xref: /openbmc/linux/arch/x86/entry/entry_32.S (revision 09138ba68c1487a42c400485e999386a74911dbc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  Copyright (C) 1991,1992  Linus Torvalds
4  *
5  * entry_32.S contains the system-call and low-level fault and trap handling routines.
6  *
7  * Stack layout while running C code:
8  *	ptrace needs to have all registers on the stack.
9  *	If the order here is changed, it needs to be
10  *	updated in fork.c:copy_process(), signal.c:do_signal(),
11  *	ptrace.c and ptrace.h
12  *
13  *	 0(%esp) - %ebx
14  *	 4(%esp) - %ecx
15  *	 8(%esp) - %edx
16  *	 C(%esp) - %esi
17  *	10(%esp) - %edi
18  *	14(%esp) - %ebp
19  *	18(%esp) - %eax
20  *	1C(%esp) - %ds
21  *	20(%esp) - %es
22  *	24(%esp) - %fs
23  *	28(%esp) - unused -- was %gs on old stackprotector kernels
24  *	2C(%esp) - orig_eax
25  *	30(%esp) - %eip
26  *	34(%esp) - %cs
27  *	38(%esp) - %eflags
28  *	3C(%esp) - %oldesp
29  *	40(%esp) - %oldss
30  */
31 
32 #include <linux/linkage.h>
33 #include <linux/err.h>
34 #include <asm/thread_info.h>
35 #include <asm/irqflags.h>
36 #include <asm/errno.h>
37 #include <asm/segment.h>
38 #include <asm/smp.h>
39 #include <asm/percpu.h>
40 #include <asm/processor-flags.h>
41 #include <asm/irq_vectors.h>
42 #include <asm/cpufeatures.h>
43 #include <asm/alternative.h>
44 #include <asm/asm.h>
45 #include <asm/smap.h>
46 #include <asm/frame.h>
47 #include <asm/trapnr.h>
48 #include <asm/nospec-branch.h>
49 
50 #include "calling.h"
51 
52 	.section .entry.text, "ax"
53 
54 #define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
55 
56 /* Unconditionally switch to user cr3 */
57 .macro SWITCH_TO_USER_CR3 scratch_reg:req
58 	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
59 
60 	movl	%cr3, \scratch_reg
61 	orl	$PTI_SWITCH_MASK, \scratch_reg
62 	movl	\scratch_reg, %cr3
63 .Lend_\@:
64 .endm
65 
66 .macro BUG_IF_WRONG_CR3 no_user_check=0
67 #ifdef CONFIG_DEBUG_ENTRY
68 	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
69 	.if \no_user_check == 0
70 	/* coming from usermode? */
71 	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
72 	jz	.Lend_\@
73 	.endif
74 	/* On user-cr3? */
75 	movl	%cr3, %eax
76 	testl	$PTI_SWITCH_MASK, %eax
77 	jnz	.Lend_\@
78 	/* From userspace with kernel cr3 - BUG */
79 	ud2
80 .Lend_\@:
81 #endif
82 .endm
83 
84 /*
85  * Switch to kernel cr3 if not already loaded and return current cr3 in
86  * \scratch_reg
87  */
88 .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
89 	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
90 	movl	%cr3, \scratch_reg
91 	/* Test if we are already on kernel CR3 */
92 	testl	$PTI_SWITCH_MASK, \scratch_reg
93 	jz	.Lend_\@
94 	andl	$(~PTI_SWITCH_MASK), \scratch_reg
95 	movl	\scratch_reg, %cr3
96 	/* Return original CR3 in \scratch_reg */
97 	orl	$PTI_SWITCH_MASK, \scratch_reg
98 .Lend_\@:
99 .endm
100 
101 #define CS_FROM_ENTRY_STACK	(1 << 31)
102 #define CS_FROM_USER_CR3	(1 << 30)
103 #define CS_FROM_KERNEL		(1 << 29)
104 #define CS_FROM_ESPFIX		(1 << 28)
105 
106 .macro FIXUP_FRAME
107 	/*
108 	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
109 	 * Clear them in case hardware didn't do this for us.
110 	 */
111 	andl	$0x0000ffff, 4*4(%esp)
112 
113 #ifdef CONFIG_VM86
114 	testl	$X86_EFLAGS_VM, 5*4(%esp)
115 	jnz	.Lfrom_usermode_no_fixup_\@
116 #endif
117 	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
118 	jnz	.Lfrom_usermode_no_fixup_\@
119 
120 	orl	$CS_FROM_KERNEL, 4*4(%esp)
121 
122 	/*
123 	 * When we're here from kernel mode; the (exception) stack looks like:
124 	 *
125 	 *  6*4(%esp) - <previous context>
126 	 *  5*4(%esp) - flags
127 	 *  4*4(%esp) - cs
128 	 *  3*4(%esp) - ip
129 	 *  2*4(%esp) - orig_eax
130 	 *  1*4(%esp) - gs / function
131 	 *  0*4(%esp) - fs
132 	 *
133 	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
134 	 * is complete and in particular regs->sp is correct. This gives us
135 	 * the original 6 entries as gap:
136 	 *
137 	 * 14*4(%esp) - <previous context>
138 	 * 13*4(%esp) - gap / flags
139 	 * 12*4(%esp) - gap / cs
140 	 * 11*4(%esp) - gap / ip
141 	 * 10*4(%esp) - gap / orig_eax
142 	 *  9*4(%esp) - gap / gs / function
143 	 *  8*4(%esp) - gap / fs
144 	 *  7*4(%esp) - ss
145 	 *  6*4(%esp) - sp
146 	 *  5*4(%esp) - flags
147 	 *  4*4(%esp) - cs
148 	 *  3*4(%esp) - ip
149 	 *  2*4(%esp) - orig_eax
150 	 *  1*4(%esp) - gs / function
151 	 *  0*4(%esp) - fs
152 	 */
153 
154 	pushl	%ss		# ss
155 	pushl	%esp		# sp (points at ss)
156 	addl	$7*4, (%esp)	# point sp back at the previous context
157 	pushl	7*4(%esp)	# flags
158 	pushl	7*4(%esp)	# cs
159 	pushl	7*4(%esp)	# ip
160 	pushl	7*4(%esp)	# orig_eax
161 	pushl	7*4(%esp)	# gs / function
162 	pushl	7*4(%esp)	# fs
163 .Lfrom_usermode_no_fixup_\@:
164 .endm
165 
166 .macro IRET_FRAME
167 	/*
168 	 * We're called with %ds, %es, %fs, and %gs from the interrupted
169 	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
170 	 * mode and therefore have a nonzero SS base and an offset ESP,
171 	 * so any attempt to access the stack needs to use SS.  (except for
172 	 * accesses through %esp, which automatically use SS.)
173 	 */
174 	testl $CS_FROM_KERNEL, 1*4(%esp)
175 	jz .Lfinished_frame_\@
176 
177 	/*
178 	 * Reconstruct the 3 entry IRET frame right after the (modified)
179 	 * regs->sp without lowering %esp in between, such that an NMI in the
180 	 * middle doesn't scribble our stack.
181 	 */
182 	pushl	%eax
183 	pushl	%ecx
184 	movl	5*4(%esp), %eax		# (modified) regs->sp
185 
186 	movl	4*4(%esp), %ecx		# flags
187 	movl	%ecx, %ss:-1*4(%eax)
188 
189 	movl	3*4(%esp), %ecx		# cs
190 	andl	$0x0000ffff, %ecx
191 	movl	%ecx, %ss:-2*4(%eax)
192 
193 	movl	2*4(%esp), %ecx		# ip
194 	movl	%ecx, %ss:-3*4(%eax)
195 
196 	movl	1*4(%esp), %ecx		# eax
197 	movl	%ecx, %ss:-4*4(%eax)
198 
199 	popl	%ecx
200 	lea	-4*4(%eax), %esp
201 	popl	%eax
202 .Lfinished_frame_\@:
203 .endm
204 
205 .macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
206 	cld
207 .if \skip_gs == 0
208 	pushl	$0
209 .endif
210 	pushl	%fs
211 
212 	pushl	%eax
213 	movl	$(__KERNEL_PERCPU), %eax
214 	movl	%eax, %fs
215 .if \unwind_espfix > 0
216 	UNWIND_ESPFIX_STACK
217 .endif
218 	popl	%eax
219 
220 	FIXUP_FRAME
221 	pushl	%es
222 	pushl	%ds
223 	pushl	\pt_regs_ax
224 	pushl	%ebp
225 	pushl	%edi
226 	pushl	%esi
227 	pushl	%edx
228 	pushl	%ecx
229 	pushl	%ebx
230 	movl	$(__USER_DS), %edx
231 	movl	%edx, %ds
232 	movl	%edx, %es
233 	/* Switch to kernel stack if necessary */
234 .if \switch_stacks > 0
235 	SWITCH_TO_KERNEL_STACK
236 .endif
237 .endm
238 
239 .macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
240 	SAVE_ALL unwind_espfix=\unwind_espfix
241 
242 	BUG_IF_WRONG_CR3
243 
244 	/*
245 	 * Now switch the CR3 when PTI is enabled.
246 	 *
247 	 * We can enter with either user or kernel cr3, the code will
248 	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
249 	 * if necessary.
250 	 */
251 	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
252 
253 .Lend_\@:
254 .endm
255 
256 .macro RESTORE_INT_REGS
257 	popl	%ebx
258 	popl	%ecx
259 	popl	%edx
260 	popl	%esi
261 	popl	%edi
262 	popl	%ebp
263 	popl	%eax
264 .endm
265 
266 .macro RESTORE_REGS pop=0
267 	RESTORE_INT_REGS
268 1:	popl	%ds
269 2:	popl	%es
270 3:	popl	%fs
271 4:	addl	$(4 + \pop), %esp	/* pop the unused "gs" slot */
272 	IRET_FRAME
273 
274 	/*
275 	 * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
276 	 * ASM the registers are known and we can trivially hard-code them.
277 	 */
278 	_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
279 	_ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
280 	_ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
281 .endm
282 
283 .macro RESTORE_ALL_NMI cr3_reg:req pop=0
284 	/*
285 	 * Now switch the CR3 when PTI is enabled.
286 	 *
287 	 * We enter with kernel cr3 and switch the cr3 to the value
288 	 * stored on \cr3_reg, which is either a user or a kernel cr3.
289 	 */
290 	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
291 
292 	testl	$PTI_SWITCH_MASK, \cr3_reg
293 	jz	.Lswitched_\@
294 
295 	/* User cr3 in \cr3_reg - write it to hardware cr3 */
296 	movl	\cr3_reg, %cr3
297 
298 .Lswitched_\@:
299 
300 	BUG_IF_WRONG_CR3
301 
302 	RESTORE_REGS pop=\pop
303 .endm
304 
305 .macro CHECK_AND_APPLY_ESPFIX
306 #ifdef CONFIG_X86_ESPFIX32
307 #define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
308 #define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
309 
310 	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
311 
312 	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
313 	/*
314 	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
315 	 * are returning to the kernel.
316 	 * See comments in process.c:copy_thread() for details.
317 	 */
318 	movb	PT_OLDSS(%esp), %ah
319 	movb	PT_CS(%esp), %al
320 	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
321 	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
322 	jne	.Lend_\@	# returning to user-space with LDT SS
323 
324 	/*
325 	 * Setup and switch to ESPFIX stack
326 	 *
327 	 * We're returning to userspace with a 16 bit stack. The CPU will not
328 	 * restore the high word of ESP for us on executing iret... This is an
329 	 * "official" bug of all the x86-compatible CPUs, which we can work
330 	 * around to make dosemu and wine happy. We do this by preloading the
331 	 * high word of ESP with the high word of the userspace ESP while
332 	 * compensating for the offset by changing to the ESPFIX segment with
333 	 * a base address that matches for the difference.
334 	 */
335 	mov	%esp, %edx			/* load kernel esp */
336 	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
337 	mov	%dx, %ax			/* eax: new kernel esp */
338 	sub	%eax, %edx			/* offset (low word is 0) */
339 	shr	$16, %edx
340 	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
341 	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
342 	pushl	$__ESPFIX_SS
343 	pushl	%eax				/* new kernel esp */
344 	/*
345 	 * Disable interrupts, but do not irqtrace this section: we
346 	 * will soon execute iret and the tracer was already set to
347 	 * the irqstate after the IRET:
348 	 */
349 	cli
350 	lss	(%esp), %esp			/* switch to espfix segment */
351 .Lend_\@:
352 #endif /* CONFIG_X86_ESPFIX32 */
353 .endm
354 
355 /*
356  * Called with pt_regs fully populated and kernel segments loaded,
357  * so we can access PER_CPU and use the integer registers.
358  *
359  * We need to be very careful here with the %esp switch, because an NMI
360  * can happen everywhere. If the NMI handler finds itself on the
361  * entry-stack, it will overwrite the task-stack and everything we
362  * copied there. So allocate the stack-frame on the task-stack and
363  * switch to it before we do any copying.
364  */
365 
366 .macro SWITCH_TO_KERNEL_STACK
367 
368 	BUG_IF_WRONG_CR3
369 
370 	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
371 
372 	/*
373 	 * %eax now contains the entry cr3 and we carry it forward in
374 	 * that register for the time this macro runs
375 	 */
376 
377 	/* Are we on the entry stack? Bail out if not! */
378 	movl	PER_CPU_VAR(cpu_entry_area), %ecx
379 	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
380 	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
381 	cmpl	$SIZEOF_entry_stack, %ecx
382 	jae	.Lend_\@
383 
384 	/* Load stack pointer into %esi and %edi */
385 	movl	%esp, %esi
386 	movl	%esi, %edi
387 
388 	/* Move %edi to the top of the entry stack */
389 	andl	$(MASK_entry_stack), %edi
390 	addl	$(SIZEOF_entry_stack), %edi
391 
392 	/* Load top of task-stack into %edi */
393 	movl	TSS_entry2task_stack(%edi), %edi
394 
395 	/* Special case - entry from kernel mode via entry stack */
396 #ifdef CONFIG_VM86
397 	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
398 	movb	PT_CS(%esp), %cl
399 	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
400 #else
401 	movl	PT_CS(%esp), %ecx
402 	andl	$SEGMENT_RPL_MASK, %ecx
403 #endif
404 	cmpl	$USER_RPL, %ecx
405 	jb	.Lentry_from_kernel_\@
406 
407 	/* Bytes to copy */
408 	movl	$PTREGS_SIZE, %ecx
409 
410 #ifdef CONFIG_VM86
411 	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
412 	jz	.Lcopy_pt_regs_\@
413 
414 	/*
415 	 * Stack-frame contains 4 additional segment registers when
416 	 * coming from VM86 mode
417 	 */
418 	addl	$(4 * 4), %ecx
419 
420 #endif
421 .Lcopy_pt_regs_\@:
422 
423 	/* Allocate frame on task-stack */
424 	subl	%ecx, %edi
425 
426 	/* Switch to task-stack */
427 	movl	%edi, %esp
428 
429 	/*
430 	 * We are now on the task-stack and can safely copy over the
431 	 * stack-frame
432 	 */
433 	shrl	$2, %ecx
434 	cld
435 	rep movsl
436 
437 	jmp .Lend_\@
438 
439 .Lentry_from_kernel_\@:
440 
441 	/*
442 	 * This handles the case when we enter the kernel from
443 	 * kernel-mode and %esp points to the entry-stack. When this
444 	 * happens we need to switch to the task-stack to run C code,
445 	 * but switch back to the entry-stack again when we approach
446 	 * iret and return to the interrupted code-path. This usually
447 	 * happens when we hit an exception while restoring user-space
448 	 * segment registers on the way back to user-space or when the
449 	 * sysenter handler runs with eflags.tf set.
450 	 *
451 	 * When we switch to the task-stack here, we can't trust the
452 	 * contents of the entry-stack anymore, as the exception handler
453 	 * might be scheduled out or moved to another CPU. Therefore we
454 	 * copy the complete entry-stack to the task-stack and set a
455 	 * marker in the iret-frame (bit 31 of the CS dword) to detect
456 	 * what we've done on the iret path.
457 	 *
458 	 * On the iret path we copy everything back and switch to the
459 	 * entry-stack, so that the interrupted kernel code-path
460 	 * continues on the same stack it was interrupted with.
461 	 *
462 	 * Be aware that an NMI can happen anytime in this code.
463 	 *
464 	 * %esi: Entry-Stack pointer (same as %esp)
465 	 * %edi: Top of the task stack
466 	 * %eax: CR3 on kernel entry
467 	 */
468 
469 	/* Calculate number of bytes on the entry stack in %ecx */
470 	movl	%esi, %ecx
471 
472 	/* %ecx to the top of entry-stack */
473 	andl	$(MASK_entry_stack), %ecx
474 	addl	$(SIZEOF_entry_stack), %ecx
475 
476 	/* Number of bytes on the entry stack to %ecx */
477 	sub	%esi, %ecx
478 
479 	/* Mark stackframe as coming from entry stack */
480 	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
481 
482 	/*
483 	 * Test the cr3 used to enter the kernel and add a marker
484 	 * so that we can switch back to it before iret.
485 	 */
486 	testl	$PTI_SWITCH_MASK, %eax
487 	jz	.Lcopy_pt_regs_\@
488 	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
489 
490 	/*
491 	 * %esi and %edi are unchanged, %ecx contains the number of
492 	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
493 	 * the stack-frame on task-stack and copy everything over
494 	 */
495 	jmp .Lcopy_pt_regs_\@
496 
497 .Lend_\@:
498 .endm
499 
500 /*
501  * Switch back from the kernel stack to the entry stack.
502  *
503  * The %esp register must point to pt_regs on the task stack. It will
504  * first calculate the size of the stack-frame to copy, depending on
505  * whether we return to VM86 mode or not. With that it uses 'rep movsl'
506  * to copy the contents of the stack over to the entry stack.
507  *
508  * We must be very careful here, as we can't trust the contents of the
509  * task-stack once we switched to the entry-stack. When an NMI happens
510  * while on the entry-stack, the NMI handler will switch back to the top
511  * of the task stack, overwriting our stack-frame we are about to copy.
512  * Therefore we switch the stack only after everything is copied over.
513  */
514 .macro SWITCH_TO_ENTRY_STACK
515 
516 	/* Bytes to copy */
517 	movl	$PTREGS_SIZE, %ecx
518 
519 #ifdef CONFIG_VM86
520 	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
521 	jz	.Lcopy_pt_regs_\@
522 
523 	/* Additional 4 registers to copy when returning to VM86 mode */
524 	addl    $(4 * 4), %ecx
525 
526 .Lcopy_pt_regs_\@:
527 #endif
528 
529 	/* Initialize source and destination for movsl */
530 	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
531 	subl	%ecx, %edi
532 	movl	%esp, %esi
533 
534 	/* Save future stack pointer in %ebx */
535 	movl	%edi, %ebx
536 
537 	/* Copy over the stack-frame */
538 	shrl	$2, %ecx
539 	cld
540 	rep movsl
541 
542 	/*
543 	 * Switch to entry-stack - needs to happen after everything is
544 	 * copied because the NMI handler will overwrite the task-stack
545 	 * when on entry-stack
546 	 */
547 	movl	%ebx, %esp
548 
549 .Lend_\@:
550 .endm
551 
552 /*
553  * This macro handles the case when we return to kernel-mode on the iret
554  * path and have to switch back to the entry stack and/or user-cr3
555  *
556  * See the comments below the .Lentry_from_kernel_\@ label in the
557  * SWITCH_TO_KERNEL_STACK macro for more details.
558  */
559 .macro PARANOID_EXIT_TO_KERNEL_MODE
560 
561 	/*
562 	 * Test if we entered the kernel with the entry-stack. Most
563 	 * likely we did not, because this code only runs on the
564 	 * return-to-kernel path.
565 	 */
566 	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
567 	jz	.Lend_\@
568 
569 	/* Unlikely slow-path */
570 
571 	/* Clear marker from stack-frame */
572 	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
573 
574 	/* Copy the remaining task-stack contents to entry-stack */
575 	movl	%esp, %esi
576 	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
577 
578 	/* Bytes on the task-stack to ecx */
579 	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
580 	subl	%esi, %ecx
581 
582 	/* Allocate stack-frame on entry-stack */
583 	subl	%ecx, %edi
584 
585 	/*
586 	 * Save future stack-pointer, we must not switch until the
587 	 * copy is done, otherwise the NMI handler could destroy the
588 	 * contents of the task-stack we are about to copy.
589 	 */
590 	movl	%edi, %ebx
591 
592 	/* Do the copy */
593 	shrl	$2, %ecx
594 	cld
595 	rep movsl
596 
597 	/* Safe to switch to entry-stack now */
598 	movl	%ebx, %esp
599 
600 	/*
601 	 * We came from entry-stack and need to check if we also need to
602 	 * switch back to user cr3.
603 	 */
604 	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
605 	jz	.Lend_\@
606 
607 	/* Clear marker from stack-frame */
608 	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
609 
610 	SWITCH_TO_USER_CR3 scratch_reg=%eax
611 
612 .Lend_\@:
613 .endm
614 
615 /**
616  * idtentry - Macro to generate entry stubs for simple IDT entries
617  * @vector:		Vector number
618  * @asmsym:		ASM symbol for the entry point
619  * @cfunc:		C function to be called
620  * @has_error_code:	Hardware pushed error code on stack
621  */
622 .macro idtentry vector asmsym cfunc has_error_code:req
623 SYM_CODE_START(\asmsym)
624 	ASM_CLAC
625 	cld
626 
627 	.if \has_error_code == 0
628 		pushl	$0		/* Clear the error code */
629 	.endif
630 
631 	/* Push the C-function address into the GS slot */
632 	pushl	$\cfunc
633 	/* Invoke the common exception entry */
634 	jmp	handle_exception
635 SYM_CODE_END(\asmsym)
636 .endm
637 
638 .macro idtentry_irq vector cfunc
639 	.p2align CONFIG_X86_L1_CACHE_SHIFT
640 SYM_CODE_START_LOCAL(asm_\cfunc)
641 	ASM_CLAC
642 	SAVE_ALL switch_stacks=1
643 	ENCODE_FRAME_POINTER
644 	movl	%esp, %eax
645 	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
646 	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
647 	call	\cfunc
648 	jmp	handle_exception_return
649 SYM_CODE_END(asm_\cfunc)
650 .endm
651 
652 .macro idtentry_sysvec vector cfunc
653 	idtentry \vector asm_\cfunc \cfunc has_error_code=0
654 .endm
655 
656 /*
657  * Include the defines which emit the idt entries which are shared
658  * shared between 32 and 64 bit and emit the __irqentry_text_* markers
659  * so the stacktrace boundary checks work.
660  */
661 	.align 16
662 	.globl __irqentry_text_start
663 __irqentry_text_start:
664 
665 #include <asm/idtentry.h>
666 
667 	.align 16
668 	.globl __irqentry_text_end
669 __irqentry_text_end:
670 
671 /*
672  * %eax: prev task
673  * %edx: next task
674  */
675 .pushsection .text, "ax"
676 SYM_CODE_START(__switch_to_asm)
677 	/*
678 	 * Save callee-saved registers
679 	 * This must match the order in struct inactive_task_frame
680 	 */
681 	pushl	%ebp
682 	pushl	%ebx
683 	pushl	%edi
684 	pushl	%esi
685 	/*
686 	 * Flags are saved to prevent AC leakage. This could go
687 	 * away if objtool would have 32bit support to verify
688 	 * the STAC/CLAC correctness.
689 	 */
690 	pushfl
691 
692 	/* switch stack */
693 	movl	%esp, TASK_threadsp(%eax)
694 	movl	TASK_threadsp(%edx), %esp
695 
696 #ifdef CONFIG_STACKPROTECTOR
697 	movl	TASK_stack_canary(%edx), %ebx
698 	movl	%ebx, PER_CPU_VAR(__stack_chk_guard)
699 #endif
700 
701 	/*
702 	 * When switching from a shallower to a deeper call stack
703 	 * the RSB may either underflow or use entries populated
704 	 * with userspace addresses. On CPUs where those concerns
705 	 * exist, overwrite the RSB with entries which capture
706 	 * speculative execution to prevent attack.
707 	 */
708 	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
709 
710 	/* Restore flags or the incoming task to restore AC state. */
711 	popfl
712 	/* restore callee-saved registers */
713 	popl	%esi
714 	popl	%edi
715 	popl	%ebx
716 	popl	%ebp
717 
718 	jmp	__switch_to
719 SYM_CODE_END(__switch_to_asm)
720 .popsection
721 
722 /*
723  * A newly forked process directly context switches into this address.
724  *
725  * eax: prev task we switched from
726  * ebx: kernel thread func (NULL for user thread)
727  * edi: kernel thread arg
728  */
729 .pushsection .text, "ax"
730 SYM_CODE_START(ret_from_fork_asm)
731 	movl	%esp, %edx	/* regs */
732 
733 	/* return address for the stack unwinder */
734 	pushl	$.Lsyscall_32_done
735 
736 	FRAME_BEGIN
737 	/* prev already in EAX */
738 	movl	%ebx, %ecx	/* fn */
739 	pushl	%edi		/* fn_arg */
740 	call	ret_from_fork
741 	addl	$4, %esp
742 	FRAME_END
743 
744 	RET
745 SYM_CODE_END(ret_from_fork_asm)
746 .popsection
747 
748 SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
749 /*
750  * All code from here through __end_SYSENTER_singlestep_region is subject
751  * to being single-stepped if a user program sets TF and executes SYSENTER.
752  * There is absolutely nothing that we can do to prevent this from happening
753  * (thanks Intel!).  To keep our handling of this situation as simple as
754  * possible, we handle TF just like AC and NT, except that our #DB handler
755  * will ignore all of the single-step traps generated in this range.
756  */
757 
758 /*
759  * 32-bit SYSENTER entry.
760  *
761  * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
762  * if X86_FEATURE_SEP is available.  This is the preferred system call
763  * entry on 32-bit systems.
764  *
765  * The SYSENTER instruction, in principle, should *only* occur in the
766  * vDSO.  In practice, a small number of Android devices were shipped
767  * with a copy of Bionic that inlined a SYSENTER instruction.  This
768  * never happened in any of Google's Bionic versions -- it only happened
769  * in a narrow range of Intel-provided versions.
770  *
771  * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
772  * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
773  * SYSENTER does not save anything on the stack,
774  * and does not save old EIP (!!!), ESP, or EFLAGS.
775  *
776  * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
777  * user and/or vm86 state), we explicitly disable the SYSENTER
778  * instruction in vm86 mode by reprogramming the MSRs.
779  *
780  * Arguments:
781  * eax  system call number
782  * ebx  arg1
783  * ecx  arg2
784  * edx  arg3
785  * esi  arg4
786  * edi  arg5
787  * ebp  user stack
788  * 0(%ebp) arg6
789  */
790 SYM_FUNC_START(entry_SYSENTER_32)
791 	/*
792 	 * On entry-stack with all userspace-regs live - save and
793 	 * restore eflags and %eax to use it as scratch-reg for the cr3
794 	 * switch.
795 	 */
796 	pushfl
797 	pushl	%eax
798 	BUG_IF_WRONG_CR3 no_user_check=1
799 	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
800 	popl	%eax
801 	popfl
802 
803 	/* Stack empty again, switch to task stack */
804 	movl	TSS_entry2task_stack(%esp), %esp
805 
806 .Lsysenter_past_esp:
807 	pushl	$__USER_DS		/* pt_regs->ss */
808 	pushl	$0			/* pt_regs->sp (placeholder) */
809 	pushfl				/* pt_regs->flags (except IF = 0) */
810 	pushl	$__USER_CS		/* pt_regs->cs */
811 	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
812 	pushl	%eax			/* pt_regs->orig_ax */
813 	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
814 
815 	/*
816 	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
817 	 * and TF ourselves.  To save a few cycles, we can check whether
818 	 * either was set instead of doing an unconditional popfq.
819 	 * This needs to happen before enabling interrupts so that
820 	 * we don't get preempted with NT set.
821 	 *
822 	 * If TF is set, we will single-step all the way to here -- do_debug
823 	 * will ignore all the traps.  (Yes, this is slow, but so is
824 	 * single-stepping in general.  This allows us to avoid having
825 	 * a more complicated code to handle the case where a user program
826 	 * forces us to single-step through the SYSENTER entry code.)
827 	 *
828 	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
829 	 * out-of-line as an optimization: NT is unlikely to be set in the
830 	 * majority of the cases and instead of polluting the I$ unnecessarily,
831 	 * we're keeping that code behind a branch which will predict as
832 	 * not-taken and therefore its instructions won't be fetched.
833 	 */
834 	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
835 	jnz	.Lsysenter_fix_flags
836 .Lsysenter_flags_fixed:
837 
838 	movl	%esp, %eax
839 	call	do_SYSENTER_32
840 	testl	%eax, %eax
841 	jz	.Lsyscall_32_done
842 
843 	STACKLEAK_ERASE
844 
845 	/* Opportunistic SYSEXIT */
846 
847 	/*
848 	 * Setup entry stack - we keep the pointer in %eax and do the
849 	 * switch after almost all user-state is restored.
850 	 */
851 
852 	/* Load entry stack pointer and allocate frame for eflags/eax */
853 	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
854 	subl	$(2*4), %eax
855 
856 	/* Copy eflags and eax to entry stack */
857 	movl	PT_EFLAGS(%esp), %edi
858 	movl	PT_EAX(%esp), %esi
859 	movl	%edi, (%eax)
860 	movl	%esi, 4(%eax)
861 
862 	/* Restore user registers and segments */
863 	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
864 	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
865 1:	mov	PT_FS(%esp), %fs
866 
867 	popl	%ebx			/* pt_regs->bx */
868 	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
869 	popl	%esi			/* pt_regs->si */
870 	popl	%edi			/* pt_regs->di */
871 	popl	%ebp			/* pt_regs->bp */
872 
873 	/* Switch to entry stack */
874 	movl	%eax, %esp
875 
876 	/* Now ready to switch the cr3 */
877 	SWITCH_TO_USER_CR3 scratch_reg=%eax
878 	/* Clobbers ZF */
879 	CLEAR_CPU_BUFFERS
880 
881 	/*
882 	 * Restore all flags except IF. (We restore IF separately because
883 	 * STI gives a one-instruction window in which we won't be interrupted,
884 	 * whereas POPF does not.)
885 	 */
886 	btrl	$X86_EFLAGS_IF_BIT, (%esp)
887 	BUG_IF_WRONG_CR3 no_user_check=1
888 	popfl
889 	popl	%eax
890 
891 	/*
892 	 * Return back to the vDSO, which will pop ecx and edx.
893 	 * Don't bother with DS and ES (they already contain __USER_DS).
894 	 */
895 	sti
896 	sysexit
897 
898 2:	movl    $0, PT_FS(%esp)
899 	jmp     1b
900 	_ASM_EXTABLE(1b, 2b)
901 
902 .Lsysenter_fix_flags:
903 	pushl	$X86_EFLAGS_FIXED
904 	popfl
905 	jmp	.Lsysenter_flags_fixed
906 SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
907 SYM_FUNC_END(entry_SYSENTER_32)
908 
909 /*
910  * 32-bit legacy system call entry.
911  *
912  * 32-bit x86 Linux system calls traditionally used the INT $0x80
913  * instruction.  INT $0x80 lands here.
914  *
915  * This entry point can be used by any 32-bit perform system calls.
916  * Instances of INT $0x80 can be found inline in various programs and
917  * libraries.  It is also used by the vDSO's __kernel_vsyscall
918  * fallback for hardware that doesn't support a faster entry method.
919  * Restarted 32-bit system calls also fall back to INT $0x80
920  * regardless of what instruction was originally used to do the system
921  * call.  (64-bit programs can use INT $0x80 as well, but they can
922  * only run on 64-bit kernels and therefore land in
923  * entry_INT80_compat.)
924  *
925  * This is considered a slow path.  It is not used by most libc
926  * implementations on modern hardware except during process startup.
927  *
928  * Arguments:
929  * eax  system call number
930  * ebx  arg1
931  * ecx  arg2
932  * edx  arg3
933  * esi  arg4
934  * edi  arg5
935  * ebp  arg6
936  */
937 SYM_FUNC_START(entry_INT80_32)
938 	ASM_CLAC
939 	pushl	%eax			/* pt_regs->orig_ax */
940 
941 	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
942 
943 	movl	%esp, %eax
944 	call	do_int80_syscall_32
945 .Lsyscall_32_done:
946 	STACKLEAK_ERASE
947 
948 restore_all_switch_stack:
949 	SWITCH_TO_ENTRY_STACK
950 	CHECK_AND_APPLY_ESPFIX
951 
952 	/* Switch back to user CR3 */
953 	SWITCH_TO_USER_CR3 scratch_reg=%eax
954 
955 	BUG_IF_WRONG_CR3
956 
957 	/* Restore user state */
958 	RESTORE_REGS pop=4			# skip orig_eax/error_code
959 	CLEAR_CPU_BUFFERS
960 .Lirq_return:
961 	/*
962 	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
963 	 * when returning from IPI handler and when returning from
964 	 * scheduler to user-space.
965 	 */
966 	iret
967 
968 .Lasm_iret_error:
969 	pushl	$0				# no error code
970 	pushl	$iret_error
971 
972 #ifdef CONFIG_DEBUG_ENTRY
973 	/*
974 	 * The stack-frame here is the one that iret faulted on, so its a
975 	 * return-to-user frame. We are on kernel-cr3 because we come here from
976 	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
977 	 * as the checker expects it.
978 	 */
979 	pushl	%eax
980 	SWITCH_TO_USER_CR3 scratch_reg=%eax
981 	popl	%eax
982 #endif
983 
984 	jmp	handle_exception
985 
986 	_ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
987 SYM_FUNC_END(entry_INT80_32)
988 
989 .macro FIXUP_ESPFIX_STACK
990 /*
991  * Switch back for ESPFIX stack to the normal zerobased stack
992  *
993  * We can't call C functions using the ESPFIX stack. This code reads
994  * the high word of the segment base from the GDT and swiches to the
995  * normal stack and adjusts ESP with the matching offset.
996  *
997  * We might be on user CR3 here, so percpu data is not mapped and we can't
998  * access the GDT through the percpu segment.  Instead, use SGDT to find
999  * the cpu_entry_area alias of the GDT.
1000  */
1001 #ifdef CONFIG_X86_ESPFIX32
1002 	/* fixup the stack */
1003 	pushl	%ecx
1004 	subl	$2*4, %esp
1005 	sgdt	(%esp)
1006 	movl	2(%esp), %ecx				/* GDT address */
1007 	/*
1008 	 * Careful: ECX is a linear pointer, so we need to force base
1009 	 * zero.  %cs is the only known-linear segment we have right now.
1010 	 */
1011 	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1012 	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1013 	shl	$16, %eax
1014 	addl	$2*4, %esp
1015 	popl	%ecx
1016 	addl	%esp, %eax			/* the adjusted stack pointer */
1017 	pushl	$__KERNEL_DS
1018 	pushl	%eax
1019 	lss	(%esp), %esp			/* switch to the normal stack segment */
1020 #endif
1021 .endm
1022 
1023 .macro UNWIND_ESPFIX_STACK
1024 	/* It's safe to clobber %eax, all other regs need to be preserved */
1025 #ifdef CONFIG_X86_ESPFIX32
1026 	movl	%ss, %eax
1027 	/* see if on espfix stack */
1028 	cmpw	$__ESPFIX_SS, %ax
1029 	jne	.Lno_fixup_\@
1030 	/* switch to normal stack */
1031 	FIXUP_ESPFIX_STACK
1032 .Lno_fixup_\@:
1033 #endif
1034 .endm
1035 
1036 SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1037 	/* the function address is in %gs's slot on the stack */
1038 	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1039 	ENCODE_FRAME_POINTER
1040 
1041 	movl	PT_GS(%esp), %edi		# get the function address
1042 
1043 	/* fixup orig %eax */
1044 	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1045 	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1046 
1047 	movl	%esp, %eax			# pt_regs pointer
1048 	CALL_NOSPEC edi
1049 
1050 handle_exception_return:
1051 #ifdef CONFIG_VM86
1052 	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
1053 	movb	PT_CS(%esp), %al
1054 	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1055 #else
1056 	/*
1057 	 * We can be coming here from child spawned by kernel_thread().
1058 	 */
1059 	movl	PT_CS(%esp), %eax
1060 	andl	$SEGMENT_RPL_MASK, %eax
1061 #endif
1062 	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
1063 	jnb	ret_to_user
1064 
1065 	PARANOID_EXIT_TO_KERNEL_MODE
1066 	BUG_IF_WRONG_CR3
1067 	RESTORE_REGS 4
1068 	jmp	.Lirq_return
1069 
1070 ret_to_user:
1071 	movl	%esp, %eax
1072 	jmp	restore_all_switch_stack
1073 SYM_CODE_END(handle_exception)
1074 
1075 SYM_CODE_START(asm_exc_double_fault)
1076 1:
1077 	/*
1078 	 * This is a task gate handler, not an interrupt gate handler.
1079 	 * The error code is on the stack, but the stack is otherwise
1080 	 * empty.  Interrupts are off.  Our state is sane with the following
1081 	 * exceptions:
1082 	 *
1083 	 *  - CR0.TS is set.  "TS" literally means "task switched".
1084 	 *  - EFLAGS.NT is set because we're a "nested task".
1085 	 *  - The doublefault TSS has back_link set and has been marked busy.
1086 	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1087 	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1088 	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1089 	 *    would make it very awkward to return back to the context we came
1090 	 *    from.
1091 	 *
1092 	 * The rest of EFLAGS is sanitized for us, so we don't need to
1093 	 * worry about AC or DF.
1094 	 *
1095 	 * Don't even bother popping the error code.  It's always zero,
1096 	 * and ignoring it makes us a bit more robust against buggy
1097 	 * hypervisor task gate implementations.
1098 	 *
1099 	 * We will manually undo the task switch instead of doing a
1100 	 * task-switching IRET.
1101 	 */
1102 
1103 	clts				/* clear CR0.TS */
1104 	pushl	$X86_EFLAGS_FIXED
1105 	popfl				/* clear EFLAGS.NT */
1106 
1107 	call	doublefault_shim
1108 
1109 	/* We don't support returning, so we have no IRET here. */
1110 1:
1111 	hlt
1112 	jmp 1b
1113 SYM_CODE_END(asm_exc_double_fault)
1114 
1115 /*
1116  * NMI is doubly nasty.  It can happen on the first instruction of
1117  * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1118  * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1119  * switched stacks.  We handle both conditions by simply checking whether we
1120  * interrupted kernel code running on the SYSENTER stack.
1121  */
1122 SYM_CODE_START(asm_exc_nmi)
1123 	ASM_CLAC
1124 
1125 #ifdef CONFIG_X86_ESPFIX32
1126 	/*
1127 	 * ESPFIX_SS is only ever set on the return to user path
1128 	 * after we've switched to the entry stack.
1129 	 */
1130 	pushl	%eax
1131 	movl	%ss, %eax
1132 	cmpw	$__ESPFIX_SS, %ax
1133 	popl	%eax
1134 	je	.Lnmi_espfix_stack
1135 #endif
1136 
1137 	pushl	%eax				# pt_regs->orig_ax
1138 	SAVE_ALL_NMI cr3_reg=%edi
1139 	ENCODE_FRAME_POINTER
1140 	xorl	%edx, %edx			# zero error code
1141 	movl	%esp, %eax			# pt_regs pointer
1142 
1143 	/* Are we currently on the SYSENTER stack? */
1144 	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1145 	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1146 	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1147 	cmpl	$SIZEOF_entry_stack, %ecx
1148 	jb	.Lnmi_from_sysenter_stack
1149 
1150 	/* Not on SYSENTER stack. */
1151 	call	exc_nmi
1152 	jmp	.Lnmi_return
1153 
1154 .Lnmi_from_sysenter_stack:
1155 	/*
1156 	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1157 	 * is using the thread stack right now, so it's safe for us to use it.
1158 	 */
1159 	movl	%esp, %ebx
1160 	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp
1161 	call	exc_nmi
1162 	movl	%ebx, %esp
1163 
1164 .Lnmi_return:
1165 #ifdef CONFIG_X86_ESPFIX32
1166 	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1167 	jnz	.Lnmi_from_espfix
1168 #endif
1169 
1170 	CHECK_AND_APPLY_ESPFIX
1171 	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1172 	CLEAR_CPU_BUFFERS
1173 	jmp	.Lirq_return
1174 
1175 #ifdef CONFIG_X86_ESPFIX32
1176 .Lnmi_espfix_stack:
1177 	/*
1178 	 * Create the pointer to LSS back
1179 	 */
1180 	pushl	%ss
1181 	pushl	%esp
1182 	addl	$4, (%esp)
1183 
1184 	/* Copy the (short) IRET frame */
1185 	pushl	4*4(%esp)	# flags
1186 	pushl	4*4(%esp)	# cs
1187 	pushl	4*4(%esp)	# ip
1188 
1189 	pushl	%eax		# orig_ax
1190 
1191 	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1192 	ENCODE_FRAME_POINTER
1193 
1194 	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1195 	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1196 
1197 	xorl	%edx, %edx			# zero error code
1198 	movl	%esp, %eax			# pt_regs pointer
1199 	jmp	.Lnmi_from_sysenter_stack
1200 
1201 .Lnmi_from_espfix:
1202 	RESTORE_ALL_NMI cr3_reg=%edi
1203 	/*
1204 	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1205 	 * fix up the gap and long frame:
1206 	 *
1207 	 *  3 - original frame	(exception)
1208 	 *  2 - ESPFIX block	(above)
1209 	 *  6 - gap		(FIXUP_FRAME)
1210 	 *  5 - long frame	(FIXUP_FRAME)
1211 	 *  1 - orig_ax
1212 	 */
1213 	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1214 	CLEAR_CPU_BUFFERS
1215 	jmp	.Lirq_return
1216 #endif
1217 SYM_CODE_END(asm_exc_nmi)
1218 
1219 .pushsection .text, "ax"
1220 SYM_CODE_START(rewind_stack_and_make_dead)
1221 	/* Prevent any naive code from trying to unwind to our caller. */
1222 	xorl	%ebp, %ebp
1223 
1224 	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi
1225 	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1226 
1227 	call	make_task_dead
1228 1:	jmp 1b
1229 SYM_CODE_END(rewind_stack_and_make_dead)
1230 .popsection
1231