xref: /openbmc/linux/kernel/events/uprobes.c (revision b694e3c604e999343258c49e574abd7be012e726)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* folio_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29 
30 #include <linux/uprobes.h>
31 
32 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
34 
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37  * allows us to skip the uprobe_mmap if there are no uprobe events active
38  * at this time.  Probably a fine grained per inode count is better?
39  */
40 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
41 
42 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
43 
44 #define UPROBES_HASH_SZ	13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48 
49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50 
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN	0
53 
54 struct uprobe {
55 	struct rb_node		rb_node;	/* node in the rb tree */
56 	refcount_t		ref;
57 	struct rw_semaphore	register_rwsem;
58 	struct rw_semaphore	consumer_rwsem;
59 	struct list_head	pending_list;
60 	struct uprobe_consumer	*consumers;
61 	struct inode		*inode;		/* Also hold a ref to inode */
62 	loff_t			offset;
63 	loff_t			ref_ctr_offset;
64 	unsigned long		flags;
65 
66 	/*
67 	 * The generic code assumes that it has two members of unknown type
68 	 * owned by the arch-specific code:
69 	 *
70 	 * 	insn -	copy_insn() saves the original instruction here for
71 	 *		arch_uprobe_analyze_insn().
72 	 *
73 	 *	ixol -	potentially modified instruction to execute out of
74 	 *		line, copied to xol_area by xol_get_insn_slot().
75 	 */
76 	struct arch_uprobe	arch;
77 };
78 
79 struct delayed_uprobe {
80 	struct list_head list;
81 	struct uprobe *uprobe;
82 	struct mm_struct *mm;
83 };
84 
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87 
88 /*
89  * Execute out of line area: anonymous executable mapping installed
90  * by the probed task to execute the copy of the original instruction
91  * mangled by set_swbp().
92  *
93  * On a breakpoint hit, thread contests for a slot.  It frees the
94  * slot after singlestep. Currently a fixed number of slots are
95  * allocated.
96  */
97 struct xol_area {
98 	wait_queue_head_t 		wq;		/* if all slots are busy */
99 	atomic_t 			slot_count;	/* number of in-use slots */
100 	unsigned long 			*bitmap;	/* 0 = free slot */
101 
102 	struct vm_special_mapping	xol_mapping;
103 	struct page 			*pages[2];
104 	/*
105 	 * We keep the vma's vm_start rather than a pointer to the vma
106 	 * itself.  The probed process or a naughty kernel module could make
107 	 * the vma go away, and we must handle that reasonably gracefully.
108 	 */
109 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
110 };
111 
112 /*
113  * valid_vma: Verify if the specified vma is an executable vma
114  * Relax restrictions while unregistering: vm_flags might have
115  * changed after breakpoint was inserted.
116  *	- is_register: indicates if we are in register context.
117  *	- Return 1 if the specified virtual address is in an
118  *	  executable vma.
119  */
valid_vma(struct vm_area_struct * vma,bool is_register)120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123 
124 	if (is_register)
125 		flags |= VM_WRITE;
126 
127 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139 
140 /**
141  * __replace_page - replace page in vma by new page.
142  * based on replace_page in mm/ksm.c
143  *
144  * @vma:      vma that holds the pte pointing to page
145  * @addr:     address the old @page is mapped at
146  * @old_page: the page we are replacing by new_page
147  * @new_page: the modified page we replace page by
148  *
149  * If @new_page is NULL, only unmap @old_page.
150  *
151  * Returns 0 on success, negative error code otherwise.
152  */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154 				struct page *old_page, struct page *new_page)
155 {
156 	struct folio *old_folio = page_folio(old_page);
157 	struct folio *new_folio;
158 	struct mm_struct *mm = vma->vm_mm;
159 	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160 	int err;
161 	struct mmu_notifier_range range;
162 	pte_t pte;
163 
164 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
165 				addr + PAGE_SIZE);
166 
167 	if (new_page) {
168 		new_folio = page_folio(new_page);
169 		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
170 		if (err)
171 			return err;
172 	}
173 
174 	/* For folio_free_swap() below */
175 	folio_lock(old_folio);
176 
177 	mmu_notifier_invalidate_range_start(&range);
178 	err = -EAGAIN;
179 	if (!page_vma_mapped_walk(&pvmw))
180 		goto unlock;
181 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
182 	pte = ptep_get(pvmw.pte);
183 
184 	/*
185 	 * Handle PFN swap PTES, such as device-exclusive ones, that actually
186 	 * map pages: simply trigger GUP again to fix it up.
187 	 */
188 	if (unlikely(!pte_present(pte))) {
189 		page_vma_mapped_walk_done(&pvmw);
190 		goto unlock;
191 	}
192 
193 	if (new_page) {
194 		folio_get(new_folio);
195 		page_add_new_anon_rmap(new_page, vma, addr);
196 		folio_add_lru_vma(new_folio, vma);
197 	} else
198 		/* no new page, just dec_mm_counter for old_page */
199 		dec_mm_counter(mm, MM_ANONPAGES);
200 
201 	if (!folio_test_anon(old_folio)) {
202 		dec_mm_counter(mm, mm_counter_file(old_page));
203 		inc_mm_counter(mm, MM_ANONPAGES);
204 	}
205 
206 	flush_cache_page(vma, addr, pte_pfn(pte));
207 	ptep_clear_flush(vma, addr, pvmw.pte);
208 	if (new_page)
209 		set_pte_at_notify(mm, addr, pvmw.pte,
210 				  mk_pte(new_page, vma->vm_page_prot));
211 
212 	page_remove_rmap(old_page, vma, false);
213 	if (!folio_mapped(old_folio))
214 		folio_free_swap(old_folio);
215 	page_vma_mapped_walk_done(&pvmw);
216 	folio_put(old_folio);
217 
218 	err = 0;
219  unlock:
220 	mmu_notifier_invalidate_range_end(&range);
221 	folio_unlock(old_folio);
222 	return err;
223 }
224 
225 /**
226  * is_swbp_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_swbp_insn
229  * Returns true if @insn is a breakpoint instruction.
230  */
is_swbp_insn(uprobe_opcode_t * insn)231 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
232 {
233 	return *insn == UPROBE_SWBP_INSN;
234 }
235 
236 /**
237  * is_trap_insn - check if instruction is breakpoint instruction.
238  * @insn: instruction to be checked.
239  * Default implementation of is_trap_insn
240  * Returns true if @insn is a breakpoint instruction.
241  *
242  * This function is needed for the case where an architecture has multiple
243  * trap instructions (like powerpc).
244  */
is_trap_insn(uprobe_opcode_t * insn)245 bool __weak is_trap_insn(uprobe_opcode_t *insn)
246 {
247 	return is_swbp_insn(insn);
248 }
249 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)250 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
251 {
252 	void *kaddr = kmap_atomic(page);
253 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
254 	kunmap_atomic(kaddr);
255 }
256 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)257 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
258 {
259 	void *kaddr = kmap_atomic(page);
260 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
261 	kunmap_atomic(kaddr);
262 }
263 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)264 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
265 {
266 	uprobe_opcode_t old_opcode;
267 	bool is_swbp;
268 
269 	/*
270 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
271 	 * We do not check if it is any other 'trap variant' which could
272 	 * be conditional trap instruction such as the one powerpc supports.
273 	 *
274 	 * The logic is that we do not care if the underlying instruction
275 	 * is a trap variant; uprobes always wins over any other (gdb)
276 	 * breakpoint.
277 	 */
278 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
279 	is_swbp = is_swbp_insn(&old_opcode);
280 
281 	if (is_swbp_insn(new_opcode)) {
282 		if (is_swbp)		/* register: already installed? */
283 			return 0;
284 	} else {
285 		if (!is_swbp)		/* unregister: was it changed by us? */
286 			return 0;
287 	}
288 
289 	return 1;
290 }
291 
292 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)293 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295 	struct delayed_uprobe *du;
296 
297 	list_for_each_entry(du, &delayed_uprobe_list, list)
298 		if (du->uprobe == uprobe && du->mm == mm)
299 			return du;
300 	return NULL;
301 }
302 
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)303 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
304 {
305 	struct delayed_uprobe *du;
306 
307 	if (delayed_uprobe_check(uprobe, mm))
308 		return 0;
309 
310 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
311 	if (!du)
312 		return -ENOMEM;
313 
314 	du->uprobe = uprobe;
315 	du->mm = mm;
316 	list_add(&du->list, &delayed_uprobe_list);
317 	return 0;
318 }
319 
delayed_uprobe_delete(struct delayed_uprobe * du)320 static void delayed_uprobe_delete(struct delayed_uprobe *du)
321 {
322 	if (WARN_ON(!du))
323 		return;
324 	list_del(&du->list);
325 	kfree(du);
326 }
327 
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)328 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
329 {
330 	struct list_head *pos, *q;
331 	struct delayed_uprobe *du;
332 
333 	if (!uprobe && !mm)
334 		return;
335 
336 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
337 		du = list_entry(pos, struct delayed_uprobe, list);
338 
339 		if (uprobe && du->uprobe != uprobe)
340 			continue;
341 		if (mm && du->mm != mm)
342 			continue;
343 
344 		delayed_uprobe_delete(du);
345 	}
346 }
347 
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)348 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
349 			      struct vm_area_struct *vma)
350 {
351 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
352 
353 	return uprobe->ref_ctr_offset &&
354 		vma->vm_file &&
355 		file_inode(vma->vm_file) == uprobe->inode &&
356 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
357 		vma->vm_start <= vaddr &&
358 		vma->vm_end > vaddr;
359 }
360 
361 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)362 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
363 {
364 	VMA_ITERATOR(vmi, mm, 0);
365 	struct vm_area_struct *tmp;
366 
367 	for_each_vma(vmi, tmp)
368 		if (valid_ref_ctr_vma(uprobe, tmp))
369 			return tmp;
370 
371 	return NULL;
372 }
373 
374 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)375 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
376 {
377 	void *kaddr;
378 	struct page *page;
379 	int ret;
380 	short *ptr;
381 
382 	if (!vaddr || !d)
383 		return -EINVAL;
384 
385 	ret = get_user_pages_remote(mm, vaddr, 1,
386 				    FOLL_WRITE, &page, NULL);
387 	if (unlikely(ret <= 0)) {
388 		/*
389 		 * We are asking for 1 page. If get_user_pages_remote() fails,
390 		 * it may return 0, in that case we have to return error.
391 		 */
392 		return ret == 0 ? -EBUSY : ret;
393 	}
394 
395 	kaddr = kmap_atomic(page);
396 	ptr = kaddr + (vaddr & ~PAGE_MASK);
397 
398 	if (unlikely(*ptr + d < 0)) {
399 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
400 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
401 		ret = -EINVAL;
402 		goto out;
403 	}
404 
405 	*ptr += d;
406 	ret = 0;
407 out:
408 	kunmap_atomic(kaddr);
409 	put_page(page);
410 	return ret;
411 }
412 
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)413 static void update_ref_ctr_warn(struct uprobe *uprobe,
414 				struct mm_struct *mm, short d)
415 {
416 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
417 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
418 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
419 		(unsigned long long) uprobe->offset,
420 		(unsigned long long) uprobe->ref_ctr_offset, mm);
421 }
422 
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)423 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
424 			  short d)
425 {
426 	struct vm_area_struct *rc_vma;
427 	unsigned long rc_vaddr;
428 	int ret = 0;
429 
430 	rc_vma = find_ref_ctr_vma(uprobe, mm);
431 
432 	if (rc_vma) {
433 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
434 		ret = __update_ref_ctr(mm, rc_vaddr, d);
435 		if (ret)
436 			update_ref_ctr_warn(uprobe, mm, d);
437 
438 		if (d > 0)
439 			return ret;
440 	}
441 
442 	mutex_lock(&delayed_uprobe_lock);
443 	if (d > 0)
444 		ret = delayed_uprobe_add(uprobe, mm);
445 	else
446 		delayed_uprobe_remove(uprobe, mm);
447 	mutex_unlock(&delayed_uprobe_lock);
448 
449 	return ret;
450 }
451 
452 /*
453  * NOTE:
454  * Expect the breakpoint instruction to be the smallest size instruction for
455  * the architecture. If an arch has variable length instruction and the
456  * breakpoint instruction is not of the smallest length instruction
457  * supported by that architecture then we need to modify is_trap_at_addr and
458  * uprobe_write_opcode accordingly. This would never be a problem for archs
459  * that have fixed length instructions.
460  *
461  * uprobe_write_opcode - write the opcode at a given virtual address.
462  * @auprobe: arch specific probepoint information.
463  * @mm: the probed process address space.
464  * @vaddr: the virtual address to store the opcode.
465  * @opcode: opcode to be written at @vaddr.
466  *
467  * Called with mm->mmap_lock held for write.
468  * Return 0 (success) or a negative errno.
469  */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)470 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
471 			unsigned long vaddr, uprobe_opcode_t opcode)
472 {
473 	struct uprobe *uprobe;
474 	struct page *old_page, *new_page;
475 	struct vm_area_struct *vma;
476 	int ret, is_register, ref_ctr_updated = 0;
477 	bool orig_page_huge = false;
478 	unsigned int gup_flags = FOLL_FORCE;
479 
480 	is_register = is_swbp_insn(&opcode);
481 	uprobe = container_of(auprobe, struct uprobe, arch);
482 
483 retry:
484 	if (is_register)
485 		gup_flags |= FOLL_SPLIT_PMD;
486 	/* Read the page with vaddr into memory */
487 	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
488 	if (IS_ERR_OR_NULL(old_page))
489 		return old_page ? PTR_ERR(old_page) : 0;
490 
491 	ret = verify_opcode(old_page, vaddr, &opcode);
492 	if (ret <= 0)
493 		goto put_old;
494 
495 	if (is_zero_page(old_page)) {
496 		ret = -EINVAL;
497 		goto put_old;
498 	}
499 
500 	if (WARN(!is_register && PageCompound(old_page),
501 		 "uprobe unregister should never work on compound page\n")) {
502 		ret = -EINVAL;
503 		goto put_old;
504 	}
505 
506 	/* We are going to replace instruction, update ref_ctr. */
507 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
508 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
509 		if (ret)
510 			goto put_old;
511 
512 		ref_ctr_updated = 1;
513 	}
514 
515 	ret = 0;
516 	if (!is_register && !PageAnon(old_page))
517 		goto put_old;
518 
519 	ret = anon_vma_prepare(vma);
520 	if (ret)
521 		goto put_old;
522 
523 	ret = -ENOMEM;
524 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
525 	if (!new_page)
526 		goto put_old;
527 
528 	__SetPageUptodate(new_page);
529 	copy_highpage(new_page, old_page);
530 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
531 
532 	if (!is_register) {
533 		struct page *orig_page;
534 		pgoff_t index;
535 
536 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
537 
538 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
539 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
540 					  index);
541 
542 		if (orig_page) {
543 			if (PageUptodate(orig_page) &&
544 			    pages_identical(new_page, orig_page)) {
545 				/* let go new_page */
546 				put_page(new_page);
547 				new_page = NULL;
548 
549 				if (PageCompound(orig_page))
550 					orig_page_huge = true;
551 			}
552 			put_page(orig_page);
553 		}
554 	}
555 
556 	ret = __replace_page(vma, vaddr, old_page, new_page);
557 	if (new_page)
558 		put_page(new_page);
559 put_old:
560 	put_page(old_page);
561 
562 	if (unlikely(ret == -EAGAIN))
563 		goto retry;
564 
565 	/* Revert back reference counter if instruction update failed. */
566 	if (ret && is_register && ref_ctr_updated)
567 		update_ref_ctr(uprobe, mm, -1);
568 
569 	/* try collapse pmd for compound page */
570 	if (!ret && orig_page_huge)
571 		collapse_pte_mapped_thp(mm, vaddr, false);
572 
573 	return ret;
574 }
575 
576 /**
577  * set_swbp - store breakpoint at a given address.
578  * @auprobe: arch specific probepoint information.
579  * @mm: the probed process address space.
580  * @vaddr: the virtual address to insert the opcode.
581  *
582  * For mm @mm, store the breakpoint instruction at @vaddr.
583  * Return 0 (success) or a negative errno.
584  */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)585 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
586 {
587 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
588 }
589 
590 /**
591  * set_orig_insn - Restore the original instruction.
592  * @mm: the probed process address space.
593  * @auprobe: arch specific probepoint information.
594  * @vaddr: the virtual address to insert the opcode.
595  *
596  * For mm @mm, restore the original opcode (opcode) at @vaddr.
597  * Return 0 (success) or a negative errno.
598  */
599 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)600 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
601 {
602 	return uprobe_write_opcode(auprobe, mm, vaddr,
603 			*(uprobe_opcode_t *)&auprobe->insn);
604 }
605 
get_uprobe(struct uprobe * uprobe)606 static struct uprobe *get_uprobe(struct uprobe *uprobe)
607 {
608 	refcount_inc(&uprobe->ref);
609 	return uprobe;
610 }
611 
put_uprobe(struct uprobe * uprobe)612 static void put_uprobe(struct uprobe *uprobe)
613 {
614 	if (refcount_dec_and_test(&uprobe->ref)) {
615 		/*
616 		 * If application munmap(exec_vma) before uprobe_unregister()
617 		 * gets called, we don't get a chance to remove uprobe from
618 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
619 		 */
620 		mutex_lock(&delayed_uprobe_lock);
621 		delayed_uprobe_remove(uprobe, NULL);
622 		mutex_unlock(&delayed_uprobe_lock);
623 		kfree(uprobe);
624 	}
625 }
626 
627 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)628 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
629 	       const struct uprobe *r)
630 {
631 	if (l_inode < r->inode)
632 		return -1;
633 
634 	if (l_inode > r->inode)
635 		return 1;
636 
637 	if (l_offset < r->offset)
638 		return -1;
639 
640 	if (l_offset > r->offset)
641 		return 1;
642 
643 	return 0;
644 }
645 
646 #define __node_2_uprobe(node) \
647 	rb_entry((node), struct uprobe, rb_node)
648 
649 struct __uprobe_key {
650 	struct inode *inode;
651 	loff_t offset;
652 };
653 
__uprobe_cmp_key(const void * key,const struct rb_node * b)654 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
655 {
656 	const struct __uprobe_key *a = key;
657 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
658 }
659 
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)660 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
661 {
662 	struct uprobe *u = __node_2_uprobe(a);
663 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
664 }
665 
__find_uprobe(struct inode * inode,loff_t offset)666 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
667 {
668 	struct __uprobe_key key = {
669 		.inode = inode,
670 		.offset = offset,
671 	};
672 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
673 
674 	if (node)
675 		return get_uprobe(__node_2_uprobe(node));
676 
677 	return NULL;
678 }
679 
680 /*
681  * Find a uprobe corresponding to a given inode:offset
682  * Acquires uprobes_treelock
683  */
find_uprobe(struct inode * inode,loff_t offset)684 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
685 {
686 	struct uprobe *uprobe;
687 
688 	spin_lock(&uprobes_treelock);
689 	uprobe = __find_uprobe(inode, offset);
690 	spin_unlock(&uprobes_treelock);
691 
692 	return uprobe;
693 }
694 
__insert_uprobe(struct uprobe * uprobe)695 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
696 {
697 	struct rb_node *node;
698 
699 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
700 	if (node)
701 		return get_uprobe(__node_2_uprobe(node));
702 
703 	/* get access + creation ref */
704 	refcount_set(&uprobe->ref, 2);
705 	return NULL;
706 }
707 
708 /*
709  * Acquire uprobes_treelock.
710  * Matching uprobe already exists in rbtree;
711  *	increment (access refcount) and return the matching uprobe.
712  *
713  * No matching uprobe; insert the uprobe in rb_tree;
714  *	get a double refcount (access + creation) and return NULL.
715  */
insert_uprobe(struct uprobe * uprobe)716 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
717 {
718 	struct uprobe *u;
719 
720 	spin_lock(&uprobes_treelock);
721 	u = __insert_uprobe(uprobe);
722 	spin_unlock(&uprobes_treelock);
723 
724 	return u;
725 }
726 
727 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)728 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
729 {
730 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
731 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
732 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
733 		(unsigned long long) cur_uprobe->ref_ctr_offset,
734 		(unsigned long long) uprobe->ref_ctr_offset);
735 }
736 
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)737 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
738 				   loff_t ref_ctr_offset)
739 {
740 	struct uprobe *uprobe, *cur_uprobe;
741 
742 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
743 	if (!uprobe)
744 		return NULL;
745 
746 	uprobe->inode = inode;
747 	uprobe->offset = offset;
748 	uprobe->ref_ctr_offset = ref_ctr_offset;
749 	init_rwsem(&uprobe->register_rwsem);
750 	init_rwsem(&uprobe->consumer_rwsem);
751 
752 	/* add to uprobes_tree, sorted on inode:offset */
753 	cur_uprobe = insert_uprobe(uprobe);
754 	/* a uprobe exists for this inode:offset combination */
755 	if (cur_uprobe) {
756 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
757 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
758 			put_uprobe(cur_uprobe);
759 			kfree(uprobe);
760 			return ERR_PTR(-EINVAL);
761 		}
762 		kfree(uprobe);
763 		uprobe = cur_uprobe;
764 	}
765 
766 	return uprobe;
767 }
768 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)769 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
770 {
771 	down_write(&uprobe->consumer_rwsem);
772 	uc->next = uprobe->consumers;
773 	uprobe->consumers = uc;
774 	up_write(&uprobe->consumer_rwsem);
775 }
776 
777 /*
778  * For uprobe @uprobe, delete the consumer @uc.
779  * Return true if the @uc is deleted successfully
780  * or return false.
781  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)782 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
783 {
784 	struct uprobe_consumer **con;
785 	bool ret = false;
786 
787 	down_write(&uprobe->consumer_rwsem);
788 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
789 		if (*con == uc) {
790 			*con = uc->next;
791 			ret = true;
792 			break;
793 		}
794 	}
795 	up_write(&uprobe->consumer_rwsem);
796 
797 	return ret;
798 }
799 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)800 static int __copy_insn(struct address_space *mapping, struct file *filp,
801 			void *insn, int nbytes, loff_t offset)
802 {
803 	struct page *page;
804 	/*
805 	 * Ensure that the page that has the original instruction is populated
806 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
807 	 * see uprobe_register().
808 	 */
809 	if (mapping->a_ops->read_folio)
810 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
811 	else
812 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
813 	if (IS_ERR(page))
814 		return PTR_ERR(page);
815 
816 	copy_from_page(page, offset, insn, nbytes);
817 	put_page(page);
818 
819 	return 0;
820 }
821 
copy_insn(struct uprobe * uprobe,struct file * filp)822 static int copy_insn(struct uprobe *uprobe, struct file *filp)
823 {
824 	struct address_space *mapping = uprobe->inode->i_mapping;
825 	loff_t offs = uprobe->offset;
826 	void *insn = &uprobe->arch.insn;
827 	int size = sizeof(uprobe->arch.insn);
828 	int len, err = -EIO;
829 
830 	/* Copy only available bytes, -EIO if nothing was read */
831 	do {
832 		if (offs >= i_size_read(uprobe->inode))
833 			break;
834 
835 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
836 		err = __copy_insn(mapping, filp, insn, len, offs);
837 		if (err)
838 			break;
839 
840 		insn += len;
841 		offs += len;
842 		size -= len;
843 	} while (size);
844 
845 	return err;
846 }
847 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)848 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
849 				struct mm_struct *mm, unsigned long vaddr)
850 {
851 	int ret = 0;
852 
853 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
854 		return ret;
855 
856 	/* TODO: move this into _register, until then we abuse this sem. */
857 	down_write(&uprobe->consumer_rwsem);
858 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
859 		goto out;
860 
861 	ret = copy_insn(uprobe, file);
862 	if (ret)
863 		goto out;
864 
865 	ret = -ENOTSUPP;
866 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
867 		goto out;
868 
869 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
870 	if (ret)
871 		goto out;
872 
873 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
874 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
875 
876  out:
877 	up_write(&uprobe->consumer_rwsem);
878 
879 	return ret;
880 }
881 
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)882 static inline bool consumer_filter(struct uprobe_consumer *uc,
883 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
884 {
885 	return !uc->filter || uc->filter(uc, ctx, mm);
886 }
887 
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)888 static bool filter_chain(struct uprobe *uprobe,
889 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
890 {
891 	struct uprobe_consumer *uc;
892 	bool ret = false;
893 
894 	down_read(&uprobe->consumer_rwsem);
895 	for (uc = uprobe->consumers; uc; uc = uc->next) {
896 		ret = consumer_filter(uc, ctx, mm);
897 		if (ret)
898 			break;
899 	}
900 	up_read(&uprobe->consumer_rwsem);
901 
902 	return ret;
903 }
904 
905 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)906 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
907 			struct vm_area_struct *vma, unsigned long vaddr)
908 {
909 	bool first_uprobe;
910 	int ret;
911 
912 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
913 	if (ret)
914 		return ret;
915 
916 	/*
917 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
918 	 * the task can hit this breakpoint right after __replace_page().
919 	 */
920 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
921 	if (first_uprobe)
922 		set_bit(MMF_HAS_UPROBES, &mm->flags);
923 
924 	ret = set_swbp(&uprobe->arch, mm, vaddr);
925 	if (!ret)
926 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
927 	else if (first_uprobe)
928 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
929 
930 	return ret;
931 }
932 
933 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)934 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
935 {
936 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
937 	return set_orig_insn(&uprobe->arch, mm, vaddr);
938 }
939 
uprobe_is_active(struct uprobe * uprobe)940 static inline bool uprobe_is_active(struct uprobe *uprobe)
941 {
942 	return !RB_EMPTY_NODE(&uprobe->rb_node);
943 }
944 /*
945  * There could be threads that have already hit the breakpoint. They
946  * will recheck the current insn and restart if find_uprobe() fails.
947  * See find_active_uprobe().
948  */
delete_uprobe(struct uprobe * uprobe)949 static void delete_uprobe(struct uprobe *uprobe)
950 {
951 	if (WARN_ON(!uprobe_is_active(uprobe)))
952 		return;
953 
954 	spin_lock(&uprobes_treelock);
955 	rb_erase(&uprobe->rb_node, &uprobes_tree);
956 	spin_unlock(&uprobes_treelock);
957 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
958 	put_uprobe(uprobe);
959 }
960 
961 struct map_info {
962 	struct map_info *next;
963 	struct mm_struct *mm;
964 	unsigned long vaddr;
965 };
966 
free_map_info(struct map_info * info)967 static inline struct map_info *free_map_info(struct map_info *info)
968 {
969 	struct map_info *next = info->next;
970 	kfree(info);
971 	return next;
972 }
973 
974 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)975 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
976 {
977 	unsigned long pgoff = offset >> PAGE_SHIFT;
978 	struct vm_area_struct *vma;
979 	struct map_info *curr = NULL;
980 	struct map_info *prev = NULL;
981 	struct map_info *info;
982 	int more = 0;
983 
984  again:
985 	i_mmap_lock_read(mapping);
986 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
987 		if (!valid_vma(vma, is_register))
988 			continue;
989 
990 		if (!prev && !more) {
991 			/*
992 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
993 			 * reclaim. This is optimistic, no harm done if it fails.
994 			 */
995 			prev = kmalloc(sizeof(struct map_info),
996 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
997 			if (prev)
998 				prev->next = NULL;
999 		}
1000 		if (!prev) {
1001 			more++;
1002 			continue;
1003 		}
1004 
1005 		if (!mmget_not_zero(vma->vm_mm))
1006 			continue;
1007 
1008 		info = prev;
1009 		prev = prev->next;
1010 		info->next = curr;
1011 		curr = info;
1012 
1013 		info->mm = vma->vm_mm;
1014 		info->vaddr = offset_to_vaddr(vma, offset);
1015 	}
1016 	i_mmap_unlock_read(mapping);
1017 
1018 	if (!more)
1019 		goto out;
1020 
1021 	prev = curr;
1022 	while (curr) {
1023 		mmput(curr->mm);
1024 		curr = curr->next;
1025 	}
1026 
1027 	do {
1028 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1029 		if (!info) {
1030 			curr = ERR_PTR(-ENOMEM);
1031 			goto out;
1032 		}
1033 		info->next = prev;
1034 		prev = info;
1035 	} while (--more);
1036 
1037 	goto again;
1038  out:
1039 	while (prev)
1040 		prev = free_map_info(prev);
1041 	return curr;
1042 }
1043 
1044 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1045 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1046 {
1047 	bool is_register = !!new;
1048 	struct map_info *info;
1049 	int err = 0;
1050 
1051 	percpu_down_write(&dup_mmap_sem);
1052 	info = build_map_info(uprobe->inode->i_mapping,
1053 					uprobe->offset, is_register);
1054 	if (IS_ERR(info)) {
1055 		err = PTR_ERR(info);
1056 		goto out;
1057 	}
1058 
1059 	while (info) {
1060 		struct mm_struct *mm = info->mm;
1061 		struct vm_area_struct *vma;
1062 
1063 		if (err && is_register)
1064 			goto free;
1065 
1066 		mmap_write_lock(mm);
1067 		vma = find_vma(mm, info->vaddr);
1068 		if (!vma || !valid_vma(vma, is_register) ||
1069 		    file_inode(vma->vm_file) != uprobe->inode)
1070 			goto unlock;
1071 
1072 		if (vma->vm_start > info->vaddr ||
1073 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1074 			goto unlock;
1075 
1076 		if (is_register) {
1077 			/* consult only the "caller", new consumer. */
1078 			if (consumer_filter(new,
1079 					UPROBE_FILTER_REGISTER, mm))
1080 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1081 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1082 			if (!filter_chain(uprobe,
1083 					UPROBE_FILTER_UNREGISTER, mm))
1084 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1085 		}
1086 
1087  unlock:
1088 		mmap_write_unlock(mm);
1089  free:
1090 		mmput(mm);
1091 		info = free_map_info(info);
1092 	}
1093  out:
1094 	percpu_up_write(&dup_mmap_sem);
1095 	return err;
1096 }
1097 
1098 static void
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)1099 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1100 {
1101 	int err;
1102 
1103 	if (WARN_ON(!consumer_del(uprobe, uc)))
1104 		return;
1105 
1106 	err = register_for_each_vma(uprobe, NULL);
1107 	/* TODO : cant unregister? schedule a worker thread */
1108 	if (!uprobe->consumers && !err)
1109 		delete_uprobe(uprobe);
1110 }
1111 
1112 /*
1113  * uprobe_unregister - unregister an already registered probe.
1114  * @inode: the file in which the probe has to be removed.
1115  * @offset: offset from the start of the file.
1116  * @uc: identify which probe if multiple probes are colocated.
1117  */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1118 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1119 {
1120 	struct uprobe *uprobe;
1121 
1122 	uprobe = find_uprobe(inode, offset);
1123 	if (WARN_ON(!uprobe))
1124 		return;
1125 
1126 	down_write(&uprobe->register_rwsem);
1127 	__uprobe_unregister(uprobe, uc);
1128 	up_write(&uprobe->register_rwsem);
1129 	put_uprobe(uprobe);
1130 }
1131 EXPORT_SYMBOL_GPL(uprobe_unregister);
1132 
1133 /*
1134  * __uprobe_register - register a probe
1135  * @inode: the file in which the probe has to be placed.
1136  * @offset: offset from the start of the file.
1137  * @uc: information on howto handle the probe..
1138  *
1139  * Apart from the access refcount, __uprobe_register() takes a creation
1140  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1141  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1142  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1143  * @uprobe even before the register operation is complete. Creation
1144  * refcount is released when the last @uc for the @uprobe
1145  * unregisters. Caller of __uprobe_register() is required to keep @inode
1146  * (and the containing mount) referenced.
1147  *
1148  * Return errno if it cannot successully install probes
1149  * else return 0 (success)
1150  */
__uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1151 static int __uprobe_register(struct inode *inode, loff_t offset,
1152 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1153 {
1154 	struct uprobe *uprobe;
1155 	int ret;
1156 
1157 	/* Uprobe must have at least one set consumer */
1158 	if (!uc->handler && !uc->ret_handler)
1159 		return -EINVAL;
1160 
1161 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1162 	if (!inode->i_mapping->a_ops->read_folio &&
1163 	    !shmem_mapping(inode->i_mapping))
1164 		return -EIO;
1165 	/* Racy, just to catch the obvious mistakes */
1166 	if (offset > i_size_read(inode))
1167 		return -EINVAL;
1168 
1169 	/*
1170 	 * This ensures that copy_from_page(), copy_to_page() and
1171 	 * __update_ref_ctr() can't cross page boundary.
1172 	 */
1173 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1174 		return -EINVAL;
1175 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1176 		return -EINVAL;
1177 
1178  retry:
1179 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1180 	if (!uprobe)
1181 		return -ENOMEM;
1182 	if (IS_ERR(uprobe))
1183 		return PTR_ERR(uprobe);
1184 
1185 	/*
1186 	 * We can race with uprobe_unregister()->delete_uprobe().
1187 	 * Check uprobe_is_active() and retry if it is false.
1188 	 */
1189 	down_write(&uprobe->register_rwsem);
1190 	ret = -EAGAIN;
1191 	if (likely(uprobe_is_active(uprobe))) {
1192 		consumer_add(uprobe, uc);
1193 		ret = register_for_each_vma(uprobe, uc);
1194 		if (ret)
1195 			__uprobe_unregister(uprobe, uc);
1196 	}
1197 	up_write(&uprobe->register_rwsem);
1198 	put_uprobe(uprobe);
1199 
1200 	if (unlikely(ret == -EAGAIN))
1201 		goto retry;
1202 	return ret;
1203 }
1204 
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1205 int uprobe_register(struct inode *inode, loff_t offset,
1206 		    struct uprobe_consumer *uc)
1207 {
1208 	return __uprobe_register(inode, offset, 0, uc);
1209 }
1210 EXPORT_SYMBOL_GPL(uprobe_register);
1211 
uprobe_register_refctr(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1212 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1213 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1214 {
1215 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1216 }
1217 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1218 
1219 /*
1220  * uprobe_apply - unregister an already registered probe.
1221  * @inode: the file in which the probe has to be removed.
1222  * @offset: offset from the start of the file.
1223  * @uc: consumer which wants to add more or remove some breakpoints
1224  * @add: add or remove the breakpoints
1225  */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)1226 int uprobe_apply(struct inode *inode, loff_t offset,
1227 			struct uprobe_consumer *uc, bool add)
1228 {
1229 	struct uprobe *uprobe;
1230 	struct uprobe_consumer *con;
1231 	int ret = -ENOENT;
1232 
1233 	uprobe = find_uprobe(inode, offset);
1234 	if (WARN_ON(!uprobe))
1235 		return ret;
1236 
1237 	down_write(&uprobe->register_rwsem);
1238 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1239 		;
1240 	if (con)
1241 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1242 	up_write(&uprobe->register_rwsem);
1243 	put_uprobe(uprobe);
1244 
1245 	return ret;
1246 }
1247 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1248 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1249 {
1250 	VMA_ITERATOR(vmi, mm, 0);
1251 	struct vm_area_struct *vma;
1252 	int err = 0;
1253 
1254 	mmap_read_lock(mm);
1255 	for_each_vma(vmi, vma) {
1256 		unsigned long vaddr;
1257 		loff_t offset;
1258 
1259 		if (!valid_vma(vma, false) ||
1260 		    file_inode(vma->vm_file) != uprobe->inode)
1261 			continue;
1262 
1263 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1264 		if (uprobe->offset <  offset ||
1265 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1266 			continue;
1267 
1268 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1269 		err |= remove_breakpoint(uprobe, mm, vaddr);
1270 	}
1271 	mmap_read_unlock(mm);
1272 
1273 	return err;
1274 }
1275 
1276 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1277 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1278 {
1279 	struct rb_node *n = uprobes_tree.rb_node;
1280 
1281 	while (n) {
1282 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1283 
1284 		if (inode < u->inode) {
1285 			n = n->rb_left;
1286 		} else if (inode > u->inode) {
1287 			n = n->rb_right;
1288 		} else {
1289 			if (max < u->offset)
1290 				n = n->rb_left;
1291 			else if (min > u->offset)
1292 				n = n->rb_right;
1293 			else
1294 				break;
1295 		}
1296 	}
1297 
1298 	return n;
1299 }
1300 
1301 /*
1302  * For a given range in vma, build a list of probes that need to be inserted.
1303  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1304 static void build_probe_list(struct inode *inode,
1305 				struct vm_area_struct *vma,
1306 				unsigned long start, unsigned long end,
1307 				struct list_head *head)
1308 {
1309 	loff_t min, max;
1310 	struct rb_node *n, *t;
1311 	struct uprobe *u;
1312 
1313 	INIT_LIST_HEAD(head);
1314 	min = vaddr_to_offset(vma, start);
1315 	max = min + (end - start) - 1;
1316 
1317 	spin_lock(&uprobes_treelock);
1318 	n = find_node_in_range(inode, min, max);
1319 	if (n) {
1320 		for (t = n; t; t = rb_prev(t)) {
1321 			u = rb_entry(t, struct uprobe, rb_node);
1322 			if (u->inode != inode || u->offset < min)
1323 				break;
1324 			list_add(&u->pending_list, head);
1325 			get_uprobe(u);
1326 		}
1327 		for (t = n; (t = rb_next(t)); ) {
1328 			u = rb_entry(t, struct uprobe, rb_node);
1329 			if (u->inode != inode || u->offset > max)
1330 				break;
1331 			list_add(&u->pending_list, head);
1332 			get_uprobe(u);
1333 		}
1334 	}
1335 	spin_unlock(&uprobes_treelock);
1336 }
1337 
1338 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1339 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1340 {
1341 	struct list_head *pos, *q;
1342 	struct delayed_uprobe *du;
1343 	unsigned long vaddr;
1344 	int ret = 0, err = 0;
1345 
1346 	mutex_lock(&delayed_uprobe_lock);
1347 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1348 		du = list_entry(pos, struct delayed_uprobe, list);
1349 
1350 		if (du->mm != vma->vm_mm ||
1351 		    !valid_ref_ctr_vma(du->uprobe, vma))
1352 			continue;
1353 
1354 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1355 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1356 		if (ret) {
1357 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1358 			if (!err)
1359 				err = ret;
1360 		}
1361 		delayed_uprobe_delete(du);
1362 	}
1363 	mutex_unlock(&delayed_uprobe_lock);
1364 	return err;
1365 }
1366 
1367 /*
1368  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1369  *
1370  * Currently we ignore all errors and always return 0, the callers
1371  * can't handle the failure anyway.
1372  */
uprobe_mmap(struct vm_area_struct * vma)1373 int uprobe_mmap(struct vm_area_struct *vma)
1374 {
1375 	struct list_head tmp_list;
1376 	struct uprobe *uprobe, *u;
1377 	struct inode *inode;
1378 
1379 	if (no_uprobe_events())
1380 		return 0;
1381 
1382 	if (vma->vm_file &&
1383 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1384 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1385 		delayed_ref_ctr_inc(vma);
1386 
1387 	if (!valid_vma(vma, true))
1388 		return 0;
1389 
1390 	inode = file_inode(vma->vm_file);
1391 	if (!inode)
1392 		return 0;
1393 
1394 	mutex_lock(uprobes_mmap_hash(inode));
1395 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1396 	/*
1397 	 * We can race with uprobe_unregister(), this uprobe can be already
1398 	 * removed. But in this case filter_chain() must return false, all
1399 	 * consumers have gone away.
1400 	 */
1401 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1402 		if (!fatal_signal_pending(current) &&
1403 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1404 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1405 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1406 		}
1407 		put_uprobe(uprobe);
1408 	}
1409 	mutex_unlock(uprobes_mmap_hash(inode));
1410 
1411 	return 0;
1412 }
1413 
1414 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1415 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1416 {
1417 	loff_t min, max;
1418 	struct inode *inode;
1419 	struct rb_node *n;
1420 
1421 	inode = file_inode(vma->vm_file);
1422 
1423 	min = vaddr_to_offset(vma, start);
1424 	max = min + (end - start) - 1;
1425 
1426 	spin_lock(&uprobes_treelock);
1427 	n = find_node_in_range(inode, min, max);
1428 	spin_unlock(&uprobes_treelock);
1429 
1430 	return !!n;
1431 }
1432 
1433 /*
1434  * Called in context of a munmap of a vma.
1435  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1436 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1437 {
1438 	if (no_uprobe_events() || !valid_vma(vma, false))
1439 		return;
1440 
1441 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1442 		return;
1443 
1444 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1445 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1446 		return;
1447 
1448 	if (vma_has_uprobes(vma, start, end))
1449 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1450 }
1451 
1452 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1453 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1454 {
1455 	struct vm_area_struct *vma;
1456 	int ret;
1457 
1458 	if (mmap_write_lock_killable(mm))
1459 		return -EINTR;
1460 
1461 	if (mm->uprobes_state.xol_area) {
1462 		ret = -EALREADY;
1463 		goto fail;
1464 	}
1465 
1466 	if (!area->vaddr) {
1467 		/* Try to map as high as possible, this is only a hint. */
1468 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1469 						PAGE_SIZE, 0, 0);
1470 		if (IS_ERR_VALUE(area->vaddr)) {
1471 			ret = area->vaddr;
1472 			goto fail;
1473 		}
1474 	}
1475 
1476 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1477 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1478 				&area->xol_mapping);
1479 	if (IS_ERR(vma)) {
1480 		ret = PTR_ERR(vma);
1481 		goto fail;
1482 	}
1483 
1484 	ret = 0;
1485 	/* pairs with get_xol_area() */
1486 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1487  fail:
1488 	mmap_write_unlock(mm);
1489 
1490 	return ret;
1491 }
1492 
__create_xol_area(unsigned long vaddr)1493 static struct xol_area *__create_xol_area(unsigned long vaddr)
1494 {
1495 	struct mm_struct *mm = current->mm;
1496 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1497 	struct xol_area *area;
1498 
1499 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1500 	if (unlikely(!area))
1501 		goto out;
1502 
1503 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1504 			       GFP_KERNEL);
1505 	if (!area->bitmap)
1506 		goto free_area;
1507 
1508 	area->xol_mapping.name = "[uprobes]";
1509 	area->xol_mapping.pages = area->pages;
1510 	area->pages[0] = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1511 	if (!area->pages[0])
1512 		goto free_bitmap;
1513 	area->pages[1] = NULL;
1514 
1515 	area->vaddr = vaddr;
1516 	init_waitqueue_head(&area->wq);
1517 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1518 	set_bit(0, area->bitmap);
1519 	atomic_set(&area->slot_count, 1);
1520 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1521 
1522 	if (!xol_add_vma(mm, area))
1523 		return area;
1524 
1525 	__free_page(area->pages[0]);
1526  free_bitmap:
1527 	kfree(area->bitmap);
1528  free_area:
1529 	kfree(area);
1530  out:
1531 	return NULL;
1532 }
1533 
1534 /*
1535  * get_xol_area - Allocate process's xol_area if necessary.
1536  * This area will be used for storing instructions for execution out of line.
1537  *
1538  * Returns the allocated area or NULL.
1539  */
get_xol_area(void)1540 static struct xol_area *get_xol_area(void)
1541 {
1542 	struct mm_struct *mm = current->mm;
1543 	struct xol_area *area;
1544 
1545 	if (!mm->uprobes_state.xol_area)
1546 		__create_xol_area(0);
1547 
1548 	/* Pairs with xol_add_vma() smp_store_release() */
1549 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1550 	return area;
1551 }
1552 
1553 /*
1554  * uprobe_clear_state - Free the area allocated for slots.
1555  */
uprobe_clear_state(struct mm_struct * mm)1556 void uprobe_clear_state(struct mm_struct *mm)
1557 {
1558 	struct xol_area *area = mm->uprobes_state.xol_area;
1559 
1560 	mutex_lock(&delayed_uprobe_lock);
1561 	delayed_uprobe_remove(NULL, mm);
1562 	mutex_unlock(&delayed_uprobe_lock);
1563 
1564 	if (!area)
1565 		return;
1566 
1567 	put_page(area->pages[0]);
1568 	kfree(area->bitmap);
1569 	kfree(area);
1570 }
1571 
uprobe_start_dup_mmap(void)1572 void uprobe_start_dup_mmap(void)
1573 {
1574 	percpu_down_read(&dup_mmap_sem);
1575 }
1576 
uprobe_end_dup_mmap(void)1577 void uprobe_end_dup_mmap(void)
1578 {
1579 	percpu_up_read(&dup_mmap_sem);
1580 }
1581 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1582 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1583 {
1584 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1585 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1586 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1587 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1588 	}
1589 }
1590 
1591 /*
1592  *  - search for a free slot.
1593  */
xol_take_insn_slot(struct xol_area * area)1594 static unsigned long xol_take_insn_slot(struct xol_area *area)
1595 {
1596 	unsigned long slot_addr;
1597 	int slot_nr;
1598 
1599 	do {
1600 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1601 		if (slot_nr < UINSNS_PER_PAGE) {
1602 			if (!test_and_set_bit(slot_nr, area->bitmap))
1603 				break;
1604 
1605 			slot_nr = UINSNS_PER_PAGE;
1606 			continue;
1607 		}
1608 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1609 	} while (slot_nr >= UINSNS_PER_PAGE);
1610 
1611 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1612 	atomic_inc(&area->slot_count);
1613 
1614 	return slot_addr;
1615 }
1616 
1617 /*
1618  * xol_get_insn_slot - allocate a slot for xol.
1619  * Returns the allocated slot address or 0.
1620  */
xol_get_insn_slot(struct uprobe * uprobe)1621 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1622 {
1623 	struct xol_area *area;
1624 	unsigned long xol_vaddr;
1625 
1626 	area = get_xol_area();
1627 	if (!area)
1628 		return 0;
1629 
1630 	xol_vaddr = xol_take_insn_slot(area);
1631 	if (unlikely(!xol_vaddr))
1632 		return 0;
1633 
1634 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1635 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1636 
1637 	return xol_vaddr;
1638 }
1639 
1640 /*
1641  * xol_free_insn_slot - If slot was earlier allocated by
1642  * @xol_get_insn_slot(), make the slot available for
1643  * subsequent requests.
1644  */
xol_free_insn_slot(struct task_struct * tsk)1645 static void xol_free_insn_slot(struct task_struct *tsk)
1646 {
1647 	struct xol_area *area;
1648 	unsigned long vma_end;
1649 	unsigned long slot_addr;
1650 
1651 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1652 		return;
1653 
1654 	slot_addr = tsk->utask->xol_vaddr;
1655 	if (unlikely(!slot_addr))
1656 		return;
1657 
1658 	area = tsk->mm->uprobes_state.xol_area;
1659 	vma_end = area->vaddr + PAGE_SIZE;
1660 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1661 		unsigned long offset;
1662 		int slot_nr;
1663 
1664 		offset = slot_addr - area->vaddr;
1665 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1666 		if (slot_nr >= UINSNS_PER_PAGE)
1667 			return;
1668 
1669 		clear_bit(slot_nr, area->bitmap);
1670 		atomic_dec(&area->slot_count);
1671 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1672 		if (waitqueue_active(&area->wq))
1673 			wake_up(&area->wq);
1674 
1675 		tsk->utask->xol_vaddr = 0;
1676 	}
1677 }
1678 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1679 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1680 				  void *src, unsigned long len)
1681 {
1682 	/* Initialize the slot */
1683 	copy_to_page(page, vaddr, src, len);
1684 
1685 	/*
1686 	 * We probably need flush_icache_user_page() but it needs vma.
1687 	 * This should work on most of architectures by default. If
1688 	 * architecture needs to do something different it can define
1689 	 * its own version of the function.
1690 	 */
1691 	flush_dcache_page(page);
1692 }
1693 
1694 /**
1695  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1696  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1697  * instruction.
1698  * Return the address of the breakpoint instruction.
1699  */
uprobe_get_swbp_addr(struct pt_regs * regs)1700 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1701 {
1702 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1703 }
1704 
uprobe_get_trap_addr(struct pt_regs * regs)1705 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1706 {
1707 	struct uprobe_task *utask = current->utask;
1708 
1709 	if (unlikely(utask && utask->active_uprobe))
1710 		return utask->vaddr;
1711 
1712 	return instruction_pointer(regs);
1713 }
1714 
free_ret_instance(struct return_instance * ri)1715 static struct return_instance *free_ret_instance(struct return_instance *ri)
1716 {
1717 	struct return_instance *next = ri->next;
1718 	put_uprobe(ri->uprobe);
1719 	kfree(ri);
1720 	return next;
1721 }
1722 
1723 /*
1724  * Called with no locks held.
1725  * Called in context of an exiting or an exec-ing thread.
1726  */
uprobe_free_utask(struct task_struct * t)1727 void uprobe_free_utask(struct task_struct *t)
1728 {
1729 	struct uprobe_task *utask = t->utask;
1730 	struct return_instance *ri;
1731 
1732 	if (!utask)
1733 		return;
1734 
1735 	t->utask = NULL;
1736 	if (utask->active_uprobe)
1737 		put_uprobe(utask->active_uprobe);
1738 
1739 	ri = utask->return_instances;
1740 	while (ri)
1741 		ri = free_ret_instance(ri);
1742 
1743 	xol_free_insn_slot(t);
1744 	kfree(utask);
1745 }
1746 
1747 /*
1748  * Allocate a uprobe_task object for the task if necessary.
1749  * Called when the thread hits a breakpoint.
1750  *
1751  * Returns:
1752  * - pointer to new uprobe_task on success
1753  * - NULL otherwise
1754  */
get_utask(void)1755 static struct uprobe_task *get_utask(void)
1756 {
1757 	if (!current->utask)
1758 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1759 	return current->utask;
1760 }
1761 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1762 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1763 {
1764 	struct uprobe_task *n_utask;
1765 	struct return_instance **p, *o, *n;
1766 
1767 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1768 	if (!n_utask)
1769 		return -ENOMEM;
1770 	t->utask = n_utask;
1771 
1772 	p = &n_utask->return_instances;
1773 	for (o = o_utask->return_instances; o; o = o->next) {
1774 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1775 		if (!n)
1776 			return -ENOMEM;
1777 
1778 		*n = *o;
1779 		get_uprobe(n->uprobe);
1780 		n->next = NULL;
1781 
1782 		*p = n;
1783 		p = &n->next;
1784 		n_utask->depth++;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
uprobe_warn(struct task_struct * t,const char * msg)1790 static void uprobe_warn(struct task_struct *t, const char *msg)
1791 {
1792 	pr_warn("uprobe: %s:%d failed to %s\n",
1793 			current->comm, current->pid, msg);
1794 }
1795 
dup_xol_work(struct callback_head * work)1796 static void dup_xol_work(struct callback_head *work)
1797 {
1798 	if (current->flags & PF_EXITING)
1799 		return;
1800 
1801 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1802 			!fatal_signal_pending(current))
1803 		uprobe_warn(current, "dup xol area");
1804 }
1805 
1806 /*
1807  * Called in context of a new clone/fork from copy_process.
1808  */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1809 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1810 {
1811 	struct uprobe_task *utask = current->utask;
1812 	struct mm_struct *mm = current->mm;
1813 	struct xol_area *area;
1814 
1815 	t->utask = NULL;
1816 
1817 	if (!utask || !utask->return_instances)
1818 		return;
1819 
1820 	if (mm == t->mm && !(flags & CLONE_VFORK))
1821 		return;
1822 
1823 	if (dup_utask(t, utask))
1824 		return uprobe_warn(t, "dup ret instances");
1825 
1826 	/* The task can fork() after dup_xol_work() fails */
1827 	area = mm->uprobes_state.xol_area;
1828 	if (!area)
1829 		return uprobe_warn(t, "dup xol area");
1830 
1831 	if (mm == t->mm)
1832 		return;
1833 
1834 	t->utask->dup_xol_addr = area->vaddr;
1835 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1836 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1837 }
1838 
1839 /*
1840  * Current area->vaddr notion assume the trampoline address is always
1841  * equal area->vaddr.
1842  *
1843  * Returns -1 in case the xol_area is not allocated.
1844  */
get_trampoline_vaddr(void)1845 static unsigned long get_trampoline_vaddr(void)
1846 {
1847 	struct xol_area *area;
1848 	unsigned long trampoline_vaddr = -1;
1849 
1850 	/* Pairs with xol_add_vma() smp_store_release() */
1851 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1852 	if (area)
1853 		trampoline_vaddr = area->vaddr;
1854 
1855 	return trampoline_vaddr;
1856 }
1857 
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1858 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1859 					struct pt_regs *regs)
1860 {
1861 	struct return_instance *ri = utask->return_instances;
1862 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1863 
1864 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1865 		ri = free_ret_instance(ri);
1866 		utask->depth--;
1867 	}
1868 	utask->return_instances = ri;
1869 }
1870 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1871 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1872 {
1873 	struct return_instance *ri;
1874 	struct uprobe_task *utask;
1875 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1876 	bool chained;
1877 
1878 	if (!get_xol_area())
1879 		return;
1880 
1881 	utask = get_utask();
1882 	if (!utask)
1883 		return;
1884 
1885 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1886 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1887 				" nestedness limit pid/tgid=%d/%d\n",
1888 				current->pid, current->tgid);
1889 		return;
1890 	}
1891 
1892 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1893 	if (!ri)
1894 		return;
1895 
1896 	trampoline_vaddr = get_trampoline_vaddr();
1897 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1898 	if (orig_ret_vaddr == -1)
1899 		goto fail;
1900 
1901 	/* drop the entries invalidated by longjmp() */
1902 	chained = (orig_ret_vaddr == trampoline_vaddr);
1903 	cleanup_return_instances(utask, chained, regs);
1904 
1905 	/*
1906 	 * We don't want to keep trampoline address in stack, rather keep the
1907 	 * original return address of first caller thru all the consequent
1908 	 * instances. This also makes breakpoint unwrapping easier.
1909 	 */
1910 	if (chained) {
1911 		if (!utask->return_instances) {
1912 			/*
1913 			 * This situation is not possible. Likely we have an
1914 			 * attack from user-space.
1915 			 */
1916 			uprobe_warn(current, "handle tail call");
1917 			goto fail;
1918 		}
1919 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1920 	}
1921 
1922 	ri->uprobe = get_uprobe(uprobe);
1923 	ri->func = instruction_pointer(regs);
1924 	ri->stack = user_stack_pointer(regs);
1925 	ri->orig_ret_vaddr = orig_ret_vaddr;
1926 	ri->chained = chained;
1927 
1928 	utask->depth++;
1929 	ri->next = utask->return_instances;
1930 	utask->return_instances = ri;
1931 
1932 	return;
1933  fail:
1934 	kfree(ri);
1935 }
1936 
1937 /* Prepare to single-step probed instruction out of line. */
1938 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1939 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1940 {
1941 	struct uprobe_task *utask;
1942 	unsigned long xol_vaddr;
1943 	int err;
1944 
1945 	utask = get_utask();
1946 	if (!utask)
1947 		return -ENOMEM;
1948 
1949 	xol_vaddr = xol_get_insn_slot(uprobe);
1950 	if (!xol_vaddr)
1951 		return -ENOMEM;
1952 
1953 	utask->xol_vaddr = xol_vaddr;
1954 	utask->vaddr = bp_vaddr;
1955 
1956 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1957 	if (unlikely(err)) {
1958 		xol_free_insn_slot(current);
1959 		return err;
1960 	}
1961 
1962 	utask->active_uprobe = uprobe;
1963 	utask->state = UTASK_SSTEP;
1964 	return 0;
1965 }
1966 
1967 /*
1968  * If we are singlestepping, then ensure this thread is not connected to
1969  * non-fatal signals until completion of singlestep.  When xol insn itself
1970  * triggers the signal,  restart the original insn even if the task is
1971  * already SIGKILL'ed (since coredump should report the correct ip).  This
1972  * is even more important if the task has a handler for SIGSEGV/etc, The
1973  * _same_ instruction should be repeated again after return from the signal
1974  * handler, and SSTEP can never finish in this case.
1975  */
uprobe_deny_signal(void)1976 bool uprobe_deny_signal(void)
1977 {
1978 	struct task_struct *t = current;
1979 	struct uprobe_task *utask = t->utask;
1980 
1981 	if (likely(!utask || !utask->active_uprobe))
1982 		return false;
1983 
1984 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1985 
1986 	if (task_sigpending(t)) {
1987 		spin_lock_irq(&t->sighand->siglock);
1988 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1989 		spin_unlock_irq(&t->sighand->siglock);
1990 
1991 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1992 			utask->state = UTASK_SSTEP_TRAPPED;
1993 			set_tsk_thread_flag(t, TIF_UPROBE);
1994 		}
1995 	}
1996 
1997 	return true;
1998 }
1999 
mmf_recalc_uprobes(struct mm_struct * mm)2000 static void mmf_recalc_uprobes(struct mm_struct *mm)
2001 {
2002 	VMA_ITERATOR(vmi, mm, 0);
2003 	struct vm_area_struct *vma;
2004 
2005 	for_each_vma(vmi, vma) {
2006 		if (!valid_vma(vma, false))
2007 			continue;
2008 		/*
2009 		 * This is not strictly accurate, we can race with
2010 		 * uprobe_unregister() and see the already removed
2011 		 * uprobe if delete_uprobe() was not yet called.
2012 		 * Or this uprobe can be filtered out.
2013 		 */
2014 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2015 			return;
2016 	}
2017 
2018 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2019 }
2020 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2021 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2022 {
2023 	struct page *page;
2024 	uprobe_opcode_t opcode;
2025 	int result;
2026 
2027 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2028 		return -EINVAL;
2029 
2030 	pagefault_disable();
2031 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2032 	pagefault_enable();
2033 
2034 	if (likely(result == 0))
2035 		goto out;
2036 
2037 	/*
2038 	 * The NULL 'tsk' here ensures that any faults that occur here
2039 	 * will not be accounted to the task.  'mm' *is* current->mm,
2040 	 * but we treat this as a 'remote' access since it is
2041 	 * essentially a kernel access to the memory.
2042 	 */
2043 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2044 	if (result < 0)
2045 		return result;
2046 
2047 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2048 	put_page(page);
2049  out:
2050 	/* This needs to return true for any variant of the trap insn */
2051 	return is_trap_insn(&opcode);
2052 }
2053 
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)2054 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2055 {
2056 	struct mm_struct *mm = current->mm;
2057 	struct uprobe *uprobe = NULL;
2058 	struct vm_area_struct *vma;
2059 
2060 	mmap_read_lock(mm);
2061 	vma = vma_lookup(mm, bp_vaddr);
2062 	if (vma) {
2063 		if (valid_vma(vma, false)) {
2064 			struct inode *inode = file_inode(vma->vm_file);
2065 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2066 
2067 			uprobe = find_uprobe(inode, offset);
2068 		}
2069 
2070 		if (!uprobe)
2071 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2072 	} else {
2073 		*is_swbp = -EFAULT;
2074 	}
2075 
2076 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2077 		mmf_recalc_uprobes(mm);
2078 	mmap_read_unlock(mm);
2079 
2080 	return uprobe;
2081 }
2082 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2083 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2084 {
2085 	struct uprobe_consumer *uc;
2086 	int remove = UPROBE_HANDLER_REMOVE;
2087 	bool need_prep = false; /* prepare return uprobe, when needed */
2088 
2089 	down_read(&uprobe->register_rwsem);
2090 	current->utask->auprobe = &uprobe->arch;
2091 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2092 		int rc = 0;
2093 
2094 		if (uc->handler) {
2095 			rc = uc->handler(uc, regs);
2096 			WARN(rc & ~UPROBE_HANDLER_MASK,
2097 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2098 		}
2099 
2100 		if (uc->ret_handler)
2101 			need_prep = true;
2102 
2103 		remove &= rc;
2104 	}
2105 	current->utask->auprobe = NULL;
2106 
2107 	if (need_prep && !remove)
2108 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2109 
2110 	if (remove && uprobe->consumers) {
2111 		WARN_ON(!uprobe_is_active(uprobe));
2112 		unapply_uprobe(uprobe, current->mm);
2113 	}
2114 	up_read(&uprobe->register_rwsem);
2115 }
2116 
2117 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2118 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2119 {
2120 	struct uprobe *uprobe = ri->uprobe;
2121 	struct uprobe_consumer *uc;
2122 
2123 	down_read(&uprobe->register_rwsem);
2124 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2125 		if (uc->ret_handler)
2126 			uc->ret_handler(uc, ri->func, regs);
2127 	}
2128 	up_read(&uprobe->register_rwsem);
2129 }
2130 
find_next_ret_chain(struct return_instance * ri)2131 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2132 {
2133 	bool chained;
2134 
2135 	do {
2136 		chained = ri->chained;
2137 		ri = ri->next;	/* can't be NULL if chained */
2138 	} while (chained);
2139 
2140 	return ri;
2141 }
2142 
handle_trampoline(struct pt_regs * regs)2143 static void handle_trampoline(struct pt_regs *regs)
2144 {
2145 	struct uprobe_task *utask;
2146 	struct return_instance *ri, *next;
2147 	bool valid;
2148 
2149 	utask = current->utask;
2150 	if (!utask)
2151 		goto sigill;
2152 
2153 	ri = utask->return_instances;
2154 	if (!ri)
2155 		goto sigill;
2156 
2157 	do {
2158 		/*
2159 		 * We should throw out the frames invalidated by longjmp().
2160 		 * If this chain is valid, then the next one should be alive
2161 		 * or NULL; the latter case means that nobody but ri->func
2162 		 * could hit this trampoline on return. TODO: sigaltstack().
2163 		 */
2164 		next = find_next_ret_chain(ri);
2165 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2166 
2167 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2168 		do {
2169 			if (valid)
2170 				handle_uretprobe_chain(ri, regs);
2171 			ri = free_ret_instance(ri);
2172 			utask->depth--;
2173 		} while (ri != next);
2174 	} while (!valid);
2175 
2176 	utask->return_instances = ri;
2177 	return;
2178 
2179  sigill:
2180 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2181 	force_sig(SIGILL);
2182 
2183 }
2184 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2185 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2186 {
2187 	return false;
2188 }
2189 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2190 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2191 					struct pt_regs *regs)
2192 {
2193 	return true;
2194 }
2195 
2196 /*
2197  * Run handler and ask thread to singlestep.
2198  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2199  */
handle_swbp(struct pt_regs * regs)2200 static void handle_swbp(struct pt_regs *regs)
2201 {
2202 	struct uprobe *uprobe;
2203 	unsigned long bp_vaddr;
2204 	int is_swbp;
2205 
2206 	bp_vaddr = uprobe_get_swbp_addr(regs);
2207 	if (bp_vaddr == get_trampoline_vaddr())
2208 		return handle_trampoline(regs);
2209 
2210 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2211 	if (!uprobe) {
2212 		if (is_swbp > 0) {
2213 			/* No matching uprobe; signal SIGTRAP. */
2214 			force_sig(SIGTRAP);
2215 		} else {
2216 			/*
2217 			 * Either we raced with uprobe_unregister() or we can't
2218 			 * access this memory. The latter is only possible if
2219 			 * another thread plays with our ->mm. In both cases
2220 			 * we can simply restart. If this vma was unmapped we
2221 			 * can pretend this insn was not executed yet and get
2222 			 * the (correct) SIGSEGV after restart.
2223 			 */
2224 			instruction_pointer_set(regs, bp_vaddr);
2225 		}
2226 		return;
2227 	}
2228 
2229 	/* change it in advance for ->handler() and restart */
2230 	instruction_pointer_set(regs, bp_vaddr);
2231 
2232 	/*
2233 	 * TODO: move copy_insn/etc into _register and remove this hack.
2234 	 * After we hit the bp, _unregister + _register can install the
2235 	 * new and not-yet-analyzed uprobe at the same address, restart.
2236 	 */
2237 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2238 		goto out;
2239 
2240 	/*
2241 	 * Pairs with the smp_wmb() in prepare_uprobe().
2242 	 *
2243 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2244 	 * we must also see the stores to &uprobe->arch performed by the
2245 	 * prepare_uprobe() call.
2246 	 */
2247 	smp_rmb();
2248 
2249 	/* Tracing handlers use ->utask to communicate with fetch methods */
2250 	if (!get_utask())
2251 		goto out;
2252 
2253 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2254 		goto out;
2255 
2256 	handler_chain(uprobe, regs);
2257 
2258 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2259 		goto out;
2260 
2261 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2262 		return;
2263 
2264 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2265 out:
2266 	put_uprobe(uprobe);
2267 }
2268 
2269 /*
2270  * Perform required fix-ups and disable singlestep.
2271  * Allow pending signals to take effect.
2272  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2273 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2274 {
2275 	struct uprobe *uprobe;
2276 	int err = 0;
2277 
2278 	uprobe = utask->active_uprobe;
2279 	if (utask->state == UTASK_SSTEP_ACK)
2280 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2281 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2282 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2283 	else
2284 		WARN_ON_ONCE(1);
2285 
2286 	put_uprobe(uprobe);
2287 	utask->active_uprobe = NULL;
2288 	utask->state = UTASK_RUNNING;
2289 	xol_free_insn_slot(current);
2290 
2291 	spin_lock_irq(&current->sighand->siglock);
2292 	recalc_sigpending(); /* see uprobe_deny_signal() */
2293 	spin_unlock_irq(&current->sighand->siglock);
2294 
2295 	if (unlikely(err)) {
2296 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2297 		force_sig(SIGILL);
2298 	}
2299 }
2300 
2301 /*
2302  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2303  * allows the thread to return from interrupt. After that handle_swbp()
2304  * sets utask->active_uprobe.
2305  *
2306  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2307  * and allows the thread to return from interrupt.
2308  *
2309  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2310  * uprobe_notify_resume().
2311  */
uprobe_notify_resume(struct pt_regs * regs)2312 void uprobe_notify_resume(struct pt_regs *regs)
2313 {
2314 	struct uprobe_task *utask;
2315 
2316 	clear_thread_flag(TIF_UPROBE);
2317 
2318 	utask = current->utask;
2319 	if (utask && utask->active_uprobe)
2320 		handle_singlestep(utask, regs);
2321 	else
2322 		handle_swbp(regs);
2323 }
2324 
2325 /*
2326  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2327  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2328  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2329 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2330 {
2331 	if (!current->mm)
2332 		return 0;
2333 
2334 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2335 	    (!current->utask || !current->utask->return_instances))
2336 		return 0;
2337 
2338 	set_thread_flag(TIF_UPROBE);
2339 	return 1;
2340 }
2341 
2342 /*
2343  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2344  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2345  */
uprobe_post_sstep_notifier(struct pt_regs * regs)2346 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2347 {
2348 	struct uprobe_task *utask = current->utask;
2349 
2350 	if (!current->mm || !utask || !utask->active_uprobe)
2351 		/* task is currently not uprobed */
2352 		return 0;
2353 
2354 	utask->state = UTASK_SSTEP_ACK;
2355 	set_thread_flag(TIF_UPROBE);
2356 	return 1;
2357 }
2358 
2359 static struct notifier_block uprobe_exception_nb = {
2360 	.notifier_call		= arch_uprobe_exception_notify,
2361 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2362 };
2363 
uprobes_init(void)2364 void __init uprobes_init(void)
2365 {
2366 	int i;
2367 
2368 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2369 		mutex_init(&uprobes_mmap_mutex[i]);
2370 
2371 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2372 }
2373