1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 #include <trace/events/sock.h>
21
22 #include <linux/ceph/ceph_features.h>
23 #include <linux/ceph/libceph.h>
24 #include <linux/ceph/messenger.h>
25 #include <linux/ceph/decode.h>
26 #include <linux/ceph/pagelist.h>
27 #include <linux/export.h>
28
29 /*
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
36 */
37
38 /*
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
43 *
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
76 *
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 */
79
80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
con_flag_valid(unsigned long con_flag)86 static bool con_flag_valid(unsigned long con_flag)
87 {
88 switch (con_flag) {
89 case CEPH_CON_F_LOSSYTX:
90 case CEPH_CON_F_KEEPALIVE_PENDING:
91 case CEPH_CON_F_WRITE_PENDING:
92 case CEPH_CON_F_SOCK_CLOSED:
93 case CEPH_CON_F_BACKOFF:
94 return true;
95 default:
96 return false;
97 }
98 }
99
ceph_con_flag_clear(struct ceph_connection * con,unsigned long con_flag)100 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101 {
102 BUG_ON(!con_flag_valid(con_flag));
103
104 clear_bit(con_flag, &con->flags);
105 }
106
ceph_con_flag_set(struct ceph_connection * con,unsigned long con_flag)107 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108 {
109 BUG_ON(!con_flag_valid(con_flag));
110
111 set_bit(con_flag, &con->flags);
112 }
113
ceph_con_flag_test(struct ceph_connection * con,unsigned long con_flag)114 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115 {
116 BUG_ON(!con_flag_valid(con_flag));
117
118 return test_bit(con_flag, &con->flags);
119 }
120
ceph_con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)121 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122 unsigned long con_flag)
123 {
124 BUG_ON(!con_flag_valid(con_flag));
125
126 return test_and_clear_bit(con_flag, &con->flags);
127 }
128
ceph_con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)129 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130 unsigned long con_flag)
131 {
132 BUG_ON(!con_flag_valid(con_flag));
133
134 return test_and_set_bit(con_flag, &con->flags);
135 }
136
137 /* Slab caches for frequently-allocated structures */
138
139 static struct kmem_cache *ceph_msg_cache;
140
141 #ifdef CONFIG_LOCKDEP
142 static struct lock_class_key socket_class;
143 #endif
144
145 static void queue_con(struct ceph_connection *con);
146 static void cancel_con(struct ceph_connection *con);
147 static void ceph_con_workfn(struct work_struct *);
148 static void con_fault(struct ceph_connection *con);
149
150 /*
151 * Nicely render a sockaddr as a string. An array of formatted
152 * strings is used, to approximate reentrancy.
153 */
154 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158
159 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160 static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162 struct page *ceph_zero_page; /* used in certain error cases */
163
ceph_pr_addr(const struct ceph_entity_addr * addr)164 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165 {
166 int i;
167 char *s;
168 struct sockaddr_storage ss = addr->in_addr; /* align */
169 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173 s = addr_str[i];
174
175 switch (ss.ss_family) {
176 case AF_INET:
177 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178 le32_to_cpu(addr->type), &in4->sin_addr,
179 ntohs(in4->sin_port));
180 break;
181
182 case AF_INET6:
183 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184 le32_to_cpu(addr->type), &in6->sin6_addr,
185 ntohs(in6->sin6_port));
186 break;
187
188 default:
189 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190 ss.ss_family);
191 }
192
193 return s;
194 }
195 EXPORT_SYMBOL(ceph_pr_addr);
196
ceph_encode_my_addr(struct ceph_messenger * msgr)197 void ceph_encode_my_addr(struct ceph_messenger *msgr)
198 {
199 if (!ceph_msgr2(from_msgr(msgr))) {
200 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201 sizeof(msgr->my_enc_addr));
202 ceph_encode_banner_addr(&msgr->my_enc_addr);
203 }
204 }
205
206 /*
207 * work queue for all reading and writing to/from the socket.
208 */
209 static struct workqueue_struct *ceph_msgr_wq;
210
ceph_msgr_slab_init(void)211 static int ceph_msgr_slab_init(void)
212 {
213 BUG_ON(ceph_msg_cache);
214 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215 if (!ceph_msg_cache)
216 return -ENOMEM;
217
218 return 0;
219 }
220
ceph_msgr_slab_exit(void)221 static void ceph_msgr_slab_exit(void)
222 {
223 BUG_ON(!ceph_msg_cache);
224 kmem_cache_destroy(ceph_msg_cache);
225 ceph_msg_cache = NULL;
226 }
227
_ceph_msgr_exit(void)228 static void _ceph_msgr_exit(void)
229 {
230 if (ceph_msgr_wq) {
231 destroy_workqueue(ceph_msgr_wq);
232 ceph_msgr_wq = NULL;
233 }
234
235 BUG_ON(!ceph_zero_page);
236 put_page(ceph_zero_page);
237 ceph_zero_page = NULL;
238
239 ceph_msgr_slab_exit();
240 }
241
ceph_msgr_init(void)242 int __init ceph_msgr_init(void)
243 {
244 if (ceph_msgr_slab_init())
245 return -ENOMEM;
246
247 BUG_ON(ceph_zero_page);
248 ceph_zero_page = ZERO_PAGE(0);
249 get_page(ceph_zero_page);
250
251 /*
252 * The number of active work items is limited by the number of
253 * connections, so leave @max_active at default.
254 */
255 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
256 if (ceph_msgr_wq)
257 return 0;
258
259 pr_err("msgr_init failed to create workqueue\n");
260 _ceph_msgr_exit();
261
262 return -ENOMEM;
263 }
264
ceph_msgr_exit(void)265 void ceph_msgr_exit(void)
266 {
267 BUG_ON(ceph_msgr_wq == NULL);
268
269 _ceph_msgr_exit();
270 }
271
ceph_msgr_flush(void)272 void ceph_msgr_flush(void)
273 {
274 flush_workqueue(ceph_msgr_wq);
275 }
276 EXPORT_SYMBOL(ceph_msgr_flush);
277
278 /* Connection socket state transition functions */
279
con_sock_state_init(struct ceph_connection * con)280 static void con_sock_state_init(struct ceph_connection *con)
281 {
282 int old_state;
283
284 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
285 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
286 printk("%s: unexpected old state %d\n", __func__, old_state);
287 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
288 CON_SOCK_STATE_CLOSED);
289 }
290
con_sock_state_connecting(struct ceph_connection * con)291 static void con_sock_state_connecting(struct ceph_connection *con)
292 {
293 int old_state;
294
295 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
296 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
297 printk("%s: unexpected old state %d\n", __func__, old_state);
298 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
299 CON_SOCK_STATE_CONNECTING);
300 }
301
con_sock_state_connected(struct ceph_connection * con)302 static void con_sock_state_connected(struct ceph_connection *con)
303 {
304 int old_state;
305
306 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
307 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
308 printk("%s: unexpected old state %d\n", __func__, old_state);
309 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310 CON_SOCK_STATE_CONNECTED);
311 }
312
con_sock_state_closing(struct ceph_connection * con)313 static void con_sock_state_closing(struct ceph_connection *con)
314 {
315 int old_state;
316
317 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
318 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
319 old_state != CON_SOCK_STATE_CONNECTED &&
320 old_state != CON_SOCK_STATE_CLOSING))
321 printk("%s: unexpected old state %d\n", __func__, old_state);
322 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
323 CON_SOCK_STATE_CLOSING);
324 }
325
con_sock_state_closed(struct ceph_connection * con)326 static void con_sock_state_closed(struct ceph_connection *con)
327 {
328 int old_state;
329
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
332 old_state != CON_SOCK_STATE_CLOSING &&
333 old_state != CON_SOCK_STATE_CONNECTING &&
334 old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CLOSED);
338 }
339
340 /*
341 * socket callback functions
342 */
343
344 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)345 static void ceph_sock_data_ready(struct sock *sk)
346 {
347 struct ceph_connection *con = sk->sk_user_data;
348
349 trace_sk_data_ready(sk);
350
351 if (atomic_read(&con->msgr->stopping)) {
352 return;
353 }
354
355 if (sk->sk_state != TCP_CLOSE_WAIT) {
356 dout("%s %p state = %d, queueing work\n", __func__,
357 con, con->state);
358 queue_con(con);
359 }
360 }
361
362 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)363 static void ceph_sock_write_space(struct sock *sk)
364 {
365 struct ceph_connection *con = sk->sk_user_data;
366
367 /* only queue to workqueue if there is data we want to write,
368 * and there is sufficient space in the socket buffer to accept
369 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
370 * doesn't get called again until try_write() fills the socket
371 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
372 * and net/core/stream.c:sk_stream_write_space().
373 */
374 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
375 if (sk_stream_is_writeable(sk)) {
376 dout("%s %p queueing write work\n", __func__, con);
377 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
378 queue_con(con);
379 }
380 } else {
381 dout("%s %p nothing to write\n", __func__, con);
382 }
383 }
384
385 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)386 static void ceph_sock_state_change(struct sock *sk)
387 {
388 struct ceph_connection *con = sk->sk_user_data;
389
390 dout("%s %p state = %d sk_state = %u\n", __func__,
391 con, con->state, sk->sk_state);
392
393 switch (sk->sk_state) {
394 case TCP_CLOSE:
395 dout("%s TCP_CLOSE\n", __func__);
396 fallthrough;
397 case TCP_CLOSE_WAIT:
398 dout("%s TCP_CLOSE_WAIT\n", __func__);
399 con_sock_state_closing(con);
400 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
401 queue_con(con);
402 break;
403 case TCP_ESTABLISHED:
404 dout("%s TCP_ESTABLISHED\n", __func__);
405 con_sock_state_connected(con);
406 queue_con(con);
407 break;
408 default: /* Everything else is uninteresting */
409 break;
410 }
411 }
412
413 /*
414 * set up socket callbacks
415 */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)416 static void set_sock_callbacks(struct socket *sock,
417 struct ceph_connection *con)
418 {
419 struct sock *sk = sock->sk;
420 sk->sk_user_data = con;
421 sk->sk_data_ready = ceph_sock_data_ready;
422 sk->sk_write_space = ceph_sock_write_space;
423 sk->sk_state_change = ceph_sock_state_change;
424 }
425
426
427 /*
428 * socket helpers
429 */
430
431 /*
432 * initiate connection to a remote socket.
433 */
ceph_tcp_connect(struct ceph_connection * con)434 int ceph_tcp_connect(struct ceph_connection *con)
435 {
436 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
437 struct socket *sock;
438 unsigned int noio_flag;
439 int ret;
440
441 dout("%s con %p peer_addr %s\n", __func__, con,
442 ceph_pr_addr(&con->peer_addr));
443 BUG_ON(con->sock);
444
445 /* sock_create_kern() allocates with GFP_KERNEL */
446 noio_flag = memalloc_noio_save();
447 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
448 SOCK_STREAM, IPPROTO_TCP, &sock);
449 memalloc_noio_restore(noio_flag);
450 if (ret)
451 return ret;
452 sock->sk->sk_allocation = GFP_NOFS;
453 sock->sk->sk_use_task_frag = false;
454
455 #ifdef CONFIG_LOCKDEP
456 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
457 #endif
458
459 set_sock_callbacks(sock, con);
460
461 con_sock_state_connecting(con);
462 ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
463 O_NONBLOCK);
464 if (ret == -EINPROGRESS) {
465 dout("connect %s EINPROGRESS sk_state = %u\n",
466 ceph_pr_addr(&con->peer_addr),
467 sock->sk->sk_state);
468 } else if (ret < 0) {
469 pr_err("connect %s error %d\n",
470 ceph_pr_addr(&con->peer_addr), ret);
471 sock_release(sock);
472 return ret;
473 }
474
475 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
476 tcp_sock_set_nodelay(sock->sk);
477
478 con->sock = sock;
479 return 0;
480 }
481
482 /*
483 * Shutdown/close the socket for the given connection.
484 */
ceph_con_close_socket(struct ceph_connection * con)485 int ceph_con_close_socket(struct ceph_connection *con)
486 {
487 int rc = 0;
488
489 dout("%s con %p sock %p\n", __func__, con, con->sock);
490 if (con->sock) {
491 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
492 sock_release(con->sock);
493 con->sock = NULL;
494 }
495
496 /*
497 * Forcibly clear the SOCK_CLOSED flag. It gets set
498 * independent of the connection mutex, and we could have
499 * received a socket close event before we had the chance to
500 * shut the socket down.
501 */
502 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
503
504 con_sock_state_closed(con);
505 return rc;
506 }
507
ceph_con_reset_protocol(struct ceph_connection * con)508 static void ceph_con_reset_protocol(struct ceph_connection *con)
509 {
510 dout("%s con %p\n", __func__, con);
511
512 ceph_con_close_socket(con);
513 if (con->in_msg) {
514 WARN_ON(con->in_msg->con != con);
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 }
518 if (con->out_msg) {
519 WARN_ON(con->out_msg->con != con);
520 ceph_msg_put(con->out_msg);
521 con->out_msg = NULL;
522 }
523 if (con->bounce_page) {
524 __free_page(con->bounce_page);
525 con->bounce_page = NULL;
526 }
527
528 if (ceph_msgr2(from_msgr(con->msgr)))
529 ceph_con_v2_reset_protocol(con);
530 else
531 ceph_con_v1_reset_protocol(con);
532 }
533
534 /*
535 * Reset a connection. Discard all incoming and outgoing messages
536 * and clear *_seq state.
537 */
ceph_msg_remove(struct ceph_msg * msg)538 static void ceph_msg_remove(struct ceph_msg *msg)
539 {
540 list_del_init(&msg->list_head);
541
542 ceph_msg_put(msg);
543 }
544
ceph_msg_remove_list(struct list_head * head)545 static void ceph_msg_remove_list(struct list_head *head)
546 {
547 while (!list_empty(head)) {
548 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
549 list_head);
550 ceph_msg_remove(msg);
551 }
552 }
553
ceph_con_reset_session(struct ceph_connection * con)554 void ceph_con_reset_session(struct ceph_connection *con)
555 {
556 dout("%s con %p\n", __func__, con);
557
558 WARN_ON(con->in_msg);
559 WARN_ON(con->out_msg);
560 ceph_msg_remove_list(&con->out_queue);
561 ceph_msg_remove_list(&con->out_sent);
562 con->out_seq = 0;
563 con->in_seq = 0;
564 con->in_seq_acked = 0;
565
566 if (ceph_msgr2(from_msgr(con->msgr)))
567 ceph_con_v2_reset_session(con);
568 else
569 ceph_con_v1_reset_session(con);
570 }
571
572 /*
573 * mark a peer down. drop any open connections.
574 */
ceph_con_close(struct ceph_connection * con)575 void ceph_con_close(struct ceph_connection *con)
576 {
577 mutex_lock(&con->mutex);
578 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
579 con->state = CEPH_CON_S_CLOSED;
580
581 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
582 connect */
583 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
584 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
585 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
586
587 ceph_con_reset_protocol(con);
588 ceph_con_reset_session(con);
589 cancel_con(con);
590 mutex_unlock(&con->mutex);
591 }
592 EXPORT_SYMBOL(ceph_con_close);
593
594 /*
595 * Reopen a closed connection, with a new peer address.
596 */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)597 void ceph_con_open(struct ceph_connection *con,
598 __u8 entity_type, __u64 entity_num,
599 struct ceph_entity_addr *addr)
600 {
601 mutex_lock(&con->mutex);
602 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
603
604 WARN_ON(con->state != CEPH_CON_S_CLOSED);
605 con->state = CEPH_CON_S_PREOPEN;
606
607 con->peer_name.type = (__u8) entity_type;
608 con->peer_name.num = cpu_to_le64(entity_num);
609
610 memcpy(&con->peer_addr, addr, sizeof(*addr));
611 con->delay = 0; /* reset backoff memory */
612 mutex_unlock(&con->mutex);
613 queue_con(con);
614 }
615 EXPORT_SYMBOL(ceph_con_open);
616
617 /*
618 * return true if this connection ever successfully opened
619 */
ceph_con_opened(struct ceph_connection * con)620 bool ceph_con_opened(struct ceph_connection *con)
621 {
622 if (ceph_msgr2(from_msgr(con->msgr)))
623 return ceph_con_v2_opened(con);
624
625 return ceph_con_v1_opened(con);
626 }
627
628 /*
629 * initialize a new connection.
630 */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)631 void ceph_con_init(struct ceph_connection *con, void *private,
632 const struct ceph_connection_operations *ops,
633 struct ceph_messenger *msgr)
634 {
635 dout("con_init %p\n", con);
636 memset(con, 0, sizeof(*con));
637 con->private = private;
638 con->ops = ops;
639 con->msgr = msgr;
640
641 con_sock_state_init(con);
642
643 mutex_init(&con->mutex);
644 INIT_LIST_HEAD(&con->out_queue);
645 INIT_LIST_HEAD(&con->out_sent);
646 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
647
648 con->state = CEPH_CON_S_CLOSED;
649 }
650 EXPORT_SYMBOL(ceph_con_init);
651
652 /*
653 * We maintain a global counter to order connection attempts. Get
654 * a unique seq greater than @gt.
655 */
ceph_get_global_seq(struct ceph_messenger * msgr,u32 gt)656 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
657 {
658 u32 ret;
659
660 spin_lock(&msgr->global_seq_lock);
661 if (msgr->global_seq < gt)
662 msgr->global_seq = gt;
663 ret = ++msgr->global_seq;
664 spin_unlock(&msgr->global_seq_lock);
665 return ret;
666 }
667
668 /*
669 * Discard messages that have been acked by the server.
670 */
ceph_con_discard_sent(struct ceph_connection * con,u64 ack_seq)671 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
672 {
673 struct ceph_msg *msg;
674 u64 seq;
675
676 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
677 while (!list_empty(&con->out_sent)) {
678 msg = list_first_entry(&con->out_sent, struct ceph_msg,
679 list_head);
680 WARN_ON(msg->needs_out_seq);
681 seq = le64_to_cpu(msg->hdr.seq);
682 if (seq > ack_seq)
683 break;
684
685 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
686 msg, seq);
687 ceph_msg_remove(msg);
688 }
689 }
690
691 /*
692 * Discard messages that have been requeued in con_fault(), up to
693 * reconnect_seq. This avoids gratuitously resending messages that
694 * the server had received and handled prior to reconnect.
695 */
ceph_con_discard_requeued(struct ceph_connection * con,u64 reconnect_seq)696 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
697 {
698 struct ceph_msg *msg;
699 u64 seq;
700
701 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
702 while (!list_empty(&con->out_queue)) {
703 msg = list_first_entry(&con->out_queue, struct ceph_msg,
704 list_head);
705 if (msg->needs_out_seq)
706 break;
707 seq = le64_to_cpu(msg->hdr.seq);
708 if (seq > reconnect_seq)
709 break;
710
711 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
712 msg, seq);
713 ceph_msg_remove(msg);
714 }
715 }
716
717 #ifdef CONFIG_BLOCK
718
719 /*
720 * For a bio data item, a piece is whatever remains of the next
721 * entry in the current bio iovec, or the first entry in the next
722 * bio in the list.
723 */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)724 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
725 size_t length)
726 {
727 struct ceph_msg_data *data = cursor->data;
728 struct ceph_bio_iter *it = &cursor->bio_iter;
729
730 cursor->resid = min_t(size_t, length, data->bio_length);
731 *it = data->bio_pos;
732 if (cursor->resid < it->iter.bi_size)
733 it->iter.bi_size = cursor->resid;
734
735 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
736 }
737
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)738 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
739 size_t *page_offset,
740 size_t *length)
741 {
742 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
743 cursor->bio_iter.iter);
744
745 *page_offset = bv.bv_offset;
746 *length = bv.bv_len;
747 return bv.bv_page;
748 }
749
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)750 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
751 size_t bytes)
752 {
753 struct ceph_bio_iter *it = &cursor->bio_iter;
754 struct page *page = bio_iter_page(it->bio, it->iter);
755
756 BUG_ON(bytes > cursor->resid);
757 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
758 cursor->resid -= bytes;
759 bio_advance_iter(it->bio, &it->iter, bytes);
760
761 if (!cursor->resid)
762 return false; /* no more data */
763
764 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
765 page == bio_iter_page(it->bio, it->iter)))
766 return false; /* more bytes to process in this segment */
767
768 if (!it->iter.bi_size) {
769 it->bio = it->bio->bi_next;
770 it->iter = it->bio->bi_iter;
771 if (cursor->resid < it->iter.bi_size)
772 it->iter.bi_size = cursor->resid;
773 }
774
775 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
776 return true;
777 }
778 #endif /* CONFIG_BLOCK */
779
ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)780 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
781 size_t length)
782 {
783 struct ceph_msg_data *data = cursor->data;
784 struct bio_vec *bvecs = data->bvec_pos.bvecs;
785
786 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
787 cursor->bvec_iter = data->bvec_pos.iter;
788 cursor->bvec_iter.bi_size = cursor->resid;
789
790 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
791 }
792
ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)793 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
794 size_t *page_offset,
795 size_t *length)
796 {
797 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
798 cursor->bvec_iter);
799
800 *page_offset = bv.bv_offset;
801 *length = bv.bv_len;
802 return bv.bv_page;
803 }
804
ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)805 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
806 size_t bytes)
807 {
808 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
809 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
810
811 BUG_ON(bytes > cursor->resid);
812 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
813 cursor->resid -= bytes;
814 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
815
816 if (!cursor->resid)
817 return false; /* no more data */
818
819 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821 return false; /* more bytes to process in this segment */
822
823 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
824 return true;
825 }
826
827 /*
828 * For a page array, a piece comes from the first page in the array
829 * that has not already been fully consumed.
830 */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)831 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
832 size_t length)
833 {
834 struct ceph_msg_data *data = cursor->data;
835 int page_count;
836
837 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
838
839 BUG_ON(!data->pages);
840 BUG_ON(!data->length);
841
842 cursor->resid = min(length, data->length);
843 page_count = calc_pages_for(data->alignment, (u64)data->length);
844 cursor->page_offset = data->alignment & ~PAGE_MASK;
845 cursor->page_index = 0;
846 BUG_ON(page_count > (int)USHRT_MAX);
847 cursor->page_count = (unsigned short)page_count;
848 BUG_ON(length > SIZE_MAX - cursor->page_offset);
849 }
850
851 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)852 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
853 size_t *page_offset, size_t *length)
854 {
855 struct ceph_msg_data *data = cursor->data;
856
857 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
858
859 BUG_ON(cursor->page_index >= cursor->page_count);
860 BUG_ON(cursor->page_offset >= PAGE_SIZE);
861
862 *page_offset = cursor->page_offset;
863 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
864 return data->pages[cursor->page_index];
865 }
866
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
868 size_t bytes)
869 {
870 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
871
872 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
873
874 /* Advance the cursor page offset */
875
876 cursor->resid -= bytes;
877 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
878 if (!bytes || cursor->page_offset)
879 return false; /* more bytes to process in the current page */
880
881 if (!cursor->resid)
882 return false; /* no more data */
883
884 /* Move on to the next page; offset is already at 0 */
885
886 BUG_ON(cursor->page_index >= cursor->page_count);
887 cursor->page_index++;
888 return true;
889 }
890
891 /*
892 * For a pagelist, a piece is whatever remains to be consumed in the
893 * first page in the list, or the front of the next page.
894 */
895 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)896 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
897 size_t length)
898 {
899 struct ceph_msg_data *data = cursor->data;
900 struct ceph_pagelist *pagelist;
901 struct page *page;
902
903 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
904
905 pagelist = data->pagelist;
906 BUG_ON(!pagelist);
907
908 if (!length)
909 return; /* pagelist can be assigned but empty */
910
911 BUG_ON(list_empty(&pagelist->head));
912 page = list_first_entry(&pagelist->head, struct page, lru);
913
914 cursor->resid = min(length, pagelist->length);
915 cursor->page = page;
916 cursor->offset = 0;
917 }
918
919 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)920 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
921 size_t *page_offset, size_t *length)
922 {
923 struct ceph_msg_data *data = cursor->data;
924 struct ceph_pagelist *pagelist;
925
926 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
927
928 pagelist = data->pagelist;
929 BUG_ON(!pagelist);
930
931 BUG_ON(!cursor->page);
932 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
933
934 /* offset of first page in pagelist is always 0 */
935 *page_offset = cursor->offset & ~PAGE_MASK;
936 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
937 return cursor->page;
938 }
939
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)940 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
941 size_t bytes)
942 {
943 struct ceph_msg_data *data = cursor->data;
944 struct ceph_pagelist *pagelist;
945
946 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947
948 pagelist = data->pagelist;
949 BUG_ON(!pagelist);
950
951 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
952 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
953
954 /* Advance the cursor offset */
955
956 cursor->resid -= bytes;
957 cursor->offset += bytes;
958 /* offset of first page in pagelist is always 0 */
959 if (!bytes || cursor->offset & ~PAGE_MASK)
960 return false; /* more bytes to process in the current page */
961
962 if (!cursor->resid)
963 return false; /* no more data */
964
965 /* Move on to the next page */
966
967 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
968 cursor->page = list_next_entry(cursor->page, lru);
969 return true;
970 }
971
ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)972 static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
973 size_t length)
974 {
975 struct ceph_msg_data *data = cursor->data;
976
977 cursor->iov_iter = data->iter;
978 cursor->lastlen = 0;
979 iov_iter_truncate(&cursor->iov_iter, length);
980 cursor->resid = iov_iter_count(&cursor->iov_iter);
981 }
982
ceph_msg_data_iter_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)983 static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
984 size_t *page_offset, size_t *length)
985 {
986 struct page *page;
987 ssize_t len;
988
989 if (cursor->lastlen)
990 iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
991
992 len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
993 1, page_offset);
994 BUG_ON(len < 0);
995
996 cursor->lastlen = len;
997
998 /*
999 * FIXME: The assumption is that the pages represented by the iov_iter
1000 * are pinned, with the references held by the upper-level
1001 * callers, or by virtue of being under writeback. Eventually,
1002 * we'll get an iov_iter_get_pages2 variant that doesn't take
1003 * page refs. Until then, just put the page ref.
1004 */
1005 VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006 put_page(page);
1007
1008 *length = min_t(size_t, len, cursor->resid);
1009 return page;
1010 }
1011
ceph_msg_data_iter_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1012 static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013 size_t bytes)
1014 {
1015 BUG_ON(bytes > cursor->resid);
1016 cursor->resid -= bytes;
1017
1018 if (bytes < cursor->lastlen) {
1019 cursor->lastlen -= bytes;
1020 } else {
1021 iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022 cursor->lastlen = 0;
1023 }
1024
1025 return cursor->resid;
1026 }
1027
1028 /*
1029 * Message data is handled (sent or received) in pieces, where each
1030 * piece resides on a single page. The network layer might not
1031 * consume an entire piece at once. A data item's cursor keeps
1032 * track of which piece is next to process and how much remains to
1033 * be processed in that piece. It also tracks whether the current
1034 * piece is the last one in the data item.
1035 */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)1036 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037 {
1038 size_t length = cursor->total_resid;
1039
1040 switch (cursor->data->type) {
1041 case CEPH_MSG_DATA_PAGELIST:
1042 ceph_msg_data_pagelist_cursor_init(cursor, length);
1043 break;
1044 case CEPH_MSG_DATA_PAGES:
1045 ceph_msg_data_pages_cursor_init(cursor, length);
1046 break;
1047 #ifdef CONFIG_BLOCK
1048 case CEPH_MSG_DATA_BIO:
1049 ceph_msg_data_bio_cursor_init(cursor, length);
1050 break;
1051 #endif /* CONFIG_BLOCK */
1052 case CEPH_MSG_DATA_BVECS:
1053 ceph_msg_data_bvecs_cursor_init(cursor, length);
1054 break;
1055 case CEPH_MSG_DATA_ITER:
1056 ceph_msg_data_iter_cursor_init(cursor, length);
1057 break;
1058 case CEPH_MSG_DATA_NONE:
1059 default:
1060 /* BUG(); */
1061 break;
1062 }
1063 cursor->need_crc = true;
1064 }
1065
ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor,struct ceph_msg * msg,size_t length)1066 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067 struct ceph_msg *msg, size_t length)
1068 {
1069 BUG_ON(!length);
1070 BUG_ON(length > msg->data_length);
1071 BUG_ON(!msg->num_data_items);
1072
1073 cursor->total_resid = length;
1074 cursor->data = msg->data;
1075 cursor->sr_resid = 0;
1076
1077 __ceph_msg_data_cursor_init(cursor);
1078 }
1079
1080 /*
1081 * Return the page containing the next piece to process for a given
1082 * data item, and supply the page offset and length of that piece.
1083 * Indicate whether this is the last piece in this data item.
1084 */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)1085 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086 size_t *page_offset, size_t *length)
1087 {
1088 struct page *page;
1089
1090 switch (cursor->data->type) {
1091 case CEPH_MSG_DATA_PAGELIST:
1092 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093 break;
1094 case CEPH_MSG_DATA_PAGES:
1095 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096 break;
1097 #ifdef CONFIG_BLOCK
1098 case CEPH_MSG_DATA_BIO:
1099 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100 break;
1101 #endif /* CONFIG_BLOCK */
1102 case CEPH_MSG_DATA_BVECS:
1103 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104 break;
1105 case CEPH_MSG_DATA_ITER:
1106 page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107 break;
1108 case CEPH_MSG_DATA_NONE:
1109 default:
1110 page = NULL;
1111 break;
1112 }
1113
1114 BUG_ON(!page);
1115 BUG_ON(*page_offset + *length > PAGE_SIZE);
1116 BUG_ON(!*length);
1117 BUG_ON(*length > cursor->resid);
1118
1119 return page;
1120 }
1121
1122 /*
1123 * Returns true if the result moves the cursor on to the next piece
1124 * of the data item.
1125 */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1126 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1127 {
1128 bool new_piece;
1129
1130 BUG_ON(bytes > cursor->resid);
1131 switch (cursor->data->type) {
1132 case CEPH_MSG_DATA_PAGELIST:
1133 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134 break;
1135 case CEPH_MSG_DATA_PAGES:
1136 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137 break;
1138 #ifdef CONFIG_BLOCK
1139 case CEPH_MSG_DATA_BIO:
1140 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141 break;
1142 #endif /* CONFIG_BLOCK */
1143 case CEPH_MSG_DATA_BVECS:
1144 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145 break;
1146 case CEPH_MSG_DATA_ITER:
1147 new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148 break;
1149 case CEPH_MSG_DATA_NONE:
1150 default:
1151 BUG();
1152 break;
1153 }
1154 cursor->total_resid -= bytes;
1155
1156 if (!cursor->resid && cursor->total_resid) {
1157 cursor->data++;
1158 __ceph_msg_data_cursor_init(cursor);
1159 new_piece = true;
1160 }
1161 cursor->need_crc = new_piece;
1162 }
1163
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1164 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165 unsigned int length)
1166 {
1167 char *kaddr;
1168
1169 kaddr = kmap(page);
1170 BUG_ON(kaddr == NULL);
1171 crc = crc32c(crc, kaddr + page_offset, length);
1172 kunmap(page);
1173
1174 return crc;
1175 }
1176
ceph_addr_is_blank(const struct ceph_entity_addr * addr)1177 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1178 {
1179 struct sockaddr_storage ss = addr->in_addr; /* align */
1180 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1182
1183 switch (ss.ss_family) {
1184 case AF_INET:
1185 return addr4->s_addr == htonl(INADDR_ANY);
1186 case AF_INET6:
1187 return ipv6_addr_any(addr6);
1188 default:
1189 return true;
1190 }
1191 }
1192 EXPORT_SYMBOL(ceph_addr_is_blank);
1193
ceph_addr_port(const struct ceph_entity_addr * addr)1194 int ceph_addr_port(const struct ceph_entity_addr *addr)
1195 {
1196 switch (get_unaligned(&addr->in_addr.ss_family)) {
1197 case AF_INET:
1198 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199 case AF_INET6:
1200 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201 }
1202 return 0;
1203 }
1204
ceph_addr_set_port(struct ceph_entity_addr * addr,int p)1205 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206 {
1207 switch (get_unaligned(&addr->in_addr.ss_family)) {
1208 case AF_INET:
1209 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210 break;
1211 case AF_INET6:
1212 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213 break;
1214 }
1215 }
1216
1217 /*
1218 * Unlike other *_pton function semantics, zero indicates success.
1219 */
ceph_pton(const char * str,size_t len,struct ceph_entity_addr * addr,char delim,const char ** ipend)1220 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221 char delim, const char **ipend)
1222 {
1223 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1224
1225 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227 return 0;
1228 }
1229
1230 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232 return 0;
1233 }
1234
1235 return -EINVAL;
1236 }
1237
1238 /*
1239 * Extract hostname string and resolve using kernel DNS facility.
1240 */
1241 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1242 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243 struct ceph_entity_addr *addr, char delim, const char **ipend)
1244 {
1245 const char *end, *delim_p;
1246 char *colon_p, *ip_addr = NULL;
1247 int ip_len, ret;
1248
1249 /*
1250 * The end of the hostname occurs immediately preceding the delimiter or
1251 * the port marker (':') where the delimiter takes precedence.
1252 */
1253 delim_p = memchr(name, delim, namelen);
1254 colon_p = memchr(name, ':', namelen);
1255
1256 if (delim_p && colon_p)
1257 end = delim_p < colon_p ? delim_p : colon_p;
1258 else if (!delim_p && colon_p)
1259 end = colon_p;
1260 else {
1261 end = delim_p;
1262 if (!end) /* case: hostname:/ */
1263 end = name + namelen;
1264 }
1265
1266 if (end <= name)
1267 return -EINVAL;
1268
1269 /* do dns_resolve upcall */
1270 ip_len = dns_query(current->nsproxy->net_ns,
1271 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272 if (ip_len > 0)
1273 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274 else
1275 ret = -ESRCH;
1276
1277 kfree(ip_addr);
1278
1279 *ipend = end;
1280
1281 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282 ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284 return ret;
1285 }
1286 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1287 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288 struct ceph_entity_addr *addr, char delim, const char **ipend)
1289 {
1290 return -EINVAL;
1291 }
1292 #endif
1293
1294 /*
1295 * Parse a server name (IP or hostname). If a valid IP address is not found
1296 * then try to extract a hostname to resolve using userspace DNS upcall.
1297 */
ceph_parse_server_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1298 static int ceph_parse_server_name(const char *name, size_t namelen,
1299 struct ceph_entity_addr *addr, char delim, const char **ipend)
1300 {
1301 int ret;
1302
1303 ret = ceph_pton(name, namelen, addr, delim, ipend);
1304 if (ret)
1305 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307 return ret;
1308 }
1309
1310 /*
1311 * Parse an ip[:port] list into an addr array. Use the default
1312 * monitor port if a port isn't specified.
1313 */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count,char delim)1314 int ceph_parse_ips(const char *c, const char *end,
1315 struct ceph_entity_addr *addr,
1316 int max_count, int *count, char delim)
1317 {
1318 int i, ret = -EINVAL;
1319 const char *p = c;
1320
1321 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322 for (i = 0; i < max_count; i++) {
1323 char cur_delim = delim;
1324 const char *ipend;
1325 int port;
1326
1327 if (*p == '[') {
1328 cur_delim = ']';
1329 p++;
1330 }
1331
1332 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333 &ipend);
1334 if (ret)
1335 goto bad;
1336 ret = -EINVAL;
1337
1338 p = ipend;
1339
1340 if (cur_delim == ']') {
1341 if (*p != ']') {
1342 dout("missing matching ']'\n");
1343 goto bad;
1344 }
1345 p++;
1346 }
1347
1348 /* port? */
1349 if (p < end && *p == ':') {
1350 port = 0;
1351 p++;
1352 while (p < end && *p >= '0' && *p <= '9') {
1353 port = (port * 10) + (*p - '0');
1354 p++;
1355 }
1356 if (port == 0)
1357 port = CEPH_MON_PORT;
1358 else if (port > 65535)
1359 goto bad;
1360 } else {
1361 port = CEPH_MON_PORT;
1362 }
1363
1364 ceph_addr_set_port(&addr[i], port);
1365 /*
1366 * We want the type to be set according to ms_mode
1367 * option, but options are normally parsed after mon
1368 * addresses. Rather than complicating parsing, set
1369 * to LEGACY and override in build_initial_monmap()
1370 * for mon addresses and ceph_messenger_init() for
1371 * ip option.
1372 */
1373 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374 addr[i].nonce = 0;
1375
1376 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378 if (p == end)
1379 break;
1380 if (*p != delim)
1381 goto bad;
1382 p++;
1383 }
1384
1385 if (p != end)
1386 goto bad;
1387
1388 if (count)
1389 *count = i + 1;
1390 return 0;
1391
1392 bad:
1393 return ret;
1394 }
1395
1396 /*
1397 * Process message. This happens in the worker thread. The callback should
1398 * be careful not to do anything that waits on other incoming messages or it
1399 * may deadlock.
1400 */
ceph_con_process_message(struct ceph_connection * con)1401 void ceph_con_process_message(struct ceph_connection *con)
1402 {
1403 struct ceph_msg *msg = con->in_msg;
1404
1405 BUG_ON(con->in_msg->con != con);
1406 con->in_msg = NULL;
1407
1408 /* if first message, set peer_name */
1409 if (con->peer_name.type == 0)
1410 con->peer_name = msg->hdr.src;
1411
1412 con->in_seq++;
1413 mutex_unlock(&con->mutex);
1414
1415 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416 msg, le64_to_cpu(msg->hdr.seq),
1417 ENTITY_NAME(msg->hdr.src),
1418 le16_to_cpu(msg->hdr.type),
1419 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420 le32_to_cpu(msg->hdr.front_len),
1421 le32_to_cpu(msg->hdr.middle_len),
1422 le32_to_cpu(msg->hdr.data_len),
1423 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424 con->ops->dispatch(con, msg);
1425
1426 mutex_lock(&con->mutex);
1427 }
1428
1429 /*
1430 * Atomically queue work on a connection after the specified delay.
1431 * Bump @con reference to avoid races with connection teardown.
1432 * Returns 0 if work was queued, or an error code otherwise.
1433 */
queue_con_delay(struct ceph_connection * con,unsigned long delay)1434 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435 {
1436 if (!con->ops->get(con)) {
1437 dout("%s %p ref count 0\n", __func__, con);
1438 return -ENOENT;
1439 }
1440
1441 if (delay >= HZ)
1442 delay = round_jiffies_relative(delay);
1443
1444 dout("%s %p %lu\n", __func__, con, delay);
1445 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446 dout("%s %p - already queued\n", __func__, con);
1447 con->ops->put(con);
1448 return -EBUSY;
1449 }
1450
1451 return 0;
1452 }
1453
queue_con(struct ceph_connection * con)1454 static void queue_con(struct ceph_connection *con)
1455 {
1456 (void) queue_con_delay(con, 0);
1457 }
1458
cancel_con(struct ceph_connection * con)1459 static void cancel_con(struct ceph_connection *con)
1460 {
1461 if (cancel_delayed_work(&con->work)) {
1462 dout("%s %p\n", __func__, con);
1463 con->ops->put(con);
1464 }
1465 }
1466
con_sock_closed(struct ceph_connection * con)1467 static bool con_sock_closed(struct ceph_connection *con)
1468 {
1469 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470 return false;
1471
1472 #define CASE(x) \
1473 case CEPH_CON_S_ ## x: \
1474 con->error_msg = "socket closed (con state " #x ")"; \
1475 break;
1476
1477 switch (con->state) {
1478 CASE(CLOSED);
1479 CASE(PREOPEN);
1480 CASE(V1_BANNER);
1481 CASE(V1_CONNECT_MSG);
1482 CASE(V2_BANNER_PREFIX);
1483 CASE(V2_BANNER_PAYLOAD);
1484 CASE(V2_HELLO);
1485 CASE(V2_AUTH);
1486 CASE(V2_AUTH_SIGNATURE);
1487 CASE(V2_SESSION_CONNECT);
1488 CASE(V2_SESSION_RECONNECT);
1489 CASE(OPEN);
1490 CASE(STANDBY);
1491 default:
1492 BUG();
1493 }
1494 #undef CASE
1495
1496 return true;
1497 }
1498
con_backoff(struct ceph_connection * con)1499 static bool con_backoff(struct ceph_connection *con)
1500 {
1501 int ret;
1502
1503 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504 return false;
1505
1506 ret = queue_con_delay(con, con->delay);
1507 if (ret) {
1508 dout("%s: con %p FAILED to back off %lu\n", __func__,
1509 con, con->delay);
1510 BUG_ON(ret == -ENOENT);
1511 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512 }
1513
1514 return true;
1515 }
1516
1517 /* Finish fault handling; con->mutex must *not* be held here */
1518
con_fault_finish(struct ceph_connection * con)1519 static void con_fault_finish(struct ceph_connection *con)
1520 {
1521 dout("%s %p\n", __func__, con);
1522
1523 /*
1524 * in case we faulted due to authentication, invalidate our
1525 * current tickets so that we can get new ones.
1526 */
1527 if (con->v1.auth_retry) {
1528 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529 if (con->ops->invalidate_authorizer)
1530 con->ops->invalidate_authorizer(con);
1531 con->v1.auth_retry = 0;
1532 }
1533
1534 if (con->ops->fault)
1535 con->ops->fault(con);
1536 }
1537
1538 /*
1539 * Do some work on a connection. Drop a connection ref when we're done.
1540 */
ceph_con_workfn(struct work_struct * work)1541 static void ceph_con_workfn(struct work_struct *work)
1542 {
1543 struct ceph_connection *con = container_of(work, struct ceph_connection,
1544 work.work);
1545 bool fault;
1546
1547 mutex_lock(&con->mutex);
1548 while (true) {
1549 int ret;
1550
1551 if ((fault = con_sock_closed(con))) {
1552 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553 break;
1554 }
1555 if (con_backoff(con)) {
1556 dout("%s: con %p BACKOFF\n", __func__, con);
1557 break;
1558 }
1559 if (con->state == CEPH_CON_S_STANDBY) {
1560 dout("%s: con %p STANDBY\n", __func__, con);
1561 break;
1562 }
1563 if (con->state == CEPH_CON_S_CLOSED) {
1564 dout("%s: con %p CLOSED\n", __func__, con);
1565 BUG_ON(con->sock);
1566 break;
1567 }
1568 if (con->state == CEPH_CON_S_PREOPEN) {
1569 dout("%s: con %p PREOPEN\n", __func__, con);
1570 BUG_ON(con->sock);
1571 }
1572
1573 if (ceph_msgr2(from_msgr(con->msgr)))
1574 ret = ceph_con_v2_try_read(con);
1575 else
1576 ret = ceph_con_v1_try_read(con);
1577 if (ret < 0) {
1578 if (ret == -EAGAIN)
1579 continue;
1580 if (!con->error_msg)
1581 con->error_msg = "socket error on read";
1582 fault = true;
1583 break;
1584 }
1585
1586 if (ceph_msgr2(from_msgr(con->msgr)))
1587 ret = ceph_con_v2_try_write(con);
1588 else
1589 ret = ceph_con_v1_try_write(con);
1590 if (ret < 0) {
1591 if (ret == -EAGAIN)
1592 continue;
1593 if (!con->error_msg)
1594 con->error_msg = "socket error on write";
1595 fault = true;
1596 }
1597
1598 break; /* If we make it to here, we're done */
1599 }
1600 if (fault)
1601 con_fault(con);
1602 mutex_unlock(&con->mutex);
1603
1604 if (fault)
1605 con_fault_finish(con);
1606
1607 con->ops->put(con);
1608 }
1609
1610 /*
1611 * Generic error/fault handler. A retry mechanism is used with
1612 * exponential backoff
1613 */
con_fault(struct ceph_connection * con)1614 static void con_fault(struct ceph_connection *con)
1615 {
1616 dout("fault %p state %d to peer %s\n",
1617 con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620 ceph_pr_addr(&con->peer_addr), con->error_msg);
1621 con->error_msg = NULL;
1622
1623 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624 con->state == CEPH_CON_S_CLOSED);
1625
1626 ceph_con_reset_protocol(con);
1627
1628 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629 dout("fault on LOSSYTX channel, marking CLOSED\n");
1630 con->state = CEPH_CON_S_CLOSED;
1631 return;
1632 }
1633
1634 /* Requeue anything that hasn't been acked */
1635 list_splice_init(&con->out_sent, &con->out_queue);
1636
1637 /* If there are no messages queued or keepalive pending, place
1638 * the connection in a STANDBY state */
1639 if (list_empty(&con->out_queue) &&
1640 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643 con->state = CEPH_CON_S_STANDBY;
1644 } else {
1645 /* retry after a delay. */
1646 con->state = CEPH_CON_S_PREOPEN;
1647 if (!con->delay) {
1648 con->delay = BASE_DELAY_INTERVAL;
1649 } else if (con->delay < MAX_DELAY_INTERVAL) {
1650 con->delay *= 2;
1651 if (con->delay > MAX_DELAY_INTERVAL)
1652 con->delay = MAX_DELAY_INTERVAL;
1653 }
1654 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655 queue_con(con);
1656 }
1657 }
1658
ceph_messenger_reset_nonce(struct ceph_messenger * msgr)1659 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660 {
1661 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663 ceph_encode_my_addr(msgr);
1664 }
1665
1666 /*
1667 * initialize a new messenger instance
1668 */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr)1669 void ceph_messenger_init(struct ceph_messenger *msgr,
1670 struct ceph_entity_addr *myaddr)
1671 {
1672 spin_lock_init(&msgr->global_seq_lock);
1673
1674 if (myaddr) {
1675 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676 sizeof(msgr->inst.addr.in_addr));
1677 ceph_addr_set_port(&msgr->inst.addr, 0);
1678 }
1679
1680 /*
1681 * Since nautilus, clients are identified using type ANY.
1682 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683 */
1684 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686 /* generate a random non-zero nonce */
1687 do {
1688 get_random_bytes(&msgr->inst.addr.nonce,
1689 sizeof(msgr->inst.addr.nonce));
1690 } while (!msgr->inst.addr.nonce);
1691 ceph_encode_my_addr(msgr);
1692
1693 atomic_set(&msgr->stopping, 0);
1694 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696 dout("%s %p\n", __func__, msgr);
1697 }
1698
ceph_messenger_fini(struct ceph_messenger * msgr)1699 void ceph_messenger_fini(struct ceph_messenger *msgr)
1700 {
1701 put_net(read_pnet(&msgr->net));
1702 }
1703
msg_con_set(struct ceph_msg * msg,struct ceph_connection * con)1704 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705 {
1706 if (msg->con)
1707 msg->con->ops->put(msg->con);
1708
1709 msg->con = con ? con->ops->get(con) : NULL;
1710 BUG_ON(msg->con != con);
1711 }
1712
clear_standby(struct ceph_connection * con)1713 static void clear_standby(struct ceph_connection *con)
1714 {
1715 /* come back from STANDBY? */
1716 if (con->state == CEPH_CON_S_STANDBY) {
1717 dout("clear_standby %p and ++connect_seq\n", con);
1718 con->state = CEPH_CON_S_PREOPEN;
1719 con->v1.connect_seq++;
1720 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722 }
1723 }
1724
1725 /*
1726 * Queue up an outgoing message on the given connection.
1727 *
1728 * Consumes a ref on @msg.
1729 */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)1730 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731 {
1732 /* set src+dst */
1733 msg->hdr.src = con->msgr->inst.name;
1734 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735 msg->needs_out_seq = true;
1736
1737 mutex_lock(&con->mutex);
1738
1739 if (con->state == CEPH_CON_S_CLOSED) {
1740 dout("con_send %p closed, dropping %p\n", con, msg);
1741 ceph_msg_put(msg);
1742 mutex_unlock(&con->mutex);
1743 return;
1744 }
1745
1746 msg_con_set(msg, con);
1747
1748 BUG_ON(!list_empty(&msg->list_head));
1749 list_add_tail(&msg->list_head, &con->out_queue);
1750 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753 le32_to_cpu(msg->hdr.front_len),
1754 le32_to_cpu(msg->hdr.middle_len),
1755 le32_to_cpu(msg->hdr.data_len));
1756
1757 clear_standby(con);
1758 mutex_unlock(&con->mutex);
1759
1760 /* if there wasn't anything waiting to send before, queue
1761 * new work */
1762 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763 queue_con(con);
1764 }
1765 EXPORT_SYMBOL(ceph_con_send);
1766
1767 /*
1768 * Revoke a message that was previously queued for send
1769 */
ceph_msg_revoke(struct ceph_msg * msg)1770 void ceph_msg_revoke(struct ceph_msg *msg)
1771 {
1772 struct ceph_connection *con = msg->con;
1773
1774 if (!con) {
1775 dout("%s msg %p null con\n", __func__, msg);
1776 return; /* Message not in our possession */
1777 }
1778
1779 mutex_lock(&con->mutex);
1780 if (list_empty(&msg->list_head)) {
1781 WARN_ON(con->out_msg == msg);
1782 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783 mutex_unlock(&con->mutex);
1784 return;
1785 }
1786
1787 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788 msg->hdr.seq = 0;
1789 ceph_msg_remove(msg);
1790
1791 if (con->out_msg == msg) {
1792 WARN_ON(con->state != CEPH_CON_S_OPEN);
1793 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794 if (ceph_msgr2(from_msgr(con->msgr)))
1795 ceph_con_v2_revoke(con);
1796 else
1797 ceph_con_v1_revoke(con);
1798 ceph_msg_put(con->out_msg);
1799 con->out_msg = NULL;
1800 } else {
1801 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802 con, msg, con->out_msg);
1803 }
1804 mutex_unlock(&con->mutex);
1805 }
1806
1807 /*
1808 * Revoke a message that we may be reading data into
1809 */
ceph_msg_revoke_incoming(struct ceph_msg * msg)1810 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811 {
1812 struct ceph_connection *con = msg->con;
1813
1814 if (!con) {
1815 dout("%s msg %p null con\n", __func__, msg);
1816 return; /* Message not in our possession */
1817 }
1818
1819 mutex_lock(&con->mutex);
1820 if (con->in_msg == msg) {
1821 WARN_ON(con->state != CEPH_CON_S_OPEN);
1822 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823 if (ceph_msgr2(from_msgr(con->msgr)))
1824 ceph_con_v2_revoke_incoming(con);
1825 else
1826 ceph_con_v1_revoke_incoming(con);
1827 ceph_msg_put(con->in_msg);
1828 con->in_msg = NULL;
1829 } else {
1830 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831 con, msg, con->in_msg);
1832 }
1833 mutex_unlock(&con->mutex);
1834 }
1835
1836 /*
1837 * Queue a keepalive byte to ensure the tcp connection is alive.
1838 */
ceph_con_keepalive(struct ceph_connection * con)1839 void ceph_con_keepalive(struct ceph_connection *con)
1840 {
1841 dout("con_keepalive %p\n", con);
1842 mutex_lock(&con->mutex);
1843 clear_standby(con);
1844 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845 mutex_unlock(&con->mutex);
1846
1847 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848 queue_con(con);
1849 }
1850 EXPORT_SYMBOL(ceph_con_keepalive);
1851
ceph_con_keepalive_expired(struct ceph_connection * con,unsigned long interval)1852 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853 unsigned long interval)
1854 {
1855 if (interval > 0 &&
1856 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857 struct timespec64 now;
1858 struct timespec64 ts;
1859 ktime_get_real_ts64(&now);
1860 jiffies_to_timespec64(interval, &ts);
1861 ts = timespec64_add(con->last_keepalive_ack, ts);
1862 return timespec64_compare(&now, &ts) >= 0;
1863 }
1864 return false;
1865 }
1866
ceph_msg_data_add(struct ceph_msg * msg)1867 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868 {
1869 BUG_ON(msg->num_data_items >= msg->max_data_items);
1870 return &msg->data[msg->num_data_items++];
1871 }
1872
ceph_msg_data_destroy(struct ceph_msg_data * data)1873 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874 {
1875 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876 int num_pages = calc_pages_for(data->alignment, data->length);
1877 ceph_release_page_vector(data->pages, num_pages);
1878 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1879 ceph_pagelist_release(data->pagelist);
1880 }
1881 }
1882
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment,bool own_pages)1883 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884 size_t length, size_t alignment, bool own_pages)
1885 {
1886 struct ceph_msg_data *data;
1887
1888 BUG_ON(!pages);
1889 BUG_ON(!length);
1890
1891 data = ceph_msg_data_add(msg);
1892 data->type = CEPH_MSG_DATA_PAGES;
1893 data->pages = pages;
1894 data->length = length;
1895 data->alignment = alignment & ~PAGE_MASK;
1896 data->own_pages = own_pages;
1897
1898 msg->data_length += length;
1899 }
1900 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)1902 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903 struct ceph_pagelist *pagelist)
1904 {
1905 struct ceph_msg_data *data;
1906
1907 BUG_ON(!pagelist);
1908 BUG_ON(!pagelist->length);
1909
1910 data = ceph_msg_data_add(msg);
1911 data->type = CEPH_MSG_DATA_PAGELIST;
1912 refcount_inc(&pagelist->refcnt);
1913 data->pagelist = pagelist;
1914
1915 msg->data_length += pagelist->length;
1916 }
1917 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919 #ifdef CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct ceph_bio_iter * bio_pos,u32 length)1920 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921 u32 length)
1922 {
1923 struct ceph_msg_data *data;
1924
1925 data = ceph_msg_data_add(msg);
1926 data->type = CEPH_MSG_DATA_BIO;
1927 data->bio_pos = *bio_pos;
1928 data->bio_length = length;
1929
1930 msg->data_length += length;
1931 }
1932 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933 #endif /* CONFIG_BLOCK */
1934
ceph_msg_data_add_bvecs(struct ceph_msg * msg,struct ceph_bvec_iter * bvec_pos)1935 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936 struct ceph_bvec_iter *bvec_pos)
1937 {
1938 struct ceph_msg_data *data;
1939
1940 data = ceph_msg_data_add(msg);
1941 data->type = CEPH_MSG_DATA_BVECS;
1942 data->bvec_pos = *bvec_pos;
1943
1944 msg->data_length += bvec_pos->iter.bi_size;
1945 }
1946 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
ceph_msg_data_add_iter(struct ceph_msg * msg,struct iov_iter * iter)1948 void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949 struct iov_iter *iter)
1950 {
1951 struct ceph_msg_data *data;
1952
1953 data = ceph_msg_data_add(msg);
1954 data->type = CEPH_MSG_DATA_ITER;
1955 data->iter = *iter;
1956
1957 msg->data_length += iov_iter_count(&data->iter);
1958 }
1959
1960 /*
1961 * construct a new message with given type, size
1962 * the new msg has a ref count of 1.
1963 */
ceph_msg_new2(int type,int front_len,int max_data_items,gfp_t flags,bool can_fail)1964 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965 gfp_t flags, bool can_fail)
1966 {
1967 struct ceph_msg *m;
1968
1969 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970 if (m == NULL)
1971 goto out;
1972
1973 m->hdr.type = cpu_to_le16(type);
1974 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975 m->hdr.front_len = cpu_to_le32(front_len);
1976
1977 INIT_LIST_HEAD(&m->list_head);
1978 kref_init(&m->kref);
1979
1980 /* front */
1981 if (front_len) {
1982 m->front.iov_base = kvmalloc(front_len, flags);
1983 if (m->front.iov_base == NULL) {
1984 dout("ceph_msg_new can't allocate %d bytes\n",
1985 front_len);
1986 goto out2;
1987 }
1988 } else {
1989 m->front.iov_base = NULL;
1990 }
1991 m->front_alloc_len = m->front.iov_len = front_len;
1992
1993 if (max_data_items) {
1994 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995 flags);
1996 if (!m->data)
1997 goto out2;
1998
1999 m->max_data_items = max_data_items;
2000 }
2001
2002 dout("ceph_msg_new %p front %d\n", m, front_len);
2003 return m;
2004
2005 out2:
2006 ceph_msg_put(m);
2007 out:
2008 if (!can_fail) {
2009 pr_err("msg_new can't create type %d front %d\n", type,
2010 front_len);
2011 WARN_ON(1);
2012 } else {
2013 dout("msg_new can't create type %d front %d\n", type,
2014 front_len);
2015 }
2016 return NULL;
2017 }
2018 EXPORT_SYMBOL(ceph_msg_new2);
2019
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)2020 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021 bool can_fail)
2022 {
2023 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024 }
2025 EXPORT_SYMBOL(ceph_msg_new);
2026
2027 /*
2028 * Allocate "middle" portion of a message, if it is needed and wasn't
2029 * allocated by alloc_msg. This allows us to read a small fixed-size
2030 * per-type header in the front and then gracefully fail (i.e.,
2031 * propagate the error to the caller based on info in the front) when
2032 * the middle is too large.
2033 */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)2034 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035 {
2036 int type = le16_to_cpu(msg->hdr.type);
2037 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040 ceph_msg_type_name(type), middle_len);
2041 BUG_ON(!middle_len);
2042 BUG_ON(msg->middle);
2043
2044 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045 if (!msg->middle)
2046 return -ENOMEM;
2047 return 0;
2048 }
2049
2050 /*
2051 * Allocate a message for receiving an incoming message on a
2052 * connection, and save the result in con->in_msg. Uses the
2053 * connection's private alloc_msg op if available.
2054 *
2055 * Returns 0 on success, or a negative error code.
2056 *
2057 * On success, if we set *skip = 1:
2058 * - the next message should be skipped and ignored.
2059 * - con->in_msg == NULL
2060 * or if we set *skip = 0:
2061 * - con->in_msg is non-null.
2062 * On error (ENOMEM, EAGAIN, ...),
2063 * - con->in_msg == NULL
2064 */
ceph_con_in_msg_alloc(struct ceph_connection * con,struct ceph_msg_header * hdr,int * skip)2065 int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066 struct ceph_msg_header *hdr, int *skip)
2067 {
2068 int middle_len = le32_to_cpu(hdr->middle_len);
2069 struct ceph_msg *msg;
2070 int ret = 0;
2071
2072 BUG_ON(con->in_msg != NULL);
2073 BUG_ON(!con->ops->alloc_msg);
2074
2075 mutex_unlock(&con->mutex);
2076 msg = con->ops->alloc_msg(con, hdr, skip);
2077 mutex_lock(&con->mutex);
2078 if (con->state != CEPH_CON_S_OPEN) {
2079 if (msg)
2080 ceph_msg_put(msg);
2081 return -EAGAIN;
2082 }
2083 if (msg) {
2084 BUG_ON(*skip);
2085 msg_con_set(msg, con);
2086 con->in_msg = msg;
2087 } else {
2088 /*
2089 * Null message pointer means either we should skip
2090 * this message or we couldn't allocate memory. The
2091 * former is not an error.
2092 */
2093 if (*skip)
2094 return 0;
2095
2096 con->error_msg = "error allocating memory for incoming message";
2097 return -ENOMEM;
2098 }
2099 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101 if (middle_len && !con->in_msg->middle) {
2102 ret = ceph_alloc_middle(con, con->in_msg);
2103 if (ret < 0) {
2104 ceph_msg_put(con->in_msg);
2105 con->in_msg = NULL;
2106 }
2107 }
2108
2109 return ret;
2110 }
2111
ceph_con_get_out_msg(struct ceph_connection * con)2112 void ceph_con_get_out_msg(struct ceph_connection *con)
2113 {
2114 struct ceph_msg *msg;
2115
2116 BUG_ON(list_empty(&con->out_queue));
2117 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118 WARN_ON(msg->con != con);
2119
2120 /*
2121 * Put the message on "sent" list using a ref from ceph_con_send().
2122 * It is put when the message is acked or revoked.
2123 */
2124 list_move_tail(&msg->list_head, &con->out_sent);
2125
2126 /*
2127 * Only assign outgoing seq # if we haven't sent this message
2128 * yet. If it is requeued, resend with it's original seq.
2129 */
2130 if (msg->needs_out_seq) {
2131 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132 msg->needs_out_seq = false;
2133
2134 if (con->ops->reencode_message)
2135 con->ops->reencode_message(msg);
2136 }
2137
2138 /*
2139 * Get a ref for out_msg. It is put when we are done sending the
2140 * message or in case of a fault.
2141 */
2142 WARN_ON(con->out_msg);
2143 con->out_msg = ceph_msg_get(msg);
2144 }
2145
2146 /*
2147 * Free a generically kmalloc'd message.
2148 */
ceph_msg_free(struct ceph_msg * m)2149 static void ceph_msg_free(struct ceph_msg *m)
2150 {
2151 dout("%s %p\n", __func__, m);
2152 kvfree(m->front.iov_base);
2153 kfree(m->data);
2154 kmem_cache_free(ceph_msg_cache, m);
2155 }
2156
ceph_msg_release(struct kref * kref)2157 static void ceph_msg_release(struct kref *kref)
2158 {
2159 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160 int i;
2161
2162 dout("%s %p\n", __func__, m);
2163 WARN_ON(!list_empty(&m->list_head));
2164
2165 msg_con_set(m, NULL);
2166
2167 /* drop middle, data, if any */
2168 if (m->middle) {
2169 ceph_buffer_put(m->middle);
2170 m->middle = NULL;
2171 }
2172
2173 for (i = 0; i < m->num_data_items; i++)
2174 ceph_msg_data_destroy(&m->data[i]);
2175
2176 if (m->pool)
2177 ceph_msgpool_put(m->pool, m);
2178 else
2179 ceph_msg_free(m);
2180 }
2181
ceph_msg_get(struct ceph_msg * msg)2182 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183 {
2184 dout("%s %p (was %d)\n", __func__, msg,
2185 kref_read(&msg->kref));
2186 kref_get(&msg->kref);
2187 return msg;
2188 }
2189 EXPORT_SYMBOL(ceph_msg_get);
2190
ceph_msg_put(struct ceph_msg * msg)2191 void ceph_msg_put(struct ceph_msg *msg)
2192 {
2193 dout("%s %p (was %d)\n", __func__, msg,
2194 kref_read(&msg->kref));
2195 kref_put(&msg->kref, ceph_msg_release);
2196 }
2197 EXPORT_SYMBOL(ceph_msg_put);
2198
ceph_msg_dump(struct ceph_msg * msg)2199 void ceph_msg_dump(struct ceph_msg *msg)
2200 {
2201 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202 msg->front_alloc_len, msg->data_length);
2203 print_hex_dump(KERN_DEBUG, "header: ",
2204 DUMP_PREFIX_OFFSET, 16, 1,
2205 &msg->hdr, sizeof(msg->hdr), true);
2206 print_hex_dump(KERN_DEBUG, " front: ",
2207 DUMP_PREFIX_OFFSET, 16, 1,
2208 msg->front.iov_base, msg->front.iov_len, true);
2209 if (msg->middle)
2210 print_hex_dump(KERN_DEBUG, "middle: ",
2211 DUMP_PREFIX_OFFSET, 16, 1,
2212 msg->middle->vec.iov_base,
2213 msg->middle->vec.iov_len, true);
2214 print_hex_dump(KERN_DEBUG, "footer: ",
2215 DUMP_PREFIX_OFFSET, 16, 1,
2216 &msg->footer, sizeof(msg->footer), true);
2217 }
2218 EXPORT_SYMBOL(ceph_msg_dump);
2219