1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 #include <trace/events/sock.h> 18 19 #include "nvmet.h" 20 21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 22 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */ 23 param_store_val(const char * str,int * val,int min,int max)24 static int param_store_val(const char *str, int *val, int min, int max) 25 { 26 int ret, new_val; 27 28 ret = kstrtoint(str, 10, &new_val); 29 if (ret) 30 return -EINVAL; 31 32 if (new_val < min || new_val > max) 33 return -EINVAL; 34 35 *val = new_val; 36 return 0; 37 } 38 set_params(const char * str,const struct kernel_param * kp)39 static int set_params(const char *str, const struct kernel_param *kp) 40 { 41 return param_store_val(str, kp->arg, 0, INT_MAX); 42 } 43 44 static const struct kernel_param_ops set_param_ops = { 45 .set = set_params, 46 .get = param_get_int, 47 }; 48 49 /* Define the socket priority to use for connections were it is desirable 50 * that the NIC consider performing optimized packet processing or filtering. 51 * A non-zero value being sufficient to indicate general consideration of any 52 * possible optimization. Making it a module param allows for alternative 53 * values that may be unique for some NIC implementations. 54 */ 55 static int so_priority; 56 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); 57 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); 58 59 /* Define a time period (in usecs) that io_work() shall sample an activated 60 * queue before determining it to be idle. This optional module behavior 61 * can enable NIC solutions that support socket optimized packet processing 62 * using advanced interrupt moderation techniques. 63 */ 64 static int idle_poll_period_usecs; 65 device_param_cb(idle_poll_period_usecs, &set_param_ops, 66 &idle_poll_period_usecs, 0644); 67 MODULE_PARM_DESC(idle_poll_period_usecs, 68 "nvmet tcp io_work poll till idle time period in usecs: Default 0"); 69 70 #define NVMET_TCP_RECV_BUDGET 8 71 #define NVMET_TCP_SEND_BUDGET 8 72 #define NVMET_TCP_IO_WORK_BUDGET 64 73 74 enum nvmet_tcp_send_state { 75 NVMET_TCP_SEND_DATA_PDU, 76 NVMET_TCP_SEND_DATA, 77 NVMET_TCP_SEND_R2T, 78 NVMET_TCP_SEND_DDGST, 79 NVMET_TCP_SEND_RESPONSE 80 }; 81 82 enum nvmet_tcp_recv_state { 83 NVMET_TCP_RECV_PDU, 84 NVMET_TCP_RECV_DATA, 85 NVMET_TCP_RECV_DDGST, 86 NVMET_TCP_RECV_ERR, 87 }; 88 89 enum { 90 NVMET_TCP_F_INIT_FAILED = (1 << 0), 91 }; 92 93 struct nvmet_tcp_cmd { 94 struct nvmet_tcp_queue *queue; 95 struct nvmet_req req; 96 97 struct nvme_tcp_cmd_pdu *cmd_pdu; 98 struct nvme_tcp_rsp_pdu *rsp_pdu; 99 struct nvme_tcp_data_pdu *data_pdu; 100 struct nvme_tcp_r2t_pdu *r2t_pdu; 101 102 u32 rbytes_done; 103 u32 wbytes_done; 104 105 u32 pdu_len; 106 u32 pdu_recv; 107 int sg_idx; 108 struct msghdr recv_msg; 109 struct bio_vec *iov; 110 u32 flags; 111 112 struct list_head entry; 113 struct llist_node lentry; 114 115 /* send state */ 116 u32 offset; 117 struct scatterlist *cur_sg; 118 enum nvmet_tcp_send_state state; 119 120 __le32 exp_ddgst; 121 __le32 recv_ddgst; 122 }; 123 124 enum nvmet_tcp_queue_state { 125 NVMET_TCP_Q_CONNECTING, 126 NVMET_TCP_Q_LIVE, 127 NVMET_TCP_Q_DISCONNECTING, 128 }; 129 130 struct nvmet_tcp_queue { 131 struct socket *sock; 132 struct nvmet_tcp_port *port; 133 struct work_struct io_work; 134 struct nvmet_cq nvme_cq; 135 struct nvmet_sq nvme_sq; 136 137 /* send state */ 138 struct nvmet_tcp_cmd *cmds; 139 unsigned int nr_cmds; 140 struct list_head free_list; 141 struct llist_head resp_list; 142 struct list_head resp_send_list; 143 int send_list_len; 144 struct nvmet_tcp_cmd *snd_cmd; 145 146 /* recv state */ 147 int offset; 148 int left; 149 enum nvmet_tcp_recv_state rcv_state; 150 struct nvmet_tcp_cmd *cmd; 151 union nvme_tcp_pdu pdu; 152 153 /* digest state */ 154 bool hdr_digest; 155 bool data_digest; 156 struct ahash_request *snd_hash; 157 struct ahash_request *rcv_hash; 158 159 unsigned long poll_end; 160 161 spinlock_t state_lock; 162 enum nvmet_tcp_queue_state state; 163 164 struct sockaddr_storage sockaddr; 165 struct sockaddr_storage sockaddr_peer; 166 struct work_struct release_work; 167 168 int idx; 169 struct list_head queue_list; 170 171 struct nvmet_tcp_cmd connect; 172 173 struct page_frag_cache pf_cache; 174 175 void (*data_ready)(struct sock *); 176 void (*state_change)(struct sock *); 177 void (*write_space)(struct sock *); 178 }; 179 180 struct nvmet_tcp_port { 181 struct socket *sock; 182 struct work_struct accept_work; 183 struct nvmet_port *nport; 184 struct sockaddr_storage addr; 185 void (*data_ready)(struct sock *); 186 }; 187 188 static DEFINE_IDA(nvmet_tcp_queue_ida); 189 static LIST_HEAD(nvmet_tcp_queue_list); 190 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 191 192 static struct workqueue_struct *nvmet_tcp_wq; 193 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 194 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 195 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); 196 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)197 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 198 struct nvmet_tcp_cmd *cmd) 199 { 200 if (unlikely(!queue->nr_cmds)) { 201 /* We didn't allocate cmds yet, send 0xffff */ 202 return USHRT_MAX; 203 } 204 205 return cmd - queue->cmds; 206 } 207 nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)208 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 209 { 210 return nvme_is_write(cmd->req.cmd) && 211 cmd->rbytes_done < cmd->req.transfer_len; 212 } 213 nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)214 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 215 { 216 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 217 } 218 nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)219 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 220 { 221 return !nvme_is_write(cmd->req.cmd) && 222 cmd->req.transfer_len > 0 && 223 !cmd->req.cqe->status; 224 } 225 nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)226 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 227 { 228 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 229 !cmd->rbytes_done; 230 } 231 232 static inline struct nvmet_tcp_cmd * nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)233 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 234 { 235 struct nvmet_tcp_cmd *cmd; 236 237 cmd = list_first_entry_or_null(&queue->free_list, 238 struct nvmet_tcp_cmd, entry); 239 if (!cmd) 240 return NULL; 241 list_del_init(&cmd->entry); 242 243 cmd->rbytes_done = cmd->wbytes_done = 0; 244 cmd->pdu_len = 0; 245 cmd->pdu_recv = 0; 246 cmd->iov = NULL; 247 cmd->flags = 0; 248 return cmd; 249 } 250 nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)251 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 252 { 253 if (unlikely(cmd == &cmd->queue->connect)) 254 return; 255 256 list_add_tail(&cmd->entry, &cmd->queue->free_list); 257 } 258 queue_cpu(struct nvmet_tcp_queue * queue)259 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 260 { 261 return queue->sock->sk->sk_incoming_cpu; 262 } 263 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)264 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 265 { 266 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 267 } 268 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)269 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 270 { 271 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 272 } 273 nvmet_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)274 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 275 void *pdu, size_t len) 276 { 277 struct scatterlist sg; 278 279 sg_init_one(&sg, pdu, len); 280 ahash_request_set_crypt(hash, &sg, pdu + len, len); 281 crypto_ahash_digest(hash); 282 } 283 nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)284 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 285 void *pdu, size_t len) 286 { 287 struct nvme_tcp_hdr *hdr = pdu; 288 __le32 recv_digest; 289 __le32 exp_digest; 290 291 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 292 pr_err("queue %d: header digest enabled but no header digest\n", 293 queue->idx); 294 return -EPROTO; 295 } 296 297 recv_digest = *(__le32 *)(pdu + hdr->hlen); 298 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 299 exp_digest = *(__le32 *)(pdu + hdr->hlen); 300 if (recv_digest != exp_digest) { 301 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 302 queue->idx, le32_to_cpu(recv_digest), 303 le32_to_cpu(exp_digest)); 304 return -EPROTO; 305 } 306 307 return 0; 308 } 309 nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)310 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 311 { 312 struct nvme_tcp_hdr *hdr = pdu; 313 u8 digest_len = nvmet_tcp_hdgst_len(queue); 314 u32 len; 315 316 len = le32_to_cpu(hdr->plen) - hdr->hlen - 317 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 318 319 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 320 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 321 return -EPROTO; 322 } 323 324 return 0; 325 } 326 327 /* If cmd buffers are NULL, no operation is performed */ nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd * cmd)328 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) 329 { 330 kfree(cmd->iov); 331 sgl_free(cmd->req.sg); 332 cmd->iov = NULL; 333 cmd->req.sg = NULL; 334 } 335 nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd * cmd)336 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) 337 { 338 struct bio_vec *iov = cmd->iov; 339 struct scatterlist *sg; 340 u32 length, offset, sg_offset; 341 int nr_pages; 342 343 length = cmd->pdu_len; 344 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); 345 offset = cmd->rbytes_done; 346 cmd->sg_idx = offset / PAGE_SIZE; 347 sg_offset = offset % PAGE_SIZE; 348 sg = &cmd->req.sg[cmd->sg_idx]; 349 350 while (length) { 351 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 352 353 bvec_set_page(iov, sg_page(sg), iov_len, 354 sg->offset + sg_offset); 355 356 length -= iov_len; 357 sg = sg_next(sg); 358 iov++; 359 sg_offset = 0; 360 } 361 362 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, 363 nr_pages, cmd->pdu_len); 364 } 365 nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)366 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 367 { 368 queue->rcv_state = NVMET_TCP_RECV_ERR; 369 if (queue->nvme_sq.ctrl) 370 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 371 else 372 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 373 } 374 nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)375 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 376 { 377 queue->rcv_state = NVMET_TCP_RECV_ERR; 378 if (status == -EPIPE || status == -ECONNRESET) 379 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 380 else 381 nvmet_tcp_fatal_error(queue); 382 } 383 nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)384 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 385 { 386 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 387 u32 len = le32_to_cpu(sgl->length); 388 389 if (!len) 390 return 0; 391 392 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 393 NVME_SGL_FMT_OFFSET)) { 394 if (!nvme_is_write(cmd->req.cmd)) 395 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 396 397 if (len > cmd->req.port->inline_data_size) 398 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 399 cmd->pdu_len = len; 400 } 401 cmd->req.transfer_len += len; 402 403 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 404 if (!cmd->req.sg) 405 return NVME_SC_INTERNAL; 406 cmd->cur_sg = cmd->req.sg; 407 408 if (nvmet_tcp_has_data_in(cmd)) { 409 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 410 sizeof(*cmd->iov), GFP_KERNEL); 411 if (!cmd->iov) 412 goto err; 413 } 414 415 return 0; 416 err: 417 nvmet_tcp_free_cmd_buffers(cmd); 418 return NVME_SC_INTERNAL; 419 } 420 nvmet_tcp_calc_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)421 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, 422 struct nvmet_tcp_cmd *cmd) 423 { 424 ahash_request_set_crypt(hash, cmd->req.sg, 425 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 426 crypto_ahash_digest(hash); 427 } 428 nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)429 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 430 { 431 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 432 struct nvmet_tcp_queue *queue = cmd->queue; 433 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 434 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 435 436 cmd->offset = 0; 437 cmd->state = NVMET_TCP_SEND_DATA_PDU; 438 439 pdu->hdr.type = nvme_tcp_c2h_data; 440 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 441 NVME_TCP_F_DATA_SUCCESS : 0); 442 pdu->hdr.hlen = sizeof(*pdu); 443 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 444 pdu->hdr.plen = 445 cpu_to_le32(pdu->hdr.hlen + hdgst + 446 cmd->req.transfer_len + ddgst); 447 pdu->command_id = cmd->req.cqe->command_id; 448 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 449 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 450 451 if (queue->data_digest) { 452 pdu->hdr.flags |= NVME_TCP_F_DDGST; 453 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); 454 } 455 456 if (cmd->queue->hdr_digest) { 457 pdu->hdr.flags |= NVME_TCP_F_HDGST; 458 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 459 } 460 } 461 nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)462 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 463 { 464 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 465 struct nvmet_tcp_queue *queue = cmd->queue; 466 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 467 468 cmd->offset = 0; 469 cmd->state = NVMET_TCP_SEND_R2T; 470 471 pdu->hdr.type = nvme_tcp_r2t; 472 pdu->hdr.flags = 0; 473 pdu->hdr.hlen = sizeof(*pdu); 474 pdu->hdr.pdo = 0; 475 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 476 477 pdu->command_id = cmd->req.cmd->common.command_id; 478 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 479 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 480 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 481 if (cmd->queue->hdr_digest) { 482 pdu->hdr.flags |= NVME_TCP_F_HDGST; 483 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 484 } 485 } 486 nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)487 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 488 { 489 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 490 struct nvmet_tcp_queue *queue = cmd->queue; 491 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 492 493 cmd->offset = 0; 494 cmd->state = NVMET_TCP_SEND_RESPONSE; 495 496 pdu->hdr.type = nvme_tcp_rsp; 497 pdu->hdr.flags = 0; 498 pdu->hdr.hlen = sizeof(*pdu); 499 pdu->hdr.pdo = 0; 500 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 501 if (cmd->queue->hdr_digest) { 502 pdu->hdr.flags |= NVME_TCP_F_HDGST; 503 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 504 } 505 } 506 nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)507 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 508 { 509 struct llist_node *node; 510 struct nvmet_tcp_cmd *cmd; 511 512 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 513 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 514 list_add(&cmd->entry, &queue->resp_send_list); 515 queue->send_list_len++; 516 } 517 } 518 nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)519 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 520 { 521 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 522 struct nvmet_tcp_cmd, entry); 523 if (!queue->snd_cmd) { 524 nvmet_tcp_process_resp_list(queue); 525 queue->snd_cmd = 526 list_first_entry_or_null(&queue->resp_send_list, 527 struct nvmet_tcp_cmd, entry); 528 if (unlikely(!queue->snd_cmd)) 529 return NULL; 530 } 531 532 list_del_init(&queue->snd_cmd->entry); 533 queue->send_list_len--; 534 535 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 536 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 537 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 538 nvmet_setup_r2t_pdu(queue->snd_cmd); 539 else 540 nvmet_setup_response_pdu(queue->snd_cmd); 541 542 return queue->snd_cmd; 543 } 544 nvmet_tcp_queue_response(struct nvmet_req * req)545 static void nvmet_tcp_queue_response(struct nvmet_req *req) 546 { 547 struct nvmet_tcp_cmd *cmd = 548 container_of(req, struct nvmet_tcp_cmd, req); 549 struct nvmet_tcp_queue *queue = cmd->queue; 550 enum nvmet_tcp_recv_state queue_state; 551 struct nvmet_tcp_cmd *queue_cmd; 552 struct nvme_sgl_desc *sgl; 553 u32 len; 554 555 /* Pairs with store_release in nvmet_prepare_receive_pdu() */ 556 queue_state = smp_load_acquire(&queue->rcv_state); 557 queue_cmd = READ_ONCE(queue->cmd); 558 559 if (unlikely(cmd == queue_cmd)) { 560 sgl = &cmd->req.cmd->common.dptr.sgl; 561 len = le32_to_cpu(sgl->length); 562 563 /* 564 * Wait for inline data before processing the response. 565 * Avoid using helpers, this might happen before 566 * nvmet_req_init is completed. 567 */ 568 if (queue_state == NVMET_TCP_RECV_PDU && 569 len && len <= cmd->req.port->inline_data_size && 570 nvme_is_write(cmd->req.cmd)) 571 return; 572 } 573 574 llist_add(&cmd->lentry, &queue->resp_list); 575 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 576 } 577 nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)578 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) 579 { 580 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) 581 nvmet_tcp_queue_response(&cmd->req); 582 else 583 cmd->req.execute(&cmd->req); 584 } 585 nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)586 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 587 { 588 struct msghdr msg = { 589 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, 590 }; 591 struct bio_vec bvec; 592 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 593 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 594 int ret; 595 596 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); 597 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 598 ret = sock_sendmsg(cmd->queue->sock, &msg); 599 if (ret <= 0) 600 return ret; 601 602 cmd->offset += ret; 603 left -= ret; 604 605 if (left) 606 return -EAGAIN; 607 608 cmd->state = NVMET_TCP_SEND_DATA; 609 cmd->offset = 0; 610 return 1; 611 } 612 nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)613 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 614 { 615 struct nvmet_tcp_queue *queue = cmd->queue; 616 int ret; 617 618 while (cmd->cur_sg) { 619 struct msghdr msg = { 620 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 621 }; 622 struct page *page = sg_page(cmd->cur_sg); 623 struct bio_vec bvec; 624 u32 left = cmd->cur_sg->length - cmd->offset; 625 626 if ((!last_in_batch && cmd->queue->send_list_len) || 627 cmd->wbytes_done + left < cmd->req.transfer_len || 628 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 629 msg.msg_flags |= MSG_MORE; 630 631 bvec_set_page(&bvec, page, left, cmd->offset); 632 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 633 ret = sock_sendmsg(cmd->queue->sock, &msg); 634 if (ret <= 0) 635 return ret; 636 637 cmd->offset += ret; 638 cmd->wbytes_done += ret; 639 640 /* Done with sg?*/ 641 if (cmd->offset == cmd->cur_sg->length) { 642 cmd->cur_sg = sg_next(cmd->cur_sg); 643 cmd->offset = 0; 644 } 645 } 646 647 if (queue->data_digest) { 648 cmd->state = NVMET_TCP_SEND_DDGST; 649 cmd->offset = 0; 650 } else { 651 if (queue->nvme_sq.sqhd_disabled) { 652 cmd->queue->snd_cmd = NULL; 653 nvmet_tcp_put_cmd(cmd); 654 } else { 655 nvmet_setup_response_pdu(cmd); 656 } 657 } 658 659 if (queue->nvme_sq.sqhd_disabled) 660 nvmet_tcp_free_cmd_buffers(cmd); 661 662 return 1; 663 664 } 665 nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)666 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 667 bool last_in_batch) 668 { 669 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 670 struct bio_vec bvec; 671 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 672 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 673 int ret; 674 675 if (!last_in_batch && cmd->queue->send_list_len) 676 msg.msg_flags |= MSG_MORE; 677 else 678 msg.msg_flags |= MSG_EOR; 679 680 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); 681 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 682 ret = sock_sendmsg(cmd->queue->sock, &msg); 683 if (ret <= 0) 684 return ret; 685 cmd->offset += ret; 686 left -= ret; 687 688 if (left) 689 return -EAGAIN; 690 691 nvmet_tcp_free_cmd_buffers(cmd); 692 cmd->queue->snd_cmd = NULL; 693 nvmet_tcp_put_cmd(cmd); 694 return 1; 695 } 696 nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)697 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 698 { 699 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 700 struct bio_vec bvec; 701 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 702 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 703 int ret; 704 705 if (!last_in_batch && cmd->queue->send_list_len) 706 msg.msg_flags |= MSG_MORE; 707 else 708 msg.msg_flags |= MSG_EOR; 709 710 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); 711 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 712 ret = sock_sendmsg(cmd->queue->sock, &msg); 713 if (ret <= 0) 714 return ret; 715 cmd->offset += ret; 716 left -= ret; 717 718 if (left) 719 return -EAGAIN; 720 721 cmd->queue->snd_cmd = NULL; 722 return 1; 723 } 724 nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)725 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 726 { 727 struct nvmet_tcp_queue *queue = cmd->queue; 728 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; 729 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 730 struct kvec iov = { 731 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, 732 .iov_len = left 733 }; 734 int ret; 735 736 if (!last_in_batch && cmd->queue->send_list_len) 737 msg.msg_flags |= MSG_MORE; 738 else 739 msg.msg_flags |= MSG_EOR; 740 741 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 742 if (unlikely(ret <= 0)) 743 return ret; 744 745 cmd->offset += ret; 746 left -= ret; 747 748 if (left) 749 return -EAGAIN; 750 751 if (queue->nvme_sq.sqhd_disabled) { 752 cmd->queue->snd_cmd = NULL; 753 nvmet_tcp_put_cmd(cmd); 754 } else { 755 nvmet_setup_response_pdu(cmd); 756 } 757 return 1; 758 } 759 nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)760 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 761 bool last_in_batch) 762 { 763 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 764 int ret = 0; 765 766 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 767 cmd = nvmet_tcp_fetch_cmd(queue); 768 if (unlikely(!cmd)) 769 return 0; 770 } 771 772 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 773 ret = nvmet_try_send_data_pdu(cmd); 774 if (ret <= 0) 775 goto done_send; 776 } 777 778 if (cmd->state == NVMET_TCP_SEND_DATA) { 779 ret = nvmet_try_send_data(cmd, last_in_batch); 780 if (ret <= 0) 781 goto done_send; 782 } 783 784 if (cmd->state == NVMET_TCP_SEND_DDGST) { 785 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 786 if (ret <= 0) 787 goto done_send; 788 } 789 790 if (cmd->state == NVMET_TCP_SEND_R2T) { 791 ret = nvmet_try_send_r2t(cmd, last_in_batch); 792 if (ret <= 0) 793 goto done_send; 794 } 795 796 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 797 ret = nvmet_try_send_response(cmd, last_in_batch); 798 799 done_send: 800 if (ret < 0) { 801 if (ret == -EAGAIN) 802 return 0; 803 return ret; 804 } 805 806 return 1; 807 } 808 nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)809 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 810 int budget, int *sends) 811 { 812 int i, ret = 0; 813 814 for (i = 0; i < budget; i++) { 815 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 816 if (unlikely(ret < 0)) { 817 nvmet_tcp_socket_error(queue, ret); 818 goto done; 819 } else if (ret == 0) { 820 break; 821 } 822 (*sends)++; 823 } 824 done: 825 return ret; 826 } 827 nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)828 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 829 { 830 queue->offset = 0; 831 queue->left = sizeof(struct nvme_tcp_hdr); 832 WRITE_ONCE(queue->cmd, NULL); 833 /* Ensure rcv_state is visible only after queue->cmd is set */ 834 smp_store_release(&queue->rcv_state, NVMET_TCP_RECV_PDU); 835 } 836 nvmet_tcp_free_crypto(struct nvmet_tcp_queue * queue)837 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 838 { 839 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 840 841 ahash_request_free(queue->rcv_hash); 842 ahash_request_free(queue->snd_hash); 843 crypto_free_ahash(tfm); 844 } 845 nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue * queue)846 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 847 { 848 struct crypto_ahash *tfm; 849 850 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 851 if (IS_ERR(tfm)) 852 return PTR_ERR(tfm); 853 854 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 855 if (!queue->snd_hash) 856 goto free_tfm; 857 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 858 859 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 860 if (!queue->rcv_hash) 861 goto free_snd_hash; 862 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 863 864 return 0; 865 free_snd_hash: 866 ahash_request_free(queue->snd_hash); 867 free_tfm: 868 crypto_free_ahash(tfm); 869 return -ENOMEM; 870 } 871 872 nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)873 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 874 { 875 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 876 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 877 struct msghdr msg = {}; 878 struct kvec iov; 879 int ret; 880 881 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 882 pr_err("bad nvme-tcp pdu length (%d)\n", 883 le32_to_cpu(icreq->hdr.plen)); 884 nvmet_tcp_fatal_error(queue); 885 return -EPROTO; 886 } 887 888 if (icreq->pfv != NVME_TCP_PFV_1_0) { 889 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 890 return -EPROTO; 891 } 892 893 if (icreq->hpda != 0) { 894 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 895 icreq->hpda); 896 return -EPROTO; 897 } 898 899 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 900 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 901 if (queue->hdr_digest || queue->data_digest) { 902 ret = nvmet_tcp_alloc_crypto(queue); 903 if (ret) 904 return ret; 905 } 906 907 memset(icresp, 0, sizeof(*icresp)); 908 icresp->hdr.type = nvme_tcp_icresp; 909 icresp->hdr.hlen = sizeof(*icresp); 910 icresp->hdr.pdo = 0; 911 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 912 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 913 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA); 914 icresp->cpda = 0; 915 if (queue->hdr_digest) 916 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 917 if (queue->data_digest) 918 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 919 920 iov.iov_base = icresp; 921 iov.iov_len = sizeof(*icresp); 922 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 923 if (ret < 0) 924 return ret; /* queue removal will cleanup */ 925 926 queue->state = NVMET_TCP_Q_LIVE; 927 nvmet_prepare_receive_pdu(queue); 928 return 0; 929 } 930 nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)931 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 932 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 933 { 934 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 935 int ret; 936 937 /* 938 * This command has not been processed yet, hence we are trying to 939 * figure out if there is still pending data left to receive. If 940 * we don't, we can simply prepare for the next pdu and bail out, 941 * otherwise we will need to prepare a buffer and receive the 942 * stale data before continuing forward. 943 */ 944 if (!nvme_is_write(cmd->req.cmd) || !data_len || 945 data_len > cmd->req.port->inline_data_size) { 946 nvmet_prepare_receive_pdu(queue); 947 return; 948 } 949 950 ret = nvmet_tcp_map_data(cmd); 951 if (unlikely(ret)) { 952 pr_err("queue %d: failed to map data\n", queue->idx); 953 nvmet_tcp_fatal_error(queue); 954 return; 955 } 956 957 queue->rcv_state = NVMET_TCP_RECV_DATA; 958 nvmet_tcp_build_pdu_iovec(cmd); 959 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 960 } 961 nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)962 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 963 { 964 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 965 struct nvmet_tcp_cmd *cmd; 966 unsigned int exp_data_len; 967 968 if (likely(queue->nr_cmds)) { 969 if (unlikely(data->ttag >= queue->nr_cmds)) { 970 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", 971 queue->idx, data->ttag, queue->nr_cmds); 972 nvmet_tcp_fatal_error(queue); 973 return -EPROTO; 974 } 975 cmd = &queue->cmds[data->ttag]; 976 } else { 977 cmd = &queue->connect; 978 } 979 980 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 981 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 982 data->ttag, le32_to_cpu(data->data_offset), 983 cmd->rbytes_done); 984 /* FIXME: use path and transport errors */ 985 nvmet_tcp_fatal_error(queue); 986 return -EPROTO; 987 } 988 989 exp_data_len = le32_to_cpu(data->hdr.plen) - 990 nvmet_tcp_hdgst_len(queue) - 991 nvmet_tcp_ddgst_len(queue) - 992 sizeof(*data); 993 994 cmd->pdu_len = le32_to_cpu(data->data_length); 995 if (unlikely(cmd->pdu_len != exp_data_len || 996 cmd->pdu_len == 0 || 997 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) { 998 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len); 999 /* FIXME: use proper transport errors */ 1000 nvmet_tcp_fatal_error(queue); 1001 return -EPROTO; 1002 } 1003 cmd->pdu_recv = 0; 1004 nvmet_tcp_build_pdu_iovec(cmd); 1005 queue->cmd = cmd; 1006 queue->rcv_state = NVMET_TCP_RECV_DATA; 1007 1008 return 0; 1009 } 1010 nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)1011 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 1012 { 1013 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1014 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 1015 struct nvmet_req *req; 1016 int ret; 1017 1018 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1019 if (hdr->type != nvme_tcp_icreq) { 1020 pr_err("unexpected pdu type (%d) before icreq\n", 1021 hdr->type); 1022 nvmet_tcp_fatal_error(queue); 1023 return -EPROTO; 1024 } 1025 return nvmet_tcp_handle_icreq(queue); 1026 } 1027 1028 if (unlikely(hdr->type == nvme_tcp_icreq)) { 1029 pr_err("queue %d: received icreq pdu in state %d\n", 1030 queue->idx, queue->state); 1031 nvmet_tcp_fatal_error(queue); 1032 return -EPROTO; 1033 } 1034 1035 if (hdr->type == nvme_tcp_h2c_data) { 1036 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 1037 if (unlikely(ret)) 1038 return ret; 1039 return 0; 1040 } 1041 1042 queue->cmd = nvmet_tcp_get_cmd(queue); 1043 if (unlikely(!queue->cmd)) { 1044 /* This should never happen */ 1045 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 1046 queue->idx, queue->nr_cmds, queue->send_list_len, 1047 nvme_cmd->common.opcode); 1048 nvmet_tcp_fatal_error(queue); 1049 return -ENOMEM; 1050 } 1051 1052 req = &queue->cmd->req; 1053 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 1054 1055 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 1056 &queue->nvme_sq, &nvmet_tcp_ops))) { 1057 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 1058 req->cmd, req->cmd->common.command_id, 1059 req->cmd->common.opcode, 1060 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 1061 1062 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 1063 return 0; 1064 } 1065 1066 ret = nvmet_tcp_map_data(queue->cmd); 1067 if (unlikely(ret)) { 1068 pr_err("queue %d: failed to map data\n", queue->idx); 1069 if (nvmet_tcp_has_inline_data(queue->cmd)) 1070 nvmet_tcp_fatal_error(queue); 1071 else 1072 nvmet_req_complete(req, ret); 1073 ret = -EAGAIN; 1074 goto out; 1075 } 1076 1077 if (nvmet_tcp_need_data_in(queue->cmd)) { 1078 if (nvmet_tcp_has_inline_data(queue->cmd)) { 1079 queue->rcv_state = NVMET_TCP_RECV_DATA; 1080 nvmet_tcp_build_pdu_iovec(queue->cmd); 1081 return 0; 1082 } 1083 /* send back R2T */ 1084 nvmet_tcp_queue_response(&queue->cmd->req); 1085 goto out; 1086 } 1087 1088 queue->cmd->req.execute(&queue->cmd->req); 1089 out: 1090 nvmet_prepare_receive_pdu(queue); 1091 return ret; 1092 } 1093 1094 static const u8 nvme_tcp_pdu_sizes[] = { 1095 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 1096 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 1097 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 1098 }; 1099 nvmet_tcp_pdu_size(u8 type)1100 static inline u8 nvmet_tcp_pdu_size(u8 type) 1101 { 1102 size_t idx = type; 1103 1104 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 1105 nvme_tcp_pdu_sizes[idx]) ? 1106 nvme_tcp_pdu_sizes[idx] : 0; 1107 } 1108 nvmet_tcp_pdu_valid(u8 type)1109 static inline bool nvmet_tcp_pdu_valid(u8 type) 1110 { 1111 switch (type) { 1112 case nvme_tcp_icreq: 1113 case nvme_tcp_cmd: 1114 case nvme_tcp_h2c_data: 1115 /* fallthru */ 1116 return true; 1117 } 1118 1119 return false; 1120 } 1121 nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1122 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1123 { 1124 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1125 int len; 1126 struct kvec iov; 1127 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1128 1129 recv: 1130 iov.iov_base = (void *)&queue->pdu + queue->offset; 1131 iov.iov_len = queue->left; 1132 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1133 iov.iov_len, msg.msg_flags); 1134 if (unlikely(len < 0)) 1135 return len; 1136 1137 queue->offset += len; 1138 queue->left -= len; 1139 if (queue->left) 1140 return -EAGAIN; 1141 1142 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1143 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1144 1145 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1146 pr_err("unexpected pdu type %d\n", hdr->type); 1147 nvmet_tcp_fatal_error(queue); 1148 return -EIO; 1149 } 1150 1151 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1152 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1153 return -EIO; 1154 } 1155 1156 queue->left = hdr->hlen - queue->offset + hdgst; 1157 goto recv; 1158 } 1159 1160 if (queue->hdr_digest && 1161 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { 1162 nvmet_tcp_fatal_error(queue); /* fatal */ 1163 return -EPROTO; 1164 } 1165 1166 if (queue->data_digest && 1167 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1168 nvmet_tcp_fatal_error(queue); /* fatal */ 1169 return -EPROTO; 1170 } 1171 1172 return nvmet_tcp_done_recv_pdu(queue); 1173 } 1174 nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1175 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1176 { 1177 struct nvmet_tcp_queue *queue = cmd->queue; 1178 1179 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); 1180 queue->offset = 0; 1181 queue->left = NVME_TCP_DIGEST_LENGTH; 1182 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1183 } 1184 nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1185 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1186 { 1187 struct nvmet_tcp_cmd *cmd = queue->cmd; 1188 int ret; 1189 1190 while (msg_data_left(&cmd->recv_msg)) { 1191 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1192 cmd->recv_msg.msg_flags); 1193 if (ret <= 0) 1194 return ret; 1195 1196 cmd->pdu_recv += ret; 1197 cmd->rbytes_done += ret; 1198 } 1199 1200 if (queue->data_digest) { 1201 nvmet_tcp_prep_recv_ddgst(cmd); 1202 return 0; 1203 } 1204 1205 if (cmd->rbytes_done == cmd->req.transfer_len) 1206 nvmet_tcp_execute_request(cmd); 1207 1208 nvmet_prepare_receive_pdu(queue); 1209 return 0; 1210 } 1211 nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1212 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1213 { 1214 struct nvmet_tcp_cmd *cmd = queue->cmd; 1215 int ret; 1216 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1217 struct kvec iov = { 1218 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1219 .iov_len = queue->left 1220 }; 1221 1222 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1223 iov.iov_len, msg.msg_flags); 1224 if (unlikely(ret < 0)) 1225 return ret; 1226 1227 queue->offset += ret; 1228 queue->left -= ret; 1229 if (queue->left) 1230 return -EAGAIN; 1231 1232 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1233 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1234 queue->idx, cmd->req.cmd->common.command_id, 1235 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1236 le32_to_cpu(cmd->exp_ddgst)); 1237 nvmet_req_uninit(&cmd->req); 1238 nvmet_tcp_free_cmd_buffers(cmd); 1239 nvmet_tcp_fatal_error(queue); 1240 ret = -EPROTO; 1241 goto out; 1242 } 1243 1244 if (cmd->rbytes_done == cmd->req.transfer_len) 1245 nvmet_tcp_execute_request(cmd); 1246 1247 ret = 0; 1248 out: 1249 nvmet_prepare_receive_pdu(queue); 1250 return ret; 1251 } 1252 nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1253 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1254 { 1255 int result = 0; 1256 1257 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1258 return 0; 1259 1260 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1261 result = nvmet_tcp_try_recv_pdu(queue); 1262 if (result != 0) 1263 goto done_recv; 1264 } 1265 1266 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1267 result = nvmet_tcp_try_recv_data(queue); 1268 if (result != 0) 1269 goto done_recv; 1270 } 1271 1272 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1273 result = nvmet_tcp_try_recv_ddgst(queue); 1274 if (result != 0) 1275 goto done_recv; 1276 } 1277 1278 done_recv: 1279 if (result < 0) { 1280 if (result == -EAGAIN) 1281 return 0; 1282 return result; 1283 } 1284 return 1; 1285 } 1286 nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1287 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1288 int budget, int *recvs) 1289 { 1290 int i, ret = 0; 1291 1292 for (i = 0; i < budget; i++) { 1293 ret = nvmet_tcp_try_recv_one(queue); 1294 if (unlikely(ret < 0)) { 1295 nvmet_tcp_socket_error(queue, ret); 1296 goto done; 1297 } else if (ret == 0) { 1298 break; 1299 } 1300 (*recvs)++; 1301 } 1302 done: 1303 return ret; 1304 } 1305 nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1306 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1307 { 1308 spin_lock(&queue->state_lock); 1309 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1310 queue->state = NVMET_TCP_Q_DISCONNECTING; 1311 queue_work(nvmet_wq, &queue->release_work); 1312 } 1313 spin_unlock(&queue->state_lock); 1314 } 1315 nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1316 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) 1317 { 1318 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); 1319 } 1320 nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1321 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, 1322 int ops) 1323 { 1324 if (!idle_poll_period_usecs) 1325 return false; 1326 1327 if (ops) 1328 nvmet_tcp_arm_queue_deadline(queue); 1329 1330 return !time_after(jiffies, queue->poll_end); 1331 } 1332 nvmet_tcp_io_work(struct work_struct * w)1333 static void nvmet_tcp_io_work(struct work_struct *w) 1334 { 1335 struct nvmet_tcp_queue *queue = 1336 container_of(w, struct nvmet_tcp_queue, io_work); 1337 bool pending; 1338 int ret, ops = 0; 1339 1340 do { 1341 pending = false; 1342 1343 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1344 if (ret > 0) 1345 pending = true; 1346 else if (ret < 0) 1347 return; 1348 1349 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1350 if (ret > 0) 1351 pending = true; 1352 else if (ret < 0) 1353 return; 1354 1355 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1356 1357 /* 1358 * Requeue the worker if idle deadline period is in progress or any 1359 * ops activity was recorded during the do-while loop above. 1360 */ 1361 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) 1362 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1363 } 1364 nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1365 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1366 struct nvmet_tcp_cmd *c) 1367 { 1368 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1369 1370 c->queue = queue; 1371 c->req.port = queue->port->nport; 1372 1373 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1374 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1375 if (!c->cmd_pdu) 1376 return -ENOMEM; 1377 c->req.cmd = &c->cmd_pdu->cmd; 1378 1379 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1380 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1381 if (!c->rsp_pdu) 1382 goto out_free_cmd; 1383 c->req.cqe = &c->rsp_pdu->cqe; 1384 1385 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1386 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1387 if (!c->data_pdu) 1388 goto out_free_rsp; 1389 1390 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1391 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1392 if (!c->r2t_pdu) 1393 goto out_free_data; 1394 1395 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1396 1397 list_add_tail(&c->entry, &queue->free_list); 1398 1399 return 0; 1400 out_free_data: 1401 page_frag_free(c->data_pdu); 1402 out_free_rsp: 1403 page_frag_free(c->rsp_pdu); 1404 out_free_cmd: 1405 page_frag_free(c->cmd_pdu); 1406 return -ENOMEM; 1407 } 1408 nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1409 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1410 { 1411 page_frag_free(c->r2t_pdu); 1412 page_frag_free(c->data_pdu); 1413 page_frag_free(c->rsp_pdu); 1414 page_frag_free(c->cmd_pdu); 1415 } 1416 nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1417 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1418 { 1419 struct nvmet_tcp_cmd *cmds; 1420 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1421 1422 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1423 if (!cmds) 1424 goto out; 1425 1426 for (i = 0; i < nr_cmds; i++) { 1427 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1428 if (ret) 1429 goto out_free; 1430 } 1431 1432 queue->cmds = cmds; 1433 1434 return 0; 1435 out_free: 1436 while (--i >= 0) 1437 nvmet_tcp_free_cmd(cmds + i); 1438 kfree(cmds); 1439 out: 1440 return ret; 1441 } 1442 nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1443 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1444 { 1445 struct nvmet_tcp_cmd *cmds = queue->cmds; 1446 int i; 1447 1448 for (i = 0; i < queue->nr_cmds; i++) 1449 nvmet_tcp_free_cmd(cmds + i); 1450 1451 nvmet_tcp_free_cmd(&queue->connect); 1452 kfree(cmds); 1453 } 1454 nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1455 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1456 { 1457 struct socket *sock = queue->sock; 1458 1459 write_lock_bh(&sock->sk->sk_callback_lock); 1460 sock->sk->sk_data_ready = queue->data_ready; 1461 sock->sk->sk_state_change = queue->state_change; 1462 sock->sk->sk_write_space = queue->write_space; 1463 sock->sk->sk_user_data = NULL; 1464 write_unlock_bh(&sock->sk->sk_callback_lock); 1465 } 1466 nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1467 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1468 { 1469 struct nvmet_tcp_cmd *cmd = queue->cmds; 1470 int i; 1471 1472 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1473 if (nvmet_tcp_need_data_in(cmd)) 1474 nvmet_req_uninit(&cmd->req); 1475 } 1476 1477 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1478 /* failed in connect */ 1479 nvmet_req_uninit(&queue->connect.req); 1480 } 1481 } 1482 nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue * queue)1483 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) 1484 { 1485 struct nvmet_tcp_cmd *cmd = queue->cmds; 1486 int i; 1487 1488 for (i = 0; i < queue->nr_cmds; i++, cmd++) 1489 nvmet_tcp_free_cmd_buffers(cmd); 1490 nvmet_tcp_free_cmd_buffers(&queue->connect); 1491 } 1492 nvmet_tcp_release_queue_work(struct work_struct * w)1493 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1494 { 1495 struct page *page; 1496 struct nvmet_tcp_queue *queue = 1497 container_of(w, struct nvmet_tcp_queue, release_work); 1498 1499 mutex_lock(&nvmet_tcp_queue_mutex); 1500 list_del_init(&queue->queue_list); 1501 mutex_unlock(&nvmet_tcp_queue_mutex); 1502 1503 nvmet_tcp_restore_socket_callbacks(queue); 1504 cancel_work_sync(&queue->io_work); 1505 /* stop accepting incoming data */ 1506 queue->rcv_state = NVMET_TCP_RECV_ERR; 1507 1508 nvmet_tcp_uninit_data_in_cmds(queue); 1509 nvmet_sq_destroy(&queue->nvme_sq); 1510 cancel_work_sync(&queue->io_work); 1511 nvmet_tcp_free_cmd_data_in_buffers(queue); 1512 sock_release(queue->sock); 1513 nvmet_tcp_free_cmds(queue); 1514 if (queue->hdr_digest || queue->data_digest) 1515 nvmet_tcp_free_crypto(queue); 1516 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1517 1518 page = virt_to_head_page(queue->pf_cache.va); 1519 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1520 kfree(queue); 1521 } 1522 nvmet_tcp_data_ready(struct sock * sk)1523 static void nvmet_tcp_data_ready(struct sock *sk) 1524 { 1525 struct nvmet_tcp_queue *queue; 1526 1527 trace_sk_data_ready(sk); 1528 1529 read_lock_bh(&sk->sk_callback_lock); 1530 queue = sk->sk_user_data; 1531 if (likely(queue)) 1532 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1533 read_unlock_bh(&sk->sk_callback_lock); 1534 } 1535 nvmet_tcp_write_space(struct sock * sk)1536 static void nvmet_tcp_write_space(struct sock *sk) 1537 { 1538 struct nvmet_tcp_queue *queue; 1539 1540 read_lock_bh(&sk->sk_callback_lock); 1541 queue = sk->sk_user_data; 1542 if (unlikely(!queue)) 1543 goto out; 1544 1545 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1546 queue->write_space(sk); 1547 goto out; 1548 } 1549 1550 if (sk_stream_is_writeable(sk)) { 1551 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1552 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1553 } 1554 out: 1555 read_unlock_bh(&sk->sk_callback_lock); 1556 } 1557 nvmet_tcp_state_change(struct sock * sk)1558 static void nvmet_tcp_state_change(struct sock *sk) 1559 { 1560 struct nvmet_tcp_queue *queue; 1561 1562 read_lock_bh(&sk->sk_callback_lock); 1563 queue = sk->sk_user_data; 1564 if (!queue) 1565 goto done; 1566 1567 switch (sk->sk_state) { 1568 case TCP_FIN_WAIT2: 1569 case TCP_LAST_ACK: 1570 break; 1571 case TCP_FIN_WAIT1: 1572 case TCP_CLOSE_WAIT: 1573 case TCP_CLOSE: 1574 /* FALLTHRU */ 1575 nvmet_tcp_schedule_release_queue(queue); 1576 break; 1577 default: 1578 pr_warn("queue %d unhandled state %d\n", 1579 queue->idx, sk->sk_state); 1580 } 1581 done: 1582 read_unlock_bh(&sk->sk_callback_lock); 1583 } 1584 nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1585 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1586 { 1587 struct socket *sock = queue->sock; 1588 struct inet_sock *inet = inet_sk(sock->sk); 1589 int ret; 1590 1591 ret = kernel_getsockname(sock, 1592 (struct sockaddr *)&queue->sockaddr); 1593 if (ret < 0) 1594 return ret; 1595 1596 ret = kernel_getpeername(sock, 1597 (struct sockaddr *)&queue->sockaddr_peer); 1598 if (ret < 0) 1599 return ret; 1600 1601 /* 1602 * Cleanup whatever is sitting in the TCP transmit queue on socket 1603 * close. This is done to prevent stale data from being sent should 1604 * the network connection be restored before TCP times out. 1605 */ 1606 sock_no_linger(sock->sk); 1607 1608 if (so_priority > 0) 1609 sock_set_priority(sock->sk, so_priority); 1610 1611 /* Set socket type of service */ 1612 if (inet->rcv_tos > 0) 1613 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1614 1615 ret = 0; 1616 write_lock_bh(&sock->sk->sk_callback_lock); 1617 if (sock->sk->sk_state != TCP_ESTABLISHED) { 1618 /* 1619 * If the socket is already closing, don't even start 1620 * consuming it 1621 */ 1622 ret = -ENOTCONN; 1623 } else { 1624 sock->sk->sk_user_data = queue; 1625 queue->data_ready = sock->sk->sk_data_ready; 1626 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1627 queue->state_change = sock->sk->sk_state_change; 1628 sock->sk->sk_state_change = nvmet_tcp_state_change; 1629 queue->write_space = sock->sk->sk_write_space; 1630 sock->sk->sk_write_space = nvmet_tcp_write_space; 1631 if (idle_poll_period_usecs) 1632 nvmet_tcp_arm_queue_deadline(queue); 1633 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1634 } 1635 write_unlock_bh(&sock->sk->sk_callback_lock); 1636 1637 return ret; 1638 } 1639 nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1640 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1641 struct socket *newsock) 1642 { 1643 struct nvmet_tcp_queue *queue; 1644 int ret; 1645 1646 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1647 if (!queue) 1648 return -ENOMEM; 1649 1650 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1651 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1652 queue->sock = newsock; 1653 queue->port = port; 1654 queue->nr_cmds = 0; 1655 spin_lock_init(&queue->state_lock); 1656 queue->state = NVMET_TCP_Q_CONNECTING; 1657 INIT_LIST_HEAD(&queue->free_list); 1658 init_llist_head(&queue->resp_list); 1659 INIT_LIST_HEAD(&queue->resp_send_list); 1660 1661 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); 1662 if (queue->idx < 0) { 1663 ret = queue->idx; 1664 goto out_free_queue; 1665 } 1666 1667 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1668 if (ret) 1669 goto out_ida_remove; 1670 1671 ret = nvmet_sq_init(&queue->nvme_sq); 1672 if (ret) 1673 goto out_free_connect; 1674 1675 nvmet_prepare_receive_pdu(queue); 1676 1677 mutex_lock(&nvmet_tcp_queue_mutex); 1678 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1679 mutex_unlock(&nvmet_tcp_queue_mutex); 1680 1681 ret = nvmet_tcp_set_queue_sock(queue); 1682 if (ret) 1683 goto out_destroy_sq; 1684 1685 return 0; 1686 out_destroy_sq: 1687 mutex_lock(&nvmet_tcp_queue_mutex); 1688 list_del_init(&queue->queue_list); 1689 mutex_unlock(&nvmet_tcp_queue_mutex); 1690 nvmet_sq_destroy(&queue->nvme_sq); 1691 out_free_connect: 1692 nvmet_tcp_free_cmd(&queue->connect); 1693 out_ida_remove: 1694 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1695 out_free_queue: 1696 kfree(queue); 1697 return ret; 1698 } 1699 nvmet_tcp_accept_work(struct work_struct * w)1700 static void nvmet_tcp_accept_work(struct work_struct *w) 1701 { 1702 struct nvmet_tcp_port *port = 1703 container_of(w, struct nvmet_tcp_port, accept_work); 1704 struct socket *newsock; 1705 int ret; 1706 1707 while (true) { 1708 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1709 if (ret < 0) { 1710 if (ret != -EAGAIN) 1711 pr_warn("failed to accept err=%d\n", ret); 1712 return; 1713 } 1714 ret = nvmet_tcp_alloc_queue(port, newsock); 1715 if (ret) { 1716 pr_err("failed to allocate queue\n"); 1717 sock_release(newsock); 1718 } 1719 } 1720 } 1721 nvmet_tcp_listen_data_ready(struct sock * sk)1722 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1723 { 1724 struct nvmet_tcp_port *port; 1725 1726 trace_sk_data_ready(sk); 1727 1728 read_lock_bh(&sk->sk_callback_lock); 1729 port = sk->sk_user_data; 1730 if (!port) 1731 goto out; 1732 1733 if (sk->sk_state == TCP_LISTEN) 1734 queue_work(nvmet_wq, &port->accept_work); 1735 out: 1736 read_unlock_bh(&sk->sk_callback_lock); 1737 } 1738 nvmet_tcp_add_port(struct nvmet_port * nport)1739 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1740 { 1741 struct nvmet_tcp_port *port; 1742 __kernel_sa_family_t af; 1743 int ret; 1744 1745 port = kzalloc(sizeof(*port), GFP_KERNEL); 1746 if (!port) 1747 return -ENOMEM; 1748 1749 switch (nport->disc_addr.adrfam) { 1750 case NVMF_ADDR_FAMILY_IP4: 1751 af = AF_INET; 1752 break; 1753 case NVMF_ADDR_FAMILY_IP6: 1754 af = AF_INET6; 1755 break; 1756 default: 1757 pr_err("address family %d not supported\n", 1758 nport->disc_addr.adrfam); 1759 ret = -EINVAL; 1760 goto err_port; 1761 } 1762 1763 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1764 nport->disc_addr.trsvcid, &port->addr); 1765 if (ret) { 1766 pr_err("malformed ip/port passed: %s:%s\n", 1767 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1768 goto err_port; 1769 } 1770 1771 port->nport = nport; 1772 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1773 if (port->nport->inline_data_size < 0) 1774 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1775 1776 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1777 IPPROTO_TCP, &port->sock); 1778 if (ret) { 1779 pr_err("failed to create a socket\n"); 1780 goto err_port; 1781 } 1782 1783 port->sock->sk->sk_user_data = port; 1784 port->data_ready = port->sock->sk->sk_data_ready; 1785 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1786 sock_set_reuseaddr(port->sock->sk); 1787 tcp_sock_set_nodelay(port->sock->sk); 1788 if (so_priority > 0) 1789 sock_set_priority(port->sock->sk, so_priority); 1790 1791 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1792 sizeof(port->addr)); 1793 if (ret) { 1794 pr_err("failed to bind port socket %d\n", ret); 1795 goto err_sock; 1796 } 1797 1798 ret = kernel_listen(port->sock, 128); 1799 if (ret) { 1800 pr_err("failed to listen %d on port sock\n", ret); 1801 goto err_sock; 1802 } 1803 1804 nport->priv = port; 1805 pr_info("enabling port %d (%pISpc)\n", 1806 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1807 1808 return 0; 1809 1810 err_sock: 1811 sock_release(port->sock); 1812 err_port: 1813 kfree(port); 1814 return ret; 1815 } 1816 nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)1817 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) 1818 { 1819 struct nvmet_tcp_queue *queue; 1820 1821 mutex_lock(&nvmet_tcp_queue_mutex); 1822 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1823 if (queue->port == port) 1824 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1825 mutex_unlock(&nvmet_tcp_queue_mutex); 1826 } 1827 nvmet_tcp_remove_port(struct nvmet_port * nport)1828 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1829 { 1830 struct nvmet_tcp_port *port = nport->priv; 1831 1832 write_lock_bh(&port->sock->sk->sk_callback_lock); 1833 port->sock->sk->sk_data_ready = port->data_ready; 1834 port->sock->sk->sk_user_data = NULL; 1835 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1836 cancel_work_sync(&port->accept_work); 1837 /* 1838 * Destroy the remaining queues, which are not belong to any 1839 * controller yet. 1840 */ 1841 nvmet_tcp_destroy_port_queues(port); 1842 1843 sock_release(port->sock); 1844 kfree(port); 1845 } 1846 nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)1847 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1848 { 1849 struct nvmet_tcp_queue *queue; 1850 1851 mutex_lock(&nvmet_tcp_queue_mutex); 1852 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1853 if (queue->nvme_sq.ctrl == ctrl) 1854 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1855 mutex_unlock(&nvmet_tcp_queue_mutex); 1856 } 1857 nvmet_tcp_install_queue(struct nvmet_sq * sq)1858 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1859 { 1860 struct nvmet_tcp_queue *queue = 1861 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1862 1863 if (sq->qid == 0) { 1864 /* Let inflight controller teardown complete */ 1865 flush_workqueue(nvmet_wq); 1866 } 1867 1868 queue->nr_cmds = sq->size * 2; 1869 if (nvmet_tcp_alloc_cmds(queue)) { 1870 queue->nr_cmds = 0; 1871 return NVME_SC_INTERNAL; 1872 } 1873 return 0; 1874 } 1875 nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)1876 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1877 struct nvmet_port *nport, char *traddr) 1878 { 1879 struct nvmet_tcp_port *port = nport->priv; 1880 1881 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1882 struct nvmet_tcp_cmd *cmd = 1883 container_of(req, struct nvmet_tcp_cmd, req); 1884 struct nvmet_tcp_queue *queue = cmd->queue; 1885 1886 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1887 } else { 1888 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1889 } 1890 } 1891 1892 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 1893 .owner = THIS_MODULE, 1894 .type = NVMF_TRTYPE_TCP, 1895 .msdbd = 1, 1896 .add_port = nvmet_tcp_add_port, 1897 .remove_port = nvmet_tcp_remove_port, 1898 .queue_response = nvmet_tcp_queue_response, 1899 .delete_ctrl = nvmet_tcp_delete_ctrl, 1900 .install_queue = nvmet_tcp_install_queue, 1901 .disc_traddr = nvmet_tcp_disc_port_addr, 1902 }; 1903 nvmet_tcp_init(void)1904 static int __init nvmet_tcp_init(void) 1905 { 1906 int ret; 1907 1908 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", 1909 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1910 if (!nvmet_tcp_wq) 1911 return -ENOMEM; 1912 1913 ret = nvmet_register_transport(&nvmet_tcp_ops); 1914 if (ret) 1915 goto err; 1916 1917 return 0; 1918 err: 1919 destroy_workqueue(nvmet_tcp_wq); 1920 return ret; 1921 } 1922 nvmet_tcp_exit(void)1923 static void __exit nvmet_tcp_exit(void) 1924 { 1925 struct nvmet_tcp_queue *queue; 1926 1927 nvmet_unregister_transport(&nvmet_tcp_ops); 1928 1929 flush_workqueue(nvmet_wq); 1930 mutex_lock(&nvmet_tcp_queue_mutex); 1931 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1932 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1933 mutex_unlock(&nvmet_tcp_queue_mutex); 1934 flush_workqueue(nvmet_wq); 1935 1936 destroy_workqueue(nvmet_tcp_wq); 1937 ida_destroy(&nvmet_tcp_queue_ida); 1938 } 1939 1940 module_init(nvmet_tcp_init); 1941 module_exit(nvmet_tcp_exit); 1942 1943 MODULE_LICENSE("GPL v2"); 1944 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1945