xref: /openbmc/linux/arch/powerpc/platforms/cell/spufs/file.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * SPU file system -- file contents
4   *
5   * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6   *
7   * Author: Arnd Bergmann <arndb@de.ibm.com>
8   */
9  
10  #undef DEBUG
11  
12  #include <linux/coredump.h>
13  #include <linux/fs.h>
14  #include <linux/ioctl.h>
15  #include <linux/export.h>
16  #include <linux/pagemap.h>
17  #include <linux/poll.h>
18  #include <linux/ptrace.h>
19  #include <linux/seq_file.h>
20  #include <linux/slab.h>
21  
22  #include <asm/io.h>
23  #include <asm/time.h>
24  #include <asm/spu.h>
25  #include <asm/spu_info.h>
26  #include <linux/uaccess.h>
27  
28  #include "spufs.h"
29  #include "sputrace.h"
30  
31  #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
32  
33  /* Simple attribute files */
34  struct spufs_attr {
35  	int (*get)(void *, u64 *);
36  	int (*set)(void *, u64);
37  	char get_buf[24];       /* enough to store a u64 and "\n\0" */
38  	char set_buf[24];
39  	void *data;
40  	const char *fmt;        /* format for read operation */
41  	struct mutex mutex;     /* protects access to these buffers */
42  };
43  
spufs_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)44  static int spufs_attr_open(struct inode *inode, struct file *file,
45  		int (*get)(void *, u64 *), int (*set)(void *, u64),
46  		const char *fmt)
47  {
48  	struct spufs_attr *attr;
49  
50  	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
51  	if (!attr)
52  		return -ENOMEM;
53  
54  	attr->get = get;
55  	attr->set = set;
56  	attr->data = inode->i_private;
57  	attr->fmt = fmt;
58  	mutex_init(&attr->mutex);
59  	file->private_data = attr;
60  
61  	return nonseekable_open(inode, file);
62  }
63  
spufs_attr_release(struct inode * inode,struct file * file)64  static int spufs_attr_release(struct inode *inode, struct file *file)
65  {
66         kfree(file->private_data);
67  	return 0;
68  }
69  
spufs_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)70  static ssize_t spufs_attr_read(struct file *file, char __user *buf,
71  		size_t len, loff_t *ppos)
72  {
73  	struct spufs_attr *attr;
74  	size_t size;
75  	ssize_t ret;
76  
77  	attr = file->private_data;
78  	if (!attr->get)
79  		return -EACCES;
80  
81  	ret = mutex_lock_interruptible(&attr->mutex);
82  	if (ret)
83  		return ret;
84  
85  	if (*ppos) {		/* continued read */
86  		size = strlen(attr->get_buf);
87  	} else {		/* first read */
88  		u64 val;
89  		ret = attr->get(attr->data, &val);
90  		if (ret)
91  			goto out;
92  
93  		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
94  				 attr->fmt, (unsigned long long)val);
95  	}
96  
97  	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
98  out:
99  	mutex_unlock(&attr->mutex);
100  	return ret;
101  }
102  
spufs_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)103  static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
104  		size_t len, loff_t *ppos)
105  {
106  	struct spufs_attr *attr;
107  	u64 val;
108  	size_t size;
109  	ssize_t ret;
110  
111  	attr = file->private_data;
112  	if (!attr->set)
113  		return -EACCES;
114  
115  	ret = mutex_lock_interruptible(&attr->mutex);
116  	if (ret)
117  		return ret;
118  
119  	ret = -EFAULT;
120  	size = min(sizeof(attr->set_buf) - 1, len);
121  	if (copy_from_user(attr->set_buf, buf, size))
122  		goto out;
123  
124  	ret = len; /* claim we got the whole input */
125  	attr->set_buf[size] = '\0';
126  	val = simple_strtol(attr->set_buf, NULL, 0);
127  	attr->set(attr->data, val);
128  out:
129  	mutex_unlock(&attr->mutex);
130  	return ret;
131  }
132  
spufs_dump_emit(struct coredump_params * cprm,void * buf,size_t size)133  static ssize_t spufs_dump_emit(struct coredump_params *cprm, void *buf,
134  		size_t size)
135  {
136  	if (!dump_emit(cprm, buf, size))
137  		return -EIO;
138  	return size;
139  }
140  
141  #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
142  static int __fops ## _open(struct inode *inode, struct file *file)	\
143  {									\
144  	__simple_attr_check_format(__fmt, 0ull);			\
145  	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
146  }									\
147  static const struct file_operations __fops = {				\
148  	.open	 = __fops ## _open,					\
149  	.release = spufs_attr_release,					\
150  	.read	 = spufs_attr_read,					\
151  	.write	 = spufs_attr_write,					\
152  	.llseek  = generic_file_llseek,					\
153  };
154  
155  
156  static int
spufs_mem_open(struct inode * inode,struct file * file)157  spufs_mem_open(struct inode *inode, struct file *file)
158  {
159  	struct spufs_inode_info *i = SPUFS_I(inode);
160  	struct spu_context *ctx = i->i_ctx;
161  
162  	mutex_lock(&ctx->mapping_lock);
163  	file->private_data = ctx;
164  	if (!i->i_openers++)
165  		ctx->local_store = inode->i_mapping;
166  	mutex_unlock(&ctx->mapping_lock);
167  	return 0;
168  }
169  
170  static int
spufs_mem_release(struct inode * inode,struct file * file)171  spufs_mem_release(struct inode *inode, struct file *file)
172  {
173  	struct spufs_inode_info *i = SPUFS_I(inode);
174  	struct spu_context *ctx = i->i_ctx;
175  
176  	mutex_lock(&ctx->mapping_lock);
177  	if (!--i->i_openers)
178  		ctx->local_store = NULL;
179  	mutex_unlock(&ctx->mapping_lock);
180  	return 0;
181  }
182  
183  static ssize_t
spufs_mem_dump(struct spu_context * ctx,struct coredump_params * cprm)184  spufs_mem_dump(struct spu_context *ctx, struct coredump_params *cprm)
185  {
186  	return spufs_dump_emit(cprm, ctx->ops->get_ls(ctx), LS_SIZE);
187  }
188  
189  static ssize_t
spufs_mem_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)190  spufs_mem_read(struct file *file, char __user *buffer,
191  				size_t size, loff_t *pos)
192  {
193  	struct spu_context *ctx = file->private_data;
194  	ssize_t ret;
195  
196  	ret = spu_acquire(ctx);
197  	if (ret)
198  		return ret;
199  	ret = simple_read_from_buffer(buffer, size, pos, ctx->ops->get_ls(ctx),
200  				      LS_SIZE);
201  	spu_release(ctx);
202  
203  	return ret;
204  }
205  
206  static ssize_t
spufs_mem_write(struct file * file,const char __user * buffer,size_t size,loff_t * ppos)207  spufs_mem_write(struct file *file, const char __user *buffer,
208  					size_t size, loff_t *ppos)
209  {
210  	struct spu_context *ctx = file->private_data;
211  	char *local_store;
212  	loff_t pos = *ppos;
213  	int ret;
214  
215  	if (pos > LS_SIZE)
216  		return -EFBIG;
217  
218  	ret = spu_acquire(ctx);
219  	if (ret)
220  		return ret;
221  
222  	local_store = ctx->ops->get_ls(ctx);
223  	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
224  	spu_release(ctx);
225  
226  	return size;
227  }
228  
229  static vm_fault_t
spufs_mem_mmap_fault(struct vm_fault * vmf)230  spufs_mem_mmap_fault(struct vm_fault *vmf)
231  {
232  	struct vm_area_struct *vma = vmf->vma;
233  	struct spu_context *ctx	= vma->vm_file->private_data;
234  	unsigned long pfn, offset;
235  	vm_fault_t ret;
236  
237  	offset = vmf->pgoff << PAGE_SHIFT;
238  	if (offset >= LS_SIZE)
239  		return VM_FAULT_SIGBUS;
240  
241  	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
242  			vmf->address, offset);
243  
244  	if (spu_acquire(ctx))
245  		return VM_FAULT_NOPAGE;
246  
247  	if (ctx->state == SPU_STATE_SAVED) {
248  		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
249  		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
250  	} else {
251  		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
252  		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
253  	}
254  	ret = vmf_insert_pfn(vma, vmf->address, pfn);
255  
256  	spu_release(ctx);
257  
258  	return ret;
259  }
260  
spufs_mem_mmap_access(struct vm_area_struct * vma,unsigned long address,void * buf,int len,int write)261  static int spufs_mem_mmap_access(struct vm_area_struct *vma,
262  				unsigned long address,
263  				void *buf, int len, int write)
264  {
265  	struct spu_context *ctx = vma->vm_file->private_data;
266  	unsigned long offset = address - vma->vm_start;
267  	char *local_store;
268  
269  	if (write && !(vma->vm_flags & VM_WRITE))
270  		return -EACCES;
271  	if (spu_acquire(ctx))
272  		return -EINTR;
273  	if ((offset + len) > vma->vm_end)
274  		len = vma->vm_end - offset;
275  	local_store = ctx->ops->get_ls(ctx);
276  	if (write)
277  		memcpy_toio(local_store + offset, buf, len);
278  	else
279  		memcpy_fromio(buf, local_store + offset, len);
280  	spu_release(ctx);
281  	return len;
282  }
283  
284  static const struct vm_operations_struct spufs_mem_mmap_vmops = {
285  	.fault = spufs_mem_mmap_fault,
286  	.access = spufs_mem_mmap_access,
287  };
288  
spufs_mem_mmap(struct file * file,struct vm_area_struct * vma)289  static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
290  {
291  	if (!(vma->vm_flags & VM_SHARED))
292  		return -EINVAL;
293  
294  	vm_flags_set(vma, VM_IO | VM_PFNMAP);
295  	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
296  
297  	vma->vm_ops = &spufs_mem_mmap_vmops;
298  	return 0;
299  }
300  
301  static const struct file_operations spufs_mem_fops = {
302  	.open			= spufs_mem_open,
303  	.release		= spufs_mem_release,
304  	.read			= spufs_mem_read,
305  	.write			= spufs_mem_write,
306  	.llseek			= generic_file_llseek,
307  	.mmap			= spufs_mem_mmap,
308  };
309  
spufs_ps_fault(struct vm_fault * vmf,unsigned long ps_offs,unsigned long ps_size)310  static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
311  				    unsigned long ps_offs,
312  				    unsigned long ps_size)
313  {
314  	struct spu_context *ctx = vmf->vma->vm_file->private_data;
315  	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
316  	int err = 0;
317  	vm_fault_t ret = VM_FAULT_NOPAGE;
318  
319  	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
320  
321  	if (offset >= ps_size)
322  		return VM_FAULT_SIGBUS;
323  
324  	if (fatal_signal_pending(current))
325  		return VM_FAULT_SIGBUS;
326  
327  	/*
328  	 * Because we release the mmap_lock, the context may be destroyed while
329  	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
330  	 * in the meantime.
331  	 */
332  	get_spu_context(ctx);
333  
334  	/*
335  	 * We have to wait for context to be loaded before we have
336  	 * pages to hand out to the user, but we don't want to wait
337  	 * with the mmap_lock held.
338  	 * It is possible to drop the mmap_lock here, but then we need
339  	 * to return VM_FAULT_NOPAGE because the mappings may have
340  	 * hanged.
341  	 */
342  	if (spu_acquire(ctx))
343  		goto refault;
344  
345  	if (ctx->state == SPU_STATE_SAVED) {
346  		mmap_read_unlock(current->mm);
347  		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
348  		err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
349  		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
350  		mmap_read_lock(current->mm);
351  	} else {
352  		area = ctx->spu->problem_phys + ps_offs;
353  		ret = vmf_insert_pfn(vmf->vma, vmf->address,
354  				(area + offset) >> PAGE_SHIFT);
355  		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
356  	}
357  
358  	if (!err)
359  		spu_release(ctx);
360  
361  refault:
362  	put_spu_context(ctx);
363  	return ret;
364  }
365  
366  #if SPUFS_MMAP_4K
spufs_cntl_mmap_fault(struct vm_fault * vmf)367  static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
368  {
369  	return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
370  }
371  
372  static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
373  	.fault = spufs_cntl_mmap_fault,
374  };
375  
376  /*
377   * mmap support for problem state control area [0x4000 - 0x4fff].
378   */
spufs_cntl_mmap(struct file * file,struct vm_area_struct * vma)379  static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
380  {
381  	if (!(vma->vm_flags & VM_SHARED))
382  		return -EINVAL;
383  
384  	vm_flags_set(vma, VM_IO | VM_PFNMAP);
385  	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
386  
387  	vma->vm_ops = &spufs_cntl_mmap_vmops;
388  	return 0;
389  }
390  #else /* SPUFS_MMAP_4K */
391  #define spufs_cntl_mmap NULL
392  #endif /* !SPUFS_MMAP_4K */
393  
spufs_cntl_get(void * data,u64 * val)394  static int spufs_cntl_get(void *data, u64 *val)
395  {
396  	struct spu_context *ctx = data;
397  	int ret;
398  
399  	ret = spu_acquire(ctx);
400  	if (ret)
401  		return ret;
402  	*val = ctx->ops->status_read(ctx);
403  	spu_release(ctx);
404  
405  	return 0;
406  }
407  
spufs_cntl_set(void * data,u64 val)408  static int spufs_cntl_set(void *data, u64 val)
409  {
410  	struct spu_context *ctx = data;
411  	int ret;
412  
413  	ret = spu_acquire(ctx);
414  	if (ret)
415  		return ret;
416  	ctx->ops->runcntl_write(ctx, val);
417  	spu_release(ctx);
418  
419  	return 0;
420  }
421  
spufs_cntl_open(struct inode * inode,struct file * file)422  static int spufs_cntl_open(struct inode *inode, struct file *file)
423  {
424  	struct spufs_inode_info *i = SPUFS_I(inode);
425  	struct spu_context *ctx = i->i_ctx;
426  
427  	mutex_lock(&ctx->mapping_lock);
428  	file->private_data = ctx;
429  	if (!i->i_openers++)
430  		ctx->cntl = inode->i_mapping;
431  	mutex_unlock(&ctx->mapping_lock);
432  	return simple_attr_open(inode, file, spufs_cntl_get,
433  					spufs_cntl_set, "0x%08lx");
434  }
435  
436  static int
spufs_cntl_release(struct inode * inode,struct file * file)437  spufs_cntl_release(struct inode *inode, struct file *file)
438  {
439  	struct spufs_inode_info *i = SPUFS_I(inode);
440  	struct spu_context *ctx = i->i_ctx;
441  
442  	simple_attr_release(inode, file);
443  
444  	mutex_lock(&ctx->mapping_lock);
445  	if (!--i->i_openers)
446  		ctx->cntl = NULL;
447  	mutex_unlock(&ctx->mapping_lock);
448  	return 0;
449  }
450  
451  static const struct file_operations spufs_cntl_fops = {
452  	.open = spufs_cntl_open,
453  	.release = spufs_cntl_release,
454  	.read = simple_attr_read,
455  	.write = simple_attr_write,
456  	.llseek	= no_llseek,
457  	.mmap = spufs_cntl_mmap,
458  };
459  
460  static int
spufs_regs_open(struct inode * inode,struct file * file)461  spufs_regs_open(struct inode *inode, struct file *file)
462  {
463  	struct spufs_inode_info *i = SPUFS_I(inode);
464  	file->private_data = i->i_ctx;
465  	return 0;
466  }
467  
468  static ssize_t
spufs_regs_dump(struct spu_context * ctx,struct coredump_params * cprm)469  spufs_regs_dump(struct spu_context *ctx, struct coredump_params *cprm)
470  {
471  	return spufs_dump_emit(cprm, ctx->csa.lscsa->gprs,
472  			       sizeof(ctx->csa.lscsa->gprs));
473  }
474  
475  static ssize_t
spufs_regs_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)476  spufs_regs_read(struct file *file, char __user *buffer,
477  		size_t size, loff_t *pos)
478  {
479  	int ret;
480  	struct spu_context *ctx = file->private_data;
481  
482  	/* pre-check for file position: if we'd return EOF, there's no point
483  	 * causing a deschedule */
484  	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
485  		return 0;
486  
487  	ret = spu_acquire_saved(ctx);
488  	if (ret)
489  		return ret;
490  	ret = simple_read_from_buffer(buffer, size, pos, ctx->csa.lscsa->gprs,
491  				      sizeof(ctx->csa.lscsa->gprs));
492  	spu_release_saved(ctx);
493  	return ret;
494  }
495  
496  static ssize_t
spufs_regs_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)497  spufs_regs_write(struct file *file, const char __user *buffer,
498  		 size_t size, loff_t *pos)
499  {
500  	struct spu_context *ctx = file->private_data;
501  	struct spu_lscsa *lscsa = ctx->csa.lscsa;
502  	int ret;
503  
504  	if (*pos >= sizeof(lscsa->gprs))
505  		return -EFBIG;
506  
507  	ret = spu_acquire_saved(ctx);
508  	if (ret)
509  		return ret;
510  
511  	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
512  					buffer, size);
513  
514  	spu_release_saved(ctx);
515  	return size;
516  }
517  
518  static const struct file_operations spufs_regs_fops = {
519  	.open	 = spufs_regs_open,
520  	.read    = spufs_regs_read,
521  	.write   = spufs_regs_write,
522  	.llseek  = generic_file_llseek,
523  };
524  
525  static ssize_t
spufs_fpcr_dump(struct spu_context * ctx,struct coredump_params * cprm)526  spufs_fpcr_dump(struct spu_context *ctx, struct coredump_params *cprm)
527  {
528  	return spufs_dump_emit(cprm, &ctx->csa.lscsa->fpcr,
529  			       sizeof(ctx->csa.lscsa->fpcr));
530  }
531  
532  static ssize_t
spufs_fpcr_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)533  spufs_fpcr_read(struct file *file, char __user * buffer,
534  		size_t size, loff_t * pos)
535  {
536  	int ret;
537  	struct spu_context *ctx = file->private_data;
538  
539  	ret = spu_acquire_saved(ctx);
540  	if (ret)
541  		return ret;
542  	ret = simple_read_from_buffer(buffer, size, pos, &ctx->csa.lscsa->fpcr,
543  				      sizeof(ctx->csa.lscsa->fpcr));
544  	spu_release_saved(ctx);
545  	return ret;
546  }
547  
548  static ssize_t
spufs_fpcr_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)549  spufs_fpcr_write(struct file *file, const char __user * buffer,
550  		 size_t size, loff_t * pos)
551  {
552  	struct spu_context *ctx = file->private_data;
553  	struct spu_lscsa *lscsa = ctx->csa.lscsa;
554  	int ret;
555  
556  	if (*pos >= sizeof(lscsa->fpcr))
557  		return -EFBIG;
558  
559  	ret = spu_acquire_saved(ctx);
560  	if (ret)
561  		return ret;
562  
563  	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
564  					buffer, size);
565  
566  	spu_release_saved(ctx);
567  	return size;
568  }
569  
570  static const struct file_operations spufs_fpcr_fops = {
571  	.open = spufs_regs_open,
572  	.read = spufs_fpcr_read,
573  	.write = spufs_fpcr_write,
574  	.llseek = generic_file_llseek,
575  };
576  
577  /* generic open function for all pipe-like files */
spufs_pipe_open(struct inode * inode,struct file * file)578  static int spufs_pipe_open(struct inode *inode, struct file *file)
579  {
580  	struct spufs_inode_info *i = SPUFS_I(inode);
581  	file->private_data = i->i_ctx;
582  
583  	return stream_open(inode, file);
584  }
585  
586  /*
587   * Read as many bytes from the mailbox as possible, until
588   * one of the conditions becomes true:
589   *
590   * - no more data available in the mailbox
591   * - end of the user provided buffer
592   * - end of the mapped area
593   */
spufs_mbox_read(struct file * file,char __user * buf,size_t len,loff_t * pos)594  static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
595  			size_t len, loff_t *pos)
596  {
597  	struct spu_context *ctx = file->private_data;
598  	u32 mbox_data, __user *udata = (void __user *)buf;
599  	ssize_t count;
600  
601  	if (len < 4)
602  		return -EINVAL;
603  
604  	count = spu_acquire(ctx);
605  	if (count)
606  		return count;
607  
608  	for (count = 0; (count + 4) <= len; count += 4, udata++) {
609  		int ret;
610  		ret = ctx->ops->mbox_read(ctx, &mbox_data);
611  		if (ret == 0)
612  			break;
613  
614  		/*
615  		 * at the end of the mapped area, we can fault
616  		 * but still need to return the data we have
617  		 * read successfully so far.
618  		 */
619  		ret = put_user(mbox_data, udata);
620  		if (ret) {
621  			if (!count)
622  				count = -EFAULT;
623  			break;
624  		}
625  	}
626  	spu_release(ctx);
627  
628  	if (!count)
629  		count = -EAGAIN;
630  
631  	return count;
632  }
633  
634  static const struct file_operations spufs_mbox_fops = {
635  	.open	= spufs_pipe_open,
636  	.read	= spufs_mbox_read,
637  	.llseek	= no_llseek,
638  };
639  
spufs_mbox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)640  static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
641  			size_t len, loff_t *pos)
642  {
643  	struct spu_context *ctx = file->private_data;
644  	ssize_t ret;
645  	u32 mbox_stat;
646  
647  	if (len < 4)
648  		return -EINVAL;
649  
650  	ret = spu_acquire(ctx);
651  	if (ret)
652  		return ret;
653  
654  	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
655  
656  	spu_release(ctx);
657  
658  	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
659  		return -EFAULT;
660  
661  	return 4;
662  }
663  
664  static const struct file_operations spufs_mbox_stat_fops = {
665  	.open	= spufs_pipe_open,
666  	.read	= spufs_mbox_stat_read,
667  	.llseek = no_llseek,
668  };
669  
670  /* low-level ibox access function */
spu_ibox_read(struct spu_context * ctx,u32 * data)671  size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
672  {
673  	return ctx->ops->ibox_read(ctx, data);
674  }
675  
676  /* interrupt-level ibox callback function. */
spufs_ibox_callback(struct spu * spu)677  void spufs_ibox_callback(struct spu *spu)
678  {
679  	struct spu_context *ctx = spu->ctx;
680  
681  	if (ctx)
682  		wake_up_all(&ctx->ibox_wq);
683  }
684  
685  /*
686   * Read as many bytes from the interrupt mailbox as possible, until
687   * one of the conditions becomes true:
688   *
689   * - no more data available in the mailbox
690   * - end of the user provided buffer
691   * - end of the mapped area
692   *
693   * If the file is opened without O_NONBLOCK, we wait here until
694   * any data is available, but return when we have been able to
695   * read something.
696   */
spufs_ibox_read(struct file * file,char __user * buf,size_t len,loff_t * pos)697  static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
698  			size_t len, loff_t *pos)
699  {
700  	struct spu_context *ctx = file->private_data;
701  	u32 ibox_data, __user *udata = (void __user *)buf;
702  	ssize_t count;
703  
704  	if (len < 4)
705  		return -EINVAL;
706  
707  	count = spu_acquire(ctx);
708  	if (count)
709  		goto out;
710  
711  	/* wait only for the first element */
712  	count = 0;
713  	if (file->f_flags & O_NONBLOCK) {
714  		if (!spu_ibox_read(ctx, &ibox_data)) {
715  			count = -EAGAIN;
716  			goto out_unlock;
717  		}
718  	} else {
719  		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
720  		if (count)
721  			goto out;
722  	}
723  
724  	/* if we can't write at all, return -EFAULT */
725  	count = put_user(ibox_data, udata);
726  	if (count)
727  		goto out_unlock;
728  
729  	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
730  		int ret;
731  		ret = ctx->ops->ibox_read(ctx, &ibox_data);
732  		if (ret == 0)
733  			break;
734  		/*
735  		 * at the end of the mapped area, we can fault
736  		 * but still need to return the data we have
737  		 * read successfully so far.
738  		 */
739  		ret = put_user(ibox_data, udata);
740  		if (ret)
741  			break;
742  	}
743  
744  out_unlock:
745  	spu_release(ctx);
746  out:
747  	return count;
748  }
749  
spufs_ibox_poll(struct file * file,poll_table * wait)750  static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
751  {
752  	struct spu_context *ctx = file->private_data;
753  	__poll_t mask;
754  
755  	poll_wait(file, &ctx->ibox_wq, wait);
756  
757  	/*
758  	 * For now keep this uninterruptible and also ignore the rule
759  	 * that poll should not sleep.  Will be fixed later.
760  	 */
761  	mutex_lock(&ctx->state_mutex);
762  	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
763  	spu_release(ctx);
764  
765  	return mask;
766  }
767  
768  static const struct file_operations spufs_ibox_fops = {
769  	.open	= spufs_pipe_open,
770  	.read	= spufs_ibox_read,
771  	.poll	= spufs_ibox_poll,
772  	.llseek = no_llseek,
773  };
774  
spufs_ibox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)775  static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
776  			size_t len, loff_t *pos)
777  {
778  	struct spu_context *ctx = file->private_data;
779  	ssize_t ret;
780  	u32 ibox_stat;
781  
782  	if (len < 4)
783  		return -EINVAL;
784  
785  	ret = spu_acquire(ctx);
786  	if (ret)
787  		return ret;
788  	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
789  	spu_release(ctx);
790  
791  	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
792  		return -EFAULT;
793  
794  	return 4;
795  }
796  
797  static const struct file_operations spufs_ibox_stat_fops = {
798  	.open	= spufs_pipe_open,
799  	.read	= spufs_ibox_stat_read,
800  	.llseek = no_llseek,
801  };
802  
803  /* low-level mailbox write */
spu_wbox_write(struct spu_context * ctx,u32 data)804  size_t spu_wbox_write(struct spu_context *ctx, u32 data)
805  {
806  	return ctx->ops->wbox_write(ctx, data);
807  }
808  
809  /* interrupt-level wbox callback function. */
spufs_wbox_callback(struct spu * spu)810  void spufs_wbox_callback(struct spu *spu)
811  {
812  	struct spu_context *ctx = spu->ctx;
813  
814  	if (ctx)
815  		wake_up_all(&ctx->wbox_wq);
816  }
817  
818  /*
819   * Write as many bytes to the interrupt mailbox as possible, until
820   * one of the conditions becomes true:
821   *
822   * - the mailbox is full
823   * - end of the user provided buffer
824   * - end of the mapped area
825   *
826   * If the file is opened without O_NONBLOCK, we wait here until
827   * space is available, but return when we have been able to
828   * write something.
829   */
spufs_wbox_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)830  static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
831  			size_t len, loff_t *pos)
832  {
833  	struct spu_context *ctx = file->private_data;
834  	u32 wbox_data, __user *udata = (void __user *)buf;
835  	ssize_t count;
836  
837  	if (len < 4)
838  		return -EINVAL;
839  
840  	if (get_user(wbox_data, udata))
841  		return -EFAULT;
842  
843  	count = spu_acquire(ctx);
844  	if (count)
845  		goto out;
846  
847  	/*
848  	 * make sure we can at least write one element, by waiting
849  	 * in case of !O_NONBLOCK
850  	 */
851  	count = 0;
852  	if (file->f_flags & O_NONBLOCK) {
853  		if (!spu_wbox_write(ctx, wbox_data)) {
854  			count = -EAGAIN;
855  			goto out_unlock;
856  		}
857  	} else {
858  		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
859  		if (count)
860  			goto out;
861  	}
862  
863  
864  	/* write as much as possible */
865  	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
866  		int ret;
867  		ret = get_user(wbox_data, udata);
868  		if (ret)
869  			break;
870  
871  		ret = spu_wbox_write(ctx, wbox_data);
872  		if (ret == 0)
873  			break;
874  	}
875  
876  out_unlock:
877  	spu_release(ctx);
878  out:
879  	return count;
880  }
881  
spufs_wbox_poll(struct file * file,poll_table * wait)882  static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
883  {
884  	struct spu_context *ctx = file->private_data;
885  	__poll_t mask;
886  
887  	poll_wait(file, &ctx->wbox_wq, wait);
888  
889  	/*
890  	 * For now keep this uninterruptible and also ignore the rule
891  	 * that poll should not sleep.  Will be fixed later.
892  	 */
893  	mutex_lock(&ctx->state_mutex);
894  	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
895  	spu_release(ctx);
896  
897  	return mask;
898  }
899  
900  static const struct file_operations spufs_wbox_fops = {
901  	.open	= spufs_pipe_open,
902  	.write	= spufs_wbox_write,
903  	.poll	= spufs_wbox_poll,
904  	.llseek = no_llseek,
905  };
906  
spufs_wbox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)907  static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
908  			size_t len, loff_t *pos)
909  {
910  	struct spu_context *ctx = file->private_data;
911  	ssize_t ret;
912  	u32 wbox_stat;
913  
914  	if (len < 4)
915  		return -EINVAL;
916  
917  	ret = spu_acquire(ctx);
918  	if (ret)
919  		return ret;
920  	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
921  	spu_release(ctx);
922  
923  	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
924  		return -EFAULT;
925  
926  	return 4;
927  }
928  
929  static const struct file_operations spufs_wbox_stat_fops = {
930  	.open	= spufs_pipe_open,
931  	.read	= spufs_wbox_stat_read,
932  	.llseek = no_llseek,
933  };
934  
spufs_signal1_open(struct inode * inode,struct file * file)935  static int spufs_signal1_open(struct inode *inode, struct file *file)
936  {
937  	struct spufs_inode_info *i = SPUFS_I(inode);
938  	struct spu_context *ctx = i->i_ctx;
939  
940  	mutex_lock(&ctx->mapping_lock);
941  	file->private_data = ctx;
942  	if (!i->i_openers++)
943  		ctx->signal1 = inode->i_mapping;
944  	mutex_unlock(&ctx->mapping_lock);
945  	return nonseekable_open(inode, file);
946  }
947  
948  static int
spufs_signal1_release(struct inode * inode,struct file * file)949  spufs_signal1_release(struct inode *inode, struct file *file)
950  {
951  	struct spufs_inode_info *i = SPUFS_I(inode);
952  	struct spu_context *ctx = i->i_ctx;
953  
954  	mutex_lock(&ctx->mapping_lock);
955  	if (!--i->i_openers)
956  		ctx->signal1 = NULL;
957  	mutex_unlock(&ctx->mapping_lock);
958  	return 0;
959  }
960  
spufs_signal1_dump(struct spu_context * ctx,struct coredump_params * cprm)961  static ssize_t spufs_signal1_dump(struct spu_context *ctx,
962  		struct coredump_params *cprm)
963  {
964  	if (!ctx->csa.spu_chnlcnt_RW[3])
965  		return 0;
966  	return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[3],
967  			       sizeof(ctx->csa.spu_chnldata_RW[3]));
968  }
969  
__spufs_signal1_read(struct spu_context * ctx,char __user * buf,size_t len)970  static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
971  			size_t len)
972  {
973  	if (len < sizeof(ctx->csa.spu_chnldata_RW[3]))
974  		return -EINVAL;
975  	if (!ctx->csa.spu_chnlcnt_RW[3])
976  		return 0;
977  	if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[3],
978  			 sizeof(ctx->csa.spu_chnldata_RW[3])))
979  		return -EFAULT;
980  	return sizeof(ctx->csa.spu_chnldata_RW[3]);
981  }
982  
spufs_signal1_read(struct file * file,char __user * buf,size_t len,loff_t * pos)983  static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
984  			size_t len, loff_t *pos)
985  {
986  	int ret;
987  	struct spu_context *ctx = file->private_data;
988  
989  	ret = spu_acquire_saved(ctx);
990  	if (ret)
991  		return ret;
992  	ret = __spufs_signal1_read(ctx, buf, len);
993  	spu_release_saved(ctx);
994  
995  	return ret;
996  }
997  
spufs_signal1_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)998  static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
999  			size_t len, loff_t *pos)
1000  {
1001  	struct spu_context *ctx;
1002  	ssize_t ret;
1003  	u32 data;
1004  
1005  	ctx = file->private_data;
1006  
1007  	if (len < 4)
1008  		return -EINVAL;
1009  
1010  	if (copy_from_user(&data, buf, 4))
1011  		return -EFAULT;
1012  
1013  	ret = spu_acquire(ctx);
1014  	if (ret)
1015  		return ret;
1016  	ctx->ops->signal1_write(ctx, data);
1017  	spu_release(ctx);
1018  
1019  	return 4;
1020  }
1021  
1022  static vm_fault_t
spufs_signal1_mmap_fault(struct vm_fault * vmf)1023  spufs_signal1_mmap_fault(struct vm_fault *vmf)
1024  {
1025  #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1026  	return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1027  #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1028  	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1029  	 * signal 1 and 2 area
1030  	 */
1031  	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1032  #else
1033  #error unsupported page size
1034  #endif
1035  }
1036  
1037  static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1038  	.fault = spufs_signal1_mmap_fault,
1039  };
1040  
spufs_signal1_mmap(struct file * file,struct vm_area_struct * vma)1041  static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1042  {
1043  	if (!(vma->vm_flags & VM_SHARED))
1044  		return -EINVAL;
1045  
1046  	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1047  	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1048  
1049  	vma->vm_ops = &spufs_signal1_mmap_vmops;
1050  	return 0;
1051  }
1052  
1053  static const struct file_operations spufs_signal1_fops = {
1054  	.open = spufs_signal1_open,
1055  	.release = spufs_signal1_release,
1056  	.read = spufs_signal1_read,
1057  	.write = spufs_signal1_write,
1058  	.mmap = spufs_signal1_mmap,
1059  	.llseek = no_llseek,
1060  };
1061  
1062  static const struct file_operations spufs_signal1_nosched_fops = {
1063  	.open = spufs_signal1_open,
1064  	.release = spufs_signal1_release,
1065  	.write = spufs_signal1_write,
1066  	.mmap = spufs_signal1_mmap,
1067  	.llseek = no_llseek,
1068  };
1069  
spufs_signal2_open(struct inode * inode,struct file * file)1070  static int spufs_signal2_open(struct inode *inode, struct file *file)
1071  {
1072  	struct spufs_inode_info *i = SPUFS_I(inode);
1073  	struct spu_context *ctx = i->i_ctx;
1074  
1075  	mutex_lock(&ctx->mapping_lock);
1076  	file->private_data = ctx;
1077  	if (!i->i_openers++)
1078  		ctx->signal2 = inode->i_mapping;
1079  	mutex_unlock(&ctx->mapping_lock);
1080  	return nonseekable_open(inode, file);
1081  }
1082  
1083  static int
spufs_signal2_release(struct inode * inode,struct file * file)1084  spufs_signal2_release(struct inode *inode, struct file *file)
1085  {
1086  	struct spufs_inode_info *i = SPUFS_I(inode);
1087  	struct spu_context *ctx = i->i_ctx;
1088  
1089  	mutex_lock(&ctx->mapping_lock);
1090  	if (!--i->i_openers)
1091  		ctx->signal2 = NULL;
1092  	mutex_unlock(&ctx->mapping_lock);
1093  	return 0;
1094  }
1095  
spufs_signal2_dump(struct spu_context * ctx,struct coredump_params * cprm)1096  static ssize_t spufs_signal2_dump(struct spu_context *ctx,
1097  		struct coredump_params *cprm)
1098  {
1099  	if (!ctx->csa.spu_chnlcnt_RW[4])
1100  		return 0;
1101  	return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[4],
1102  			       sizeof(ctx->csa.spu_chnldata_RW[4]));
1103  }
1104  
__spufs_signal2_read(struct spu_context * ctx,char __user * buf,size_t len)1105  static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1106  			size_t len)
1107  {
1108  	if (len < sizeof(ctx->csa.spu_chnldata_RW[4]))
1109  		return -EINVAL;
1110  	if (!ctx->csa.spu_chnlcnt_RW[4])
1111  		return 0;
1112  	if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[4],
1113  			 sizeof(ctx->csa.spu_chnldata_RW[4])))
1114  		return -EFAULT;
1115  	return sizeof(ctx->csa.spu_chnldata_RW[4]);
1116  }
1117  
spufs_signal2_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1118  static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1119  			size_t len, loff_t *pos)
1120  {
1121  	struct spu_context *ctx = file->private_data;
1122  	int ret;
1123  
1124  	ret = spu_acquire_saved(ctx);
1125  	if (ret)
1126  		return ret;
1127  	ret = __spufs_signal2_read(ctx, buf, len);
1128  	spu_release_saved(ctx);
1129  
1130  	return ret;
1131  }
1132  
spufs_signal2_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)1133  static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1134  			size_t len, loff_t *pos)
1135  {
1136  	struct spu_context *ctx;
1137  	ssize_t ret;
1138  	u32 data;
1139  
1140  	ctx = file->private_data;
1141  
1142  	if (len < 4)
1143  		return -EINVAL;
1144  
1145  	if (copy_from_user(&data, buf, 4))
1146  		return -EFAULT;
1147  
1148  	ret = spu_acquire(ctx);
1149  	if (ret)
1150  		return ret;
1151  	ctx->ops->signal2_write(ctx, data);
1152  	spu_release(ctx);
1153  
1154  	return 4;
1155  }
1156  
1157  #if SPUFS_MMAP_4K
1158  static vm_fault_t
spufs_signal2_mmap_fault(struct vm_fault * vmf)1159  spufs_signal2_mmap_fault(struct vm_fault *vmf)
1160  {
1161  #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1162  	return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1163  #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1164  	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1165  	 * signal 1 and 2 area
1166  	 */
1167  	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1168  #else
1169  #error unsupported page size
1170  #endif
1171  }
1172  
1173  static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1174  	.fault = spufs_signal2_mmap_fault,
1175  };
1176  
spufs_signal2_mmap(struct file * file,struct vm_area_struct * vma)1177  static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1178  {
1179  	if (!(vma->vm_flags & VM_SHARED))
1180  		return -EINVAL;
1181  
1182  	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1183  	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1184  
1185  	vma->vm_ops = &spufs_signal2_mmap_vmops;
1186  	return 0;
1187  }
1188  #else /* SPUFS_MMAP_4K */
1189  #define spufs_signal2_mmap NULL
1190  #endif /* !SPUFS_MMAP_4K */
1191  
1192  static const struct file_operations spufs_signal2_fops = {
1193  	.open = spufs_signal2_open,
1194  	.release = spufs_signal2_release,
1195  	.read = spufs_signal2_read,
1196  	.write = spufs_signal2_write,
1197  	.mmap = spufs_signal2_mmap,
1198  	.llseek = no_llseek,
1199  };
1200  
1201  static const struct file_operations spufs_signal2_nosched_fops = {
1202  	.open = spufs_signal2_open,
1203  	.release = spufs_signal2_release,
1204  	.write = spufs_signal2_write,
1205  	.mmap = spufs_signal2_mmap,
1206  	.llseek = no_llseek,
1207  };
1208  
1209  /*
1210   * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1211   * work of acquiring (or not) the SPU context before calling through
1212   * to the actual get routine. The set routine is called directly.
1213   */
1214  #define SPU_ATTR_NOACQUIRE	0
1215  #define SPU_ATTR_ACQUIRE	1
1216  #define SPU_ATTR_ACQUIRE_SAVED	2
1217  
1218  #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1219  static int __##__get(void *data, u64 *val)				\
1220  {									\
1221  	struct spu_context *ctx = data;					\
1222  	int ret = 0;							\
1223  									\
1224  	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1225  		ret = spu_acquire(ctx);					\
1226  		if (ret)						\
1227  			return ret;					\
1228  		*val = __get(ctx);					\
1229  		spu_release(ctx);					\
1230  	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1231  		ret = spu_acquire_saved(ctx);				\
1232  		if (ret)						\
1233  			return ret;					\
1234  		*val = __get(ctx);					\
1235  		spu_release_saved(ctx);					\
1236  	} else								\
1237  		*val = __get(ctx);					\
1238  									\
1239  	return 0;							\
1240  }									\
1241  DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1242  
spufs_signal1_type_set(void * data,u64 val)1243  static int spufs_signal1_type_set(void *data, u64 val)
1244  {
1245  	struct spu_context *ctx = data;
1246  	int ret;
1247  
1248  	ret = spu_acquire(ctx);
1249  	if (ret)
1250  		return ret;
1251  	ctx->ops->signal1_type_set(ctx, val);
1252  	spu_release(ctx);
1253  
1254  	return 0;
1255  }
1256  
spufs_signal1_type_get(struct spu_context * ctx)1257  static u64 spufs_signal1_type_get(struct spu_context *ctx)
1258  {
1259  	return ctx->ops->signal1_type_get(ctx);
1260  }
1261  DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1262  		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1263  
1264  
spufs_signal2_type_set(void * data,u64 val)1265  static int spufs_signal2_type_set(void *data, u64 val)
1266  {
1267  	struct spu_context *ctx = data;
1268  	int ret;
1269  
1270  	ret = spu_acquire(ctx);
1271  	if (ret)
1272  		return ret;
1273  	ctx->ops->signal2_type_set(ctx, val);
1274  	spu_release(ctx);
1275  
1276  	return 0;
1277  }
1278  
spufs_signal2_type_get(struct spu_context * ctx)1279  static u64 spufs_signal2_type_get(struct spu_context *ctx)
1280  {
1281  	return ctx->ops->signal2_type_get(ctx);
1282  }
1283  DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1284  		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1285  
1286  #if SPUFS_MMAP_4K
1287  static vm_fault_t
spufs_mss_mmap_fault(struct vm_fault * vmf)1288  spufs_mss_mmap_fault(struct vm_fault *vmf)
1289  {
1290  	return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1291  }
1292  
1293  static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1294  	.fault = spufs_mss_mmap_fault,
1295  };
1296  
1297  /*
1298   * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1299   */
spufs_mss_mmap(struct file * file,struct vm_area_struct * vma)1300  static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1301  {
1302  	if (!(vma->vm_flags & VM_SHARED))
1303  		return -EINVAL;
1304  
1305  	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1306  	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1307  
1308  	vma->vm_ops = &spufs_mss_mmap_vmops;
1309  	return 0;
1310  }
1311  #else /* SPUFS_MMAP_4K */
1312  #define spufs_mss_mmap NULL
1313  #endif /* !SPUFS_MMAP_4K */
1314  
spufs_mss_open(struct inode * inode,struct file * file)1315  static int spufs_mss_open(struct inode *inode, struct file *file)
1316  {
1317  	struct spufs_inode_info *i = SPUFS_I(inode);
1318  	struct spu_context *ctx = i->i_ctx;
1319  
1320  	file->private_data = i->i_ctx;
1321  
1322  	mutex_lock(&ctx->mapping_lock);
1323  	if (!i->i_openers++)
1324  		ctx->mss = inode->i_mapping;
1325  	mutex_unlock(&ctx->mapping_lock);
1326  	return nonseekable_open(inode, file);
1327  }
1328  
1329  static int
spufs_mss_release(struct inode * inode,struct file * file)1330  spufs_mss_release(struct inode *inode, struct file *file)
1331  {
1332  	struct spufs_inode_info *i = SPUFS_I(inode);
1333  	struct spu_context *ctx = i->i_ctx;
1334  
1335  	mutex_lock(&ctx->mapping_lock);
1336  	if (!--i->i_openers)
1337  		ctx->mss = NULL;
1338  	mutex_unlock(&ctx->mapping_lock);
1339  	return 0;
1340  }
1341  
1342  static const struct file_operations spufs_mss_fops = {
1343  	.open	 = spufs_mss_open,
1344  	.release = spufs_mss_release,
1345  	.mmap	 = spufs_mss_mmap,
1346  	.llseek  = no_llseek,
1347  };
1348  
1349  static vm_fault_t
spufs_psmap_mmap_fault(struct vm_fault * vmf)1350  spufs_psmap_mmap_fault(struct vm_fault *vmf)
1351  {
1352  	return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1353  }
1354  
1355  static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1356  	.fault = spufs_psmap_mmap_fault,
1357  };
1358  
1359  /*
1360   * mmap support for full problem state area [0x00000 - 0x1ffff].
1361   */
spufs_psmap_mmap(struct file * file,struct vm_area_struct * vma)1362  static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1363  {
1364  	if (!(vma->vm_flags & VM_SHARED))
1365  		return -EINVAL;
1366  
1367  	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1368  	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1369  
1370  	vma->vm_ops = &spufs_psmap_mmap_vmops;
1371  	return 0;
1372  }
1373  
spufs_psmap_open(struct inode * inode,struct file * file)1374  static int spufs_psmap_open(struct inode *inode, struct file *file)
1375  {
1376  	struct spufs_inode_info *i = SPUFS_I(inode);
1377  	struct spu_context *ctx = i->i_ctx;
1378  
1379  	mutex_lock(&ctx->mapping_lock);
1380  	file->private_data = i->i_ctx;
1381  	if (!i->i_openers++)
1382  		ctx->psmap = inode->i_mapping;
1383  	mutex_unlock(&ctx->mapping_lock);
1384  	return nonseekable_open(inode, file);
1385  }
1386  
1387  static int
spufs_psmap_release(struct inode * inode,struct file * file)1388  spufs_psmap_release(struct inode *inode, struct file *file)
1389  {
1390  	struct spufs_inode_info *i = SPUFS_I(inode);
1391  	struct spu_context *ctx = i->i_ctx;
1392  
1393  	mutex_lock(&ctx->mapping_lock);
1394  	if (!--i->i_openers)
1395  		ctx->psmap = NULL;
1396  	mutex_unlock(&ctx->mapping_lock);
1397  	return 0;
1398  }
1399  
1400  static const struct file_operations spufs_psmap_fops = {
1401  	.open	 = spufs_psmap_open,
1402  	.release = spufs_psmap_release,
1403  	.mmap	 = spufs_psmap_mmap,
1404  	.llseek  = no_llseek,
1405  };
1406  
1407  
1408  #if SPUFS_MMAP_4K
1409  static vm_fault_t
spufs_mfc_mmap_fault(struct vm_fault * vmf)1410  spufs_mfc_mmap_fault(struct vm_fault *vmf)
1411  {
1412  	return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1413  }
1414  
1415  static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1416  	.fault = spufs_mfc_mmap_fault,
1417  };
1418  
1419  /*
1420   * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1421   */
spufs_mfc_mmap(struct file * file,struct vm_area_struct * vma)1422  static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1423  {
1424  	if (!(vma->vm_flags & VM_SHARED))
1425  		return -EINVAL;
1426  
1427  	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1428  	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1429  
1430  	vma->vm_ops = &spufs_mfc_mmap_vmops;
1431  	return 0;
1432  }
1433  #else /* SPUFS_MMAP_4K */
1434  #define spufs_mfc_mmap NULL
1435  #endif /* !SPUFS_MMAP_4K */
1436  
spufs_mfc_open(struct inode * inode,struct file * file)1437  static int spufs_mfc_open(struct inode *inode, struct file *file)
1438  {
1439  	struct spufs_inode_info *i = SPUFS_I(inode);
1440  	struct spu_context *ctx = i->i_ctx;
1441  
1442  	/* we don't want to deal with DMA into other processes */
1443  	if (ctx->owner != current->mm)
1444  		return -EINVAL;
1445  
1446  	if (atomic_read(&inode->i_count) != 1)
1447  		return -EBUSY;
1448  
1449  	mutex_lock(&ctx->mapping_lock);
1450  	file->private_data = ctx;
1451  	if (!i->i_openers++)
1452  		ctx->mfc = inode->i_mapping;
1453  	mutex_unlock(&ctx->mapping_lock);
1454  	return nonseekable_open(inode, file);
1455  }
1456  
1457  static int
spufs_mfc_release(struct inode * inode,struct file * file)1458  spufs_mfc_release(struct inode *inode, struct file *file)
1459  {
1460  	struct spufs_inode_info *i = SPUFS_I(inode);
1461  	struct spu_context *ctx = i->i_ctx;
1462  
1463  	mutex_lock(&ctx->mapping_lock);
1464  	if (!--i->i_openers)
1465  		ctx->mfc = NULL;
1466  	mutex_unlock(&ctx->mapping_lock);
1467  	return 0;
1468  }
1469  
1470  /* interrupt-level mfc callback function. */
spufs_mfc_callback(struct spu * spu)1471  void spufs_mfc_callback(struct spu *spu)
1472  {
1473  	struct spu_context *ctx = spu->ctx;
1474  
1475  	if (ctx)
1476  		wake_up_all(&ctx->mfc_wq);
1477  }
1478  
spufs_read_mfc_tagstatus(struct spu_context * ctx,u32 * status)1479  static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1480  {
1481  	/* See if there is one tag group is complete */
1482  	/* FIXME we need locking around tagwait */
1483  	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1484  	ctx->tagwait &= ~*status;
1485  	if (*status)
1486  		return 1;
1487  
1488  	/* enable interrupt waiting for any tag group,
1489  	   may silently fail if interrupts are already enabled */
1490  	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1491  	return 0;
1492  }
1493  
spufs_mfc_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)1494  static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1495  			size_t size, loff_t *pos)
1496  {
1497  	struct spu_context *ctx = file->private_data;
1498  	int ret = -EINVAL;
1499  	u32 status;
1500  
1501  	if (size != 4)
1502  		goto out;
1503  
1504  	ret = spu_acquire(ctx);
1505  	if (ret)
1506  		return ret;
1507  
1508  	ret = -EINVAL;
1509  	if (file->f_flags & O_NONBLOCK) {
1510  		status = ctx->ops->read_mfc_tagstatus(ctx);
1511  		if (!(status & ctx->tagwait))
1512  			ret = -EAGAIN;
1513  		else
1514  			/* XXX(hch): shouldn't we clear ret here? */
1515  			ctx->tagwait &= ~status;
1516  	} else {
1517  		ret = spufs_wait(ctx->mfc_wq,
1518  			   spufs_read_mfc_tagstatus(ctx, &status));
1519  		if (ret)
1520  			goto out;
1521  	}
1522  	spu_release(ctx);
1523  
1524  	ret = 4;
1525  	if (copy_to_user(buffer, &status, 4))
1526  		ret = -EFAULT;
1527  
1528  out:
1529  	return ret;
1530  }
1531  
spufs_check_valid_dma(struct mfc_dma_command * cmd)1532  static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1533  {
1534  	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1535  		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1536  
1537  	switch (cmd->cmd) {
1538  	case MFC_PUT_CMD:
1539  	case MFC_PUTF_CMD:
1540  	case MFC_PUTB_CMD:
1541  	case MFC_GET_CMD:
1542  	case MFC_GETF_CMD:
1543  	case MFC_GETB_CMD:
1544  		break;
1545  	default:
1546  		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1547  		return -EIO;
1548  	}
1549  
1550  	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1551  		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1552  				cmd->ea, cmd->lsa);
1553  		return -EIO;
1554  	}
1555  
1556  	switch (cmd->size & 0xf) {
1557  	case 1:
1558  		break;
1559  	case 2:
1560  		if (cmd->lsa & 1)
1561  			goto error;
1562  		break;
1563  	case 4:
1564  		if (cmd->lsa & 3)
1565  			goto error;
1566  		break;
1567  	case 8:
1568  		if (cmd->lsa & 7)
1569  			goto error;
1570  		break;
1571  	case 0:
1572  		if (cmd->lsa & 15)
1573  			goto error;
1574  		break;
1575  	error:
1576  	default:
1577  		pr_debug("invalid DMA alignment %x for size %x\n",
1578  			cmd->lsa & 0xf, cmd->size);
1579  		return -EIO;
1580  	}
1581  
1582  	if (cmd->size > 16 * 1024) {
1583  		pr_debug("invalid DMA size %x\n", cmd->size);
1584  		return -EIO;
1585  	}
1586  
1587  	if (cmd->tag & 0xfff0) {
1588  		/* we reserve the higher tag numbers for kernel use */
1589  		pr_debug("invalid DMA tag\n");
1590  		return -EIO;
1591  	}
1592  
1593  	if (cmd->class) {
1594  		/* not supported in this version */
1595  		pr_debug("invalid DMA class\n");
1596  		return -EIO;
1597  	}
1598  
1599  	return 0;
1600  }
1601  
spu_send_mfc_command(struct spu_context * ctx,struct mfc_dma_command cmd,int * error)1602  static int spu_send_mfc_command(struct spu_context *ctx,
1603  				struct mfc_dma_command cmd,
1604  				int *error)
1605  {
1606  	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1607  	if (*error == -EAGAIN) {
1608  		/* wait for any tag group to complete
1609  		   so we have space for the new command */
1610  		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1611  		/* try again, because the queue might be
1612  		   empty again */
1613  		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1614  		if (*error == -EAGAIN)
1615  			return 0;
1616  	}
1617  	return 1;
1618  }
1619  
spufs_mfc_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)1620  static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1621  			size_t size, loff_t *pos)
1622  {
1623  	struct spu_context *ctx = file->private_data;
1624  	struct mfc_dma_command cmd;
1625  	int ret = -EINVAL;
1626  
1627  	if (size != sizeof cmd)
1628  		goto out;
1629  
1630  	ret = -EFAULT;
1631  	if (copy_from_user(&cmd, buffer, sizeof cmd))
1632  		goto out;
1633  
1634  	ret = spufs_check_valid_dma(&cmd);
1635  	if (ret)
1636  		goto out;
1637  
1638  	ret = spu_acquire(ctx);
1639  	if (ret)
1640  		goto out;
1641  
1642  	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1643  	if (ret)
1644  		goto out;
1645  
1646  	if (file->f_flags & O_NONBLOCK) {
1647  		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1648  	} else {
1649  		int status;
1650  		ret = spufs_wait(ctx->mfc_wq,
1651  				 spu_send_mfc_command(ctx, cmd, &status));
1652  		if (ret)
1653  			goto out;
1654  		if (status)
1655  			ret = status;
1656  	}
1657  
1658  	if (ret)
1659  		goto out_unlock;
1660  
1661  	ctx->tagwait |= 1 << cmd.tag;
1662  	ret = size;
1663  
1664  out_unlock:
1665  	spu_release(ctx);
1666  out:
1667  	return ret;
1668  }
1669  
spufs_mfc_poll(struct file * file,poll_table * wait)1670  static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1671  {
1672  	struct spu_context *ctx = file->private_data;
1673  	u32 free_elements, tagstatus;
1674  	__poll_t mask;
1675  
1676  	poll_wait(file, &ctx->mfc_wq, wait);
1677  
1678  	/*
1679  	 * For now keep this uninterruptible and also ignore the rule
1680  	 * that poll should not sleep.  Will be fixed later.
1681  	 */
1682  	mutex_lock(&ctx->state_mutex);
1683  	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1684  	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1685  	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1686  	spu_release(ctx);
1687  
1688  	mask = 0;
1689  	if (free_elements & 0xffff)
1690  		mask |= EPOLLOUT | EPOLLWRNORM;
1691  	if (tagstatus & ctx->tagwait)
1692  		mask |= EPOLLIN | EPOLLRDNORM;
1693  
1694  	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1695  		free_elements, tagstatus, ctx->tagwait);
1696  
1697  	return mask;
1698  }
1699  
spufs_mfc_flush(struct file * file,fl_owner_t id)1700  static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1701  {
1702  	struct spu_context *ctx = file->private_data;
1703  	int ret;
1704  
1705  	ret = spu_acquire(ctx);
1706  	if (ret)
1707  		goto out;
1708  #if 0
1709  /* this currently hangs */
1710  	ret = spufs_wait(ctx->mfc_wq,
1711  			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1712  	if (ret)
1713  		goto out;
1714  	ret = spufs_wait(ctx->mfc_wq,
1715  			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1716  	if (ret)
1717  		goto out;
1718  #else
1719  	ret = 0;
1720  #endif
1721  	spu_release(ctx);
1722  out:
1723  	return ret;
1724  }
1725  
spufs_mfc_fsync(struct file * file,loff_t start,loff_t end,int datasync)1726  static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1727  {
1728  	struct inode *inode = file_inode(file);
1729  	int err = file_write_and_wait_range(file, start, end);
1730  	if (!err) {
1731  		inode_lock(inode);
1732  		err = spufs_mfc_flush(file, NULL);
1733  		inode_unlock(inode);
1734  	}
1735  	return err;
1736  }
1737  
1738  static const struct file_operations spufs_mfc_fops = {
1739  	.open	 = spufs_mfc_open,
1740  	.release = spufs_mfc_release,
1741  	.read	 = spufs_mfc_read,
1742  	.write	 = spufs_mfc_write,
1743  	.poll	 = spufs_mfc_poll,
1744  	.flush	 = spufs_mfc_flush,
1745  	.fsync	 = spufs_mfc_fsync,
1746  	.mmap	 = spufs_mfc_mmap,
1747  	.llseek  = no_llseek,
1748  };
1749  
spufs_npc_set(void * data,u64 val)1750  static int spufs_npc_set(void *data, u64 val)
1751  {
1752  	struct spu_context *ctx = data;
1753  	int ret;
1754  
1755  	ret = spu_acquire(ctx);
1756  	if (ret)
1757  		return ret;
1758  	ctx->ops->npc_write(ctx, val);
1759  	spu_release(ctx);
1760  
1761  	return 0;
1762  }
1763  
spufs_npc_get(struct spu_context * ctx)1764  static u64 spufs_npc_get(struct spu_context *ctx)
1765  {
1766  	return ctx->ops->npc_read(ctx);
1767  }
1768  DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1769  		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1770  
spufs_decr_set(void * data,u64 val)1771  static int spufs_decr_set(void *data, u64 val)
1772  {
1773  	struct spu_context *ctx = data;
1774  	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1775  	int ret;
1776  
1777  	ret = spu_acquire_saved(ctx);
1778  	if (ret)
1779  		return ret;
1780  	lscsa->decr.slot[0] = (u32) val;
1781  	spu_release_saved(ctx);
1782  
1783  	return 0;
1784  }
1785  
spufs_decr_get(struct spu_context * ctx)1786  static u64 spufs_decr_get(struct spu_context *ctx)
1787  {
1788  	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1789  	return lscsa->decr.slot[0];
1790  }
1791  DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1792  		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1793  
spufs_decr_status_set(void * data,u64 val)1794  static int spufs_decr_status_set(void *data, u64 val)
1795  {
1796  	struct spu_context *ctx = data;
1797  	int ret;
1798  
1799  	ret = spu_acquire_saved(ctx);
1800  	if (ret)
1801  		return ret;
1802  	if (val)
1803  		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1804  	else
1805  		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1806  	spu_release_saved(ctx);
1807  
1808  	return 0;
1809  }
1810  
spufs_decr_status_get(struct spu_context * ctx)1811  static u64 spufs_decr_status_get(struct spu_context *ctx)
1812  {
1813  	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1814  		return SPU_DECR_STATUS_RUNNING;
1815  	else
1816  		return 0;
1817  }
1818  DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1819  		       spufs_decr_status_set, "0x%llx\n",
1820  		       SPU_ATTR_ACQUIRE_SAVED);
1821  
spufs_event_mask_set(void * data,u64 val)1822  static int spufs_event_mask_set(void *data, u64 val)
1823  {
1824  	struct spu_context *ctx = data;
1825  	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1826  	int ret;
1827  
1828  	ret = spu_acquire_saved(ctx);
1829  	if (ret)
1830  		return ret;
1831  	lscsa->event_mask.slot[0] = (u32) val;
1832  	spu_release_saved(ctx);
1833  
1834  	return 0;
1835  }
1836  
spufs_event_mask_get(struct spu_context * ctx)1837  static u64 spufs_event_mask_get(struct spu_context *ctx)
1838  {
1839  	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1840  	return lscsa->event_mask.slot[0];
1841  }
1842  
1843  DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1844  		       spufs_event_mask_set, "0x%llx\n",
1845  		       SPU_ATTR_ACQUIRE_SAVED);
1846  
spufs_event_status_get(struct spu_context * ctx)1847  static u64 spufs_event_status_get(struct spu_context *ctx)
1848  {
1849  	struct spu_state *state = &ctx->csa;
1850  	u64 stat;
1851  	stat = state->spu_chnlcnt_RW[0];
1852  	if (stat)
1853  		return state->spu_chnldata_RW[0];
1854  	return 0;
1855  }
1856  DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1857  		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1858  
spufs_srr0_set(void * data,u64 val)1859  static int spufs_srr0_set(void *data, u64 val)
1860  {
1861  	struct spu_context *ctx = data;
1862  	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1863  	int ret;
1864  
1865  	ret = spu_acquire_saved(ctx);
1866  	if (ret)
1867  		return ret;
1868  	lscsa->srr0.slot[0] = (u32) val;
1869  	spu_release_saved(ctx);
1870  
1871  	return 0;
1872  }
1873  
spufs_srr0_get(struct spu_context * ctx)1874  static u64 spufs_srr0_get(struct spu_context *ctx)
1875  {
1876  	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1877  	return lscsa->srr0.slot[0];
1878  }
1879  DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1880  		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1881  
spufs_id_get(struct spu_context * ctx)1882  static u64 spufs_id_get(struct spu_context *ctx)
1883  {
1884  	u64 num;
1885  
1886  	if (ctx->state == SPU_STATE_RUNNABLE)
1887  		num = ctx->spu->number;
1888  	else
1889  		num = (unsigned int)-1;
1890  
1891  	return num;
1892  }
1893  DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1894  		       SPU_ATTR_ACQUIRE)
1895  
spufs_object_id_get(struct spu_context * ctx)1896  static u64 spufs_object_id_get(struct spu_context *ctx)
1897  {
1898  	/* FIXME: Should there really be no locking here? */
1899  	return ctx->object_id;
1900  }
1901  
spufs_object_id_set(void * data,u64 id)1902  static int spufs_object_id_set(void *data, u64 id)
1903  {
1904  	struct spu_context *ctx = data;
1905  	ctx->object_id = id;
1906  
1907  	return 0;
1908  }
1909  
1910  DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1911  		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1912  
spufs_lslr_get(struct spu_context * ctx)1913  static u64 spufs_lslr_get(struct spu_context *ctx)
1914  {
1915  	return ctx->csa.priv2.spu_lslr_RW;
1916  }
1917  DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1918  		       SPU_ATTR_ACQUIRE_SAVED);
1919  
spufs_info_open(struct inode * inode,struct file * file)1920  static int spufs_info_open(struct inode *inode, struct file *file)
1921  {
1922  	struct spufs_inode_info *i = SPUFS_I(inode);
1923  	struct spu_context *ctx = i->i_ctx;
1924  	file->private_data = ctx;
1925  	return 0;
1926  }
1927  
spufs_caps_show(struct seq_file * s,void * private)1928  static int spufs_caps_show(struct seq_file *s, void *private)
1929  {
1930  	struct spu_context *ctx = s->private;
1931  
1932  	if (!(ctx->flags & SPU_CREATE_NOSCHED))
1933  		seq_puts(s, "sched\n");
1934  	if (!(ctx->flags & SPU_CREATE_ISOLATE))
1935  		seq_puts(s, "step\n");
1936  	return 0;
1937  }
1938  
spufs_caps_open(struct inode * inode,struct file * file)1939  static int spufs_caps_open(struct inode *inode, struct file *file)
1940  {
1941  	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1942  }
1943  
1944  static const struct file_operations spufs_caps_fops = {
1945  	.open		= spufs_caps_open,
1946  	.read		= seq_read,
1947  	.llseek		= seq_lseek,
1948  	.release	= single_release,
1949  };
1950  
spufs_mbox_info_dump(struct spu_context * ctx,struct coredump_params * cprm)1951  static ssize_t spufs_mbox_info_dump(struct spu_context *ctx,
1952  		struct coredump_params *cprm)
1953  {
1954  	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1955  		return 0;
1956  	return spufs_dump_emit(cprm, &ctx->csa.prob.pu_mb_R,
1957  			       sizeof(ctx->csa.prob.pu_mb_R));
1958  }
1959  
spufs_mbox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1960  static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1961  				   size_t len, loff_t *pos)
1962  {
1963  	struct spu_context *ctx = file->private_data;
1964  	u32 stat, data;
1965  	int ret;
1966  
1967  	ret = spu_acquire_saved(ctx);
1968  	if (ret)
1969  		return ret;
1970  	spin_lock(&ctx->csa.register_lock);
1971  	stat = ctx->csa.prob.mb_stat_R;
1972  	data = ctx->csa.prob.pu_mb_R;
1973  	spin_unlock(&ctx->csa.register_lock);
1974  	spu_release_saved(ctx);
1975  
1976  	/* EOF if there's no entry in the mbox */
1977  	if (!(stat & 0x0000ff))
1978  		return 0;
1979  
1980  	return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
1981  }
1982  
1983  static const struct file_operations spufs_mbox_info_fops = {
1984  	.open = spufs_info_open,
1985  	.read = spufs_mbox_info_read,
1986  	.llseek  = generic_file_llseek,
1987  };
1988  
spufs_ibox_info_dump(struct spu_context * ctx,struct coredump_params * cprm)1989  static ssize_t spufs_ibox_info_dump(struct spu_context *ctx,
1990  		struct coredump_params *cprm)
1991  {
1992  	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
1993  		return 0;
1994  	return spufs_dump_emit(cprm, &ctx->csa.priv2.puint_mb_R,
1995  			       sizeof(ctx->csa.priv2.puint_mb_R));
1996  }
1997  
spufs_ibox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1998  static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1999  				   size_t len, loff_t *pos)
2000  {
2001  	struct spu_context *ctx = file->private_data;
2002  	u32 stat, data;
2003  	int ret;
2004  
2005  	ret = spu_acquire_saved(ctx);
2006  	if (ret)
2007  		return ret;
2008  	spin_lock(&ctx->csa.register_lock);
2009  	stat = ctx->csa.prob.mb_stat_R;
2010  	data = ctx->csa.priv2.puint_mb_R;
2011  	spin_unlock(&ctx->csa.register_lock);
2012  	spu_release_saved(ctx);
2013  
2014  	/* EOF if there's no entry in the ibox */
2015  	if (!(stat & 0xff0000))
2016  		return 0;
2017  
2018  	return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
2019  }
2020  
2021  static const struct file_operations spufs_ibox_info_fops = {
2022  	.open = spufs_info_open,
2023  	.read = spufs_ibox_info_read,
2024  	.llseek  = generic_file_llseek,
2025  };
2026  
spufs_wbox_info_cnt(struct spu_context * ctx)2027  static size_t spufs_wbox_info_cnt(struct spu_context *ctx)
2028  {
2029  	return (4 - ((ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8)) * sizeof(u32);
2030  }
2031  
spufs_wbox_info_dump(struct spu_context * ctx,struct coredump_params * cprm)2032  static ssize_t spufs_wbox_info_dump(struct spu_context *ctx,
2033  		struct coredump_params *cprm)
2034  {
2035  	return spufs_dump_emit(cprm, &ctx->csa.spu_mailbox_data,
2036  			spufs_wbox_info_cnt(ctx));
2037  }
2038  
spufs_wbox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2039  static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2040  				   size_t len, loff_t *pos)
2041  {
2042  	struct spu_context *ctx = file->private_data;
2043  	u32 data[ARRAY_SIZE(ctx->csa.spu_mailbox_data)];
2044  	int ret, count;
2045  
2046  	ret = spu_acquire_saved(ctx);
2047  	if (ret)
2048  		return ret;
2049  	spin_lock(&ctx->csa.register_lock);
2050  	count = spufs_wbox_info_cnt(ctx);
2051  	memcpy(&data, &ctx->csa.spu_mailbox_data, sizeof(data));
2052  	spin_unlock(&ctx->csa.register_lock);
2053  	spu_release_saved(ctx);
2054  
2055  	return simple_read_from_buffer(buf, len, pos, &data,
2056  				count * sizeof(u32));
2057  }
2058  
2059  static const struct file_operations spufs_wbox_info_fops = {
2060  	.open = spufs_info_open,
2061  	.read = spufs_wbox_info_read,
2062  	.llseek  = generic_file_llseek,
2063  };
2064  
spufs_get_dma_info(struct spu_context * ctx,struct spu_dma_info * info)2065  static void spufs_get_dma_info(struct spu_context *ctx,
2066  		struct spu_dma_info *info)
2067  {
2068  	int i;
2069  
2070  	info->dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2071  	info->dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2072  	info->dma_info_status = ctx->csa.spu_chnldata_RW[24];
2073  	info->dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2074  	info->dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2075  	for (i = 0; i < 16; i++) {
2076  		struct mfc_cq_sr *qp = &info->dma_info_command_data[i];
2077  		struct mfc_cq_sr *spuqp = &ctx->csa.priv2.spuq[i];
2078  
2079  		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2080  		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2081  		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2082  		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2083  	}
2084  }
2085  
spufs_dma_info_dump(struct spu_context * ctx,struct coredump_params * cprm)2086  static ssize_t spufs_dma_info_dump(struct spu_context *ctx,
2087  		struct coredump_params *cprm)
2088  {
2089  	struct spu_dma_info info;
2090  
2091  	spufs_get_dma_info(ctx, &info);
2092  	return spufs_dump_emit(cprm, &info, sizeof(info));
2093  }
2094  
spufs_dma_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2095  static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2096  			      size_t len, loff_t *pos)
2097  {
2098  	struct spu_context *ctx = file->private_data;
2099  	struct spu_dma_info info;
2100  	int ret;
2101  
2102  	ret = spu_acquire_saved(ctx);
2103  	if (ret)
2104  		return ret;
2105  	spin_lock(&ctx->csa.register_lock);
2106  	spufs_get_dma_info(ctx, &info);
2107  	spin_unlock(&ctx->csa.register_lock);
2108  	spu_release_saved(ctx);
2109  
2110  	return simple_read_from_buffer(buf, len, pos, &info,
2111  				sizeof(info));
2112  }
2113  
2114  static const struct file_operations spufs_dma_info_fops = {
2115  	.open = spufs_info_open,
2116  	.read = spufs_dma_info_read,
2117  	.llseek = no_llseek,
2118  };
2119  
spufs_get_proxydma_info(struct spu_context * ctx,struct spu_proxydma_info * info)2120  static void spufs_get_proxydma_info(struct spu_context *ctx,
2121  		struct spu_proxydma_info *info)
2122  {
2123  	int i;
2124  
2125  	info->proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2126  	info->proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2127  	info->proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2128  
2129  	for (i = 0; i < 8; i++) {
2130  		struct mfc_cq_sr *qp = &info->proxydma_info_command_data[i];
2131  		struct mfc_cq_sr *puqp = &ctx->csa.priv2.puq[i];
2132  
2133  		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2134  		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2135  		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2136  		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2137  	}
2138  }
2139  
spufs_proxydma_info_dump(struct spu_context * ctx,struct coredump_params * cprm)2140  static ssize_t spufs_proxydma_info_dump(struct spu_context *ctx,
2141  		struct coredump_params *cprm)
2142  {
2143  	struct spu_proxydma_info info;
2144  
2145  	spufs_get_proxydma_info(ctx, &info);
2146  	return spufs_dump_emit(cprm, &info, sizeof(info));
2147  }
2148  
spufs_proxydma_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2149  static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2150  				   size_t len, loff_t *pos)
2151  {
2152  	struct spu_context *ctx = file->private_data;
2153  	struct spu_proxydma_info info;
2154  	int ret;
2155  
2156  	if (len < sizeof(info))
2157  		return -EINVAL;
2158  
2159  	ret = spu_acquire_saved(ctx);
2160  	if (ret)
2161  		return ret;
2162  	spin_lock(&ctx->csa.register_lock);
2163  	spufs_get_proxydma_info(ctx, &info);
2164  	spin_unlock(&ctx->csa.register_lock);
2165  	spu_release_saved(ctx);
2166  
2167  	return simple_read_from_buffer(buf, len, pos, &info,
2168  				sizeof(info));
2169  }
2170  
2171  static const struct file_operations spufs_proxydma_info_fops = {
2172  	.open = spufs_info_open,
2173  	.read = spufs_proxydma_info_read,
2174  	.llseek = no_llseek,
2175  };
2176  
spufs_show_tid(struct seq_file * s,void * private)2177  static int spufs_show_tid(struct seq_file *s, void *private)
2178  {
2179  	struct spu_context *ctx = s->private;
2180  
2181  	seq_printf(s, "%d\n", ctx->tid);
2182  	return 0;
2183  }
2184  
spufs_tid_open(struct inode * inode,struct file * file)2185  static int spufs_tid_open(struct inode *inode, struct file *file)
2186  {
2187  	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2188  }
2189  
2190  static const struct file_operations spufs_tid_fops = {
2191  	.open		= spufs_tid_open,
2192  	.read		= seq_read,
2193  	.llseek		= seq_lseek,
2194  	.release	= single_release,
2195  };
2196  
2197  static const char *ctx_state_names[] = {
2198  	"user", "system", "iowait", "loaded"
2199  };
2200  
spufs_acct_time(struct spu_context * ctx,enum spu_utilization_state state)2201  static unsigned long long spufs_acct_time(struct spu_context *ctx,
2202  		enum spu_utilization_state state)
2203  {
2204  	unsigned long long time = ctx->stats.times[state];
2205  
2206  	/*
2207  	 * In general, utilization statistics are updated by the controlling
2208  	 * thread as the spu context moves through various well defined
2209  	 * state transitions, but if the context is lazily loaded its
2210  	 * utilization statistics are not updated as the controlling thread
2211  	 * is not tightly coupled with the execution of the spu context.  We
2212  	 * calculate and apply the time delta from the last recorded state
2213  	 * of the spu context.
2214  	 */
2215  	if (ctx->spu && ctx->stats.util_state == state) {
2216  		time += ktime_get_ns() - ctx->stats.tstamp;
2217  	}
2218  
2219  	return time / NSEC_PER_MSEC;
2220  }
2221  
spufs_slb_flts(struct spu_context * ctx)2222  static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2223  {
2224  	unsigned long long slb_flts = ctx->stats.slb_flt;
2225  
2226  	if (ctx->state == SPU_STATE_RUNNABLE) {
2227  		slb_flts += (ctx->spu->stats.slb_flt -
2228  			     ctx->stats.slb_flt_base);
2229  	}
2230  
2231  	return slb_flts;
2232  }
2233  
spufs_class2_intrs(struct spu_context * ctx)2234  static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2235  {
2236  	unsigned long long class2_intrs = ctx->stats.class2_intr;
2237  
2238  	if (ctx->state == SPU_STATE_RUNNABLE) {
2239  		class2_intrs += (ctx->spu->stats.class2_intr -
2240  				 ctx->stats.class2_intr_base);
2241  	}
2242  
2243  	return class2_intrs;
2244  }
2245  
2246  
spufs_show_stat(struct seq_file * s,void * private)2247  static int spufs_show_stat(struct seq_file *s, void *private)
2248  {
2249  	struct spu_context *ctx = s->private;
2250  	int ret;
2251  
2252  	ret = spu_acquire(ctx);
2253  	if (ret)
2254  		return ret;
2255  
2256  	seq_printf(s, "%s %llu %llu %llu %llu "
2257  		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2258  		ctx_state_names[ctx->stats.util_state],
2259  		spufs_acct_time(ctx, SPU_UTIL_USER),
2260  		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2261  		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2262  		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2263  		ctx->stats.vol_ctx_switch,
2264  		ctx->stats.invol_ctx_switch,
2265  		spufs_slb_flts(ctx),
2266  		ctx->stats.hash_flt,
2267  		ctx->stats.min_flt,
2268  		ctx->stats.maj_flt,
2269  		spufs_class2_intrs(ctx),
2270  		ctx->stats.libassist);
2271  	spu_release(ctx);
2272  	return 0;
2273  }
2274  
spufs_stat_open(struct inode * inode,struct file * file)2275  static int spufs_stat_open(struct inode *inode, struct file *file)
2276  {
2277  	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2278  }
2279  
2280  static const struct file_operations spufs_stat_fops = {
2281  	.open		= spufs_stat_open,
2282  	.read		= seq_read,
2283  	.llseek		= seq_lseek,
2284  	.release	= single_release,
2285  };
2286  
spufs_switch_log_used(struct spu_context * ctx)2287  static inline int spufs_switch_log_used(struct spu_context *ctx)
2288  {
2289  	return (ctx->switch_log->head - ctx->switch_log->tail) %
2290  		SWITCH_LOG_BUFSIZE;
2291  }
2292  
spufs_switch_log_avail(struct spu_context * ctx)2293  static inline int spufs_switch_log_avail(struct spu_context *ctx)
2294  {
2295  	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2296  }
2297  
spufs_switch_log_open(struct inode * inode,struct file * file)2298  static int spufs_switch_log_open(struct inode *inode, struct file *file)
2299  {
2300  	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2301  	int rc;
2302  
2303  	rc = spu_acquire(ctx);
2304  	if (rc)
2305  		return rc;
2306  
2307  	if (ctx->switch_log) {
2308  		rc = -EBUSY;
2309  		goto out;
2310  	}
2311  
2312  	ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
2313  				  SWITCH_LOG_BUFSIZE), GFP_KERNEL);
2314  
2315  	if (!ctx->switch_log) {
2316  		rc = -ENOMEM;
2317  		goto out;
2318  	}
2319  
2320  	ctx->switch_log->head = ctx->switch_log->tail = 0;
2321  	init_waitqueue_head(&ctx->switch_log->wait);
2322  	rc = 0;
2323  
2324  out:
2325  	spu_release(ctx);
2326  	return rc;
2327  }
2328  
spufs_switch_log_release(struct inode * inode,struct file * file)2329  static int spufs_switch_log_release(struct inode *inode, struct file *file)
2330  {
2331  	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2332  	int rc;
2333  
2334  	rc = spu_acquire(ctx);
2335  	if (rc)
2336  		return rc;
2337  
2338  	kfree(ctx->switch_log);
2339  	ctx->switch_log = NULL;
2340  	spu_release(ctx);
2341  
2342  	return 0;
2343  }
2344  
switch_log_sprint(struct spu_context * ctx,char * tbuf,int n)2345  static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2346  {
2347  	struct switch_log_entry *p;
2348  
2349  	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2350  
2351  	return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2352  			(unsigned long long) p->tstamp.tv_sec,
2353  			(unsigned int) p->tstamp.tv_nsec,
2354  			p->spu_id,
2355  			(unsigned int) p->type,
2356  			(unsigned int) p->val,
2357  			(unsigned long long) p->timebase);
2358  }
2359  
spufs_switch_log_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2360  static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2361  			     size_t len, loff_t *ppos)
2362  {
2363  	struct inode *inode = file_inode(file);
2364  	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2365  	int error = 0, cnt = 0;
2366  
2367  	if (!buf)
2368  		return -EINVAL;
2369  
2370  	error = spu_acquire(ctx);
2371  	if (error)
2372  		return error;
2373  
2374  	while (cnt < len) {
2375  		char tbuf[128];
2376  		int width;
2377  
2378  		if (spufs_switch_log_used(ctx) == 0) {
2379  			if (cnt > 0) {
2380  				/* If there's data ready to go, we can
2381  				 * just return straight away */
2382  				break;
2383  
2384  			} else if (file->f_flags & O_NONBLOCK) {
2385  				error = -EAGAIN;
2386  				break;
2387  
2388  			} else {
2389  				/* spufs_wait will drop the mutex and
2390  				 * re-acquire, but since we're in read(), the
2391  				 * file cannot be _released (and so
2392  				 * ctx->switch_log is stable).
2393  				 */
2394  				error = spufs_wait(ctx->switch_log->wait,
2395  						spufs_switch_log_used(ctx) > 0);
2396  
2397  				/* On error, spufs_wait returns without the
2398  				 * state mutex held */
2399  				if (error)
2400  					return error;
2401  
2402  				/* We may have had entries read from underneath
2403  				 * us while we dropped the mutex in spufs_wait,
2404  				 * so re-check */
2405  				if (spufs_switch_log_used(ctx) == 0)
2406  					continue;
2407  			}
2408  		}
2409  
2410  		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2411  		if (width < len)
2412  			ctx->switch_log->tail =
2413  				(ctx->switch_log->tail + 1) %
2414  				 SWITCH_LOG_BUFSIZE;
2415  		else
2416  			/* If the record is greater than space available return
2417  			 * partial buffer (so far) */
2418  			break;
2419  
2420  		error = copy_to_user(buf + cnt, tbuf, width);
2421  		if (error)
2422  			break;
2423  		cnt += width;
2424  	}
2425  
2426  	spu_release(ctx);
2427  
2428  	return cnt == 0 ? error : cnt;
2429  }
2430  
spufs_switch_log_poll(struct file * file,poll_table * wait)2431  static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2432  {
2433  	struct inode *inode = file_inode(file);
2434  	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2435  	__poll_t mask = 0;
2436  	int rc;
2437  
2438  	poll_wait(file, &ctx->switch_log->wait, wait);
2439  
2440  	rc = spu_acquire(ctx);
2441  	if (rc)
2442  		return rc;
2443  
2444  	if (spufs_switch_log_used(ctx) > 0)
2445  		mask |= EPOLLIN;
2446  
2447  	spu_release(ctx);
2448  
2449  	return mask;
2450  }
2451  
2452  static const struct file_operations spufs_switch_log_fops = {
2453  	.open		= spufs_switch_log_open,
2454  	.read		= spufs_switch_log_read,
2455  	.poll		= spufs_switch_log_poll,
2456  	.release	= spufs_switch_log_release,
2457  	.llseek		= no_llseek,
2458  };
2459  
2460  /**
2461   * Log a context switch event to a switch log reader.
2462   *
2463   * Must be called with ctx->state_mutex held.
2464   */
spu_switch_log_notify(struct spu * spu,struct spu_context * ctx,u32 type,u32 val)2465  void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2466  		u32 type, u32 val)
2467  {
2468  	if (!ctx->switch_log)
2469  		return;
2470  
2471  	if (spufs_switch_log_avail(ctx) > 1) {
2472  		struct switch_log_entry *p;
2473  
2474  		p = ctx->switch_log->log + ctx->switch_log->head;
2475  		ktime_get_ts64(&p->tstamp);
2476  		p->timebase = get_tb();
2477  		p->spu_id = spu ? spu->number : -1;
2478  		p->type = type;
2479  		p->val = val;
2480  
2481  		ctx->switch_log->head =
2482  			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2483  	}
2484  
2485  	wake_up(&ctx->switch_log->wait);
2486  }
2487  
spufs_show_ctx(struct seq_file * s,void * private)2488  static int spufs_show_ctx(struct seq_file *s, void *private)
2489  {
2490  	struct spu_context *ctx = s->private;
2491  	u64 mfc_control_RW;
2492  
2493  	mutex_lock(&ctx->state_mutex);
2494  	if (ctx->spu) {
2495  		struct spu *spu = ctx->spu;
2496  		struct spu_priv2 __iomem *priv2 = spu->priv2;
2497  
2498  		spin_lock_irq(&spu->register_lock);
2499  		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2500  		spin_unlock_irq(&spu->register_lock);
2501  	} else {
2502  		struct spu_state *csa = &ctx->csa;
2503  
2504  		mfc_control_RW = csa->priv2.mfc_control_RW;
2505  	}
2506  
2507  	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2508  		" %c %llx %llx %llx %llx %x %x\n",
2509  		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2510  		ctx->flags,
2511  		ctx->sched_flags,
2512  		ctx->prio,
2513  		ctx->time_slice,
2514  		ctx->spu ? ctx->spu->number : -1,
2515  		!list_empty(&ctx->rq) ? 'q' : ' ',
2516  		ctx->csa.class_0_pending,
2517  		ctx->csa.class_0_dar,
2518  		ctx->csa.class_1_dsisr,
2519  		mfc_control_RW,
2520  		ctx->ops->runcntl_read(ctx),
2521  		ctx->ops->status_read(ctx));
2522  
2523  	mutex_unlock(&ctx->state_mutex);
2524  
2525  	return 0;
2526  }
2527  
spufs_ctx_open(struct inode * inode,struct file * file)2528  static int spufs_ctx_open(struct inode *inode, struct file *file)
2529  {
2530  	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2531  }
2532  
2533  static const struct file_operations spufs_ctx_fops = {
2534  	.open           = spufs_ctx_open,
2535  	.read           = seq_read,
2536  	.llseek         = seq_lseek,
2537  	.release        = single_release,
2538  };
2539  
2540  const struct spufs_tree_descr spufs_dir_contents[] = {
2541  	{ "capabilities", &spufs_caps_fops, 0444, },
2542  	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2543  	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2544  	{ "mbox", &spufs_mbox_fops, 0444, },
2545  	{ "ibox", &spufs_ibox_fops, 0444, },
2546  	{ "wbox", &spufs_wbox_fops, 0222, },
2547  	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2548  	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2549  	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2550  	{ "signal1", &spufs_signal1_fops, 0666, },
2551  	{ "signal2", &spufs_signal2_fops, 0666, },
2552  	{ "signal1_type", &spufs_signal1_type, 0666, },
2553  	{ "signal2_type", &spufs_signal2_type, 0666, },
2554  	{ "cntl", &spufs_cntl_fops,  0666, },
2555  	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2556  	{ "lslr", &spufs_lslr_ops, 0444, },
2557  	{ "mfc", &spufs_mfc_fops, 0666, },
2558  	{ "mss", &spufs_mss_fops, 0666, },
2559  	{ "npc", &spufs_npc_ops, 0666, },
2560  	{ "srr0", &spufs_srr0_ops, 0666, },
2561  	{ "decr", &spufs_decr_ops, 0666, },
2562  	{ "decr_status", &spufs_decr_status_ops, 0666, },
2563  	{ "event_mask", &spufs_event_mask_ops, 0666, },
2564  	{ "event_status", &spufs_event_status_ops, 0444, },
2565  	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2566  	{ "phys-id", &spufs_id_ops, 0666, },
2567  	{ "object-id", &spufs_object_id_ops, 0666, },
2568  	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2569  	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2570  	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2571  	{ "dma_info", &spufs_dma_info_fops, 0444,
2572  		sizeof(struct spu_dma_info), },
2573  	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2574  		sizeof(struct spu_proxydma_info)},
2575  	{ "tid", &spufs_tid_fops, 0444, },
2576  	{ "stat", &spufs_stat_fops, 0444, },
2577  	{ "switch_log", &spufs_switch_log_fops, 0444 },
2578  	{},
2579  };
2580  
2581  const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2582  	{ "capabilities", &spufs_caps_fops, 0444, },
2583  	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2584  	{ "mbox", &spufs_mbox_fops, 0444, },
2585  	{ "ibox", &spufs_ibox_fops, 0444, },
2586  	{ "wbox", &spufs_wbox_fops, 0222, },
2587  	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2588  	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2589  	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2590  	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2591  	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2592  	{ "signal1_type", &spufs_signal1_type, 0666, },
2593  	{ "signal2_type", &spufs_signal2_type, 0666, },
2594  	{ "mss", &spufs_mss_fops, 0666, },
2595  	{ "mfc", &spufs_mfc_fops, 0666, },
2596  	{ "cntl", &spufs_cntl_fops,  0666, },
2597  	{ "npc", &spufs_npc_ops, 0666, },
2598  	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2599  	{ "phys-id", &spufs_id_ops, 0666, },
2600  	{ "object-id", &spufs_object_id_ops, 0666, },
2601  	{ "tid", &spufs_tid_fops, 0444, },
2602  	{ "stat", &spufs_stat_fops, 0444, },
2603  	{},
2604  };
2605  
2606  const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2607  	{ ".ctx", &spufs_ctx_fops, 0444, },
2608  	{},
2609  };
2610  
2611  const struct spufs_coredump_reader spufs_coredump_read[] = {
2612  	{ "regs", spufs_regs_dump, NULL, sizeof(struct spu_reg128[128])},
2613  	{ "fpcr", spufs_fpcr_dump, NULL, sizeof(struct spu_reg128) },
2614  	{ "lslr", NULL, spufs_lslr_get, 19 },
2615  	{ "decr", NULL, spufs_decr_get, 19 },
2616  	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2617  	{ "mem", spufs_mem_dump, NULL, LS_SIZE, },
2618  	{ "signal1", spufs_signal1_dump, NULL, sizeof(u32) },
2619  	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2620  	{ "signal2", spufs_signal2_dump, NULL, sizeof(u32) },
2621  	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2622  	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2623  	{ "event_status", NULL, spufs_event_status_get, 19 },
2624  	{ "mbox_info", spufs_mbox_info_dump, NULL, sizeof(u32) },
2625  	{ "ibox_info", spufs_ibox_info_dump, NULL, sizeof(u32) },
2626  	{ "wbox_info", spufs_wbox_info_dump, NULL, 4 * sizeof(u32)},
2627  	{ "dma_info", spufs_dma_info_dump, NULL, sizeof(struct spu_dma_info)},
2628  	{ "proxydma_info", spufs_proxydma_info_dump,
2629  			   NULL, sizeof(struct spu_proxydma_info)},
2630  	{ "object-id", NULL, spufs_object_id_get, 19 },
2631  	{ "npc", NULL, spufs_npc_get, 19 },
2632  	{ NULL },
2633  };
2634