
1569 return 0;
1570 } else {
1571 return -1; /* no more room, stop walking the stack */
1572 }
1573 }
1574
1575 extern int sysctl_perf_event_paranoid;
1576 extern int sysctl_perf_event_mlock;
1577 extern int sysctl_perf_event_sample_rate;
1578 extern int sysctl_perf_cpu_time_max_percent;
1579
1580 extern void perf_sample_event_took(u64 sample_len_ns);
1581
1582 int perf_proc_update_handler(struct ctl_table *table, int write,
1583 void *buffer, size_t *lenp, loff_t *ppos);
1584 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1585 void *buffer, size_t *lenp, loff_t *ppos);
1586 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1587 void *buffer, size_t *lenp, loff_t *ppos);
1588
1589 /* Access to perf_event_open(2) syscall. */
1590 #define PERF_SECURITY_OPEN 0
1591
1592 /* Finer grained perf_event_open(2) access control. */
1593 #define PERF_SECURITY_CPU 1
1594 #define PERF_SECURITY_KERNEL 2
1595 #define PERF_SECURITY_TRACEPOINT 3
1596
perf_is_paranoid(void)1597 static inline int perf_is_paranoid(void)
1598 {
1599 return sysctl_perf_event_paranoid > -1;
1600 }
1601
1602 int perf_allow_kernel(struct perf_event_attr *attr);
1603
perf_allow_cpu(struct perf_event_attr * attr)1604 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1605 {
1606 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1607 return -EACCES;
1608
1609 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1610 }
1611
perf_allow_tracepoint(struct perf_event_attr * attr)1612 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1613 {
1614 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1615 return -EPERM;
1616
1617 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1618 }
1619
1620 extern void perf_event_init(void);
1621 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1622 int entry_size, struct pt_regs *regs,
1623 struct hlist_head *head, int rctx,
1624 struct task_struct *task);
1625 extern void perf_bp_event(struct perf_event *event, void *data);
1626
1627 #ifndef perf_misc_flags
1628 # define perf_misc_flags(regs) \
1629 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1630 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1631 #endif
1632 #ifndef perf_arch_bpf_user_pt_regs
1633 # define perf_arch_bpf_user_pt_regs(regs) regs
1634 #endif
1635
has_branch_stack(struct perf_event * event)1636 static inline bool has_branch_stack(struct perf_event *event)
1637 {
1638 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1639 }
1640
needs_branch_stack(struct perf_event * event)1641 static inline bool needs_branch_stack(struct perf_event *event)
1642 {
1643 return event->attr.branch_sample_type != 0;
1644 }
1645
has_aux(struct perf_event * event)1646 static inline bool has_aux(struct perf_event *event)
1647 {
1648 return event->pmu->setup_aux;
1649 }
1650
is_write_backward(struct perf_event * event)1651 static inline bool is_write_backward(struct perf_event *event)
1652 {
1653 return !!event->attr.write_backward;
1654 }
1655
has_addr_filter(struct perf_event * event)1656 static inline bool has_addr_filter(struct perf_event *event)
1657 {
1658 return event->pmu->nr_addr_filters;
1659 }
1660
1661 /*
1662 * An inherited event uses parent's filters
1663 */
1664 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1665 perf_event_addr_filters(struct perf_event *event)
1666 {
1667 struct perf_addr_filters_head *ifh = &event->addr_filters;
1668
1669 if (event->parent)
1670 ifh = &event->parent->addr_filters;
1671
1672 return ifh;
1673 }
1674
1675 extern void perf_event_addr_filters_sync(struct perf_event *event);
1676 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1677
1678 extern int perf_output_begin(struct perf_output_handle *handle,
1679 struct perf_sample_data *data,
1680 struct perf_event *event, unsigned int size);
1681 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1682 struct perf_sample_data *data,
1683 struct perf_event *event,
1684 unsigned int size);
1685 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1686 struct perf_sample_data *data,
1687 struct perf_event *event,
1688 unsigned int size);
1689
1690 extern void perf_output_end(struct perf_output_handle *handle);
1691 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1692 const void *buf, unsigned int len);
1693 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1694 unsigned int len);
1695 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1696 struct perf_output_handle *handle,
1697 unsigned long from, unsigned long to);
1698 extern int perf_swevent_get_recursion_context(void);
1699 extern void perf_swevent_put_recursion_context(int rctx);
1700 extern u64 perf_swevent_set_period(struct perf_event *event);
1701 extern void perf_event_enable(struct perf_event *event);
1702 extern void perf_event_disable(struct perf_event *event);
1703 extern void perf_event_disable_local(struct perf_event *event);
1704 extern void perf_event_disable_inatomic(struct perf_event *event);
1705 extern void perf_event_task_tick(void);
1706 extern int perf_event_account_interrupt(struct perf_event *event);
1707 extern int perf_event_period(struct perf_event *event, u64 value);
1708 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1709 #else /* !CONFIG_PERF_EVENTS: */
1710 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1711 perf_aux_output_begin(struct perf_output_handle *handle,
1712 struct perf_event *event) { return NULL; }
1713 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1714 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1715 { }
1716 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1717 perf_aux_output_skip(struct perf_output_handle *handle,
1718 unsigned long size) { return -EINVAL; }
1719 static inline void *
perf_get_aux(struct perf_output_handle * handle)1720 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1721 static inline void
perf_event_task_migrate(struct task_struct * task)1722 perf_event_task_migrate(struct task_struct *task) { }
1723 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1724 perf_event_task_sched_in(struct task_struct *prev,
1725 struct task_struct *task) { }
1726 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1727 perf_event_task_sched_out(struct task_struct *prev,
1728 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1729 static inline int perf_event_init_task(struct task_struct *child,
1730 u64 clone_flags) { return 0; }
perf_event_exit_task(struct task_struct * child)1731 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1732 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1733 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1734 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1735 static inline const struct perf_event *perf_get_event(struct file *file)
1736 {
1737 return ERR_PTR(-EINVAL);
1738 }
perf_event_attrs(struct perf_event * event)1739 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1740 {
1741 return ERR_PTR(-EINVAL);
1742 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1743 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1744 u64 *enabled, u64 *running)
1745 {
1746 return -EINVAL;
1747 }
perf_event_print_debug(void)1748 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1749 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1750 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1751 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1752 {
1753 return -EINVAL;
1754 }
1755
1756 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1757 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1758 static inline void
perf_bp_event(struct perf_event * event,void * data)1759 perf_bp_event(struct perf_event *event, void *data) { }
1760
perf_event_mmap(struct vm_area_struct * vma)1761 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1762
1763 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1764 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1765 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1766 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1767 enum perf_bpf_event_type type,
1768 u16 flags) { }
perf_event_exec(void)1769 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1770 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1771 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1772 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1773 static inline void perf_event_text_poke(const void *addr,
1774 const void *old_bytes,
1775 size_t old_len,
1776 const void *new_bytes,
1777 size_t new_len) { }
perf_event_init(void)1778 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1779 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1780 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1781 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1782 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1783 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1784 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1785 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1786 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1787 static inline int perf_event_period(struct perf_event *event, u64 value)
1788 {
1789 return -EINVAL;
1790 }
perf_event_pause(struct perf_event * event,bool reset)1791 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1792 {
1793 return 0;
1794 }
1795 #endif
1796
1797 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1798 extern void perf_restore_debug_store(void);
1799 #else
perf_restore_debug_store(void)1800 static inline void perf_restore_debug_store(void) { }
1801 #endif
1802
1803 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1804
1805 struct perf_pmu_events_attr {
1806 struct device_attribute attr;
1807 u64 id;
1808 const char *event_str;
1809 };
1810
1811 struct perf_pmu_events_ht_attr {
1812 struct device_attribute attr;
1813 u64 id;
1814 const char *event_str_ht;
1815 const char *event_str_noht;
1816 };
1817
1818 struct perf_pmu_events_hybrid_attr {
1819 struct device_attribute attr;
1820 u64 id;
1821 const char *event_str;
1822 u64 pmu_type;
1823 };
1824
1825 struct perf_pmu_format_hybrid_attr {
1826 struct device_attribute attr;
1827 u64 pmu_type;
1828 };
1829
1830 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1831 char *page);
1832
1833 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1834 static struct perf_pmu_events_attr _var = { \
1835 .attr = __ATTR(_name, 0444, _show, NULL), \
1836 .id = _id, \
1837 };
1838
1839 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1840 static struct perf_pmu_events_attr _var = { \
1841 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1842 .id = 0, \
1843 .event_str = _str, \
1844 };
1845
1846 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1847 (&((struct perf_pmu_events_attr[]) { \
1848 { .attr = __ATTR(_name, 0444, _show, NULL), \
1849 .id = _id, } \
1850 })[0].attr.attr)
1851
1852 #define PMU_FORMAT_ATTR_SHOW(_name, _format) \
1853 static ssize_t \
1854 _name##_show(struct device *dev, \
1855 struct device_attribute *attr, \
1856 char *page) \
1857 { \
1858 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1859 return sprintf(page, _format "\n"); \
1860 } \
1861
1862 #define PMU_FORMAT_ATTR(_name, _format) \
1863 PMU_FORMAT_ATTR_SHOW(_name, _format) \
1864 \
1865 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1866
1867 /* Performance counter hotplug functions */
1868 #ifdef CONFIG_PERF_EVENTS
1869 int perf_event_init_cpu(unsigned int cpu);
1870 int perf_event_exit_cpu(unsigned int cpu);
1871 #else
1872 #define perf_event_init_cpu NULL
1873 #define perf_event_exit_cpu NULL
1874 #endif
1875
1876 extern void arch_perf_update_userpage(struct perf_event *event,
1877 struct perf_event_mmap_page *userpg,
1878 u64 now);
1879
1880 /*
1881 * Snapshot branch stack on software events.
1882 *
1883 * Branch stack can be very useful in understanding software events. For
1884 * example, when a long function, e.g. sys_perf_event_open, returns an
1885 * errno, it is not obvious why the function failed. Branch stack could
1886 * provide very helpful information in this type of scenarios.
1887 *
1888 * On software event, it is necessary to stop the hardware branch recorder
1889 * fast. Otherwise, the hardware register/buffer will be flushed with
1890 * entries of the triggering event. Therefore, static call is used to
1891 * stop the hardware recorder.
1892 */
1893
1894 /*
1895 * cnt is the number of entries allocated for entries.
1896 * Return number of entries copied to .
1897 */
1898 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1899 unsigned int cnt);
1900 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1901
1902 #ifndef PERF_NEEDS_LOPWR_CB
perf_lopwr_cb(bool mode)1903 static inline void perf_lopwr_cb(bool mode)
1904 {
1905 }
1906 #endif
1907
1908 #endif /* _LINUX_PERF_EVENT_H */
1909