1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27
28 /* exported for the APM Power driver, APM emulation */
29 struct class *power_supply_class;
30 EXPORT_SYMBOL_GPL(power_supply_class);
31
32 BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
33 EXPORT_SYMBOL_GPL(power_supply_notifier);
34
35 static struct device_type power_supply_dev_type;
36
37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
38
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)39 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
40 struct power_supply *supply)
41 {
42 int i;
43
44 if (!supply->supplied_from && !supplier->supplied_to)
45 return false;
46
47 /* Support both supplied_to and supplied_from modes */
48 if (supply->supplied_from) {
49 if (!supplier->desc->name)
50 return false;
51 for (i = 0; i < supply->num_supplies; i++)
52 if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
53 return true;
54 } else {
55 if (!supply->desc->name)
56 return false;
57 for (i = 0; i < supplier->num_supplicants; i++)
58 if (!strcmp(supplier->supplied_to[i], supply->desc->name))
59 return true;
60 }
61
62 return false;
63 }
64
__power_supply_changed_work(struct device * dev,void * data)65 static int __power_supply_changed_work(struct device *dev, void *data)
66 {
67 struct power_supply *psy = data;
68 struct power_supply *pst = dev_get_drvdata(dev);
69
70 if (__power_supply_is_supplied_by(psy, pst)) {
71 if (pst->desc->external_power_changed)
72 pst->desc->external_power_changed(pst);
73 }
74
75 return 0;
76 }
77
power_supply_changed_work(struct work_struct * work)78 static void power_supply_changed_work(struct work_struct *work)
79 {
80 unsigned long flags;
81 struct power_supply *psy = container_of(work, struct power_supply,
82 changed_work);
83
84 dev_dbg(&psy->dev, "%s\n", __func__);
85
86 spin_lock_irqsave(&psy->changed_lock, flags);
87 /*
88 * Check 'changed' here to avoid issues due to race between
89 * power_supply_changed() and this routine. In worst case
90 * power_supply_changed() can be called again just before we take above
91 * lock. During the first call of this routine we will mark 'changed' as
92 * false and it will stay false for the next call as well.
93 */
94 if (likely(psy->changed)) {
95 psy->changed = false;
96 spin_unlock_irqrestore(&psy->changed_lock, flags);
97 class_for_each_device(power_supply_class, NULL, psy,
98 __power_supply_changed_work);
99 power_supply_update_leds(psy);
100 blocking_notifier_call_chain(&power_supply_notifier,
101 PSY_EVENT_PROP_CHANGED, psy);
102 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
103 spin_lock_irqsave(&psy->changed_lock, flags);
104 }
105
106 /*
107 * Hold the wakeup_source until all events are processed.
108 * power_supply_changed() might have called again and have set 'changed'
109 * to true.
110 */
111 if (likely(!psy->changed))
112 pm_relax(&psy->dev);
113 spin_unlock_irqrestore(&psy->changed_lock, flags);
114 }
115
power_supply_changed(struct power_supply * psy)116 void power_supply_changed(struct power_supply *psy)
117 {
118 unsigned long flags;
119
120 dev_dbg(&psy->dev, "%s\n", __func__);
121
122 spin_lock_irqsave(&psy->changed_lock, flags);
123 psy->changed = true;
124 pm_stay_awake(&psy->dev);
125 spin_unlock_irqrestore(&psy->changed_lock, flags);
126 schedule_work(&psy->changed_work);
127 }
128 EXPORT_SYMBOL_GPL(power_supply_changed);
129
130 /*
131 * Notify that power supply was registered after parent finished the probing.
132 *
133 * Often power supply is registered from driver's probe function. However
134 * calling power_supply_changed() directly from power_supply_register()
135 * would lead to execution of get_property() function provided by the driver
136 * too early - before the probe ends.
137 *
138 * Avoid that by waiting on parent's mutex.
139 */
power_supply_deferred_register_work(struct work_struct * work)140 static void power_supply_deferred_register_work(struct work_struct *work)
141 {
142 struct power_supply *psy = container_of(work, struct power_supply,
143 deferred_register_work.work);
144
145 if (psy->dev.parent) {
146 while (!mutex_trylock(&psy->dev.parent->mutex)) {
147 if (psy->removing)
148 return;
149 msleep(10);
150 }
151 }
152
153 power_supply_changed(psy);
154
155 if (psy->dev.parent)
156 mutex_unlock(&psy->dev.parent->mutex);
157 }
158
159 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct device * dev,void * data)160 static int __power_supply_populate_supplied_from(struct device *dev,
161 void *data)
162 {
163 struct power_supply *psy = data;
164 struct power_supply *epsy = dev_get_drvdata(dev);
165 struct device_node *np;
166 int i = 0;
167
168 do {
169 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
170 if (!np)
171 break;
172
173 if (np == epsy->of_node) {
174 dev_dbg(&psy->dev, "%s: Found supply : %s\n",
175 psy->desc->name, epsy->desc->name);
176 psy->supplied_from[i-1] = (char *)epsy->desc->name;
177 psy->num_supplies++;
178 of_node_put(np);
179 break;
180 }
181 of_node_put(np);
182 } while (np);
183
184 return 0;
185 }
186
power_supply_populate_supplied_from(struct power_supply * psy)187 static int power_supply_populate_supplied_from(struct power_supply *psy)
188 {
189 int error;
190
191 error = class_for_each_device(power_supply_class, NULL, psy,
192 __power_supply_populate_supplied_from);
193
194 dev_dbg(&psy->dev, "%s %d\n", __func__, error);
195
196 return error;
197 }
198
__power_supply_find_supply_from_node(struct device * dev,void * data)199 static int __power_supply_find_supply_from_node(struct device *dev,
200 void *data)
201 {
202 struct device_node *np = data;
203 struct power_supply *epsy = dev_get_drvdata(dev);
204
205 /* returning non-zero breaks out of class_for_each_device loop */
206 if (epsy->of_node == np)
207 return 1;
208
209 return 0;
210 }
211
power_supply_find_supply_from_node(struct device_node * supply_node)212 static int power_supply_find_supply_from_node(struct device_node *supply_node)
213 {
214 int error;
215
216 /*
217 * class_for_each_device() either returns its own errors or values
218 * returned by __power_supply_find_supply_from_node().
219 *
220 * __power_supply_find_supply_from_node() will return 0 (no match)
221 * or 1 (match).
222 *
223 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
224 * it returned 0, or error as returned by it.
225 */
226 error = class_for_each_device(power_supply_class, NULL, supply_node,
227 __power_supply_find_supply_from_node);
228
229 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
230 }
231
power_supply_check_supplies(struct power_supply * psy)232 static int power_supply_check_supplies(struct power_supply *psy)
233 {
234 struct device_node *np;
235 int cnt = 0;
236
237 /* If there is already a list honor it */
238 if (psy->supplied_from && psy->num_supplies > 0)
239 return 0;
240
241 /* No device node found, nothing to do */
242 if (!psy->of_node)
243 return 0;
244
245 do {
246 int ret;
247
248 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
249 if (!np)
250 break;
251
252 ret = power_supply_find_supply_from_node(np);
253 of_node_put(np);
254
255 if (ret) {
256 dev_dbg(&psy->dev, "Failed to find supply!\n");
257 return ret;
258 }
259 } while (np);
260
261 /* Missing valid "power-supplies" entries */
262 if (cnt == 1)
263 return 0;
264
265 /* All supplies found, allocate char ** array for filling */
266 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
267 GFP_KERNEL);
268 if (!psy->supplied_from)
269 return -ENOMEM;
270
271 *psy->supplied_from = devm_kcalloc(&psy->dev,
272 cnt - 1, sizeof(**psy->supplied_from),
273 GFP_KERNEL);
274 if (!*psy->supplied_from)
275 return -ENOMEM;
276
277 return power_supply_populate_supplied_from(psy);
278 }
279 #else
power_supply_check_supplies(struct power_supply * psy)280 static int power_supply_check_supplies(struct power_supply *psy)
281 {
282 int nval, ret;
283
284 if (!psy->dev.parent)
285 return 0;
286
287 nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
288 if (nval <= 0)
289 return 0;
290
291 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
292 sizeof(char *), GFP_KERNEL);
293 if (!psy->supplied_from)
294 return -ENOMEM;
295
296 ret = device_property_read_string_array(psy->dev.parent,
297 "supplied-from", (const char **)psy->supplied_from, nval);
298 if (ret < 0)
299 return ret;
300
301 psy->num_supplies = nval;
302
303 return 0;
304 }
305 #endif
306
307 struct psy_am_i_supplied_data {
308 struct power_supply *psy;
309 unsigned int count;
310 };
311
__power_supply_am_i_supplied(struct device * dev,void * _data)312 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
313 {
314 union power_supply_propval ret = {0,};
315 struct power_supply *epsy = dev_get_drvdata(dev);
316 struct psy_am_i_supplied_data *data = _data;
317
318 if (__power_supply_is_supplied_by(epsy, data->psy)) {
319 data->count++;
320 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
321 &ret))
322 return ret.intval;
323 }
324
325 return 0;
326 }
327
power_supply_am_i_supplied(struct power_supply * psy)328 int power_supply_am_i_supplied(struct power_supply *psy)
329 {
330 struct psy_am_i_supplied_data data = { psy, 0 };
331 int error;
332
333 error = class_for_each_device(power_supply_class, NULL, &data,
334 __power_supply_am_i_supplied);
335
336 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
337
338 if (data.count == 0)
339 return -ENODEV;
340
341 return error;
342 }
343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
344
__power_supply_is_system_supplied(struct device * dev,void * data)345 static int __power_supply_is_system_supplied(struct device *dev, void *data)
346 {
347 union power_supply_propval ret = {0,};
348 struct power_supply *psy = dev_get_drvdata(dev);
349 unsigned int *count = data;
350
351 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
352 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
353 return 0;
354
355 (*count)++;
356 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
357 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
358 &ret))
359 return ret.intval;
360
361 return 0;
362 }
363
power_supply_is_system_supplied(void)364 int power_supply_is_system_supplied(void)
365 {
366 int error;
367 unsigned int count = 0;
368
369 error = class_for_each_device(power_supply_class, NULL, &count,
370 __power_supply_is_system_supplied);
371
372 /*
373 * If no system scope power class device was found at all, most probably we
374 * are running on a desktop system, so assume we are on mains power.
375 */
376 if (count == 0)
377 return 1;
378
379 return error;
380 }
381 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
382
383 struct psy_get_supplier_prop_data {
384 struct power_supply *psy;
385 enum power_supply_property psp;
386 union power_supply_propval *val;
387 };
388
__power_supply_get_supplier_property(struct device * dev,void * _data)389 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
390 {
391 struct power_supply *epsy = dev_get_drvdata(dev);
392 struct psy_get_supplier_prop_data *data = _data;
393
394 if (__power_supply_is_supplied_by(epsy, data->psy))
395 if (!power_supply_get_property(epsy, data->psp, data->val))
396 return 1; /* Success */
397
398 return 0; /* Continue iterating */
399 }
400
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)401 int power_supply_get_property_from_supplier(struct power_supply *psy,
402 enum power_supply_property psp,
403 union power_supply_propval *val)
404 {
405 struct psy_get_supplier_prop_data data = {
406 .psy = psy,
407 .psp = psp,
408 .val = val,
409 };
410 int ret;
411
412 /*
413 * This function is not intended for use with a supply with multiple
414 * suppliers, we simply pick the first supply to report the psp.
415 */
416 ret = class_for_each_device(power_supply_class, NULL, &data,
417 __power_supply_get_supplier_property);
418 if (ret < 0)
419 return ret;
420 if (ret == 0)
421 return -ENODEV;
422
423 return 0;
424 }
425 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
426
power_supply_set_battery_charged(struct power_supply * psy)427 int power_supply_set_battery_charged(struct power_supply *psy)
428 {
429 if (atomic_read(&psy->use_cnt) >= 0 &&
430 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
431 psy->desc->set_charged) {
432 psy->desc->set_charged(psy);
433 return 0;
434 }
435
436 return -EINVAL;
437 }
438 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
439
power_supply_match_device_by_name(struct device * dev,const void * data)440 static int power_supply_match_device_by_name(struct device *dev, const void *data)
441 {
442 const char *name = data;
443 struct power_supply *psy = dev_get_drvdata(dev);
444
445 return strcmp(psy->desc->name, name) == 0;
446 }
447
448 /**
449 * power_supply_get_by_name() - Search for a power supply and returns its ref
450 * @name: Power supply name to fetch
451 *
452 * If power supply was found, it increases reference count for the
453 * internal power supply's device. The user should power_supply_put()
454 * after usage.
455 *
456 * Return: On success returns a reference to a power supply with
457 * matching name equals to @name, a NULL otherwise.
458 */
power_supply_get_by_name(const char * name)459 struct power_supply *power_supply_get_by_name(const char *name)
460 {
461 struct power_supply *psy = NULL;
462 struct device *dev = class_find_device(power_supply_class, NULL, name,
463 power_supply_match_device_by_name);
464
465 if (dev) {
466 psy = dev_get_drvdata(dev);
467 atomic_inc(&psy->use_cnt);
468 }
469
470 return psy;
471 }
472 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
473
474 /**
475 * power_supply_put() - Drop reference obtained with power_supply_get_by_name
476 * @psy: Reference to put
477 *
478 * The reference to power supply should be put before unregistering
479 * the power supply.
480 */
power_supply_put(struct power_supply * psy)481 void power_supply_put(struct power_supply *psy)
482 {
483 might_sleep();
484
485 atomic_dec(&psy->use_cnt);
486 put_device(&psy->dev);
487 }
488 EXPORT_SYMBOL_GPL(power_supply_put);
489
490 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)491 static int power_supply_match_device_node(struct device *dev, const void *data)
492 {
493 return dev->parent && dev->parent->of_node == data;
494 }
495
496 /**
497 * power_supply_get_by_phandle() - Search for a power supply and returns its ref
498 * @np: Pointer to device node holding phandle property
499 * @property: Name of property holding a power supply name
500 *
501 * If power supply was found, it increases reference count for the
502 * internal power supply's device. The user should power_supply_put()
503 * after usage.
504 *
505 * Return: On success returns a reference to a power supply with
506 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
507 */
power_supply_get_by_phandle(struct device_node * np,const char * property)508 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
509 const char *property)
510 {
511 struct device_node *power_supply_np;
512 struct power_supply *psy = NULL;
513 struct device *dev;
514
515 power_supply_np = of_parse_phandle(np, property, 0);
516 if (!power_supply_np)
517 return ERR_PTR(-ENODEV);
518
519 dev = class_find_device(power_supply_class, NULL, power_supply_np,
520 power_supply_match_device_node);
521
522 of_node_put(power_supply_np);
523
524 if (dev) {
525 psy = dev_get_drvdata(dev);
526 atomic_inc(&psy->use_cnt);
527 }
528
529 return psy;
530 }
531 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
532
devm_power_supply_put(struct device * dev,void * res)533 static void devm_power_supply_put(struct device *dev, void *res)
534 {
535 struct power_supply **psy = res;
536
537 power_supply_put(*psy);
538 }
539
540 /**
541 * devm_power_supply_get_by_phandle() - Resource managed version of
542 * power_supply_get_by_phandle()
543 * @dev: Pointer to device holding phandle property
544 * @property: Name of property holding a power supply phandle
545 *
546 * Return: On success returns a reference to a power supply with
547 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
548 */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)549 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
550 const char *property)
551 {
552 struct power_supply **ptr, *psy;
553
554 if (!dev->of_node)
555 return ERR_PTR(-ENODEV);
556
557 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
558 if (!ptr)
559 return ERR_PTR(-ENOMEM);
560
561 psy = power_supply_get_by_phandle(dev->of_node, property);
562 if (IS_ERR_OR_NULL(psy)) {
563 devres_free(ptr);
564 } else {
565 *ptr = psy;
566 devres_add(dev, ptr);
567 }
568 return psy;
569 }
570 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
571 #endif /* CONFIG_OF */
572
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info ** info_out)573 int power_supply_get_battery_info(struct power_supply *psy,
574 struct power_supply_battery_info **info_out)
575 {
576 struct power_supply_resistance_temp_table *resist_table;
577 struct power_supply_battery_info *info;
578 struct device_node *battery_np = NULL;
579 struct fwnode_reference_args args;
580 struct fwnode_handle *fwnode = NULL;
581 const char *value;
582 int err, len, index;
583 const __be32 *list;
584 u32 min_max[2];
585
586 if (psy->of_node) {
587 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
588 if (!battery_np)
589 return -ENODEV;
590
591 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
592 } else if (psy->dev.parent) {
593 err = fwnode_property_get_reference_args(
594 dev_fwnode(psy->dev.parent),
595 "monitored-battery", NULL, 0, 0, &args);
596 if (err)
597 return err;
598
599 fwnode = args.fwnode;
600 }
601
602 if (!fwnode)
603 return -ENOENT;
604
605 err = fwnode_property_read_string(fwnode, "compatible", &value);
606 if (err)
607 goto out_put_node;
608
609
610 /* Try static batteries first */
611 err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
612 if (!err)
613 goto out_ret_pointer;
614 else if (err == -ENODEV)
615 /*
616 * Device does not have a static battery.
617 * Proceed to look for a simple battery.
618 */
619 err = 0;
620
621 if (strcmp("simple-battery", value)) {
622 err = -ENODEV;
623 goto out_put_node;
624 }
625
626 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
627 if (!info) {
628 err = -ENOMEM;
629 goto out_put_node;
630 }
631
632 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
633 info->energy_full_design_uwh = -EINVAL;
634 info->charge_full_design_uah = -EINVAL;
635 info->voltage_min_design_uv = -EINVAL;
636 info->voltage_max_design_uv = -EINVAL;
637 info->precharge_current_ua = -EINVAL;
638 info->charge_term_current_ua = -EINVAL;
639 info->constant_charge_current_max_ua = -EINVAL;
640 info->constant_charge_voltage_max_uv = -EINVAL;
641 info->tricklecharge_current_ua = -EINVAL;
642 info->precharge_voltage_max_uv = -EINVAL;
643 info->charge_restart_voltage_uv = -EINVAL;
644 info->overvoltage_limit_uv = -EINVAL;
645 info->maintenance_charge = NULL;
646 info->alert_low_temp_charge_current_ua = -EINVAL;
647 info->alert_low_temp_charge_voltage_uv = -EINVAL;
648 info->alert_high_temp_charge_current_ua = -EINVAL;
649 info->alert_high_temp_charge_voltage_uv = -EINVAL;
650 info->temp_ambient_alert_min = INT_MIN;
651 info->temp_ambient_alert_max = INT_MAX;
652 info->temp_alert_min = INT_MIN;
653 info->temp_alert_max = INT_MAX;
654 info->temp_min = INT_MIN;
655 info->temp_max = INT_MAX;
656 info->factory_internal_resistance_uohm = -EINVAL;
657 info->resist_table = NULL;
658 info->bti_resistance_ohm = -EINVAL;
659 info->bti_resistance_tolerance = -EINVAL;
660
661 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
662 info->ocv_table[index] = NULL;
663 info->ocv_temp[index] = -EINVAL;
664 info->ocv_table_size[index] = -EINVAL;
665 }
666
667 /* The property and field names below must correspond to elements
668 * in enum power_supply_property. For reasoning, see
669 * Documentation/power/power_supply_class.rst.
670 */
671
672 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
673 if (!strcmp("nickel-cadmium", value))
674 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
675 else if (!strcmp("nickel-metal-hydride", value))
676 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
677 else if (!strcmp("lithium-ion", value))
678 /* Imprecise lithium-ion type */
679 info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
680 else if (!strcmp("lithium-ion-polymer", value))
681 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
682 else if (!strcmp("lithium-ion-iron-phosphate", value))
683 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
684 else if (!strcmp("lithium-ion-manganese-oxide", value))
685 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
686 else
687 dev_warn(&psy->dev, "%s unknown battery type\n", value);
688 }
689
690 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
691 &info->energy_full_design_uwh);
692 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
693 &info->charge_full_design_uah);
694 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
695 &info->voltage_min_design_uv);
696 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
697 &info->voltage_max_design_uv);
698 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
699 &info->tricklecharge_current_ua);
700 fwnode_property_read_u32(fwnode, "precharge-current-microamp",
701 &info->precharge_current_ua);
702 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
703 &info->precharge_voltage_max_uv);
704 fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
705 &info->charge_term_current_ua);
706 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
707 &info->charge_restart_voltage_uv);
708 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
709 &info->overvoltage_limit_uv);
710 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
711 &info->constant_charge_current_max_ua);
712 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
713 &info->constant_charge_voltage_max_uv);
714 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
715 &info->factory_internal_resistance_uohm);
716
717 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
718 min_max, ARRAY_SIZE(min_max))) {
719 info->temp_ambient_alert_min = min_max[0];
720 info->temp_ambient_alert_max = min_max[1];
721 }
722 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
723 min_max, ARRAY_SIZE(min_max))) {
724 info->temp_alert_min = min_max[0];
725 info->temp_alert_max = min_max[1];
726 }
727 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
728 min_max, ARRAY_SIZE(min_max))) {
729 info->temp_min = min_max[0];
730 info->temp_max = min_max[1];
731 }
732
733 /*
734 * The below code uses raw of-data parsing to parse
735 * /schemas/types.yaml#/definitions/uint32-matrix
736 * data, so for now this is only support with of.
737 */
738 if (!battery_np)
739 goto out_ret_pointer;
740
741 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
742 if (len < 0 && len != -EINVAL) {
743 err = len;
744 goto out_put_node;
745 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
746 dev_err(&psy->dev, "Too many temperature values\n");
747 err = -EINVAL;
748 goto out_put_node;
749 } else if (len > 0) {
750 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
751 info->ocv_temp, len);
752 }
753
754 for (index = 0; index < len; index++) {
755 struct power_supply_battery_ocv_table *table;
756 char *propname;
757 int i, tab_len, size;
758
759 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
760 if (!propname) {
761 power_supply_put_battery_info(psy, info);
762 err = -ENOMEM;
763 goto out_put_node;
764 }
765 list = of_get_property(battery_np, propname, &size);
766 if (!list || !size) {
767 dev_err(&psy->dev, "failed to get %s\n", propname);
768 kfree(propname);
769 power_supply_put_battery_info(psy, info);
770 err = -EINVAL;
771 goto out_put_node;
772 }
773
774 kfree(propname);
775 tab_len = size / (2 * sizeof(__be32));
776 info->ocv_table_size[index] = tab_len;
777
778 table = info->ocv_table[index] =
779 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
780 if (!info->ocv_table[index]) {
781 power_supply_put_battery_info(psy, info);
782 err = -ENOMEM;
783 goto out_put_node;
784 }
785
786 for (i = 0; i < tab_len; i++) {
787 table[i].ocv = be32_to_cpu(*list);
788 list++;
789 table[i].capacity = be32_to_cpu(*list);
790 list++;
791 }
792 }
793
794 list = of_get_property(battery_np, "resistance-temp-table", &len);
795 if (!list || !len)
796 goto out_ret_pointer;
797
798 info->resist_table_size = len / (2 * sizeof(__be32));
799 resist_table = info->resist_table = devm_kcalloc(&psy->dev,
800 info->resist_table_size,
801 sizeof(*resist_table),
802 GFP_KERNEL);
803 if (!info->resist_table) {
804 power_supply_put_battery_info(psy, info);
805 err = -ENOMEM;
806 goto out_put_node;
807 }
808
809 for (index = 0; index < info->resist_table_size; index++) {
810 resist_table[index].temp = be32_to_cpu(*list++);
811 resist_table[index].resistance = be32_to_cpu(*list++);
812 }
813
814 out_ret_pointer:
815 /* Finally return the whole thing */
816 *info_out = info;
817
818 out_put_node:
819 fwnode_handle_put(fwnode);
820 of_node_put(battery_np);
821 return err;
822 }
823 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
824
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)825 void power_supply_put_battery_info(struct power_supply *psy,
826 struct power_supply_battery_info *info)
827 {
828 int i;
829
830 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
831 if (info->ocv_table[i])
832 devm_kfree(&psy->dev, info->ocv_table[i]);
833 }
834
835 if (info->resist_table)
836 devm_kfree(&psy->dev, info->resist_table);
837
838 devm_kfree(&psy->dev, info);
839 }
840 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
841
842 const enum power_supply_property power_supply_battery_info_properties[] = {
843 POWER_SUPPLY_PROP_TECHNOLOGY,
844 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
845 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
846 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
847 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
848 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
849 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
850 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
851 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
852 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
853 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
854 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
855 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
856 POWER_SUPPLY_PROP_TEMP_MIN,
857 POWER_SUPPLY_PROP_TEMP_MAX,
858 };
859 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
860
861 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
862 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
863
power_supply_battery_info_has_prop(struct power_supply_battery_info * info,enum power_supply_property psp)864 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
865 enum power_supply_property psp)
866 {
867 if (!info)
868 return false;
869
870 switch (psp) {
871 case POWER_SUPPLY_PROP_TECHNOLOGY:
872 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
873 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
874 return info->energy_full_design_uwh >= 0;
875 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
876 return info->charge_full_design_uah >= 0;
877 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
878 return info->voltage_min_design_uv >= 0;
879 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
880 return info->voltage_max_design_uv >= 0;
881 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
882 return info->precharge_current_ua >= 0;
883 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
884 return info->charge_term_current_ua >= 0;
885 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
886 return info->constant_charge_current_max_ua >= 0;
887 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
888 return info->constant_charge_voltage_max_uv >= 0;
889 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
890 return info->temp_ambient_alert_min > INT_MIN;
891 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
892 return info->temp_ambient_alert_max < INT_MAX;
893 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
894 return info->temp_alert_min > INT_MIN;
895 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
896 return info->temp_alert_max < INT_MAX;
897 case POWER_SUPPLY_PROP_TEMP_MIN:
898 return info->temp_min > INT_MIN;
899 case POWER_SUPPLY_PROP_TEMP_MAX:
900 return info->temp_max < INT_MAX;
901 default:
902 return false;
903 }
904 }
905 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
906
power_supply_battery_info_get_prop(struct power_supply_battery_info * info,enum power_supply_property psp,union power_supply_propval * val)907 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
908 enum power_supply_property psp,
909 union power_supply_propval *val)
910 {
911 if (!info)
912 return -EINVAL;
913
914 if (!power_supply_battery_info_has_prop(info, psp))
915 return -EINVAL;
916
917 switch (psp) {
918 case POWER_SUPPLY_PROP_TECHNOLOGY:
919 val->intval = info->technology;
920 return 0;
921 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
922 val->intval = info->energy_full_design_uwh;
923 return 0;
924 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
925 val->intval = info->charge_full_design_uah;
926 return 0;
927 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
928 val->intval = info->voltage_min_design_uv;
929 return 0;
930 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
931 val->intval = info->voltage_max_design_uv;
932 return 0;
933 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
934 val->intval = info->precharge_current_ua;
935 return 0;
936 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
937 val->intval = info->charge_term_current_ua;
938 return 0;
939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
940 val->intval = info->constant_charge_current_max_ua;
941 return 0;
942 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
943 val->intval = info->constant_charge_voltage_max_uv;
944 return 0;
945 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
946 val->intval = info->temp_ambient_alert_min;
947 return 0;
948 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
949 val->intval = info->temp_ambient_alert_max;
950 return 0;
951 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
952 val->intval = info->temp_alert_min;
953 return 0;
954 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
955 val->intval = info->temp_alert_max;
956 return 0;
957 case POWER_SUPPLY_PROP_TEMP_MIN:
958 val->intval = info->temp_min;
959 return 0;
960 case POWER_SUPPLY_PROP_TEMP_MAX:
961 val->intval = info->temp_max;
962 return 0;
963 default:
964 return -EINVAL;
965 }
966 }
967 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
968
969 /**
970 * power_supply_temp2resist_simple() - find the battery internal resistance
971 * percent from temperature
972 * @table: Pointer to battery resistance temperature table
973 * @table_len: The table length
974 * @temp: Current temperature
975 *
976 * This helper function is used to look up battery internal resistance percent
977 * according to current temperature value from the resistance temperature table,
978 * and the table must be ordered descending. Then the actual battery internal
979 * resistance = the ideal battery internal resistance * percent / 100.
980 *
981 * Return: the battery internal resistance percent
982 */
power_supply_temp2resist_simple(struct power_supply_resistance_temp_table * table,int table_len,int temp)983 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
984 int table_len, int temp)
985 {
986 int i, high, low;
987
988 for (i = 0; i < table_len; i++)
989 if (temp > table[i].temp)
990 break;
991
992 /* The library function will deal with high == low */
993 if (i == 0)
994 high = low = i;
995 else if (i == table_len)
996 high = low = i - 1;
997 else
998 high = (low = i) - 1;
999
1000 return fixp_linear_interpolate(table[low].temp,
1001 table[low].resistance,
1002 table[high].temp,
1003 table[high].resistance,
1004 temp);
1005 }
1006 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1007
1008 /**
1009 * power_supply_vbat2ri() - find the battery internal resistance
1010 * from the battery voltage
1011 * @info: The battery information container
1012 * @vbat_uv: The battery voltage in microvolt
1013 * @charging: If we are charging (true) or not (false)
1014 *
1015 * This helper function is used to look up battery internal resistance
1016 * according to current battery voltage. Depending on whether the battery
1017 * is currently charging or not, different resistance will be returned.
1018 *
1019 * Returns the internal resistance in microohm or negative error code.
1020 */
power_supply_vbat2ri(struct power_supply_battery_info * info,int vbat_uv,bool charging)1021 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1022 int vbat_uv, bool charging)
1023 {
1024 struct power_supply_vbat_ri_table *vbat2ri;
1025 int table_len;
1026 int i, high, low;
1027
1028 /*
1029 * If we are charging, and the battery supplies a separate table
1030 * for this state, we use that in order to compensate for the
1031 * charging voltage. Otherwise we use the main table.
1032 */
1033 if (charging && info->vbat2ri_charging) {
1034 vbat2ri = info->vbat2ri_charging;
1035 table_len = info->vbat2ri_charging_size;
1036 } else {
1037 vbat2ri = info->vbat2ri_discharging;
1038 table_len = info->vbat2ri_discharging_size;
1039 }
1040
1041 /*
1042 * If no tables are specified, or if we are above the highest voltage in
1043 * the voltage table, just return the factory specified internal resistance.
1044 */
1045 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1046 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1047 return info->factory_internal_resistance_charging_uohm;
1048 else
1049 return info->factory_internal_resistance_uohm;
1050 }
1051
1052 /* Break loop at table_len - 1 because that is the highest index */
1053 for (i = 0; i < table_len - 1; i++)
1054 if (vbat_uv > vbat2ri[i].vbat_uv)
1055 break;
1056
1057 /* The library function will deal with high == low */
1058 if ((i == 0) || (i == (table_len - 1)))
1059 high = i;
1060 else
1061 high = i - 1;
1062 low = i;
1063
1064 return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1065 vbat2ri[low].ri_uohm,
1066 vbat2ri[high].vbat_uv,
1067 vbat2ri[high].ri_uohm,
1068 vbat_uv);
1069 }
1070 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1071
1072 struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info * info,int index)1073 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1074 int index)
1075 {
1076 if (index >= info->maintenance_charge_size)
1077 return NULL;
1078 return &info->maintenance_charge[index];
1079 }
1080 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1081
1082 /**
1083 * power_supply_ocv2cap_simple() - find the battery capacity
1084 * @table: Pointer to battery OCV lookup table
1085 * @table_len: OCV table length
1086 * @ocv: Current OCV value
1087 *
1088 * This helper function is used to look up battery capacity according to
1089 * current OCV value from one OCV table, and the OCV table must be ordered
1090 * descending.
1091 *
1092 * Return: the battery capacity.
1093 */
power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table * table,int table_len,int ocv)1094 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1095 int table_len, int ocv)
1096 {
1097 int i, high, low;
1098
1099 for (i = 0; i < table_len; i++)
1100 if (ocv > table[i].ocv)
1101 break;
1102
1103 /* The library function will deal with high == low */
1104 if (i == 0)
1105 high = low = i;
1106 else if (i == table_len)
1107 high = low = i - 1;
1108 else
1109 high = (low = i) - 1;
1110
1111 return fixp_linear_interpolate(table[low].ocv,
1112 table[low].capacity,
1113 table[high].ocv,
1114 table[high].capacity,
1115 ocv);
1116 }
1117 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1118
1119 struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)1120 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1121 int temp, int *table_len)
1122 {
1123 int best_temp_diff = INT_MAX, temp_diff;
1124 u8 i, best_index = 0;
1125
1126 if (!info->ocv_table[0])
1127 return NULL;
1128
1129 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1130 /* Out of capacity tables */
1131 if (!info->ocv_table[i])
1132 break;
1133
1134 temp_diff = abs(info->ocv_temp[i] - temp);
1135
1136 if (temp_diff < best_temp_diff) {
1137 best_temp_diff = temp_diff;
1138 best_index = i;
1139 }
1140 }
1141
1142 *table_len = info->ocv_table_size[best_index];
1143 return info->ocv_table[best_index];
1144 }
1145 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1146
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)1147 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1148 int ocv, int temp)
1149 {
1150 struct power_supply_battery_ocv_table *table;
1151 int table_len;
1152
1153 table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1154 if (!table)
1155 return -EINVAL;
1156
1157 return power_supply_ocv2cap_simple(table, table_len, ocv);
1158 }
1159 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1160
power_supply_battery_bti_in_range(struct power_supply_battery_info * info,int resistance)1161 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1162 int resistance)
1163 {
1164 int low, high;
1165
1166 /* Nothing like this can be checked */
1167 if (info->bti_resistance_ohm <= 0)
1168 return false;
1169
1170 /* This will be extremely strict and unlikely to work */
1171 if (info->bti_resistance_tolerance <= 0)
1172 return (info->bti_resistance_ohm == resistance);
1173
1174 low = info->bti_resistance_ohm -
1175 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1176 high = info->bti_resistance_ohm +
1177 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1178
1179 return ((resistance >= low) && (resistance <= high));
1180 }
1181 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1182
psy_has_property(const struct power_supply_desc * psy_desc,enum power_supply_property psp)1183 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1184 enum power_supply_property psp)
1185 {
1186 bool found = false;
1187 int i;
1188
1189 for (i = 0; i < psy_desc->num_properties; i++) {
1190 if (psy_desc->properties[i] == psp) {
1191 found = true;
1192 break;
1193 }
1194 }
1195
1196 return found;
1197 }
1198
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)1199 int power_supply_get_property(struct power_supply *psy,
1200 enum power_supply_property psp,
1201 union power_supply_propval *val)
1202 {
1203 if (atomic_read(&psy->use_cnt) <= 0) {
1204 if (!psy->initialized)
1205 return -EAGAIN;
1206 return -ENODEV;
1207 }
1208
1209 if (psy_has_property(psy->desc, psp))
1210 return psy->desc->get_property(psy, psp, val);
1211 else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1212 return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1213 else
1214 return -EINVAL;
1215 }
1216 EXPORT_SYMBOL_GPL(power_supply_get_property);
1217
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)1218 int power_supply_set_property(struct power_supply *psy,
1219 enum power_supply_property psp,
1220 const union power_supply_propval *val)
1221 {
1222 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1223 return -ENODEV;
1224
1225 return psy->desc->set_property(psy, psp, val);
1226 }
1227 EXPORT_SYMBOL_GPL(power_supply_set_property);
1228
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)1229 int power_supply_property_is_writeable(struct power_supply *psy,
1230 enum power_supply_property psp)
1231 {
1232 if (atomic_read(&psy->use_cnt) <= 0 ||
1233 !psy->desc->property_is_writeable)
1234 return -ENODEV;
1235
1236 return psy->desc->property_is_writeable(psy, psp);
1237 }
1238 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1239
power_supply_external_power_changed(struct power_supply * psy)1240 void power_supply_external_power_changed(struct power_supply *psy)
1241 {
1242 if (atomic_read(&psy->use_cnt) <= 0 ||
1243 !psy->desc->external_power_changed)
1244 return;
1245
1246 psy->desc->external_power_changed(psy);
1247 }
1248 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1249
power_supply_powers(struct power_supply * psy,struct device * dev)1250 int power_supply_powers(struct power_supply *psy, struct device *dev)
1251 {
1252 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1253 }
1254 EXPORT_SYMBOL_GPL(power_supply_powers);
1255
power_supply_dev_release(struct device * dev)1256 static void power_supply_dev_release(struct device *dev)
1257 {
1258 struct power_supply *psy = to_power_supply(dev);
1259 dev_dbg(dev, "%s\n", __func__);
1260 kfree(psy);
1261 }
1262
power_supply_reg_notifier(struct notifier_block * nb)1263 int power_supply_reg_notifier(struct notifier_block *nb)
1264 {
1265 return blocking_notifier_chain_register(&power_supply_notifier, nb);
1266 }
1267 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1268
power_supply_unreg_notifier(struct notifier_block * nb)1269 void power_supply_unreg_notifier(struct notifier_block *nb)
1270 {
1271 blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1272 }
1273 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1274
1275 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)1276 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1277 int *temp)
1278 {
1279 struct power_supply *psy;
1280 union power_supply_propval val;
1281 int ret;
1282
1283 WARN_ON(tzd == NULL);
1284 psy = thermal_zone_device_priv(tzd);
1285 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1286 if (ret)
1287 return ret;
1288
1289 /* Convert tenths of degree Celsius to milli degree Celsius. */
1290 *temp = val.intval * 100;
1291
1292 return ret;
1293 }
1294
1295 static struct thermal_zone_device_ops psy_tzd_ops = {
1296 .get_temp = power_supply_read_temp,
1297 };
1298
psy_register_thermal(struct power_supply * psy)1299 static int psy_register_thermal(struct power_supply *psy)
1300 {
1301 int ret;
1302
1303 if (psy->desc->no_thermal)
1304 return 0;
1305
1306 /* Register battery zone device psy reports temperature */
1307 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1308 /* Prefer our hwmon device and avoid duplicates */
1309 struct thermal_zone_params tzp = {
1310 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1311 };
1312 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1313 psy, &psy_tzd_ops, &tzp);
1314 if (IS_ERR(psy->tzd))
1315 return PTR_ERR(psy->tzd);
1316 ret = thermal_zone_device_enable(psy->tzd);
1317 if (ret)
1318 thermal_zone_device_unregister(psy->tzd);
1319 return ret;
1320 }
1321
1322 return 0;
1323 }
1324
psy_unregister_thermal(struct power_supply * psy)1325 static void psy_unregister_thermal(struct power_supply *psy)
1326 {
1327 if (IS_ERR_OR_NULL(psy->tzd))
1328 return;
1329 thermal_zone_device_unregister(psy->tzd);
1330 }
1331
1332 #else
psy_register_thermal(struct power_supply * psy)1333 static int psy_register_thermal(struct power_supply *psy)
1334 {
1335 return 0;
1336 }
1337
psy_unregister_thermal(struct power_supply * psy)1338 static void psy_unregister_thermal(struct power_supply *psy)
1339 {
1340 }
1341 #endif
1342
1343 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg,bool ws)1344 __power_supply_register(struct device *parent,
1345 const struct power_supply_desc *desc,
1346 const struct power_supply_config *cfg,
1347 bool ws)
1348 {
1349 struct device *dev;
1350 struct power_supply *psy;
1351 int rc;
1352
1353 if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1354 return ERR_PTR(-EINVAL);
1355
1356 if (!parent)
1357 pr_warn("%s: Expected proper parent device for '%s'\n",
1358 __func__, desc->name);
1359
1360 if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1361 (!desc->usb_types || !desc->num_usb_types))
1362 return ERR_PTR(-EINVAL);
1363
1364 psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1365 if (!psy)
1366 return ERR_PTR(-ENOMEM);
1367
1368 dev = &psy->dev;
1369
1370 device_initialize(dev);
1371
1372 dev->class = power_supply_class;
1373 dev->type = &power_supply_dev_type;
1374 dev->parent = parent;
1375 dev->release = power_supply_dev_release;
1376 dev_set_drvdata(dev, psy);
1377 psy->desc = desc;
1378 if (cfg) {
1379 dev->groups = cfg->attr_grp;
1380 psy->drv_data = cfg->drv_data;
1381 psy->of_node =
1382 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1383 psy->supplied_to = cfg->supplied_to;
1384 psy->num_supplicants = cfg->num_supplicants;
1385 }
1386
1387 rc = dev_set_name(dev, "%s", desc->name);
1388 if (rc)
1389 goto dev_set_name_failed;
1390
1391 INIT_WORK(&psy->changed_work, power_supply_changed_work);
1392 INIT_DELAYED_WORK(&psy->deferred_register_work,
1393 power_supply_deferred_register_work);
1394
1395 rc = power_supply_check_supplies(psy);
1396 if (rc) {
1397 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1398 goto check_supplies_failed;
1399 }
1400
1401 /*
1402 * Expose constant battery info, if it is available. While there are
1403 * some chargers accessing constant battery data, we only want to
1404 * expose battery data to userspace for battery devices.
1405 */
1406 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1407 rc = power_supply_get_battery_info(psy, &psy->battery_info);
1408 if (rc && rc != -ENODEV && rc != -ENOENT)
1409 goto check_supplies_failed;
1410 }
1411
1412 spin_lock_init(&psy->changed_lock);
1413 rc = device_add(dev);
1414 if (rc)
1415 goto device_add_failed;
1416
1417 rc = device_init_wakeup(dev, ws);
1418 if (rc)
1419 goto wakeup_init_failed;
1420
1421 rc = psy_register_thermal(psy);
1422 if (rc)
1423 goto register_thermal_failed;
1424
1425 rc = power_supply_create_triggers(psy);
1426 if (rc)
1427 goto create_triggers_failed;
1428
1429 rc = power_supply_add_hwmon_sysfs(psy);
1430 if (rc)
1431 goto add_hwmon_sysfs_failed;
1432
1433 /*
1434 * Update use_cnt after any uevents (most notably from device_add()).
1435 * We are here still during driver's probe but
1436 * the power_supply_uevent() calls back driver's get_property
1437 * method so:
1438 * 1. Driver did not assigned the returned struct power_supply,
1439 * 2. Driver could not finish initialization (anything in its probe
1440 * after calling power_supply_register()).
1441 */
1442 atomic_inc(&psy->use_cnt);
1443 psy->initialized = true;
1444
1445 queue_delayed_work(system_power_efficient_wq,
1446 &psy->deferred_register_work,
1447 POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1448
1449 return psy;
1450
1451 add_hwmon_sysfs_failed:
1452 power_supply_remove_triggers(psy);
1453 create_triggers_failed:
1454 psy_unregister_thermal(psy);
1455 register_thermal_failed:
1456 wakeup_init_failed:
1457 device_del(dev);
1458 device_add_failed:
1459 check_supplies_failed:
1460 dev_set_name_failed:
1461 put_device(dev);
1462 return ERR_PTR(rc);
1463 }
1464
1465 /**
1466 * power_supply_register() - Register new power supply
1467 * @parent: Device to be a parent of power supply's device, usually
1468 * the device which probe function calls this
1469 * @desc: Description of power supply, must be valid through whole
1470 * lifetime of this power supply
1471 * @cfg: Run-time specific configuration accessed during registering,
1472 * may be NULL
1473 *
1474 * Return: A pointer to newly allocated power_supply on success
1475 * or ERR_PTR otherwise.
1476 * Use power_supply_unregister() on returned power_supply pointer to release
1477 * resources.
1478 */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1479 struct power_supply *__must_check power_supply_register(struct device *parent,
1480 const struct power_supply_desc *desc,
1481 const struct power_supply_config *cfg)
1482 {
1483 return __power_supply_register(parent, desc, cfg, true);
1484 }
1485 EXPORT_SYMBOL_GPL(power_supply_register);
1486
1487 /**
1488 * power_supply_register_no_ws() - Register new non-waking-source power supply
1489 * @parent: Device to be a parent of power supply's device, usually
1490 * the device which probe function calls this
1491 * @desc: Description of power supply, must be valid through whole
1492 * lifetime of this power supply
1493 * @cfg: Run-time specific configuration accessed during registering,
1494 * may be NULL
1495 *
1496 * Return: A pointer to newly allocated power_supply on success
1497 * or ERR_PTR otherwise.
1498 * Use power_supply_unregister() on returned power_supply pointer to release
1499 * resources.
1500 */
1501 struct power_supply *__must_check
power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1502 power_supply_register_no_ws(struct device *parent,
1503 const struct power_supply_desc *desc,
1504 const struct power_supply_config *cfg)
1505 {
1506 return __power_supply_register(parent, desc, cfg, false);
1507 }
1508 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1509
devm_power_supply_release(struct device * dev,void * res)1510 static void devm_power_supply_release(struct device *dev, void *res)
1511 {
1512 struct power_supply **psy = res;
1513
1514 power_supply_unregister(*psy);
1515 }
1516
1517 /**
1518 * devm_power_supply_register() - Register managed power supply
1519 * @parent: Device to be a parent of power supply's device, usually
1520 * the device which probe function calls this
1521 * @desc: Description of power supply, must be valid through whole
1522 * lifetime of this power supply
1523 * @cfg: Run-time specific configuration accessed during registering,
1524 * may be NULL
1525 *
1526 * Return: A pointer to newly allocated power_supply on success
1527 * or ERR_PTR otherwise.
1528 * The returned power_supply pointer will be automatically unregistered
1529 * on driver detach.
1530 */
1531 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1532 devm_power_supply_register(struct device *parent,
1533 const struct power_supply_desc *desc,
1534 const struct power_supply_config *cfg)
1535 {
1536 struct power_supply **ptr, *psy;
1537
1538 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1539
1540 if (!ptr)
1541 return ERR_PTR(-ENOMEM);
1542 psy = __power_supply_register(parent, desc, cfg, true);
1543 if (IS_ERR(psy)) {
1544 devres_free(ptr);
1545 } else {
1546 *ptr = psy;
1547 devres_add(parent, ptr);
1548 }
1549 return psy;
1550 }
1551 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1552
1553 /**
1554 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1555 * @parent: Device to be a parent of power supply's device, usually
1556 * the device which probe function calls this
1557 * @desc: Description of power supply, must be valid through whole
1558 * lifetime of this power supply
1559 * @cfg: Run-time specific configuration accessed during registering,
1560 * may be NULL
1561 *
1562 * Return: A pointer to newly allocated power_supply on success
1563 * or ERR_PTR otherwise.
1564 * The returned power_supply pointer will be automatically unregistered
1565 * on driver detach.
1566 */
1567 struct power_supply *__must_check
devm_power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1568 devm_power_supply_register_no_ws(struct device *parent,
1569 const struct power_supply_desc *desc,
1570 const struct power_supply_config *cfg)
1571 {
1572 struct power_supply **ptr, *psy;
1573
1574 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1575
1576 if (!ptr)
1577 return ERR_PTR(-ENOMEM);
1578 psy = __power_supply_register(parent, desc, cfg, false);
1579 if (IS_ERR(psy)) {
1580 devres_free(ptr);
1581 } else {
1582 *ptr = psy;
1583 devres_add(parent, ptr);
1584 }
1585 return psy;
1586 }
1587 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1588
1589 /**
1590 * power_supply_unregister() - Remove this power supply from system
1591 * @psy: Pointer to power supply to unregister
1592 *
1593 * Remove this power supply from the system. The resources of power supply
1594 * will be freed here or on last power_supply_put() call.
1595 */
power_supply_unregister(struct power_supply * psy)1596 void power_supply_unregister(struct power_supply *psy)
1597 {
1598 WARN_ON(atomic_dec_return(&psy->use_cnt));
1599 psy->removing = true;
1600 cancel_work_sync(&psy->changed_work);
1601 cancel_delayed_work_sync(&psy->deferred_register_work);
1602 sysfs_remove_link(&psy->dev.kobj, "powers");
1603 power_supply_remove_hwmon_sysfs(psy);
1604 power_supply_remove_triggers(psy);
1605 psy_unregister_thermal(psy);
1606 device_init_wakeup(&psy->dev, false);
1607 device_unregister(&psy->dev);
1608 }
1609 EXPORT_SYMBOL_GPL(power_supply_unregister);
1610
power_supply_get_drvdata(struct power_supply * psy)1611 void *power_supply_get_drvdata(struct power_supply *psy)
1612 {
1613 return psy->drv_data;
1614 }
1615 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1616
power_supply_class_init(void)1617 static int __init power_supply_class_init(void)
1618 {
1619 power_supply_class = class_create("power_supply");
1620
1621 if (IS_ERR(power_supply_class))
1622 return PTR_ERR(power_supply_class);
1623
1624 power_supply_class->dev_uevent = power_supply_uevent;
1625 power_supply_init_attrs(&power_supply_dev_type);
1626
1627 return 0;
1628 }
1629
power_supply_class_exit(void)1630 static void __exit power_supply_class_exit(void)
1631 {
1632 class_destroy(power_supply_class);
1633 }
1634
1635 subsys_initcall(power_supply_class_init);
1636 module_exit(power_supply_class_exit);
1637
1638 MODULE_DESCRIPTION("Universal power supply monitor class");
1639 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1640 "Szabolcs Gyurko, "
1641 "Anton Vorontsov <cbou@mail.ru>");
1642