1 // SPDX-License-Identifier: GPL-2.0-only
2 /*****************************************************************************
3 * *
4 * File: sge.c *
5 * $Revision: 1.26 $ *
6 * $Date: 2005/06/21 18:29:48 $ *
7 * Description: *
8 * DMA engine. *
9 * part of the Chelsio 10Gb Ethernet Driver. *
10 * *
11 * *
12 * http://www.chelsio.com *
13 * *
14 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
15 * All rights reserved. *
16 * *
17 * Maintainers: maintainers@chelsio.com *
18 * *
19 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
20 * Tina Yang <tainay@chelsio.com> *
21 * Felix Marti <felix@chelsio.com> *
22 * Scott Bardone <sbardone@chelsio.com> *
23 * Kurt Ottaway <kottaway@chelsio.com> *
24 * Frank DiMambro <frank@chelsio.com> *
25 * *
26 * History: *
27 * *
28 ****************************************************************************/
29
30 #include "common.h"
31
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/pci.h>
35 #include <linux/ktime.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/skbuff.h>
40 #include <linux/mm.h>
41 #include <linux/tcp.h>
42 #include <linux/ip.h>
43 #include <linux/in.h>
44 #include <linux/if_arp.h>
45 #include <linux/slab.h>
46 #include <linux/prefetch.h>
47
48 #include "cpl5_cmd.h"
49 #include "sge.h"
50 #include "regs.h"
51 #include "espi.h"
52
53 /* This belongs in if_ether.h */
54 #define ETH_P_CPL5 0xf
55
56 #define SGE_CMDQ_N 2
57 #define SGE_FREELQ_N 2
58 #define SGE_CMDQ0_E_N 1024
59 #define SGE_CMDQ1_E_N 128
60 #define SGE_FREEL_SIZE 4096
61 #define SGE_JUMBO_FREEL_SIZE 512
62 #define SGE_FREEL_REFILL_THRESH 16
63 #define SGE_RESPQ_E_N 1024
64 #define SGE_INTRTIMER_NRES 1000
65 #define SGE_RX_SM_BUF_SIZE 1536
66 #define SGE_TX_DESC_MAX_PLEN 16384
67
68 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
69
70 /*
71 * Period of the TX buffer reclaim timer. This timer does not need to run
72 * frequently as TX buffers are usually reclaimed by new TX packets.
73 */
74 #define TX_RECLAIM_PERIOD (HZ / 4)
75
76 #define M_CMD_LEN 0x7fffffff
77 #define V_CMD_LEN(v) (v)
78 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
79 #define V_CMD_GEN1(v) ((v) << 31)
80 #define V_CMD_GEN2(v) (v)
81 #define F_CMD_DATAVALID (1 << 1)
82 #define F_CMD_SOP (1 << 2)
83 #define V_CMD_EOP(v) ((v) << 3)
84
85 /*
86 * Command queue, receive buffer list, and response queue descriptors.
87 */
88 #if defined(__BIG_ENDIAN_BITFIELD)
89 struct cmdQ_e {
90 u32 addr_lo;
91 u32 len_gen;
92 u32 flags;
93 u32 addr_hi;
94 };
95
96 struct freelQ_e {
97 u32 addr_lo;
98 u32 len_gen;
99 u32 gen2;
100 u32 addr_hi;
101 };
102
103 struct respQ_e {
104 u32 Qsleeping : 4;
105 u32 Cmdq1CreditReturn : 5;
106 u32 Cmdq1DmaComplete : 5;
107 u32 Cmdq0CreditReturn : 5;
108 u32 Cmdq0DmaComplete : 5;
109 u32 FreelistQid : 2;
110 u32 CreditValid : 1;
111 u32 DataValid : 1;
112 u32 Offload : 1;
113 u32 Eop : 1;
114 u32 Sop : 1;
115 u32 GenerationBit : 1;
116 u32 BufferLength;
117 };
118 #elif defined(__LITTLE_ENDIAN_BITFIELD)
119 struct cmdQ_e {
120 u32 len_gen;
121 u32 addr_lo;
122 u32 addr_hi;
123 u32 flags;
124 };
125
126 struct freelQ_e {
127 u32 len_gen;
128 u32 addr_lo;
129 u32 addr_hi;
130 u32 gen2;
131 };
132
133 struct respQ_e {
134 u32 BufferLength;
135 u32 GenerationBit : 1;
136 u32 Sop : 1;
137 u32 Eop : 1;
138 u32 Offload : 1;
139 u32 DataValid : 1;
140 u32 CreditValid : 1;
141 u32 FreelistQid : 2;
142 u32 Cmdq0DmaComplete : 5;
143 u32 Cmdq0CreditReturn : 5;
144 u32 Cmdq1DmaComplete : 5;
145 u32 Cmdq1CreditReturn : 5;
146 u32 Qsleeping : 4;
147 } ;
148 #endif
149
150 /*
151 * SW Context Command and Freelist Queue Descriptors
152 */
153 struct cmdQ_ce {
154 struct sk_buff *skb;
155 DEFINE_DMA_UNMAP_ADDR(dma_addr);
156 DEFINE_DMA_UNMAP_LEN(dma_len);
157 };
158
159 struct freelQ_ce {
160 struct sk_buff *skb;
161 DEFINE_DMA_UNMAP_ADDR(dma_addr);
162 DEFINE_DMA_UNMAP_LEN(dma_len);
163 };
164
165 /*
166 * SW command, freelist and response rings
167 */
168 struct cmdQ {
169 unsigned long status; /* HW DMA fetch status */
170 unsigned int in_use; /* # of in-use command descriptors */
171 unsigned int size; /* # of descriptors */
172 unsigned int processed; /* total # of descs HW has processed */
173 unsigned int cleaned; /* total # of descs SW has reclaimed */
174 unsigned int stop_thres; /* SW TX queue suspend threshold */
175 u16 pidx; /* producer index (SW) */
176 u16 cidx; /* consumer index (HW) */
177 u8 genbit; /* current generation (=valid) bit */
178 u8 sop; /* is next entry start of packet? */
179 struct cmdQ_e *entries; /* HW command descriptor Q */
180 struct cmdQ_ce *centries; /* SW command context descriptor Q */
181 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
182 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
183 };
184
185 struct freelQ {
186 unsigned int credits; /* # of available RX buffers */
187 unsigned int size; /* free list capacity */
188 u16 pidx; /* producer index (SW) */
189 u16 cidx; /* consumer index (HW) */
190 u16 rx_buffer_size; /* Buffer size on this free list */
191 u16 dma_offset; /* DMA offset to align IP headers */
192 u16 recycleq_idx; /* skb recycle q to use */
193 u8 genbit; /* current generation (=valid) bit */
194 struct freelQ_e *entries; /* HW freelist descriptor Q */
195 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
196 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
197 };
198
199 struct respQ {
200 unsigned int credits; /* credits to be returned to SGE */
201 unsigned int size; /* # of response Q descriptors */
202 u16 cidx; /* consumer index (SW) */
203 u8 genbit; /* current generation(=valid) bit */
204 struct respQ_e *entries; /* HW response descriptor Q */
205 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
206 };
207
208 /* Bit flags for cmdQ.status */
209 enum {
210 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
211 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
212 };
213
214 /* T204 TX SW scheduler */
215
216 /* Per T204 TX port */
217 struct sched_port {
218 unsigned int avail; /* available bits - quota */
219 unsigned int drain_bits_per_1024ns; /* drain rate */
220 unsigned int speed; /* drain rate, mbps */
221 unsigned int mtu; /* mtu size */
222 struct sk_buff_head skbq; /* pending skbs */
223 };
224
225 /* Per T204 device */
226 struct sched {
227 ktime_t last_updated; /* last time quotas were computed */
228 unsigned int max_avail; /* max bits to be sent to any port */
229 unsigned int port; /* port index (round robin ports) */
230 unsigned int num; /* num skbs in per port queues */
231 struct sched_port p[MAX_NPORTS];
232 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
233 struct sge *sge;
234 };
235
236 static void restart_sched(struct tasklet_struct *t);
237
238
239 /*
240 * Main SGE data structure
241 *
242 * Interrupts are handled by a single CPU and it is likely that on a MP system
243 * the application is migrated to another CPU. In that scenario, we try to
244 * separate the RX(in irq context) and TX state in order to decrease memory
245 * contention.
246 */
247 struct sge {
248 struct adapter *adapter; /* adapter backpointer */
249 struct net_device *netdev; /* netdevice backpointer */
250 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
251 struct respQ respQ; /* response Q */
252 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
253 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
254 unsigned int jumbo_fl; /* jumbo freelist Q index */
255 unsigned int intrtimer_nres; /* no-resource interrupt timer */
256 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
257 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
258 struct timer_list espibug_timer;
259 unsigned long espibug_timeout;
260 struct sk_buff *espibug_skb[MAX_NPORTS];
261 u32 sge_control; /* shadow value of sge control reg */
262 struct sge_intr_counts stats;
263 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
264 struct sched *tx_sched;
265 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
266 };
267
268 static const u8 ch_mac_addr[ETH_ALEN] = {
269 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
270 };
271
272 /*
273 * stop tasklet and free all pending skb's
274 */
tx_sched_stop(struct sge * sge)275 static void tx_sched_stop(struct sge *sge)
276 {
277 struct sched *s = sge->tx_sched;
278 int i;
279
280 tasklet_kill(&s->sched_tsk);
281
282 for (i = 0; i < MAX_NPORTS; i++)
283 __skb_queue_purge(&s->p[s->port].skbq);
284 }
285
286 /*
287 * t1_sched_update_parms() is called when the MTU or link speed changes. It
288 * re-computes scheduler parameters to scope with the change.
289 */
t1_sched_update_parms(struct sge * sge,unsigned int port,unsigned int mtu,unsigned int speed)290 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
291 unsigned int mtu, unsigned int speed)
292 {
293 struct sched *s = sge->tx_sched;
294 struct sched_port *p = &s->p[port];
295 unsigned int max_avail_segs;
296
297 pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
298 if (speed)
299 p->speed = speed;
300 if (mtu)
301 p->mtu = mtu;
302
303 if (speed || mtu) {
304 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
305 do_div(drain, (p->mtu + 50) * 1000);
306 p->drain_bits_per_1024ns = (unsigned int) drain;
307
308 if (p->speed < 1000)
309 p->drain_bits_per_1024ns =
310 90 * p->drain_bits_per_1024ns / 100;
311 }
312
313 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
314 p->drain_bits_per_1024ns -= 16;
315 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
316 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
317 } else {
318 s->max_avail = 16384;
319 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
320 }
321
322 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
323 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
324 p->speed, s->max_avail, max_avail_segs,
325 p->drain_bits_per_1024ns);
326
327 return max_avail_segs * (p->mtu - 40);
328 }
329
330 #if 0
331
332 /*
333 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
334 * data that can be pushed per port.
335 */
336 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
337 {
338 struct sched *s = sge->tx_sched;
339 unsigned int i;
340
341 s->max_avail = val;
342 for (i = 0; i < MAX_NPORTS; i++)
343 t1_sched_update_parms(sge, i, 0, 0);
344 }
345
346 /*
347 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
348 * is draining.
349 */
350 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
351 unsigned int val)
352 {
353 struct sched *s = sge->tx_sched;
354 struct sched_port *p = &s->p[port];
355 p->drain_bits_per_1024ns = val * 1024 / 1000;
356 t1_sched_update_parms(sge, port, 0, 0);
357 }
358
359 #endif /* 0 */
360
361 /*
362 * tx_sched_init() allocates resources and does basic initialization.
363 */
tx_sched_init(struct sge * sge)364 static int tx_sched_init(struct sge *sge)
365 {
366 struct sched *s;
367 int i;
368
369 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
370 if (!s)
371 return -ENOMEM;
372
373 pr_debug("tx_sched_init\n");
374 tasklet_setup(&s->sched_tsk, restart_sched);
375 s->sge = sge;
376 sge->tx_sched = s;
377
378 for (i = 0; i < MAX_NPORTS; i++) {
379 skb_queue_head_init(&s->p[i].skbq);
380 t1_sched_update_parms(sge, i, 1500, 1000);
381 }
382
383 return 0;
384 }
385
386 /*
387 * sched_update_avail() computes the delta since the last time it was called
388 * and updates the per port quota (number of bits that can be sent to the any
389 * port).
390 */
sched_update_avail(struct sge * sge)391 static inline int sched_update_avail(struct sge *sge)
392 {
393 struct sched *s = sge->tx_sched;
394 ktime_t now = ktime_get();
395 unsigned int i;
396 long long delta_time_ns;
397
398 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
399
400 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
401 if (delta_time_ns < 15000)
402 return 0;
403
404 for (i = 0; i < MAX_NPORTS; i++) {
405 struct sched_port *p = &s->p[i];
406 unsigned int delta_avail;
407
408 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
409 p->avail = min(p->avail + delta_avail, s->max_avail);
410 }
411
412 s->last_updated = now;
413
414 return 1;
415 }
416
417 /*
418 * sched_skb() is called from two different places. In the tx path, any
419 * packet generating load on an output port will call sched_skb()
420 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
421 * context (skb == NULL).
422 * The scheduler only returns a skb (which will then be sent) if the
423 * length of the skb is <= the current quota of the output port.
424 */
sched_skb(struct sge * sge,struct sk_buff * skb,unsigned int credits)425 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
426 unsigned int credits)
427 {
428 struct sched *s = sge->tx_sched;
429 struct sk_buff_head *skbq;
430 unsigned int i, len, update = 1;
431
432 pr_debug("sched_skb %p\n", skb);
433 if (!skb) {
434 if (!s->num)
435 return NULL;
436 } else {
437 skbq = &s->p[skb->dev->if_port].skbq;
438 __skb_queue_tail(skbq, skb);
439 s->num++;
440 skb = NULL;
441 }
442
443 if (credits < MAX_SKB_FRAGS + 1)
444 goto out;
445
446 again:
447 for (i = 0; i < MAX_NPORTS; i++) {
448 s->port = (s->port + 1) & (MAX_NPORTS - 1);
449 skbq = &s->p[s->port].skbq;
450
451 skb = skb_peek(skbq);
452
453 if (!skb)
454 continue;
455
456 len = skb->len;
457 if (len <= s->p[s->port].avail) {
458 s->p[s->port].avail -= len;
459 s->num--;
460 __skb_unlink(skb, skbq);
461 goto out;
462 }
463 skb = NULL;
464 }
465
466 if (update-- && sched_update_avail(sge))
467 goto again;
468
469 out:
470 /* If there are more pending skbs, we use the hardware to schedule us
471 * again.
472 */
473 if (s->num && !skb) {
474 struct cmdQ *q = &sge->cmdQ[0];
475 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
476 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
477 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
478 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
479 }
480 }
481 pr_debug("sched_skb ret %p\n", skb);
482
483 return skb;
484 }
485
486 /*
487 * PIO to indicate that memory mapped Q contains valid descriptor(s).
488 */
doorbell_pio(struct adapter * adapter,u32 val)489 static inline void doorbell_pio(struct adapter *adapter, u32 val)
490 {
491 wmb();
492 writel(val, adapter->regs + A_SG_DOORBELL);
493 }
494
495 /*
496 * Frees all RX buffers on the freelist Q. The caller must make sure that
497 * the SGE is turned off before calling this function.
498 */
free_freelQ_buffers(struct pci_dev * pdev,struct freelQ * q)499 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
500 {
501 unsigned int cidx = q->cidx;
502
503 while (q->credits--) {
504 struct freelQ_ce *ce = &q->centries[cidx];
505
506 dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
507 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
508 dev_kfree_skb(ce->skb);
509 ce->skb = NULL;
510 if (++cidx == q->size)
511 cidx = 0;
512 }
513 }
514
515 /*
516 * Free RX free list and response queue resources.
517 */
free_rx_resources(struct sge * sge)518 static void free_rx_resources(struct sge *sge)
519 {
520 struct pci_dev *pdev = sge->adapter->pdev;
521 unsigned int size, i;
522
523 if (sge->respQ.entries) {
524 size = sizeof(struct respQ_e) * sge->respQ.size;
525 dma_free_coherent(&pdev->dev, size, sge->respQ.entries,
526 sge->respQ.dma_addr);
527 }
528
529 for (i = 0; i < SGE_FREELQ_N; i++) {
530 struct freelQ *q = &sge->freelQ[i];
531
532 if (q->centries) {
533 free_freelQ_buffers(pdev, q);
534 kfree(q->centries);
535 }
536 if (q->entries) {
537 size = sizeof(struct freelQ_e) * q->size;
538 dma_free_coherent(&pdev->dev, size, q->entries,
539 q->dma_addr);
540 }
541 }
542 }
543
544 /*
545 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
546 * response queue.
547 */
alloc_rx_resources(struct sge * sge,struct sge_params * p)548 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
549 {
550 struct pci_dev *pdev = sge->adapter->pdev;
551 unsigned int size, i;
552
553 for (i = 0; i < SGE_FREELQ_N; i++) {
554 struct freelQ *q = &sge->freelQ[i];
555
556 q->genbit = 1;
557 q->size = p->freelQ_size[i];
558 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
559 size = sizeof(struct freelQ_e) * q->size;
560 q->entries = dma_alloc_coherent(&pdev->dev, size,
561 &q->dma_addr, GFP_KERNEL);
562 if (!q->entries)
563 goto err_no_mem;
564
565 size = sizeof(struct freelQ_ce) * q->size;
566 q->centries = kzalloc(size, GFP_KERNEL);
567 if (!q->centries)
568 goto err_no_mem;
569 }
570
571 /*
572 * Calculate the buffer sizes for the two free lists. FL0 accommodates
573 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
574 * including all the sk_buff overhead.
575 *
576 * Note: For T2 FL0 and FL1 are reversed.
577 */
578 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
579 sizeof(struct cpl_rx_data) +
580 sge->freelQ[!sge->jumbo_fl].dma_offset;
581
582 size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
583
584 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
585
586 /*
587 * Setup which skb recycle Q should be used when recycling buffers from
588 * each free list.
589 */
590 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
591 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
592
593 sge->respQ.genbit = 1;
594 sge->respQ.size = SGE_RESPQ_E_N;
595 sge->respQ.credits = 0;
596 size = sizeof(struct respQ_e) * sge->respQ.size;
597 sge->respQ.entries =
598 dma_alloc_coherent(&pdev->dev, size, &sge->respQ.dma_addr,
599 GFP_KERNEL);
600 if (!sge->respQ.entries)
601 goto err_no_mem;
602 return 0;
603
604 err_no_mem:
605 free_rx_resources(sge);
606 return -ENOMEM;
607 }
608
609 /*
610 * Reclaims n TX descriptors and frees the buffers associated with them.
611 */
free_cmdQ_buffers(struct sge * sge,struct cmdQ * q,unsigned int n)612 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
613 {
614 struct cmdQ_ce *ce;
615 struct pci_dev *pdev = sge->adapter->pdev;
616 unsigned int cidx = q->cidx;
617
618 q->in_use -= n;
619 ce = &q->centries[cidx];
620 while (n--) {
621 if (likely(dma_unmap_len(ce, dma_len))) {
622 dma_unmap_single(&pdev->dev,
623 dma_unmap_addr(ce, dma_addr),
624 dma_unmap_len(ce, dma_len),
625 DMA_TO_DEVICE);
626 if (q->sop)
627 q->sop = 0;
628 }
629 if (ce->skb) {
630 dev_kfree_skb_any(ce->skb);
631 q->sop = 1;
632 }
633 ce++;
634 if (++cidx == q->size) {
635 cidx = 0;
636 ce = q->centries;
637 }
638 }
639 q->cidx = cidx;
640 }
641
642 /*
643 * Free TX resources.
644 *
645 * Assumes that SGE is stopped and all interrupts are disabled.
646 */
free_tx_resources(struct sge * sge)647 static void free_tx_resources(struct sge *sge)
648 {
649 struct pci_dev *pdev = sge->adapter->pdev;
650 unsigned int size, i;
651
652 for (i = 0; i < SGE_CMDQ_N; i++) {
653 struct cmdQ *q = &sge->cmdQ[i];
654
655 if (q->centries) {
656 if (q->in_use)
657 free_cmdQ_buffers(sge, q, q->in_use);
658 kfree(q->centries);
659 }
660 if (q->entries) {
661 size = sizeof(struct cmdQ_e) * q->size;
662 dma_free_coherent(&pdev->dev, size, q->entries,
663 q->dma_addr);
664 }
665 }
666 }
667
668 /*
669 * Allocates basic TX resources, consisting of memory mapped command Qs.
670 */
alloc_tx_resources(struct sge * sge,struct sge_params * p)671 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
672 {
673 struct pci_dev *pdev = sge->adapter->pdev;
674 unsigned int size, i;
675
676 for (i = 0; i < SGE_CMDQ_N; i++) {
677 struct cmdQ *q = &sge->cmdQ[i];
678
679 q->genbit = 1;
680 q->sop = 1;
681 q->size = p->cmdQ_size[i];
682 q->in_use = 0;
683 q->status = 0;
684 q->processed = q->cleaned = 0;
685 q->stop_thres = 0;
686 spin_lock_init(&q->lock);
687 size = sizeof(struct cmdQ_e) * q->size;
688 q->entries = dma_alloc_coherent(&pdev->dev, size,
689 &q->dma_addr, GFP_KERNEL);
690 if (!q->entries)
691 goto err_no_mem;
692
693 size = sizeof(struct cmdQ_ce) * q->size;
694 q->centries = kzalloc(size, GFP_KERNEL);
695 if (!q->centries)
696 goto err_no_mem;
697 }
698
699 /*
700 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
701 * only. For queue 0 set the stop threshold so we can handle one more
702 * packet from each port, plus reserve an additional 24 entries for
703 * Ethernet packets only. Queue 1 never suspends nor do we reserve
704 * space for Ethernet packets.
705 */
706 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
707 (MAX_SKB_FRAGS + 1);
708 return 0;
709
710 err_no_mem:
711 free_tx_resources(sge);
712 return -ENOMEM;
713 }
714
setup_ring_params(struct adapter * adapter,u64 addr,u32 size,int base_reg_lo,int base_reg_hi,int size_reg)715 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
716 u32 size, int base_reg_lo,
717 int base_reg_hi, int size_reg)
718 {
719 writel((u32)addr, adapter->regs + base_reg_lo);
720 writel(addr >> 32, adapter->regs + base_reg_hi);
721 writel(size, adapter->regs + size_reg);
722 }
723
724 /*
725 * Enable/disable VLAN acceleration.
726 */
t1_vlan_mode(struct adapter * adapter,netdev_features_t features)727 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
728 {
729 struct sge *sge = adapter->sge;
730
731 if (features & NETIF_F_HW_VLAN_CTAG_RX)
732 sge->sge_control |= F_VLAN_XTRACT;
733 else
734 sge->sge_control &= ~F_VLAN_XTRACT;
735 if (adapter->open_device_map) {
736 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
737 readl(adapter->regs + A_SG_CONTROL); /* flush */
738 }
739 }
740
741 /*
742 * Programs the various SGE registers. However, the engine is not yet enabled,
743 * but sge->sge_control is setup and ready to go.
744 */
configure_sge(struct sge * sge,struct sge_params * p)745 static void configure_sge(struct sge *sge, struct sge_params *p)
746 {
747 struct adapter *ap = sge->adapter;
748
749 writel(0, ap->regs + A_SG_CONTROL);
750 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
751 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
752 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
753 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
754 setup_ring_params(ap, sge->freelQ[0].dma_addr,
755 sge->freelQ[0].size, A_SG_FL0BASELWR,
756 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
757 setup_ring_params(ap, sge->freelQ[1].dma_addr,
758 sge->freelQ[1].size, A_SG_FL1BASELWR,
759 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
760
761 /* The threshold comparison uses <. */
762 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
763
764 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
765 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
766 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
767
768 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
769 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
770 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
771 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
772
773 #if defined(__BIG_ENDIAN_BITFIELD)
774 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
775 #endif
776
777 /* Initialize no-resource timer */
778 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
779
780 t1_sge_set_coalesce_params(sge, p);
781 }
782
783 /*
784 * Return the payload capacity of the jumbo free-list buffers.
785 */
jumbo_payload_capacity(const struct sge * sge)786 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
787 {
788 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
789 sge->freelQ[sge->jumbo_fl].dma_offset -
790 sizeof(struct cpl_rx_data);
791 }
792
793 /*
794 * Frees all SGE related resources and the sge structure itself
795 */
t1_sge_destroy(struct sge * sge)796 void t1_sge_destroy(struct sge *sge)
797 {
798 int i;
799
800 for_each_port(sge->adapter, i)
801 free_percpu(sge->port_stats[i]);
802
803 kfree(sge->tx_sched);
804 free_tx_resources(sge);
805 free_rx_resources(sge);
806 kfree(sge);
807 }
808
809 /*
810 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
811 * context Q) until the Q is full or alloc_skb fails.
812 *
813 * It is possible that the generation bits already match, indicating that the
814 * buffer is already valid and nothing needs to be done. This happens when we
815 * copied a received buffer into a new sk_buff during the interrupt processing.
816 *
817 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
818 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
819 * aligned.
820 */
refill_free_list(struct sge * sge,struct freelQ * q)821 static void refill_free_list(struct sge *sge, struct freelQ *q)
822 {
823 struct pci_dev *pdev = sge->adapter->pdev;
824 struct freelQ_ce *ce = &q->centries[q->pidx];
825 struct freelQ_e *e = &q->entries[q->pidx];
826 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
827
828 while (q->credits < q->size) {
829 struct sk_buff *skb;
830 dma_addr_t mapping;
831
832 skb = dev_alloc_skb(q->rx_buffer_size);
833 if (!skb)
834 break;
835
836 skb_reserve(skb, q->dma_offset);
837 mapping = dma_map_single(&pdev->dev, skb->data, dma_len,
838 DMA_FROM_DEVICE);
839 skb_reserve(skb, sge->rx_pkt_pad);
840
841 ce->skb = skb;
842 dma_unmap_addr_set(ce, dma_addr, mapping);
843 dma_unmap_len_set(ce, dma_len, dma_len);
844 e->addr_lo = (u32)mapping;
845 e->addr_hi = (u64)mapping >> 32;
846 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
847 wmb();
848 e->gen2 = V_CMD_GEN2(q->genbit);
849
850 e++;
851 ce++;
852 if (++q->pidx == q->size) {
853 q->pidx = 0;
854 q->genbit ^= 1;
855 ce = q->centries;
856 e = q->entries;
857 }
858 q->credits++;
859 }
860 }
861
862 /*
863 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
864 * of both rings, we go into 'few interrupt mode' in order to give the system
865 * time to free up resources.
866 */
freelQs_empty(struct sge * sge)867 static void freelQs_empty(struct sge *sge)
868 {
869 struct adapter *adapter = sge->adapter;
870 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
871 u32 irqholdoff_reg;
872
873 refill_free_list(sge, &sge->freelQ[0]);
874 refill_free_list(sge, &sge->freelQ[1]);
875
876 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
877 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
878 irq_reg |= F_FL_EXHAUSTED;
879 irqholdoff_reg = sge->fixed_intrtimer;
880 } else {
881 /* Clear the F_FL_EXHAUSTED interrupts for now */
882 irq_reg &= ~F_FL_EXHAUSTED;
883 irqholdoff_reg = sge->intrtimer_nres;
884 }
885 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
886 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
887
888 /* We reenable the Qs to force a freelist GTS interrupt later */
889 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
890 }
891
892 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
893 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
894 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
895 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
896
897 /*
898 * Disable SGE Interrupts
899 */
t1_sge_intr_disable(struct sge * sge)900 void t1_sge_intr_disable(struct sge *sge)
901 {
902 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
903
904 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
905 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
906 }
907
908 /*
909 * Enable SGE interrupts.
910 */
t1_sge_intr_enable(struct sge * sge)911 void t1_sge_intr_enable(struct sge *sge)
912 {
913 u32 en = SGE_INT_ENABLE;
914 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
915
916 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
917 en &= ~F_PACKET_TOO_BIG;
918 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
919 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
920 }
921
922 /*
923 * Clear SGE interrupts.
924 */
t1_sge_intr_clear(struct sge * sge)925 void t1_sge_intr_clear(struct sge *sge)
926 {
927 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
928 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
929 }
930
931 /*
932 * SGE 'Error' interrupt handler
933 */
t1_sge_intr_error_handler(struct sge * sge)934 bool t1_sge_intr_error_handler(struct sge *sge)
935 {
936 struct adapter *adapter = sge->adapter;
937 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
938 bool wake = false;
939
940 if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
941 cause &= ~F_PACKET_TOO_BIG;
942 if (cause & F_RESPQ_EXHAUSTED)
943 sge->stats.respQ_empty++;
944 if (cause & F_RESPQ_OVERFLOW) {
945 sge->stats.respQ_overflow++;
946 pr_alert("%s: SGE response queue overflow\n",
947 adapter->name);
948 }
949 if (cause & F_FL_EXHAUSTED) {
950 sge->stats.freelistQ_empty++;
951 freelQs_empty(sge);
952 }
953 if (cause & F_PACKET_TOO_BIG) {
954 sge->stats.pkt_too_big++;
955 pr_alert("%s: SGE max packet size exceeded\n",
956 adapter->name);
957 }
958 if (cause & F_PACKET_MISMATCH) {
959 sge->stats.pkt_mismatch++;
960 pr_alert("%s: SGE packet mismatch\n", adapter->name);
961 }
962 if (cause & SGE_INT_FATAL) {
963 t1_interrupts_disable(adapter);
964 adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR;
965 wake = true;
966 }
967
968 writel(cause, adapter->regs + A_SG_INT_CAUSE);
969 return wake;
970 }
971
t1_sge_get_intr_counts(const struct sge * sge)972 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
973 {
974 return &sge->stats;
975 }
976
t1_sge_get_port_stats(const struct sge * sge,int port,struct sge_port_stats * ss)977 void t1_sge_get_port_stats(const struct sge *sge, int port,
978 struct sge_port_stats *ss)
979 {
980 int cpu;
981
982 memset(ss, 0, sizeof(*ss));
983 for_each_possible_cpu(cpu) {
984 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
985
986 ss->rx_cso_good += st->rx_cso_good;
987 ss->tx_cso += st->tx_cso;
988 ss->tx_tso += st->tx_tso;
989 ss->tx_need_hdrroom += st->tx_need_hdrroom;
990 ss->vlan_xtract += st->vlan_xtract;
991 ss->vlan_insert += st->vlan_insert;
992 }
993 }
994
995 /**
996 * recycle_fl_buf - recycle a free list buffer
997 * @fl: the free list
998 * @idx: index of buffer to recycle
999 *
1000 * Recycles the specified buffer on the given free list by adding it at
1001 * the next available slot on the list.
1002 */
recycle_fl_buf(struct freelQ * fl,int idx)1003 static void recycle_fl_buf(struct freelQ *fl, int idx)
1004 {
1005 struct freelQ_e *from = &fl->entries[idx];
1006 struct freelQ_e *to = &fl->entries[fl->pidx];
1007
1008 fl->centries[fl->pidx] = fl->centries[idx];
1009 to->addr_lo = from->addr_lo;
1010 to->addr_hi = from->addr_hi;
1011 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1012 wmb();
1013 to->gen2 = V_CMD_GEN2(fl->genbit);
1014 fl->credits++;
1015
1016 if (++fl->pidx == fl->size) {
1017 fl->pidx = 0;
1018 fl->genbit ^= 1;
1019 }
1020 }
1021
1022 static int copybreak __read_mostly = 256;
1023 module_param(copybreak, int, 0);
1024 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1025
1026 /**
1027 * get_packet - return the next ingress packet buffer
1028 * @adapter: the adapter that received the packet
1029 * @fl: the SGE free list holding the packet
1030 * @len: the actual packet length, excluding any SGE padding
1031 *
1032 * Get the next packet from a free list and complete setup of the
1033 * sk_buff. If the packet is small we make a copy and recycle the
1034 * original buffer, otherwise we use the original buffer itself. If a
1035 * positive drop threshold is supplied packets are dropped and their
1036 * buffers recycled if (a) the number of remaining buffers is under the
1037 * threshold and the packet is too big to copy, or (b) the packet should
1038 * be copied but there is no memory for the copy.
1039 */
get_packet(struct adapter * adapter,struct freelQ * fl,unsigned int len)1040 static inline struct sk_buff *get_packet(struct adapter *adapter,
1041 struct freelQ *fl, unsigned int len)
1042 {
1043 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1044 struct pci_dev *pdev = adapter->pdev;
1045 struct sk_buff *skb;
1046
1047 if (len < copybreak) {
1048 skb = napi_alloc_skb(&adapter->napi, len);
1049 if (!skb)
1050 goto use_orig_buf;
1051
1052 skb_put(skb, len);
1053 dma_sync_single_for_cpu(&pdev->dev,
1054 dma_unmap_addr(ce, dma_addr),
1055 dma_unmap_len(ce, dma_len),
1056 DMA_FROM_DEVICE);
1057 skb_copy_from_linear_data(ce->skb, skb->data, len);
1058 dma_sync_single_for_device(&pdev->dev,
1059 dma_unmap_addr(ce, dma_addr),
1060 dma_unmap_len(ce, dma_len),
1061 DMA_FROM_DEVICE);
1062 recycle_fl_buf(fl, fl->cidx);
1063 return skb;
1064 }
1065
1066 use_orig_buf:
1067 if (fl->credits < 2) {
1068 recycle_fl_buf(fl, fl->cidx);
1069 return NULL;
1070 }
1071
1072 dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
1073 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1074 skb = ce->skb;
1075 prefetch(skb->data);
1076
1077 skb_put(skb, len);
1078 return skb;
1079 }
1080
1081 /**
1082 * unexpected_offload - handle an unexpected offload packet
1083 * @adapter: the adapter
1084 * @fl: the free list that received the packet
1085 *
1086 * Called when we receive an unexpected offload packet (e.g., the TOE
1087 * function is disabled or the card is a NIC). Prints a message and
1088 * recycles the buffer.
1089 */
unexpected_offload(struct adapter * adapter,struct freelQ * fl)1090 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1091 {
1092 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1093 struct sk_buff *skb = ce->skb;
1094
1095 dma_sync_single_for_cpu(&adapter->pdev->dev,
1096 dma_unmap_addr(ce, dma_addr),
1097 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1098 pr_err("%s: unexpected offload packet, cmd %u\n",
1099 adapter->name, *skb->data);
1100 recycle_fl_buf(fl, fl->cidx);
1101 }
1102
1103 /*
1104 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1105 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1106 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1107 * Note that the *_large_page_tx_descs stuff will be optimized out when
1108 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1109 *
1110 * compute_large_page_descs() computes how many additional descriptors are
1111 * required to break down the stack's request.
1112 */
compute_large_page_tx_descs(struct sk_buff * skb)1113 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1114 {
1115 unsigned int count = 0;
1116
1117 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1118 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1119 unsigned int i, len = skb_headlen(skb);
1120 while (len > SGE_TX_DESC_MAX_PLEN) {
1121 count++;
1122 len -= SGE_TX_DESC_MAX_PLEN;
1123 }
1124 for (i = 0; nfrags--; i++) {
1125 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1126 len = skb_frag_size(frag);
1127 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 count++;
1129 len -= SGE_TX_DESC_MAX_PLEN;
1130 }
1131 }
1132 }
1133 return count;
1134 }
1135
1136 /*
1137 * Write a cmdQ entry.
1138 *
1139 * Since this function writes the 'flags' field, it must not be used to
1140 * write the first cmdQ entry.
1141 */
write_tx_desc(struct cmdQ_e * e,dma_addr_t mapping,unsigned int len,unsigned int gen,unsigned int eop)1142 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1143 unsigned int len, unsigned int gen,
1144 unsigned int eop)
1145 {
1146 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1147
1148 e->addr_lo = (u32)mapping;
1149 e->addr_hi = (u64)mapping >> 32;
1150 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1151 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1152 }
1153
1154 /*
1155 * See comment for previous function.
1156 *
1157 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1158 * *desc_len exceeds HW's capability.
1159 */
write_large_page_tx_descs(unsigned int pidx,struct cmdQ_e ** e,struct cmdQ_ce ** ce,unsigned int * gen,dma_addr_t * desc_mapping,unsigned int * desc_len,unsigned int nfrags,struct cmdQ * q)1160 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1161 struct cmdQ_e **e,
1162 struct cmdQ_ce **ce,
1163 unsigned int *gen,
1164 dma_addr_t *desc_mapping,
1165 unsigned int *desc_len,
1166 unsigned int nfrags,
1167 struct cmdQ *q)
1168 {
1169 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1170 struct cmdQ_e *e1 = *e;
1171 struct cmdQ_ce *ce1 = *ce;
1172
1173 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1174 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1175 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1176 *gen, nfrags == 0 && *desc_len == 0);
1177 ce1->skb = NULL;
1178 dma_unmap_len_set(ce1, dma_len, 0);
1179 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1180 if (*desc_len) {
1181 ce1++;
1182 e1++;
1183 if (++pidx == q->size) {
1184 pidx = 0;
1185 *gen ^= 1;
1186 ce1 = q->centries;
1187 e1 = q->entries;
1188 }
1189 }
1190 }
1191 *e = e1;
1192 *ce = ce1;
1193 }
1194 return pidx;
1195 }
1196
1197 /*
1198 * Write the command descriptors to transmit the given skb starting at
1199 * descriptor pidx with the given generation.
1200 */
write_tx_descs(struct adapter * adapter,struct sk_buff * skb,unsigned int pidx,unsigned int gen,struct cmdQ * q)1201 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1202 unsigned int pidx, unsigned int gen,
1203 struct cmdQ *q)
1204 {
1205 dma_addr_t mapping, desc_mapping;
1206 struct cmdQ_e *e, *e1;
1207 struct cmdQ_ce *ce;
1208 unsigned int i, flags, first_desc_len, desc_len,
1209 nfrags = skb_shinfo(skb)->nr_frags;
1210
1211 e = e1 = &q->entries[pidx];
1212 ce = &q->centries[pidx];
1213
1214 mapping = dma_map_single(&adapter->pdev->dev, skb->data,
1215 skb_headlen(skb), DMA_TO_DEVICE);
1216
1217 desc_mapping = mapping;
1218 desc_len = skb_headlen(skb);
1219
1220 flags = F_CMD_DATAVALID | F_CMD_SOP |
1221 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1222 V_CMD_GEN2(gen);
1223 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1224 desc_len : SGE_TX_DESC_MAX_PLEN;
1225 e->addr_lo = (u32)desc_mapping;
1226 e->addr_hi = (u64)desc_mapping >> 32;
1227 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1228 ce->skb = NULL;
1229 dma_unmap_len_set(ce, dma_len, 0);
1230
1231 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1232 desc_len > SGE_TX_DESC_MAX_PLEN) {
1233 desc_mapping += first_desc_len;
1234 desc_len -= first_desc_len;
1235 e1++;
1236 ce++;
1237 if (++pidx == q->size) {
1238 pidx = 0;
1239 gen ^= 1;
1240 e1 = q->entries;
1241 ce = q->centries;
1242 }
1243 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1244 &desc_mapping, &desc_len,
1245 nfrags, q);
1246
1247 if (likely(desc_len))
1248 write_tx_desc(e1, desc_mapping, desc_len, gen,
1249 nfrags == 0);
1250 }
1251
1252 ce->skb = NULL;
1253 dma_unmap_addr_set(ce, dma_addr, mapping);
1254 dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1255
1256 for (i = 0; nfrags--; i++) {
1257 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1258 e1++;
1259 ce++;
1260 if (++pidx == q->size) {
1261 pidx = 0;
1262 gen ^= 1;
1263 e1 = q->entries;
1264 ce = q->centries;
1265 }
1266
1267 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1268 skb_frag_size(frag), DMA_TO_DEVICE);
1269 desc_mapping = mapping;
1270 desc_len = skb_frag_size(frag);
1271
1272 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1273 &desc_mapping, &desc_len,
1274 nfrags, q);
1275 if (likely(desc_len))
1276 write_tx_desc(e1, desc_mapping, desc_len, gen,
1277 nfrags == 0);
1278 ce->skb = NULL;
1279 dma_unmap_addr_set(ce, dma_addr, mapping);
1280 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1281 }
1282 ce->skb = skb;
1283 wmb();
1284 e->flags = flags;
1285 }
1286
1287 /*
1288 * Clean up completed Tx buffers.
1289 */
reclaim_completed_tx(struct sge * sge,struct cmdQ * q)1290 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1291 {
1292 unsigned int reclaim = q->processed - q->cleaned;
1293
1294 if (reclaim) {
1295 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1296 q->processed, q->cleaned);
1297 free_cmdQ_buffers(sge, q, reclaim);
1298 q->cleaned += reclaim;
1299 }
1300 }
1301
1302 /*
1303 * Called from tasklet. Checks the scheduler for any
1304 * pending skbs that can be sent.
1305 */
restart_sched(struct tasklet_struct * t)1306 static void restart_sched(struct tasklet_struct *t)
1307 {
1308 struct sched *s = from_tasklet(s, t, sched_tsk);
1309 struct sge *sge = s->sge;
1310 struct adapter *adapter = sge->adapter;
1311 struct cmdQ *q = &sge->cmdQ[0];
1312 struct sk_buff *skb;
1313 unsigned int credits, queued_skb = 0;
1314
1315 spin_lock(&q->lock);
1316 reclaim_completed_tx(sge, q);
1317
1318 credits = q->size - q->in_use;
1319 pr_debug("restart_sched credits=%d\n", credits);
1320 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1321 unsigned int genbit, pidx, count;
1322 count = 1 + skb_shinfo(skb)->nr_frags;
1323 count += compute_large_page_tx_descs(skb);
1324 q->in_use += count;
1325 genbit = q->genbit;
1326 pidx = q->pidx;
1327 q->pidx += count;
1328 if (q->pidx >= q->size) {
1329 q->pidx -= q->size;
1330 q->genbit ^= 1;
1331 }
1332 write_tx_descs(adapter, skb, pidx, genbit, q);
1333 credits = q->size - q->in_use;
1334 queued_skb = 1;
1335 }
1336
1337 if (queued_skb) {
1338 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1339 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1340 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1341 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1342 }
1343 }
1344 spin_unlock(&q->lock);
1345 }
1346
1347 /**
1348 * sge_rx - process an ingress ethernet packet
1349 * @sge: the sge structure
1350 * @fl: the free list that contains the packet buffer
1351 * @len: the packet length
1352 *
1353 * Process an ingress ethernet packet and deliver it to the stack.
1354 */
sge_rx(struct sge * sge,struct freelQ * fl,unsigned int len)1355 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1356 {
1357 struct sk_buff *skb;
1358 const struct cpl_rx_pkt *p;
1359 struct adapter *adapter = sge->adapter;
1360 struct sge_port_stats *st;
1361 struct net_device *dev;
1362
1363 skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1364 if (unlikely(!skb)) {
1365 sge->stats.rx_drops++;
1366 return;
1367 }
1368
1369 p = (const struct cpl_rx_pkt *) skb->data;
1370 if (p->iff >= adapter->params.nports) {
1371 kfree_skb(skb);
1372 return;
1373 }
1374 __skb_pull(skb, sizeof(*p));
1375
1376 st = this_cpu_ptr(sge->port_stats[p->iff]);
1377 dev = adapter->port[p->iff].dev;
1378
1379 skb->protocol = eth_type_trans(skb, dev);
1380 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1381 skb->protocol == htons(ETH_P_IP) &&
1382 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1383 ++st->rx_cso_good;
1384 skb->ip_summed = CHECKSUM_UNNECESSARY;
1385 } else
1386 skb_checksum_none_assert(skb);
1387
1388 if (p->vlan_valid) {
1389 st->vlan_xtract++;
1390 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1391 }
1392 netif_receive_skb(skb);
1393 }
1394
1395 /*
1396 * Returns true if a command queue has enough available descriptors that
1397 * we can resume Tx operation after temporarily disabling its packet queue.
1398 */
enough_free_Tx_descs(const struct cmdQ * q)1399 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1400 {
1401 unsigned int r = q->processed - q->cleaned;
1402
1403 return q->in_use - r < (q->size >> 1);
1404 }
1405
1406 /*
1407 * Called when sufficient space has become available in the SGE command queues
1408 * after the Tx packet schedulers have been suspended to restart the Tx path.
1409 */
restart_tx_queues(struct sge * sge)1410 static void restart_tx_queues(struct sge *sge)
1411 {
1412 struct adapter *adap = sge->adapter;
1413 int i;
1414
1415 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1416 return;
1417
1418 for_each_port(adap, i) {
1419 struct net_device *nd = adap->port[i].dev;
1420
1421 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1422 netif_running(nd)) {
1423 sge->stats.cmdQ_restarted[2]++;
1424 netif_wake_queue(nd);
1425 }
1426 }
1427 }
1428
1429 /*
1430 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1431 * information.
1432 */
update_tx_info(struct adapter * adapter,unsigned int flags,unsigned int pr0)1433 static unsigned int update_tx_info(struct adapter *adapter,
1434 unsigned int flags,
1435 unsigned int pr0)
1436 {
1437 struct sge *sge = adapter->sge;
1438 struct cmdQ *cmdq = &sge->cmdQ[0];
1439
1440 cmdq->processed += pr0;
1441 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1442 freelQs_empty(sge);
1443 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1444 }
1445 if (flags & F_CMDQ0_ENABLE) {
1446 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1447
1448 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1449 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1450 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1451 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1452 }
1453 if (sge->tx_sched)
1454 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1455
1456 flags &= ~F_CMDQ0_ENABLE;
1457 }
1458
1459 if (unlikely(sge->stopped_tx_queues != 0))
1460 restart_tx_queues(sge);
1461
1462 return flags;
1463 }
1464
1465 /*
1466 * Process SGE responses, up to the supplied budget. Returns the number of
1467 * responses processed. A negative budget is effectively unlimited.
1468 */
process_responses(struct adapter * adapter,int budget)1469 static int process_responses(struct adapter *adapter, int budget)
1470 {
1471 struct sge *sge = adapter->sge;
1472 struct respQ *q = &sge->respQ;
1473 struct respQ_e *e = &q->entries[q->cidx];
1474 int done = 0;
1475 unsigned int flags = 0;
1476 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1477
1478 while (done < budget && e->GenerationBit == q->genbit) {
1479 flags |= e->Qsleeping;
1480
1481 cmdq_processed[0] += e->Cmdq0CreditReturn;
1482 cmdq_processed[1] += e->Cmdq1CreditReturn;
1483
1484 /* We batch updates to the TX side to avoid cacheline
1485 * ping-pong of TX state information on MP where the sender
1486 * might run on a different CPU than this function...
1487 */
1488 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1489 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1490 cmdq_processed[0] = 0;
1491 }
1492
1493 if (unlikely(cmdq_processed[1] > 16)) {
1494 sge->cmdQ[1].processed += cmdq_processed[1];
1495 cmdq_processed[1] = 0;
1496 }
1497
1498 if (likely(e->DataValid)) {
1499 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1500
1501 BUG_ON(!e->Sop || !e->Eop);
1502 if (unlikely(e->Offload))
1503 unexpected_offload(adapter, fl);
1504 else
1505 sge_rx(sge, fl, e->BufferLength);
1506
1507 ++done;
1508
1509 /*
1510 * Note: this depends on each packet consuming a
1511 * single free-list buffer; cf. the BUG above.
1512 */
1513 if (++fl->cidx == fl->size)
1514 fl->cidx = 0;
1515 prefetch(fl->centries[fl->cidx].skb);
1516
1517 if (unlikely(--fl->credits <
1518 fl->size - SGE_FREEL_REFILL_THRESH))
1519 refill_free_list(sge, fl);
1520 } else
1521 sge->stats.pure_rsps++;
1522
1523 e++;
1524 if (unlikely(++q->cidx == q->size)) {
1525 q->cidx = 0;
1526 q->genbit ^= 1;
1527 e = q->entries;
1528 }
1529 prefetch(e);
1530
1531 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1532 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1533 q->credits = 0;
1534 }
1535 }
1536
1537 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1538 sge->cmdQ[1].processed += cmdq_processed[1];
1539
1540 return done;
1541 }
1542
responses_pending(const struct adapter * adapter)1543 static inline int responses_pending(const struct adapter *adapter)
1544 {
1545 const struct respQ *Q = &adapter->sge->respQ;
1546 const struct respQ_e *e = &Q->entries[Q->cidx];
1547
1548 return e->GenerationBit == Q->genbit;
1549 }
1550
1551 /*
1552 * A simpler version of process_responses() that handles only pure (i.e.,
1553 * non data-carrying) responses. Such respones are too light-weight to justify
1554 * calling a softirq when using NAPI, so we handle them specially in hard
1555 * interrupt context. The function is called with a pointer to a response,
1556 * which the caller must ensure is a valid pure response. Returns 1 if it
1557 * encounters a valid data-carrying response, 0 otherwise.
1558 */
process_pure_responses(struct adapter * adapter)1559 static int process_pure_responses(struct adapter *adapter)
1560 {
1561 struct sge *sge = adapter->sge;
1562 struct respQ *q = &sge->respQ;
1563 struct respQ_e *e = &q->entries[q->cidx];
1564 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1565 unsigned int flags = 0;
1566 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1567
1568 prefetch(fl->centries[fl->cidx].skb);
1569 if (e->DataValid)
1570 return 1;
1571
1572 do {
1573 flags |= e->Qsleeping;
1574
1575 cmdq_processed[0] += e->Cmdq0CreditReturn;
1576 cmdq_processed[1] += e->Cmdq1CreditReturn;
1577
1578 e++;
1579 if (unlikely(++q->cidx == q->size)) {
1580 q->cidx = 0;
1581 q->genbit ^= 1;
1582 e = q->entries;
1583 }
1584 prefetch(e);
1585
1586 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1587 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1588 q->credits = 0;
1589 }
1590 sge->stats.pure_rsps++;
1591 } while (e->GenerationBit == q->genbit && !e->DataValid);
1592
1593 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1594 sge->cmdQ[1].processed += cmdq_processed[1];
1595
1596 return e->GenerationBit == q->genbit;
1597 }
1598
1599 /*
1600 * Handler for new data events when using NAPI. This does not need any locking
1601 * or protection from interrupts as data interrupts are off at this point and
1602 * other adapter interrupts do not interfere.
1603 */
t1_poll(struct napi_struct * napi,int budget)1604 int t1_poll(struct napi_struct *napi, int budget)
1605 {
1606 struct adapter *adapter = container_of(napi, struct adapter, napi);
1607 int work_done = process_responses(adapter, budget);
1608
1609 if (likely(work_done < budget)) {
1610 napi_complete_done(napi, work_done);
1611 writel(adapter->sge->respQ.cidx,
1612 adapter->regs + A_SG_SLEEPING);
1613 }
1614 return work_done;
1615 }
1616
t1_interrupt_thread(int irq,void * data)1617 irqreturn_t t1_interrupt_thread(int irq, void *data)
1618 {
1619 struct adapter *adapter = data;
1620 u32 pending_thread_intr;
1621
1622 spin_lock_irq(&adapter->async_lock);
1623 pending_thread_intr = adapter->pending_thread_intr;
1624 adapter->pending_thread_intr = 0;
1625 spin_unlock_irq(&adapter->async_lock);
1626
1627 if (!pending_thread_intr)
1628 return IRQ_NONE;
1629
1630 if (pending_thread_intr & F_PL_INTR_EXT)
1631 t1_elmer0_ext_intr_handler(adapter);
1632
1633 /* This error is fatal, interrupts remain off */
1634 if (pending_thread_intr & F_PL_INTR_SGE_ERR) {
1635 pr_alert("%s: encountered fatal error, operation suspended\n",
1636 adapter->name);
1637 t1_sge_stop(adapter->sge);
1638 return IRQ_HANDLED;
1639 }
1640
1641 spin_lock_irq(&adapter->async_lock);
1642 adapter->slow_intr_mask |= F_PL_INTR_EXT;
1643
1644 writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
1645 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
1646 adapter->regs + A_PL_ENABLE);
1647 spin_unlock_irq(&adapter->async_lock);
1648
1649 return IRQ_HANDLED;
1650 }
1651
t1_interrupt(int irq,void * data)1652 irqreturn_t t1_interrupt(int irq, void *data)
1653 {
1654 struct adapter *adapter = data;
1655 struct sge *sge = adapter->sge;
1656 irqreturn_t handled;
1657
1658 if (likely(responses_pending(adapter))) {
1659 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1660
1661 if (napi_schedule_prep(&adapter->napi)) {
1662 if (process_pure_responses(adapter))
1663 __napi_schedule(&adapter->napi);
1664 else {
1665 /* no data, no NAPI needed */
1666 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1667 /* undo schedule_prep */
1668 napi_enable(&adapter->napi);
1669 }
1670 }
1671 return IRQ_HANDLED;
1672 }
1673
1674 spin_lock(&adapter->async_lock);
1675 handled = t1_slow_intr_handler(adapter);
1676 spin_unlock(&adapter->async_lock);
1677
1678 if (handled == IRQ_NONE)
1679 sge->stats.unhandled_irqs++;
1680
1681 return handled;
1682 }
1683
1684 /*
1685 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1686 *
1687 * The code figures out how many entries the sk_buff will require in the
1688 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1689 * has complete. Then, it doesn't access the global structure anymore, but
1690 * uses the corresponding fields on the stack. In conjunction with a spinlock
1691 * around that code, we can make the function reentrant without holding the
1692 * lock when we actually enqueue (which might be expensive, especially on
1693 * architectures with IO MMUs).
1694 *
1695 * This runs with softirqs disabled.
1696 */
t1_sge_tx(struct sk_buff * skb,struct adapter * adapter,unsigned int qid,struct net_device * dev)1697 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1698 unsigned int qid, struct net_device *dev)
1699 {
1700 struct sge *sge = adapter->sge;
1701 struct cmdQ *q = &sge->cmdQ[qid];
1702 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1703
1704 spin_lock(&q->lock);
1705
1706 reclaim_completed_tx(sge, q);
1707
1708 pidx = q->pidx;
1709 credits = q->size - q->in_use;
1710 count = 1 + skb_shinfo(skb)->nr_frags;
1711 count += compute_large_page_tx_descs(skb);
1712
1713 /* Ethernet packet */
1714 if (unlikely(credits < count)) {
1715 if (!netif_queue_stopped(dev)) {
1716 netif_stop_queue(dev);
1717 set_bit(dev->if_port, &sge->stopped_tx_queues);
1718 sge->stats.cmdQ_full[2]++;
1719 pr_err("%s: Tx ring full while queue awake!\n",
1720 adapter->name);
1721 }
1722 spin_unlock(&q->lock);
1723 return NETDEV_TX_BUSY;
1724 }
1725
1726 if (unlikely(credits - count < q->stop_thres)) {
1727 netif_stop_queue(dev);
1728 set_bit(dev->if_port, &sge->stopped_tx_queues);
1729 sge->stats.cmdQ_full[2]++;
1730 }
1731
1732 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1733 * through the scheduler.
1734 */
1735 if (sge->tx_sched && !qid && skb->dev) {
1736 use_sched:
1737 use_sched_skb = 1;
1738 /* Note that the scheduler might return a different skb than
1739 * the one passed in.
1740 */
1741 skb = sched_skb(sge, skb, credits);
1742 if (!skb) {
1743 spin_unlock(&q->lock);
1744 return NETDEV_TX_OK;
1745 }
1746 pidx = q->pidx;
1747 count = 1 + skb_shinfo(skb)->nr_frags;
1748 count += compute_large_page_tx_descs(skb);
1749 }
1750
1751 q->in_use += count;
1752 genbit = q->genbit;
1753 pidx = q->pidx;
1754 q->pidx += count;
1755 if (q->pidx >= q->size) {
1756 q->pidx -= q->size;
1757 q->genbit ^= 1;
1758 }
1759 spin_unlock(&q->lock);
1760
1761 write_tx_descs(adapter, skb, pidx, genbit, q);
1762
1763 /*
1764 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1765 * the doorbell if the Q is asleep. There is a natural race, where
1766 * the hardware is going to sleep just after we checked, however,
1767 * then the interrupt handler will detect the outstanding TX packet
1768 * and ring the doorbell for us.
1769 */
1770 if (qid)
1771 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1772 else {
1773 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1774 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1775 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1776 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1777 }
1778 }
1779
1780 if (use_sched_skb) {
1781 if (spin_trylock(&q->lock)) {
1782 credits = q->size - q->in_use;
1783 skb = NULL;
1784 goto use_sched;
1785 }
1786 }
1787 return NETDEV_TX_OK;
1788 }
1789
1790 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1791
1792 /*
1793 * eth_hdr_len - return the length of an Ethernet header
1794 * @data: pointer to the start of the Ethernet header
1795 *
1796 * Returns the length of an Ethernet header, including optional VLAN tag.
1797 */
eth_hdr_len(const void * data)1798 static inline int eth_hdr_len(const void *data)
1799 {
1800 const struct ethhdr *e = data;
1801
1802 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1803 }
1804
1805 /*
1806 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1807 */
t1_start_xmit(struct sk_buff * skb,struct net_device * dev)1808 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810 struct adapter *adapter = dev->ml_priv;
1811 struct sge *sge = adapter->sge;
1812 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1813 struct cpl_tx_pkt *cpl;
1814 struct sk_buff *orig_skb = skb;
1815 int ret;
1816
1817 if (skb->protocol == htons(ETH_P_CPL5))
1818 goto send;
1819
1820 /*
1821 * We are using a non-standard hard_header_len.
1822 * Allocate more header room in the rare cases it is not big enough.
1823 */
1824 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1825 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1826 ++st->tx_need_hdrroom;
1827 dev_kfree_skb_any(orig_skb);
1828 if (!skb)
1829 return NETDEV_TX_OK;
1830 }
1831
1832 if (skb_shinfo(skb)->gso_size) {
1833 int eth_type;
1834 struct cpl_tx_pkt_lso *hdr;
1835
1836 ++st->tx_tso;
1837
1838 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1839 CPL_ETH_II : CPL_ETH_II_VLAN;
1840
1841 hdr = skb_push(skb, sizeof(*hdr));
1842 hdr->opcode = CPL_TX_PKT_LSO;
1843 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1844 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1845 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1846 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1847 skb_shinfo(skb)->gso_size));
1848 hdr->len = htonl(skb->len - sizeof(*hdr));
1849 cpl = (struct cpl_tx_pkt *)hdr;
1850 } else {
1851 /*
1852 * Packets shorter than ETH_HLEN can break the MAC, drop them
1853 * early. Also, we may get oversized packets because some
1854 * parts of the kernel don't handle our unusual hard_header_len
1855 * right, drop those too.
1856 */
1857 if (unlikely(skb->len < ETH_HLEN ||
1858 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1859 netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1860 skb->len, eth_hdr_len(skb->data), dev->mtu);
1861 dev_kfree_skb_any(skb);
1862 return NETDEV_TX_OK;
1863 }
1864
1865 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1866 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1867 if (unlikely(skb_checksum_help(skb))) {
1868 netdev_dbg(dev, "unable to do udp checksum\n");
1869 dev_kfree_skb_any(skb);
1870 return NETDEV_TX_OK;
1871 }
1872 }
1873
1874 /* Hmmm, assuming to catch the gratious arp... and we'll use
1875 * it to flush out stuck espi packets...
1876 */
1877 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1878 if (skb->protocol == htons(ETH_P_ARP) &&
1879 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1880 adapter->sge->espibug_skb[dev->if_port] = skb;
1881 /* We want to re-use this skb later. We
1882 * simply bump the reference count and it
1883 * will not be freed...
1884 */
1885 skb = skb_get(skb);
1886 }
1887 }
1888
1889 cpl = __skb_push(skb, sizeof(*cpl));
1890 cpl->opcode = CPL_TX_PKT;
1891 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1892 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1893 /* the length field isn't used so don't bother setting it */
1894
1895 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1896 }
1897 cpl->iff = dev->if_port;
1898
1899 if (skb_vlan_tag_present(skb)) {
1900 cpl->vlan_valid = 1;
1901 cpl->vlan = htons(skb_vlan_tag_get(skb));
1902 st->vlan_insert++;
1903 } else
1904 cpl->vlan_valid = 0;
1905
1906 send:
1907 ret = t1_sge_tx(skb, adapter, 0, dev);
1908
1909 /* If transmit busy, and we reallocated skb's due to headroom limit,
1910 * then silently discard to avoid leak.
1911 */
1912 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1913 dev_kfree_skb_any(skb);
1914 ret = NETDEV_TX_OK;
1915 }
1916 return ret;
1917 }
1918
1919 /*
1920 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1921 */
sge_tx_reclaim_cb(struct timer_list * t)1922 static void sge_tx_reclaim_cb(struct timer_list *t)
1923 {
1924 int i;
1925 struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1926
1927 for (i = 0; i < SGE_CMDQ_N; ++i) {
1928 struct cmdQ *q = &sge->cmdQ[i];
1929
1930 if (!spin_trylock(&q->lock))
1931 continue;
1932
1933 reclaim_completed_tx(sge, q);
1934 if (i == 0 && q->in_use) { /* flush pending credits */
1935 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1936 }
1937 spin_unlock(&q->lock);
1938 }
1939 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1940 }
1941
1942 /*
1943 * Propagate changes of the SGE coalescing parameters to the HW.
1944 */
t1_sge_set_coalesce_params(struct sge * sge,struct sge_params * p)1945 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1946 {
1947 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1948 core_ticks_per_usec(sge->adapter);
1949 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1950 return 0;
1951 }
1952
1953 /*
1954 * Allocates both RX and TX resources and configures the SGE. However,
1955 * the hardware is not enabled yet.
1956 */
t1_sge_configure(struct sge * sge,struct sge_params * p)1957 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1958 {
1959 if (alloc_rx_resources(sge, p))
1960 return -ENOMEM;
1961 if (alloc_tx_resources(sge, p)) {
1962 free_rx_resources(sge);
1963 return -ENOMEM;
1964 }
1965 configure_sge(sge, p);
1966
1967 /*
1968 * Now that we have sized the free lists calculate the payload
1969 * capacity of the large buffers. Other parts of the driver use
1970 * this to set the max offload coalescing size so that RX packets
1971 * do not overflow our large buffers.
1972 */
1973 p->large_buf_capacity = jumbo_payload_capacity(sge);
1974 return 0;
1975 }
1976
1977 /*
1978 * Disables the DMA engine.
1979 */
t1_sge_stop(struct sge * sge)1980 void t1_sge_stop(struct sge *sge)
1981 {
1982 int i;
1983 writel(0, sge->adapter->regs + A_SG_CONTROL);
1984 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1985
1986 if (is_T2(sge->adapter))
1987 del_timer_sync(&sge->espibug_timer);
1988
1989 del_timer_sync(&sge->tx_reclaim_timer);
1990 if (sge->tx_sched)
1991 tx_sched_stop(sge);
1992
1993 for (i = 0; i < MAX_NPORTS; i++)
1994 kfree_skb(sge->espibug_skb[i]);
1995 }
1996
1997 /*
1998 * Enables the DMA engine.
1999 */
t1_sge_start(struct sge * sge)2000 void t1_sge_start(struct sge *sge)
2001 {
2002 refill_free_list(sge, &sge->freelQ[0]);
2003 refill_free_list(sge, &sge->freelQ[1]);
2004
2005 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2006 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2007 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2008
2009 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2010
2011 if (is_T2(sge->adapter))
2012 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2013 }
2014
2015 /*
2016 * Callback for the T2 ESPI 'stuck packet feature' workaorund
2017 */
espibug_workaround_t204(struct timer_list * t)2018 static void espibug_workaround_t204(struct timer_list *t)
2019 {
2020 struct sge *sge = from_timer(sge, t, espibug_timer);
2021 struct adapter *adapter = sge->adapter;
2022 unsigned int nports = adapter->params.nports;
2023 u32 seop[MAX_NPORTS];
2024
2025 if (adapter->open_device_map & PORT_MASK) {
2026 int i;
2027
2028 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2029 return;
2030
2031 for (i = 0; i < nports; i++) {
2032 struct sk_buff *skb = sge->espibug_skb[i];
2033
2034 if (!netif_running(adapter->port[i].dev) ||
2035 netif_queue_stopped(adapter->port[i].dev) ||
2036 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2037 continue;
2038
2039 if (!skb->cb[0]) {
2040 skb_copy_to_linear_data_offset(skb,
2041 sizeof(struct cpl_tx_pkt),
2042 ch_mac_addr,
2043 ETH_ALEN);
2044 skb_copy_to_linear_data_offset(skb,
2045 skb->len - 10,
2046 ch_mac_addr,
2047 ETH_ALEN);
2048 skb->cb[0] = 0xff;
2049 }
2050
2051 /* bump the reference count to avoid freeing of
2052 * the skb once the DMA has completed.
2053 */
2054 skb = skb_get(skb);
2055 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2056 }
2057 }
2058 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2059 }
2060
espibug_workaround(struct timer_list * t)2061 static void espibug_workaround(struct timer_list *t)
2062 {
2063 struct sge *sge = from_timer(sge, t, espibug_timer);
2064 struct adapter *adapter = sge->adapter;
2065
2066 if (netif_running(adapter->port[0].dev)) {
2067 struct sk_buff *skb = sge->espibug_skb[0];
2068 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2069
2070 if ((seop & 0xfff0fff) == 0xfff && skb) {
2071 if (!skb->cb[0]) {
2072 skb_copy_to_linear_data_offset(skb,
2073 sizeof(struct cpl_tx_pkt),
2074 ch_mac_addr,
2075 ETH_ALEN);
2076 skb_copy_to_linear_data_offset(skb,
2077 skb->len - 10,
2078 ch_mac_addr,
2079 ETH_ALEN);
2080 skb->cb[0] = 0xff;
2081 }
2082
2083 /* bump the reference count to avoid freeing of the
2084 * skb once the DMA has completed.
2085 */
2086 skb = skb_get(skb);
2087 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2088 }
2089 }
2090 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2091 }
2092
2093 /*
2094 * Creates a t1_sge structure and returns suggested resource parameters.
2095 */
t1_sge_create(struct adapter * adapter,struct sge_params * p)2096 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2097 {
2098 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2099 int i;
2100
2101 if (!sge)
2102 return NULL;
2103
2104 sge->adapter = adapter;
2105 sge->netdev = adapter->port[0].dev;
2106 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2107 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2108
2109 for_each_port(adapter, i) {
2110 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2111 if (!sge->port_stats[i])
2112 goto nomem_port;
2113 }
2114
2115 timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2116
2117 if (is_T2(sge->adapter)) {
2118 timer_setup(&sge->espibug_timer,
2119 adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2120 0);
2121
2122 if (adapter->params.nports > 1)
2123 tx_sched_init(sge);
2124
2125 sge->espibug_timeout = 1;
2126 /* for T204, every 10ms */
2127 if (adapter->params.nports > 1)
2128 sge->espibug_timeout = HZ/100;
2129 }
2130
2131
2132 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2133 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2134 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2135 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2136 if (sge->tx_sched) {
2137 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2138 p->rx_coalesce_usecs = 15;
2139 else
2140 p->rx_coalesce_usecs = 50;
2141 } else
2142 p->rx_coalesce_usecs = 50;
2143
2144 p->coalesce_enable = 0;
2145 p->sample_interval_usecs = 0;
2146
2147 return sge;
2148 nomem_port:
2149 while (i >= 0) {
2150 free_percpu(sge->port_stats[i]);
2151 --i;
2152 }
2153 kfree(sge);
2154 return NULL;
2155
2156 }
2157