xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 426beec96a54f89fe4fcbf16adaac64810c32ffb)
1  /*
2   * RISC-V CPU helpers for qemu.
3   *
4   * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5   * Copyright (c) 2017-2018 SiFive, Inc.
6   *
7   * This program is free software; you can redistribute it and/or modify it
8   * under the terms and conditions of the GNU General Public License,
9   * version 2 or later, as published by the Free Software Foundation.
10   *
11   * This program is distributed in the hope it will be useful, but WITHOUT
12   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   * more details.
15   *
16   * You should have received a copy of the GNU General Public License along with
17   * this program.  If not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "qemu/log.h"
22  #include "qemu/main-loop.h"
23  #include "cpu.h"
24  #include "internals.h"
25  #include "pmu.h"
26  #include "exec/exec-all.h"
27  #include "exec/page-protection.h"
28  #include "instmap.h"
29  #include "tcg/tcg-op.h"
30  #include "hw/core/tcg-cpu-ops.h"
31  #include "trace.h"
32  #include "semihosting/common-semi.h"
33  #include "sysemu/cpu-timers.h"
34  #include "cpu_bits.h"
35  #include "debug.h"
36  #include "tcg/oversized-guest.h"
37  #include "pmp.h"
38  
riscv_env_mmu_index(CPURISCVState * env,bool ifetch)39  int riscv_env_mmu_index(CPURISCVState *env, bool ifetch)
40  {
41  #ifdef CONFIG_USER_ONLY
42      return 0;
43  #else
44      bool virt = env->virt_enabled;
45      int mode = env->priv;
46  
47      /* All priv -> mmu_idx mapping are here */
48      if (!ifetch) {
49          uint64_t status = env->mstatus;
50  
51          if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
52              mode = get_field(env->mstatus, MSTATUS_MPP);
53              virt = get_field(env->mstatus, MSTATUS_MPV) &&
54                     (mode != PRV_M);
55              if (virt) {
56                  status = env->vsstatus;
57              }
58          }
59          if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
60              mode = MMUIdx_S_SUM;
61          }
62      }
63  
64      return mode | (virt ? MMU_2STAGE_BIT : 0);
65  #endif
66  }
67  
cpu_get_fcfien(CPURISCVState * env)68  bool cpu_get_fcfien(CPURISCVState *env)
69  {
70      /* no cfi extension, return false */
71      if (!env_archcpu(env)->cfg.ext_zicfilp) {
72          return false;
73      }
74  
75      switch (env->priv) {
76      case PRV_U:
77          if (riscv_has_ext(env, RVS)) {
78              return env->senvcfg & SENVCFG_LPE;
79          }
80          return env->menvcfg & MENVCFG_LPE;
81  #ifndef CONFIG_USER_ONLY
82      case PRV_S:
83          if (env->virt_enabled) {
84              return env->henvcfg & HENVCFG_LPE;
85          }
86          return env->menvcfg & MENVCFG_LPE;
87      case PRV_M:
88          return env->mseccfg & MSECCFG_MLPE;
89  #endif
90      default:
91          g_assert_not_reached();
92      }
93  }
94  
cpu_get_bcfien(CPURISCVState * env)95  bool cpu_get_bcfien(CPURISCVState *env)
96  {
97      /* no cfi extension, return false */
98      if (!env_archcpu(env)->cfg.ext_zicfiss) {
99          return false;
100      }
101  
102      switch (env->priv) {
103      case PRV_U:
104          /*
105           * If S is not implemented then shadow stack for U can't be turned on
106           * It is checked in `riscv_cpu_validate_set_extensions`, so no need to
107           * check here or assert here
108           */
109          return env->senvcfg & SENVCFG_SSE;
110  #ifndef CONFIG_USER_ONLY
111      case PRV_S:
112          if (env->virt_enabled) {
113              return env->henvcfg & HENVCFG_SSE;
114          }
115          return env->menvcfg & MENVCFG_SSE;
116      case PRV_M: /* M-mode shadow stack is always off */
117          return false;
118  #endif
119      default:
120          g_assert_not_reached();
121      }
122  }
123  
cpu_get_tb_cpu_state(CPURISCVState * env,vaddr * pc,uint64_t * cs_base,uint32_t * pflags)124  void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
125                            uint64_t *cs_base, uint32_t *pflags)
126  {
127      RISCVCPU *cpu = env_archcpu(env);
128      RISCVExtStatus fs, vs;
129      uint32_t flags = 0;
130  
131      *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
132      *cs_base = 0;
133  
134      if (cpu->cfg.ext_zve32x) {
135          /*
136           * If env->vl equals to VLMAX, we can use generic vector operation
137           * expanders (GVEC) to accerlate the vector operations.
138           * However, as LMUL could be a fractional number. The maximum
139           * vector size can be operated might be less than 8 bytes,
140           * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
141           * only when maxsz >= 8 bytes.
142           */
143  
144          /* lmul encoded as in DisasContext::lmul */
145          int8_t lmul = sextract32(FIELD_EX64(env->vtype, VTYPE, VLMUL), 0, 3);
146          uint32_t vsew = FIELD_EX64(env->vtype, VTYPE, VSEW);
147          uint32_t vlmax = vext_get_vlmax(cpu->cfg.vlenb, vsew, lmul);
148          uint32_t maxsz = vlmax << vsew;
149          bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
150                             (maxsz >= 8);
151          flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
152          flags = FIELD_DP32(flags, TB_FLAGS, SEW, vsew);
153          flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
154                             FIELD_EX64(env->vtype, VTYPE, VLMUL));
155          flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
156          flags = FIELD_DP32(flags, TB_FLAGS, VTA,
157                             FIELD_EX64(env->vtype, VTYPE, VTA));
158          flags = FIELD_DP32(flags, TB_FLAGS, VMA,
159                             FIELD_EX64(env->vtype, VTYPE, VMA));
160          flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
161      } else {
162          flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
163      }
164  
165      if (cpu_get_fcfien(env)) {
166          /*
167           * For Forward CFI, only the expectation of a lpad at
168           * the start of the block is tracked via env->elp. env->elp
169           * is turned on during jalr translation.
170           */
171          flags = FIELD_DP32(flags, TB_FLAGS, FCFI_LP_EXPECTED, env->elp);
172          flags = FIELD_DP32(flags, TB_FLAGS, FCFI_ENABLED, 1);
173      }
174  
175      if (cpu_get_bcfien(env)) {
176          flags = FIELD_DP32(flags, TB_FLAGS, BCFI_ENABLED, 1);
177      }
178  
179  #ifdef CONFIG_USER_ONLY
180      fs = EXT_STATUS_DIRTY;
181      vs = EXT_STATUS_DIRTY;
182  #else
183      flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
184  
185      flags |= riscv_env_mmu_index(env, 0);
186      fs = get_field(env->mstatus, MSTATUS_FS);
187      vs = get_field(env->mstatus, MSTATUS_VS);
188  
189      if (env->virt_enabled) {
190          flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
191          /*
192           * Merge DISABLED and !DIRTY states using MIN.
193           * We will set both fields when dirtying.
194           */
195          fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
196          vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
197      }
198  
199      /* With Zfinx, floating point is enabled/disabled by Smstateen. */
200      if (!riscv_has_ext(env, RVF)) {
201          fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
202               ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
203      }
204  
205      if (cpu->cfg.debug && !icount_enabled()) {
206          flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
207      }
208  #endif
209  
210      flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
211      flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
212      flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
213      flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env));
214      if (env->cur_pmmask != 0) {
215          flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
216      }
217      if (env->cur_pmbase != 0) {
218          flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
219      }
220  
221      *pflags = flags;
222  }
223  
riscv_cpu_update_mask(CPURISCVState * env)224  void riscv_cpu_update_mask(CPURISCVState *env)
225  {
226      target_ulong mask = 0, base = 0;
227      RISCVMXL xl = env->xl;
228      /*
229       * TODO: Current RVJ spec does not specify
230       * how the extension interacts with XLEN.
231       */
232  #ifndef CONFIG_USER_ONLY
233      int mode = cpu_address_mode(env);
234      xl = cpu_get_xl(env, mode);
235      if (riscv_has_ext(env, RVJ)) {
236          switch (mode) {
237          case PRV_M:
238              if (env->mmte & M_PM_ENABLE) {
239                  mask = env->mpmmask;
240                  base = env->mpmbase;
241              }
242              break;
243          case PRV_S:
244              if (env->mmte & S_PM_ENABLE) {
245                  mask = env->spmmask;
246                  base = env->spmbase;
247              }
248              break;
249          case PRV_U:
250              if (env->mmte & U_PM_ENABLE) {
251                  mask = env->upmmask;
252                  base = env->upmbase;
253              }
254              break;
255          default:
256              g_assert_not_reached();
257          }
258      }
259  #endif
260      if (xl == MXL_RV32) {
261          env->cur_pmmask = mask & UINT32_MAX;
262          env->cur_pmbase = base & UINT32_MAX;
263      } else {
264          env->cur_pmmask = mask;
265          env->cur_pmbase = base;
266      }
267  }
268  
269  #ifndef CONFIG_USER_ONLY
270  
271  /*
272   * The HS-mode is allowed to configure priority only for the
273   * following VS-mode local interrupts:
274   *
275   * 0  (Reserved interrupt, reads as zero)
276   * 1  Supervisor software interrupt
277   * 4  (Reserved interrupt, reads as zero)
278   * 5  Supervisor timer interrupt
279   * 8  (Reserved interrupt, reads as zero)
280   * 13 (Reserved interrupt)
281   * 14 "
282   * 15 "
283   * 16 "
284   * 17 "
285   * 18 "
286   * 19 "
287   * 20 "
288   * 21 "
289   * 22 "
290   * 23 "
291   */
292  
293  static const int hviprio_index2irq[] = {
294      0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
295  static const int hviprio_index2rdzero[] = {
296      1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
297  
riscv_cpu_hviprio_index2irq(int index,int * out_irq,int * out_rdzero)298  int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
299  {
300      if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
301          return -EINVAL;
302      }
303  
304      if (out_irq) {
305          *out_irq = hviprio_index2irq[index];
306      }
307  
308      if (out_rdzero) {
309          *out_rdzero = hviprio_index2rdzero[index];
310      }
311  
312      return 0;
313  }
314  
315  /*
316   * Default priorities of local interrupts are defined in the
317   * RISC-V Advanced Interrupt Architecture specification.
318   *
319   * ----------------------------------------------------------------
320   *  Default  |
321   *  Priority | Major Interrupt Numbers
322   * ----------------------------------------------------------------
323   *  Highest  | 47, 23, 46, 45, 22, 44,
324   *           | 43, 21, 42, 41, 20, 40
325   *           |
326   *           | 11 (0b),  3 (03),  7 (07)
327   *           |  9 (09),  1 (01),  5 (05)
328   *           | 12 (0c)
329   *           | 10 (0a),  2 (02),  6 (06)
330   *           |
331   *           | 39, 19, 38, 37, 18, 36,
332   *  Lowest   | 35, 17, 34, 33, 16, 32
333   * ----------------------------------------------------------------
334   */
335  static const uint8_t default_iprio[64] = {
336      /* Custom interrupts 48 to 63 */
337      [63] = IPRIO_MMAXIPRIO,
338      [62] = IPRIO_MMAXIPRIO,
339      [61] = IPRIO_MMAXIPRIO,
340      [60] = IPRIO_MMAXIPRIO,
341      [59] = IPRIO_MMAXIPRIO,
342      [58] = IPRIO_MMAXIPRIO,
343      [57] = IPRIO_MMAXIPRIO,
344      [56] = IPRIO_MMAXIPRIO,
345      [55] = IPRIO_MMAXIPRIO,
346      [54] = IPRIO_MMAXIPRIO,
347      [53] = IPRIO_MMAXIPRIO,
348      [52] = IPRIO_MMAXIPRIO,
349      [51] = IPRIO_MMAXIPRIO,
350      [50] = IPRIO_MMAXIPRIO,
351      [49] = IPRIO_MMAXIPRIO,
352      [48] = IPRIO_MMAXIPRIO,
353  
354      /* Custom interrupts 24 to 31 */
355      [31] = IPRIO_MMAXIPRIO,
356      [30] = IPRIO_MMAXIPRIO,
357      [29] = IPRIO_MMAXIPRIO,
358      [28] = IPRIO_MMAXIPRIO,
359      [27] = IPRIO_MMAXIPRIO,
360      [26] = IPRIO_MMAXIPRIO,
361      [25] = IPRIO_MMAXIPRIO,
362      [24] = IPRIO_MMAXIPRIO,
363  
364      [47] = IPRIO_DEFAULT_UPPER,
365      [23] = IPRIO_DEFAULT_UPPER + 1,
366      [46] = IPRIO_DEFAULT_UPPER + 2,
367      [45] = IPRIO_DEFAULT_UPPER + 3,
368      [22] = IPRIO_DEFAULT_UPPER + 4,
369      [44] = IPRIO_DEFAULT_UPPER + 5,
370  
371      [43] = IPRIO_DEFAULT_UPPER + 6,
372      [21] = IPRIO_DEFAULT_UPPER + 7,
373      [42] = IPRIO_DEFAULT_UPPER + 8,
374      [41] = IPRIO_DEFAULT_UPPER + 9,
375      [20] = IPRIO_DEFAULT_UPPER + 10,
376      [40] = IPRIO_DEFAULT_UPPER + 11,
377  
378      [11] = IPRIO_DEFAULT_M,
379      [3]  = IPRIO_DEFAULT_M + 1,
380      [7]  = IPRIO_DEFAULT_M + 2,
381  
382      [9]  = IPRIO_DEFAULT_S,
383      [1]  = IPRIO_DEFAULT_S + 1,
384      [5]  = IPRIO_DEFAULT_S + 2,
385  
386      [12] = IPRIO_DEFAULT_SGEXT,
387  
388      [10] = IPRIO_DEFAULT_VS,
389      [2]  = IPRIO_DEFAULT_VS + 1,
390      [6]  = IPRIO_DEFAULT_VS + 2,
391  
392      [39] = IPRIO_DEFAULT_LOWER,
393      [19] = IPRIO_DEFAULT_LOWER + 1,
394      [38] = IPRIO_DEFAULT_LOWER + 2,
395      [37] = IPRIO_DEFAULT_LOWER + 3,
396      [18] = IPRIO_DEFAULT_LOWER + 4,
397      [36] = IPRIO_DEFAULT_LOWER + 5,
398  
399      [35] = IPRIO_DEFAULT_LOWER + 6,
400      [17] = IPRIO_DEFAULT_LOWER + 7,
401      [34] = IPRIO_DEFAULT_LOWER + 8,
402      [33] = IPRIO_DEFAULT_LOWER + 9,
403      [16] = IPRIO_DEFAULT_LOWER + 10,
404      [32] = IPRIO_DEFAULT_LOWER + 11,
405  };
406  
riscv_cpu_default_priority(int irq)407  uint8_t riscv_cpu_default_priority(int irq)
408  {
409      if (irq < 0 || irq > 63) {
410          return IPRIO_MMAXIPRIO;
411      }
412  
413      return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
414  };
415  
riscv_cpu_pending_to_irq(CPURISCVState * env,int extirq,unsigned int extirq_def_prio,uint64_t pending,uint8_t * iprio)416  static int riscv_cpu_pending_to_irq(CPURISCVState *env,
417                                      int extirq, unsigned int extirq_def_prio,
418                                      uint64_t pending, uint8_t *iprio)
419  {
420      int irq, best_irq = RISCV_EXCP_NONE;
421      unsigned int prio, best_prio = UINT_MAX;
422  
423      if (!pending) {
424          return RISCV_EXCP_NONE;
425      }
426  
427      irq = ctz64(pending);
428      if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
429                                    riscv_cpu_cfg(env)->ext_ssaia)) {
430          return irq;
431      }
432  
433      pending = pending >> irq;
434      while (pending) {
435          prio = iprio[irq];
436          if (!prio) {
437              if (irq == extirq) {
438                  prio = extirq_def_prio;
439              } else {
440                  prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
441                         1 : IPRIO_MMAXIPRIO;
442              }
443          }
444          if ((pending & 0x1) && (prio <= best_prio)) {
445              best_irq = irq;
446              best_prio = prio;
447          }
448          irq++;
449          pending = pending >> 1;
450      }
451  
452      return best_irq;
453  }
454  
455  /*
456   * Doesn't report interrupts inserted using mvip from M-mode firmware or
457   * using hvip bits 13:63 from HS-mode. Those are returned in
458   * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending().
459   */
riscv_cpu_all_pending(CPURISCVState * env)460  uint64_t riscv_cpu_all_pending(CPURISCVState *env)
461  {
462      uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
463      uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
464      uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
465  
466      return (env->mip | vsgein | vstip) & env->mie;
467  }
468  
riscv_cpu_mirq_pending(CPURISCVState * env)469  int riscv_cpu_mirq_pending(CPURISCVState *env)
470  {
471      uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
472                      ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
473  
474      return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
475                                      irqs, env->miprio);
476  }
477  
riscv_cpu_sirq_pending(CPURISCVState * env)478  int riscv_cpu_sirq_pending(CPURISCVState *env)
479  {
480      uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
481                      ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
482      uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie;
483  
484      return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
485                                      irqs | irqs_f, env->siprio);
486  }
487  
riscv_cpu_vsirq_pending(CPURISCVState * env)488  int riscv_cpu_vsirq_pending(CPURISCVState *env)
489  {
490      uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg;
491      uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
492      uint64_t vsbits;
493  
494      /* Bring VS-level bits to correct position */
495      vsbits = irqs & VS_MODE_INTERRUPTS;
496      irqs &= ~VS_MODE_INTERRUPTS;
497      irqs |= vsbits >> 1;
498  
499      return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
500                                      (irqs | irqs_f_vs), env->hviprio);
501  }
502  
riscv_cpu_local_irq_pending(CPURISCVState * env)503  static int riscv_cpu_local_irq_pending(CPURISCVState *env)
504  {
505      uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs;
506      uint64_t vsbits, irq_delegated;
507      int virq;
508  
509      /* Determine interrupt enable state of all privilege modes */
510      if (env->virt_enabled) {
511          mie = 1;
512          hsie = 1;
513          vsie = (env->priv < PRV_S) ||
514                 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
515      } else {
516          mie = (env->priv < PRV_M) ||
517                (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
518          hsie = (env->priv < PRV_S) ||
519                 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
520          vsie = 0;
521      }
522  
523      /* Determine all pending interrupts */
524      pending = riscv_cpu_all_pending(env);
525  
526      /* Check M-mode interrupts */
527      irqs = pending & ~env->mideleg & -mie;
528      if (irqs) {
529          return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
530                                          irqs, env->miprio);
531      }
532  
533      /* Check for virtual S-mode interrupts. */
534      irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie;
535  
536      /* Check HS-mode interrupts */
537      irqs =  ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie;
538      if (irqs) {
539          return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
540                                          irqs, env->siprio);
541      }
542  
543      /* Check for virtual VS-mode interrupts. */
544      irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
545  
546      /* Check VS-mode interrupts */
547      irq_delegated = pending & env->mideleg & env->hideleg;
548  
549      /* Bring VS-level bits to correct position */
550      vsbits = irq_delegated & VS_MODE_INTERRUPTS;
551      irq_delegated &= ~VS_MODE_INTERRUPTS;
552      irq_delegated |= vsbits >> 1;
553  
554      irqs = (irq_delegated | irqs_f_vs) & -vsie;
555      if (irqs) {
556          virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
557                                          irqs, env->hviprio);
558          if (virq <= 0 || (virq > 12 && virq <= 63)) {
559              return virq;
560          } else {
561              return virq + 1;
562          }
563      }
564  
565      /* Indicate no pending interrupt */
566      return RISCV_EXCP_NONE;
567  }
568  
riscv_cpu_exec_interrupt(CPUState * cs,int interrupt_request)569  bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
570  {
571      if (interrupt_request & CPU_INTERRUPT_HARD) {
572          RISCVCPU *cpu = RISCV_CPU(cs);
573          CPURISCVState *env = &cpu->env;
574          int interruptno = riscv_cpu_local_irq_pending(env);
575          if (interruptno >= 0) {
576              cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
577              riscv_cpu_do_interrupt(cs);
578              return true;
579          }
580      }
581      return false;
582  }
583  
584  /* Return true is floating point support is currently enabled */
riscv_cpu_fp_enabled(CPURISCVState * env)585  bool riscv_cpu_fp_enabled(CPURISCVState *env)
586  {
587      if (env->mstatus & MSTATUS_FS) {
588          if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
589              return false;
590          }
591          return true;
592      }
593  
594      return false;
595  }
596  
597  /* Return true is vector support is currently enabled */
riscv_cpu_vector_enabled(CPURISCVState * env)598  bool riscv_cpu_vector_enabled(CPURISCVState *env)
599  {
600      if (env->mstatus & MSTATUS_VS) {
601          if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
602              return false;
603          }
604          return true;
605      }
606  
607      return false;
608  }
609  
riscv_cpu_swap_hypervisor_regs(CPURISCVState * env)610  void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
611  {
612      uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
613                              MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
614                              MSTATUS64_UXL | MSTATUS_VS;
615  
616      if (riscv_has_ext(env, RVF)) {
617          mstatus_mask |= MSTATUS_FS;
618      }
619      bool current_virt = env->virt_enabled;
620  
621      /*
622       * If zicfilp extension available and henvcfg.LPE = 1,
623       * then apply SPELP mask on mstatus
624       */
625      if (env_archcpu(env)->cfg.ext_zicfilp &&
626          get_field(env->henvcfg, HENVCFG_LPE)) {
627          mstatus_mask |= SSTATUS_SPELP;
628      }
629  
630      g_assert(riscv_has_ext(env, RVH));
631  
632      if (current_virt) {
633          /* Current V=1 and we are about to change to V=0 */
634          env->vsstatus = env->mstatus & mstatus_mask;
635          env->mstatus &= ~mstatus_mask;
636          env->mstatus |= env->mstatus_hs;
637  
638          env->vstvec = env->stvec;
639          env->stvec = env->stvec_hs;
640  
641          env->vsscratch = env->sscratch;
642          env->sscratch = env->sscratch_hs;
643  
644          env->vsepc = env->sepc;
645          env->sepc = env->sepc_hs;
646  
647          env->vscause = env->scause;
648          env->scause = env->scause_hs;
649  
650          env->vstval = env->stval;
651          env->stval = env->stval_hs;
652  
653          env->vsatp = env->satp;
654          env->satp = env->satp_hs;
655      } else {
656          /* Current V=0 and we are about to change to V=1 */
657          env->mstatus_hs = env->mstatus & mstatus_mask;
658          env->mstatus &= ~mstatus_mask;
659          env->mstatus |= env->vsstatus;
660  
661          env->stvec_hs = env->stvec;
662          env->stvec = env->vstvec;
663  
664          env->sscratch_hs = env->sscratch;
665          env->sscratch = env->vsscratch;
666  
667          env->sepc_hs = env->sepc;
668          env->sepc = env->vsepc;
669  
670          env->scause_hs = env->scause;
671          env->scause = env->vscause;
672  
673          env->stval_hs = env->stval;
674          env->stval = env->vstval;
675  
676          env->satp_hs = env->satp;
677          env->satp = env->vsatp;
678      }
679  }
680  
riscv_cpu_get_geilen(CPURISCVState * env)681  target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
682  {
683      if (!riscv_has_ext(env, RVH)) {
684          return 0;
685      }
686  
687      return env->geilen;
688  }
689  
riscv_cpu_set_geilen(CPURISCVState * env,target_ulong geilen)690  void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
691  {
692      if (!riscv_has_ext(env, RVH)) {
693          return;
694      }
695  
696      if (geilen > (TARGET_LONG_BITS - 1)) {
697          return;
698      }
699  
700      env->geilen = geilen;
701  }
702  
riscv_cpu_claim_interrupts(RISCVCPU * cpu,uint64_t interrupts)703  int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
704  {
705      CPURISCVState *env = &cpu->env;
706      if (env->miclaim & interrupts) {
707          return -1;
708      } else {
709          env->miclaim |= interrupts;
710          return 0;
711      }
712  }
713  
riscv_cpu_interrupt(CPURISCVState * env)714  void riscv_cpu_interrupt(CPURISCVState *env)
715  {
716      uint64_t gein, vsgein = 0, vstip = 0, irqf = 0;
717      CPUState *cs = env_cpu(env);
718  
719      BQL_LOCK_GUARD();
720  
721      if (env->virt_enabled) {
722          gein = get_field(env->hstatus, HSTATUS_VGEIN);
723          vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
724          irqf = env->hvien & env->hvip & env->vsie;
725      } else {
726          irqf = env->mvien & env->mvip & env->sie;
727      }
728  
729      vstip = env->vstime_irq ? MIP_VSTIP : 0;
730  
731      if (env->mip | vsgein | vstip | irqf) {
732          cpu_interrupt(cs, CPU_INTERRUPT_HARD);
733      } else {
734          cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
735      }
736  }
737  
riscv_cpu_update_mip(CPURISCVState * env,uint64_t mask,uint64_t value)738  uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value)
739  {
740      uint64_t old = env->mip;
741  
742      /* No need to update mip for VSTIP */
743      mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
744  
745      BQL_LOCK_GUARD();
746  
747      env->mip = (env->mip & ~mask) | (value & mask);
748  
749      riscv_cpu_interrupt(env);
750  
751      return old;
752  }
753  
riscv_cpu_set_rdtime_fn(CPURISCVState * env,uint64_t (* fn)(void *),void * arg)754  void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
755                               void *arg)
756  {
757      env->rdtime_fn = fn;
758      env->rdtime_fn_arg = arg;
759  }
760  
riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState * env,uint32_t priv,int (* rmw_fn)(void * arg,target_ulong reg,target_ulong * val,target_ulong new_val,target_ulong write_mask),void * rmw_fn_arg)761  void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
762                                     int (*rmw_fn)(void *arg,
763                                                   target_ulong reg,
764                                                   target_ulong *val,
765                                                   target_ulong new_val,
766                                                   target_ulong write_mask),
767                                     void *rmw_fn_arg)
768  {
769      if (priv <= PRV_M) {
770          env->aia_ireg_rmw_fn[priv] = rmw_fn;
771          env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
772      }
773  }
774  
riscv_cpu_set_mode(CPURISCVState * env,target_ulong newpriv,bool virt_en)775  void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv, bool virt_en)
776  {
777      g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
778  
779      if (newpriv != env->priv || env->virt_enabled != virt_en) {
780          if (icount_enabled()) {
781              riscv_itrigger_update_priv(env);
782          }
783  
784          riscv_pmu_update_fixed_ctrs(env, newpriv, virt_en);
785      }
786  
787      /* tlb_flush is unnecessary as mode is contained in mmu_idx */
788      env->priv = newpriv;
789      env->xl = cpu_recompute_xl(env);
790      riscv_cpu_update_mask(env);
791  
792      /*
793       * Clear the load reservation - otherwise a reservation placed in one
794       * context/process can be used by another, resulting in an SC succeeding
795       * incorrectly. Version 2.2 of the ISA specification explicitly requires
796       * this behaviour, while later revisions say that the kernel "should" use
797       * an SC instruction to force the yielding of a load reservation on a
798       * preemptive context switch. As a result, do both.
799       */
800      env->load_res = -1;
801  
802      if (riscv_has_ext(env, RVH)) {
803          /* Flush the TLB on all virt mode changes. */
804          if (env->virt_enabled != virt_en) {
805              tlb_flush(env_cpu(env));
806          }
807  
808          env->virt_enabled = virt_en;
809          if (virt_en) {
810              /*
811               * The guest external interrupts from an interrupt controller are
812               * delivered only when the Guest/VM is running (i.e. V=1). This
813               * means any guest external interrupt which is triggered while the
814               * Guest/VM is not running (i.e. V=0) will be missed on QEMU
815               * resulting in guest with sluggish response to serial console
816               * input and other I/O events.
817               *
818               * To solve this, we check and inject interrupt after setting V=1.
819               */
820              riscv_cpu_update_mip(env, 0, 0);
821          }
822      }
823  }
824  
825  /*
826   * get_physical_address_pmp - check PMP permission for this physical address
827   *
828   * Match the PMP region and check permission for this physical address and it's
829   * TLB page. Returns 0 if the permission checking was successful
830   *
831   * @env: CPURISCVState
832   * @prot: The returned protection attributes
833   * @addr: The physical address to be checked permission
834   * @access_type: The type of MMU access
835   * @mode: Indicates current privilege level.
836   */
get_physical_address_pmp(CPURISCVState * env,int * prot,hwaddr addr,int size,MMUAccessType access_type,int mode)837  static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
838                                      int size, MMUAccessType access_type,
839                                      int mode)
840  {
841      pmp_priv_t pmp_priv;
842      bool pmp_has_privs;
843  
844      if (!riscv_cpu_cfg(env)->pmp) {
845          *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
846          return TRANSLATE_SUCCESS;
847      }
848  
849      pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
850                                         &pmp_priv, mode);
851      if (!pmp_has_privs) {
852          *prot = 0;
853          return TRANSLATE_PMP_FAIL;
854      }
855  
856      *prot = pmp_priv_to_page_prot(pmp_priv);
857  
858      return TRANSLATE_SUCCESS;
859  }
860  
861  /*
862   * get_physical_address - get the physical address for this virtual address
863   *
864   * Do a page table walk to obtain the physical address corresponding to a
865   * virtual address. Returns 0 if the translation was successful
866   *
867   * Adapted from Spike's mmu_t::translate and mmu_t::walk
868   *
869   * @env: CPURISCVState
870   * @physical: This will be set to the calculated physical address
871   * @prot: The returned protection attributes
872   * @addr: The virtual address or guest physical address to be translated
873   * @fault_pte_addr: If not NULL, this will be set to fault pte address
874   *                  when a error occurs on pte address translation.
875   *                  This will already be shifted to match htval.
876   * @access_type: The type of MMU access
877   * @mmu_idx: Indicates current privilege level
878   * @first_stage: Are we in first stage translation?
879   *               Second stage is used for hypervisor guest translation
880   * @two_stage: Are we going to perform two stage translation
881   * @is_debug: Is this access from a debugger or the monitor?
882   */
get_physical_address(CPURISCVState * env,hwaddr * physical,int * ret_prot,vaddr addr,target_ulong * fault_pte_addr,int access_type,int mmu_idx,bool first_stage,bool two_stage,bool is_debug,bool is_probe)883  static int get_physical_address(CPURISCVState *env, hwaddr *physical,
884                                  int *ret_prot, vaddr addr,
885                                  target_ulong *fault_pte_addr,
886                                  int access_type, int mmu_idx,
887                                  bool first_stage, bool two_stage,
888                                  bool is_debug, bool is_probe)
889  {
890      /*
891       * NOTE: the env->pc value visible here will not be
892       * correct, but the value visible to the exception handler
893       * (riscv_cpu_do_interrupt) is correct
894       */
895      MemTxResult res;
896      MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
897      int mode = mmuidx_priv(mmu_idx);
898      bool use_background = false;
899      hwaddr ppn;
900      int napot_bits = 0;
901      target_ulong napot_mask;
902      bool is_sstack_idx = ((mmu_idx & MMU_IDX_SS_WRITE) == MMU_IDX_SS_WRITE);
903      bool sstack_page = false;
904  
905      /*
906       * Check if we should use the background registers for the two
907       * stage translation. We don't need to check if we actually need
908       * two stage translation as that happened before this function
909       * was called. Background registers will be used if the guest has
910       * forced a two stage translation to be on (in HS or M mode).
911       */
912      if (!env->virt_enabled && two_stage) {
913          use_background = true;
914      }
915  
916      if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
917          *physical = addr;
918          *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
919          return TRANSLATE_SUCCESS;
920      }
921  
922      *ret_prot = 0;
923  
924      hwaddr base;
925      int levels, ptidxbits, ptesize, vm, widened;
926  
927      if (first_stage == true) {
928          if (use_background) {
929              if (riscv_cpu_mxl(env) == MXL_RV32) {
930                  base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
931                  vm = get_field(env->vsatp, SATP32_MODE);
932              } else {
933                  base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
934                  vm = get_field(env->vsatp, SATP64_MODE);
935              }
936          } else {
937              if (riscv_cpu_mxl(env) == MXL_RV32) {
938                  base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
939                  vm = get_field(env->satp, SATP32_MODE);
940              } else {
941                  base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
942                  vm = get_field(env->satp, SATP64_MODE);
943              }
944          }
945          widened = 0;
946      } else {
947          if (riscv_cpu_mxl(env) == MXL_RV32) {
948              base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
949              vm = get_field(env->hgatp, SATP32_MODE);
950          } else {
951              base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
952              vm = get_field(env->hgatp, SATP64_MODE);
953          }
954          widened = 2;
955      }
956  
957      switch (vm) {
958      case VM_1_10_SV32:
959        levels = 2; ptidxbits = 10; ptesize = 4; break;
960      case VM_1_10_SV39:
961        levels = 3; ptidxbits = 9; ptesize = 8; break;
962      case VM_1_10_SV48:
963        levels = 4; ptidxbits = 9; ptesize = 8; break;
964      case VM_1_10_SV57:
965        levels = 5; ptidxbits = 9; ptesize = 8; break;
966      case VM_1_10_MBARE:
967          *physical = addr;
968          *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
969          return TRANSLATE_SUCCESS;
970      default:
971        g_assert_not_reached();
972      }
973  
974      CPUState *cs = env_cpu(env);
975      int va_bits = PGSHIFT + levels * ptidxbits + widened;
976      int sxlen = 16 << riscv_cpu_sxl(env);
977      int sxlen_bytes = sxlen / 8;
978  
979      if (first_stage == true) {
980          target_ulong mask, masked_msbs;
981  
982          if (sxlen > (va_bits - 1)) {
983              mask = (1L << (sxlen - (va_bits - 1))) - 1;
984          } else {
985              mask = 0;
986          }
987          masked_msbs = (addr >> (va_bits - 1)) & mask;
988  
989          if (masked_msbs != 0 && masked_msbs != mask) {
990              return TRANSLATE_FAIL;
991          }
992      } else {
993          if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
994              return TRANSLATE_FAIL;
995          }
996      }
997  
998      bool pbmte = env->menvcfg & MENVCFG_PBMTE;
999      bool svade = riscv_cpu_cfg(env)->ext_svade;
1000      bool svadu = riscv_cpu_cfg(env)->ext_svadu;
1001      bool adue = svadu ? env->menvcfg & MENVCFG_ADUE : !svade;
1002  
1003      if (first_stage && two_stage && env->virt_enabled) {
1004          pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
1005          adue = adue && (env->henvcfg & HENVCFG_ADUE);
1006      }
1007  
1008      int ptshift = (levels - 1) * ptidxbits;
1009      target_ulong pte;
1010      hwaddr pte_addr;
1011      int i;
1012  
1013  #if !TCG_OVERSIZED_GUEST
1014  restart:
1015  #endif
1016      for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
1017          target_ulong idx;
1018          if (i == 0) {
1019              idx = (addr >> (PGSHIFT + ptshift)) &
1020                             ((1 << (ptidxbits + widened)) - 1);
1021          } else {
1022              idx = (addr >> (PGSHIFT + ptshift)) &
1023                             ((1 << ptidxbits) - 1);
1024          }
1025  
1026          /* check that physical address of PTE is legal */
1027  
1028          if (two_stage && first_stage) {
1029              int vbase_prot;
1030              hwaddr vbase;
1031  
1032              /* Do the second stage translation on the base PTE address. */
1033              int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
1034                                                   base, NULL, MMU_DATA_LOAD,
1035                                                   MMUIdx_U, false, true,
1036                                                   is_debug, false);
1037  
1038              if (vbase_ret != TRANSLATE_SUCCESS) {
1039                  if (fault_pte_addr) {
1040                      *fault_pte_addr = (base + idx * ptesize) >> 2;
1041                  }
1042                  return TRANSLATE_G_STAGE_FAIL;
1043              }
1044  
1045              pte_addr = vbase + idx * ptesize;
1046          } else {
1047              pte_addr = base + idx * ptesize;
1048          }
1049  
1050          int pmp_prot;
1051          int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
1052                                                 sxlen_bytes,
1053                                                 MMU_DATA_LOAD, PRV_S);
1054          if (pmp_ret != TRANSLATE_SUCCESS) {
1055              return TRANSLATE_PMP_FAIL;
1056          }
1057  
1058          if (riscv_cpu_mxl(env) == MXL_RV32) {
1059              pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
1060          } else {
1061              pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
1062          }
1063  
1064          if (res != MEMTX_OK) {
1065              return TRANSLATE_FAIL;
1066          }
1067  
1068          if (riscv_cpu_sxl(env) == MXL_RV32) {
1069              ppn = pte >> PTE_PPN_SHIFT;
1070          } else {
1071              if (pte & PTE_RESERVED) {
1072                  return TRANSLATE_FAIL;
1073              }
1074  
1075              if (!pbmte && (pte & PTE_PBMT)) {
1076                  return TRANSLATE_FAIL;
1077              }
1078  
1079              if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1080                  return TRANSLATE_FAIL;
1081              }
1082  
1083              ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
1084          }
1085  
1086          if (!(pte & PTE_V)) {
1087              /* Invalid PTE */
1088              return TRANSLATE_FAIL;
1089          }
1090          if (pte & (PTE_R | PTE_W | PTE_X)) {
1091              goto leaf;
1092          }
1093  
1094          /* Inner PTE, continue walking */
1095          if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
1096              return TRANSLATE_FAIL;
1097          }
1098          base = ppn << PGSHIFT;
1099      }
1100  
1101      /* No leaf pte at any translation level. */
1102      return TRANSLATE_FAIL;
1103  
1104   leaf:
1105      if (ppn & ((1ULL << ptshift) - 1)) {
1106          /* Misaligned PPN */
1107          return TRANSLATE_FAIL;
1108      }
1109      if (!pbmte && (pte & PTE_PBMT)) {
1110          /* Reserved without Svpbmt. */
1111          return TRANSLATE_FAIL;
1112      }
1113  
1114      target_ulong rwx = pte & (PTE_R | PTE_W | PTE_X);
1115      /* Check for reserved combinations of RWX flags. */
1116      switch (rwx) {
1117      case PTE_W | PTE_X:
1118          return TRANSLATE_FAIL;
1119      case PTE_W:
1120          /* if bcfi enabled, PTE_W is not reserved and shadow stack page */
1121          if (cpu_get_bcfien(env) && first_stage) {
1122              sstack_page = true;
1123              /*
1124               * if ss index, read and write allowed. else if not a probe
1125               * then only read allowed
1126               */
1127              rwx = is_sstack_idx ? (PTE_R | PTE_W) : (is_probe ? 0 :  PTE_R);
1128              break;
1129          }
1130          return TRANSLATE_FAIL;
1131      case PTE_R:
1132          /*
1133           * no matter what's the `access_type`, shadow stack access to readonly
1134           * memory are always store page faults. During unwind, loads will be
1135           * promoted as store fault.
1136           */
1137          if (is_sstack_idx) {
1138              return TRANSLATE_FAIL;
1139          }
1140          break;
1141      }
1142  
1143      int prot = 0;
1144      if (rwx & PTE_R) {
1145          prot |= PAGE_READ;
1146      }
1147      if (rwx & PTE_W) {
1148          prot |= PAGE_WRITE;
1149      }
1150      if (rwx & PTE_X) {
1151          bool mxr = false;
1152  
1153          /*
1154           * Use mstatus for first stage or for the second stage without
1155           * virt_enabled (MPRV+MPV)
1156           */
1157          if (first_stage || !env->virt_enabled) {
1158              mxr = get_field(env->mstatus, MSTATUS_MXR);
1159          }
1160  
1161          /* MPRV+MPV case, check VSSTATUS */
1162          if (first_stage && two_stage && !env->virt_enabled) {
1163              mxr |= get_field(env->vsstatus, MSTATUS_MXR);
1164          }
1165  
1166          /*
1167           * Setting MXR at HS-level overrides both VS-stage and G-stage
1168           * execute-only permissions
1169           */
1170          if (env->virt_enabled) {
1171              mxr |= get_field(env->mstatus_hs, MSTATUS_MXR);
1172          }
1173  
1174          if (mxr) {
1175              prot |= PAGE_READ;
1176          }
1177          prot |= PAGE_EXEC;
1178      }
1179  
1180      if (pte & PTE_U) {
1181          if (mode != PRV_U) {
1182              if (!mmuidx_sum(mmu_idx)) {
1183                  return TRANSLATE_FAIL;
1184              }
1185              /* SUM allows only read+write, not execute. */
1186              prot &= PAGE_READ | PAGE_WRITE;
1187          }
1188      } else if (mode != PRV_S) {
1189          /* Supervisor PTE flags when not S mode */
1190          return TRANSLATE_FAIL;
1191      }
1192  
1193      if (!((prot >> access_type) & 1)) {
1194          /*
1195           * Access check failed, access check failures for shadow stack are
1196           * access faults.
1197           */
1198          return sstack_page ? TRANSLATE_PMP_FAIL : TRANSLATE_FAIL;
1199      }
1200  
1201      target_ulong updated_pte = pte;
1202  
1203      /*
1204       * If ADUE is enabled, set accessed and dirty bits.
1205       * Otherwise raise an exception if necessary.
1206       */
1207      if (adue) {
1208          updated_pte |= PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0);
1209      } else if (!(pte & PTE_A) ||
1210                 (access_type == MMU_DATA_STORE && !(pte & PTE_D))) {
1211          return TRANSLATE_FAIL;
1212      }
1213  
1214      /* Page table updates need to be atomic with MTTCG enabled */
1215      if (updated_pte != pte && !is_debug) {
1216          if (!adue) {
1217              return TRANSLATE_FAIL;
1218          }
1219  
1220          /*
1221           * - if accessed or dirty bits need updating, and the PTE is
1222           *   in RAM, then we do so atomically with a compare and swap.
1223           * - if the PTE is in IO space or ROM, then it can't be updated
1224           *   and we return TRANSLATE_FAIL.
1225           * - if the PTE changed by the time we went to update it, then
1226           *   it is no longer valid and we must re-walk the page table.
1227           */
1228          MemoryRegion *mr;
1229          hwaddr l = sxlen_bytes, addr1;
1230          mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1231                                       false, MEMTXATTRS_UNSPECIFIED);
1232          if (memory_region_is_ram(mr)) {
1233              target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1234  #if TCG_OVERSIZED_GUEST
1235              /*
1236               * MTTCG is not enabled on oversized TCG guests so
1237               * page table updates do not need to be atomic
1238               */
1239              *pte_pa = pte = updated_pte;
1240  #else
1241              target_ulong old_pte;
1242              if (riscv_cpu_sxl(env) == MXL_RV32) {
1243                  old_pte = qatomic_cmpxchg((uint32_t *)pte_pa, pte, updated_pte);
1244              } else {
1245                  old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1246              }
1247              if (old_pte != pte) {
1248                  goto restart;
1249              }
1250              pte = updated_pte;
1251  #endif
1252          } else {
1253              /*
1254               * Misconfigured PTE in ROM (AD bits are not preset) or
1255               * PTE is in IO space and can't be updated atomically.
1256               */
1257              return TRANSLATE_FAIL;
1258          }
1259      }
1260  
1261      /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1262      target_ulong vpn = addr >> PGSHIFT;
1263  
1264      if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1265          napot_bits = ctzl(ppn) + 1;
1266          if ((i != (levels - 1)) || (napot_bits != 4)) {
1267              return TRANSLATE_FAIL;
1268          }
1269      }
1270  
1271      napot_mask = (1 << napot_bits) - 1;
1272      *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1273                    (vpn & (((target_ulong)1 << ptshift) - 1))
1274                   ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1275  
1276      /*
1277       * Remove write permission unless this is a store, or the page is
1278       * already dirty, so that we TLB miss on later writes to update
1279       * the dirty bit.
1280       */
1281      if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1282          prot &= ~PAGE_WRITE;
1283      }
1284      *ret_prot = prot;
1285  
1286      return TRANSLATE_SUCCESS;
1287  }
1288  
raise_mmu_exception(CPURISCVState * env,target_ulong address,MMUAccessType access_type,bool pmp_violation,bool first_stage,bool two_stage,bool two_stage_indirect)1289  static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1290                                  MMUAccessType access_type, bool pmp_violation,
1291                                  bool first_stage, bool two_stage,
1292                                  bool two_stage_indirect)
1293  {
1294      CPUState *cs = env_cpu(env);
1295  
1296      switch (access_type) {
1297      case MMU_INST_FETCH:
1298          if (pmp_violation) {
1299              cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1300          } else if (env->virt_enabled && !first_stage) {
1301              cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1302          } else {
1303              cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
1304          }
1305          break;
1306      case MMU_DATA_LOAD:
1307          if (pmp_violation) {
1308              cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1309          } else if (two_stage && !first_stage) {
1310              cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1311          } else {
1312              cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
1313          }
1314          break;
1315      case MMU_DATA_STORE:
1316          if (pmp_violation) {
1317              cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1318          } else if (two_stage && !first_stage) {
1319              cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1320          } else {
1321              cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
1322          }
1323          break;
1324      default:
1325          g_assert_not_reached();
1326      }
1327      env->badaddr = address;
1328      env->two_stage_lookup = two_stage;
1329      env->two_stage_indirect_lookup = two_stage_indirect;
1330  }
1331  
riscv_cpu_get_phys_page_debug(CPUState * cs,vaddr addr)1332  hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1333  {
1334      RISCVCPU *cpu = RISCV_CPU(cs);
1335      CPURISCVState *env = &cpu->env;
1336      hwaddr phys_addr;
1337      int prot;
1338      int mmu_idx = riscv_env_mmu_index(&cpu->env, false);
1339  
1340      if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1341                               true, env->virt_enabled, true, false)) {
1342          return -1;
1343      }
1344  
1345      if (env->virt_enabled) {
1346          if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1347                                   0, MMUIdx_U, false, true, true, false)) {
1348              return -1;
1349          }
1350      }
1351  
1352      return phys_addr & TARGET_PAGE_MASK;
1353  }
1354  
riscv_cpu_do_transaction_failed(CPUState * cs,hwaddr physaddr,vaddr addr,unsigned size,MMUAccessType access_type,int mmu_idx,MemTxAttrs attrs,MemTxResult response,uintptr_t retaddr)1355  void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1356                                       vaddr addr, unsigned size,
1357                                       MMUAccessType access_type,
1358                                       int mmu_idx, MemTxAttrs attrs,
1359                                       MemTxResult response, uintptr_t retaddr)
1360  {
1361      RISCVCPU *cpu = RISCV_CPU(cs);
1362      CPURISCVState *env = &cpu->env;
1363  
1364      if (access_type == MMU_DATA_STORE) {
1365          cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1366      } else if (access_type == MMU_DATA_LOAD) {
1367          cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1368      } else {
1369          cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1370      }
1371  
1372      env->badaddr = addr;
1373      env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1374      env->two_stage_indirect_lookup = false;
1375      cpu_loop_exit_restore(cs, retaddr);
1376  }
1377  
riscv_cpu_do_unaligned_access(CPUState * cs,vaddr addr,MMUAccessType access_type,int mmu_idx,uintptr_t retaddr)1378  void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1379                                     MMUAccessType access_type, int mmu_idx,
1380                                     uintptr_t retaddr)
1381  {
1382      RISCVCPU *cpu = RISCV_CPU(cs);
1383      CPURISCVState *env = &cpu->env;
1384      switch (access_type) {
1385      case MMU_INST_FETCH:
1386          cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1387          break;
1388      case MMU_DATA_LOAD:
1389          cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1390          /* shadow stack mis aligned accesses are access faults */
1391          if (mmu_idx & MMU_IDX_SS_WRITE) {
1392              cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1393          }
1394          break;
1395      case MMU_DATA_STORE:
1396          cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1397          /* shadow stack mis aligned accesses are access faults */
1398          if (mmu_idx & MMU_IDX_SS_WRITE) {
1399              cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1400          }
1401          break;
1402      default:
1403          g_assert_not_reached();
1404      }
1405      env->badaddr = addr;
1406      env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1407      env->two_stage_indirect_lookup = false;
1408      cpu_loop_exit_restore(cs, retaddr);
1409  }
1410  
1411  
pmu_tlb_fill_incr_ctr(RISCVCPU * cpu,MMUAccessType access_type)1412  static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1413  {
1414      enum riscv_pmu_event_idx pmu_event_type;
1415  
1416      switch (access_type) {
1417      case MMU_INST_FETCH:
1418          pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1419          break;
1420      case MMU_DATA_LOAD:
1421          pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1422          break;
1423      case MMU_DATA_STORE:
1424          pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1425          break;
1426      default:
1427          return;
1428      }
1429  
1430      riscv_pmu_incr_ctr(cpu, pmu_event_type);
1431  }
1432  
riscv_cpu_tlb_fill(CPUState * cs,vaddr address,int size,MMUAccessType access_type,int mmu_idx,bool probe,uintptr_t retaddr)1433  bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1434                          MMUAccessType access_type, int mmu_idx,
1435                          bool probe, uintptr_t retaddr)
1436  {
1437      RISCVCPU *cpu = RISCV_CPU(cs);
1438      CPURISCVState *env = &cpu->env;
1439      vaddr im_address;
1440      hwaddr pa = 0;
1441      int prot, prot2, prot_pmp;
1442      bool pmp_violation = false;
1443      bool first_stage_error = true;
1444      bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1445      bool two_stage_indirect_error = false;
1446      int ret = TRANSLATE_FAIL;
1447      int mode = mmuidx_priv(mmu_idx);
1448      /* default TLB page size */
1449      hwaddr tlb_size = TARGET_PAGE_SIZE;
1450  
1451      env->guest_phys_fault_addr = 0;
1452  
1453      qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1454                    __func__, address, access_type, mmu_idx);
1455  
1456      pmu_tlb_fill_incr_ctr(cpu, access_type);
1457      if (two_stage_lookup) {
1458          /* Two stage lookup */
1459          ret = get_physical_address(env, &pa, &prot, address,
1460                                     &env->guest_phys_fault_addr, access_type,
1461                                     mmu_idx, true, true, false, probe);
1462  
1463          /*
1464           * A G-stage exception may be triggered during two state lookup.
1465           * And the env->guest_phys_fault_addr has already been set in
1466           * get_physical_address().
1467           */
1468          if (ret == TRANSLATE_G_STAGE_FAIL) {
1469              first_stage_error = false;
1470              two_stage_indirect_error = true;
1471          }
1472  
1473          qemu_log_mask(CPU_LOG_MMU,
1474                        "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1475                        HWADDR_FMT_plx " prot %d\n",
1476                        __func__, address, ret, pa, prot);
1477  
1478          if (ret == TRANSLATE_SUCCESS) {
1479              /* Second stage lookup */
1480              im_address = pa;
1481  
1482              ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1483                                         access_type, MMUIdx_U, false, true,
1484                                         false, probe);
1485  
1486              qemu_log_mask(CPU_LOG_MMU,
1487                            "%s 2nd-stage address=%" VADDR_PRIx
1488                            " ret %d physical "
1489                            HWADDR_FMT_plx " prot %d\n",
1490                            __func__, im_address, ret, pa, prot2);
1491  
1492              prot &= prot2;
1493  
1494              if (ret == TRANSLATE_SUCCESS) {
1495                  ret = get_physical_address_pmp(env, &prot_pmp, pa,
1496                                                 size, access_type, mode);
1497                  tlb_size = pmp_get_tlb_size(env, pa);
1498  
1499                  qemu_log_mask(CPU_LOG_MMU,
1500                                "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1501                                " %d tlb_size %" HWADDR_PRIu "\n",
1502                                __func__, pa, ret, prot_pmp, tlb_size);
1503  
1504                  prot &= prot_pmp;
1505              } else {
1506                  /*
1507                   * Guest physical address translation failed, this is a HS
1508                   * level exception
1509                   */
1510                  first_stage_error = false;
1511                  if (ret != TRANSLATE_PMP_FAIL) {
1512                      env->guest_phys_fault_addr = (im_address |
1513                                                    (address &
1514                                                     (TARGET_PAGE_SIZE - 1))) >> 2;
1515                  }
1516              }
1517          }
1518      } else {
1519          /* Single stage lookup */
1520          ret = get_physical_address(env, &pa, &prot, address, NULL,
1521                                     access_type, mmu_idx, true, false, false,
1522                                     probe);
1523  
1524          qemu_log_mask(CPU_LOG_MMU,
1525                        "%s address=%" VADDR_PRIx " ret %d physical "
1526                        HWADDR_FMT_plx " prot %d\n",
1527                        __func__, address, ret, pa, prot);
1528  
1529          if (ret == TRANSLATE_SUCCESS) {
1530              ret = get_physical_address_pmp(env, &prot_pmp, pa,
1531                                             size, access_type, mode);
1532              tlb_size = pmp_get_tlb_size(env, pa);
1533  
1534              qemu_log_mask(CPU_LOG_MMU,
1535                            "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1536                            " %d tlb_size %" HWADDR_PRIu "\n",
1537                            __func__, pa, ret, prot_pmp, tlb_size);
1538  
1539              prot &= prot_pmp;
1540          }
1541      }
1542  
1543      if (ret == TRANSLATE_PMP_FAIL) {
1544          pmp_violation = true;
1545      }
1546  
1547      if (ret == TRANSLATE_SUCCESS) {
1548          tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1549                       prot, mmu_idx, tlb_size);
1550          return true;
1551      } else if (probe) {
1552          return false;
1553      } else {
1554          int wp_access = 0;
1555  
1556          if (access_type == MMU_DATA_LOAD) {
1557              wp_access |= BP_MEM_READ;
1558          } else if (access_type == MMU_DATA_STORE) {
1559              wp_access |= BP_MEM_WRITE;
1560          }
1561  
1562          /*
1563           * If a watchpoint isn't found for 'addr' this will
1564           * be a no-op and we'll resume the mmu_exception path.
1565           * Otherwise we'll throw a debug exception and execution
1566           * will continue elsewhere.
1567           */
1568          cpu_check_watchpoint(cs, address, size, MEMTXATTRS_UNSPECIFIED,
1569                               wp_access, retaddr);
1570  
1571          raise_mmu_exception(env, address, access_type, pmp_violation,
1572                              first_stage_error, two_stage_lookup,
1573                              two_stage_indirect_error);
1574          cpu_loop_exit_restore(cs, retaddr);
1575      }
1576  
1577      return true;
1578  }
1579  
riscv_transformed_insn(CPURISCVState * env,target_ulong insn,target_ulong taddr)1580  static target_ulong riscv_transformed_insn(CPURISCVState *env,
1581                                             target_ulong insn,
1582                                             target_ulong taddr)
1583  {
1584      target_ulong xinsn = 0;
1585      target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1586  
1587      /*
1588       * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1589       * be uncompressed. The Quadrant 1 of RVC instruction space need
1590       * not be transformed because these instructions won't generate
1591       * any load/store trap.
1592       */
1593  
1594      if ((insn & 0x3) != 0x3) {
1595          /* Transform 16bit instruction into 32bit instruction */
1596          switch (GET_C_OP(insn)) {
1597          case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1598              switch (GET_C_FUNC(insn)) {
1599              case OPC_RISC_C_FUNC_FLD_LQ:
1600                  if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1601                      xinsn = OPC_RISC_FLD;
1602                      xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1603                      access_rs1 = GET_C_RS1S(insn);
1604                      access_imm = GET_C_LD_IMM(insn);
1605                      access_size = 8;
1606                  }
1607                  break;
1608              case OPC_RISC_C_FUNC_LW: /* C.LW */
1609                  xinsn = OPC_RISC_LW;
1610                  xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1611                  access_rs1 = GET_C_RS1S(insn);
1612                  access_imm = GET_C_LW_IMM(insn);
1613                  access_size = 4;
1614                  break;
1615              case OPC_RISC_C_FUNC_FLW_LD:
1616                  if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1617                      xinsn = OPC_RISC_FLW;
1618                      xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1619                      access_rs1 = GET_C_RS1S(insn);
1620                      access_imm = GET_C_LW_IMM(insn);
1621                      access_size = 4;
1622                  } else { /* C.LD (RV64/RV128) */
1623                      xinsn = OPC_RISC_LD;
1624                      xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1625                      access_rs1 = GET_C_RS1S(insn);
1626                      access_imm = GET_C_LD_IMM(insn);
1627                      access_size = 8;
1628                  }
1629                  break;
1630              case OPC_RISC_C_FUNC_FSD_SQ:
1631                  if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1632                      xinsn = OPC_RISC_FSD;
1633                      xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1634                      access_rs1 = GET_C_RS1S(insn);
1635                      access_imm = GET_C_SD_IMM(insn);
1636                      access_size = 8;
1637                  }
1638                  break;
1639              case OPC_RISC_C_FUNC_SW: /* C.SW */
1640                  xinsn = OPC_RISC_SW;
1641                  xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1642                  access_rs1 = GET_C_RS1S(insn);
1643                  access_imm = GET_C_SW_IMM(insn);
1644                  access_size = 4;
1645                  break;
1646              case OPC_RISC_C_FUNC_FSW_SD:
1647                  if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1648                      xinsn = OPC_RISC_FSW;
1649                      xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1650                      access_rs1 = GET_C_RS1S(insn);
1651                      access_imm = GET_C_SW_IMM(insn);
1652                      access_size = 4;
1653                  } else { /* C.SD (RV64/RV128) */
1654                      xinsn = OPC_RISC_SD;
1655                      xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1656                      access_rs1 = GET_C_RS1S(insn);
1657                      access_imm = GET_C_SD_IMM(insn);
1658                      access_size = 8;
1659                  }
1660                  break;
1661              default:
1662                  break;
1663              }
1664              break;
1665          case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1666              switch (GET_C_FUNC(insn)) {
1667              case OPC_RISC_C_FUNC_FLDSP_LQSP:
1668                  if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1669                      xinsn = OPC_RISC_FLD;
1670                      xinsn = SET_RD(xinsn, GET_C_RD(insn));
1671                      access_rs1 = 2;
1672                      access_imm = GET_C_LDSP_IMM(insn);
1673                      access_size = 8;
1674                  }
1675                  break;
1676              case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1677                  xinsn = OPC_RISC_LW;
1678                  xinsn = SET_RD(xinsn, GET_C_RD(insn));
1679                  access_rs1 = 2;
1680                  access_imm = GET_C_LWSP_IMM(insn);
1681                  access_size = 4;
1682                  break;
1683              case OPC_RISC_C_FUNC_FLWSP_LDSP:
1684                  if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1685                      xinsn = OPC_RISC_FLW;
1686                      xinsn = SET_RD(xinsn, GET_C_RD(insn));
1687                      access_rs1 = 2;
1688                      access_imm = GET_C_LWSP_IMM(insn);
1689                      access_size = 4;
1690                  } else { /* C.LDSP (RV64/RV128) */
1691                      xinsn = OPC_RISC_LD;
1692                      xinsn = SET_RD(xinsn, GET_C_RD(insn));
1693                      access_rs1 = 2;
1694                      access_imm = GET_C_LDSP_IMM(insn);
1695                      access_size = 8;
1696                  }
1697                  break;
1698              case OPC_RISC_C_FUNC_FSDSP_SQSP:
1699                  if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1700                      xinsn = OPC_RISC_FSD;
1701                      xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1702                      access_rs1 = 2;
1703                      access_imm = GET_C_SDSP_IMM(insn);
1704                      access_size = 8;
1705                  }
1706                  break;
1707              case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1708                  xinsn = OPC_RISC_SW;
1709                  xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1710                  access_rs1 = 2;
1711                  access_imm = GET_C_SWSP_IMM(insn);
1712                  access_size = 4;
1713                  break;
1714              case 7:
1715                  if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1716                      xinsn = OPC_RISC_FSW;
1717                      xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1718                      access_rs1 = 2;
1719                      access_imm = GET_C_SWSP_IMM(insn);
1720                      access_size = 4;
1721                  } else { /* C.SDSP (RV64/RV128) */
1722                      xinsn = OPC_RISC_SD;
1723                      xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1724                      access_rs1 = 2;
1725                      access_imm = GET_C_SDSP_IMM(insn);
1726                      access_size = 8;
1727                  }
1728                  break;
1729              default:
1730                  break;
1731              }
1732              break;
1733          default:
1734              break;
1735          }
1736  
1737          /*
1738           * Clear Bit1 of transformed instruction to indicate that
1739           * original insruction was a 16bit instruction
1740           */
1741          xinsn &= ~((target_ulong)0x2);
1742      } else {
1743          /* Transform 32bit (or wider) instructions */
1744          switch (MASK_OP_MAJOR(insn)) {
1745          case OPC_RISC_ATOMIC:
1746              xinsn = insn;
1747              access_rs1 = GET_RS1(insn);
1748              access_size = 1 << GET_FUNCT3(insn);
1749              break;
1750          case OPC_RISC_LOAD:
1751          case OPC_RISC_FP_LOAD:
1752              xinsn = SET_I_IMM(insn, 0);
1753              access_rs1 = GET_RS1(insn);
1754              access_imm = GET_IMM(insn);
1755              access_size = 1 << GET_FUNCT3(insn);
1756              break;
1757          case OPC_RISC_STORE:
1758          case OPC_RISC_FP_STORE:
1759              xinsn = SET_S_IMM(insn, 0);
1760              access_rs1 = GET_RS1(insn);
1761              access_imm = GET_STORE_IMM(insn);
1762              access_size = 1 << GET_FUNCT3(insn);
1763              break;
1764          case OPC_RISC_SYSTEM:
1765              if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1766                  xinsn = insn;
1767                  access_rs1 = GET_RS1(insn);
1768                  access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1769                  access_size = 1 << access_size;
1770              }
1771              break;
1772          default:
1773              break;
1774          }
1775      }
1776  
1777      if (access_size) {
1778          xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1779                                 (access_size - 1));
1780      }
1781  
1782      return xinsn;
1783  }
1784  
promote_load_fault(target_ulong orig_cause)1785  static target_ulong promote_load_fault(target_ulong orig_cause)
1786  {
1787      switch (orig_cause) {
1788      case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1789          return RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1790  
1791      case RISCV_EXCP_LOAD_ACCESS_FAULT:
1792          return RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1793  
1794      case RISCV_EXCP_LOAD_PAGE_FAULT:
1795          return RISCV_EXCP_STORE_PAGE_FAULT;
1796      }
1797  
1798      /* if no promotion, return original cause */
1799      return orig_cause;
1800  }
1801  /*
1802   * Handle Traps
1803   *
1804   * Adapted from Spike's processor_t::take_trap.
1805   *
1806   */
riscv_cpu_do_interrupt(CPUState * cs)1807  void riscv_cpu_do_interrupt(CPUState *cs)
1808  {
1809      RISCVCPU *cpu = RISCV_CPU(cs);
1810      CPURISCVState *env = &cpu->env;
1811      bool virt = env->virt_enabled;
1812      bool write_gva = false;
1813      bool always_storeamo = (env->excp_uw2 & RISCV_UW2_ALWAYS_STORE_AMO);
1814      uint64_t s;
1815  
1816      /*
1817       * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1818       * so we mask off the MSB and separate into trap type and cause.
1819       */
1820      bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1821      target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1822      uint64_t deleg = async ? env->mideleg : env->medeleg;
1823      bool s_injected = env->mvip & (1ULL << cause) & env->mvien &&
1824          !(env->mip & (1ULL << cause));
1825      bool vs_injected = env->hvip & (1ULL << cause) & env->hvien &&
1826          !(env->mip & (1ULL << cause));
1827      target_ulong tval = 0;
1828      target_ulong tinst = 0;
1829      target_ulong htval = 0;
1830      target_ulong mtval2 = 0;
1831      int sxlen = 0;
1832      int mxlen = 0;
1833  
1834      if (!async) {
1835          /* set tval to badaddr for traps with address information */
1836          switch (cause) {
1837  #ifdef CONFIG_TCG
1838          case RISCV_EXCP_SEMIHOST:
1839              do_common_semihosting(cs);
1840              env->pc += 4;
1841              return;
1842  #endif
1843          case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1844          case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1845          case RISCV_EXCP_LOAD_ADDR_MIS:
1846          case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1847          case RISCV_EXCP_LOAD_ACCESS_FAULT:
1848          case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1849          case RISCV_EXCP_LOAD_PAGE_FAULT:
1850          case RISCV_EXCP_STORE_PAGE_FAULT:
1851              if (always_storeamo) {
1852                  cause = promote_load_fault(cause);
1853              }
1854              write_gva = env->two_stage_lookup;
1855              tval = env->badaddr;
1856              if (env->two_stage_indirect_lookup) {
1857                  /*
1858                   * special pseudoinstruction for G-stage fault taken while
1859                   * doing VS-stage page table walk.
1860                   */
1861                  tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1862              } else {
1863                  /*
1864                   * The "Addr. Offset" field in transformed instruction is
1865                   * non-zero only for misaligned access.
1866                   */
1867                  tinst = riscv_transformed_insn(env, env->bins, tval);
1868              }
1869              break;
1870          case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1871          case RISCV_EXCP_INST_ADDR_MIS:
1872          case RISCV_EXCP_INST_ACCESS_FAULT:
1873          case RISCV_EXCP_INST_PAGE_FAULT:
1874              write_gva = env->two_stage_lookup;
1875              tval = env->badaddr;
1876              if (env->two_stage_indirect_lookup) {
1877                  /*
1878                   * special pseudoinstruction for G-stage fault taken while
1879                   * doing VS-stage page table walk.
1880                   */
1881                  tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1882              }
1883              break;
1884          case RISCV_EXCP_ILLEGAL_INST:
1885          case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1886              tval = env->bins;
1887              break;
1888          case RISCV_EXCP_BREAKPOINT:
1889              tval = env->badaddr;
1890              if (cs->watchpoint_hit) {
1891                  tval = cs->watchpoint_hit->hitaddr;
1892                  cs->watchpoint_hit = NULL;
1893              }
1894              break;
1895          case RISCV_EXCP_SW_CHECK:
1896              tval = env->sw_check_code;
1897              break;
1898          default:
1899              break;
1900          }
1901          /* ecall is dispatched as one cause so translate based on mode */
1902          if (cause == RISCV_EXCP_U_ECALL) {
1903              assert(env->priv <= 3);
1904  
1905              if (env->priv == PRV_M) {
1906                  cause = RISCV_EXCP_M_ECALL;
1907              } else if (env->priv == PRV_S && env->virt_enabled) {
1908                  cause = RISCV_EXCP_VS_ECALL;
1909              } else if (env->priv == PRV_S && !env->virt_enabled) {
1910                  cause = RISCV_EXCP_S_ECALL;
1911              } else if (env->priv == PRV_U) {
1912                  cause = RISCV_EXCP_U_ECALL;
1913              }
1914          }
1915      }
1916  
1917      trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1918                       riscv_cpu_get_trap_name(cause, async));
1919  
1920      qemu_log_mask(CPU_LOG_INT,
1921                    "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1922                    "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1923                    __func__, env->mhartid, async, cause, env->pc, tval,
1924                    riscv_cpu_get_trap_name(cause, async));
1925  
1926      if (env->priv <= PRV_S && cause < 64 &&
1927          (((deleg >> cause) & 1) || s_injected || vs_injected)) {
1928          /* handle the trap in S-mode */
1929          /* save elp status */
1930          if (cpu_get_fcfien(env)) {
1931              env->mstatus = set_field(env->mstatus, MSTATUS_SPELP, env->elp);
1932          }
1933  
1934          if (riscv_has_ext(env, RVH)) {
1935              uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1936  
1937              if (env->virt_enabled &&
1938                  (((hdeleg >> cause) & 1) || vs_injected)) {
1939                  /* Trap to VS mode */
1940                  /*
1941                   * See if we need to adjust cause. Yes if its VS mode interrupt
1942                   * no if hypervisor has delegated one of hs mode's interrupt
1943                   */
1944                  if (async && (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1945                                cause == IRQ_VS_EXT)) {
1946                      cause = cause - 1;
1947                  }
1948                  write_gva = false;
1949              } else if (env->virt_enabled) {
1950                  /* Trap into HS mode, from virt */
1951                  riscv_cpu_swap_hypervisor_regs(env);
1952                  env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1953                                           env->priv);
1954                  env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1955  
1956                  htval = env->guest_phys_fault_addr;
1957  
1958                  virt = false;
1959              } else {
1960                  /* Trap into HS mode */
1961                  env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1962                  htval = env->guest_phys_fault_addr;
1963              }
1964              env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1965          }
1966  
1967          s = env->mstatus;
1968          s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1969          s = set_field(s, MSTATUS_SPP, env->priv);
1970          s = set_field(s, MSTATUS_SIE, 0);
1971          env->mstatus = s;
1972          sxlen = 16 << riscv_cpu_sxl(env);
1973          env->scause = cause | ((target_ulong)async << (sxlen - 1));
1974          env->sepc = env->pc;
1975          env->stval = tval;
1976          env->htval = htval;
1977          env->htinst = tinst;
1978          env->pc = (env->stvec >> 2 << 2) +
1979                    ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1980          riscv_cpu_set_mode(env, PRV_S, virt);
1981      } else {
1982          /* handle the trap in M-mode */
1983          /* save elp status */
1984          if (cpu_get_fcfien(env)) {
1985              env->mstatus = set_field(env->mstatus, MSTATUS_MPELP, env->elp);
1986          }
1987  
1988          if (riscv_has_ext(env, RVH)) {
1989              if (env->virt_enabled) {
1990                  riscv_cpu_swap_hypervisor_regs(env);
1991              }
1992              env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1993                                       env->virt_enabled);
1994              if (env->virt_enabled && tval) {
1995                  env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1996              }
1997  
1998              mtval2 = env->guest_phys_fault_addr;
1999  
2000              /* Trapping to M mode, virt is disabled */
2001              virt = false;
2002          }
2003  
2004          s = env->mstatus;
2005          s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
2006          s = set_field(s, MSTATUS_MPP, env->priv);
2007          s = set_field(s, MSTATUS_MIE, 0);
2008          env->mstatus = s;
2009          mxlen = 16 << riscv_cpu_mxl(env);
2010          env->mcause = cause | ((target_ulong)async << (mxlen - 1));
2011          env->mepc = env->pc;
2012          env->mtval = tval;
2013          env->mtval2 = mtval2;
2014          env->mtinst = tinst;
2015          env->pc = (env->mtvec >> 2 << 2) +
2016                    ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
2017          riscv_cpu_set_mode(env, PRV_M, virt);
2018      }
2019  
2020      /*
2021       * Interrupt/exception/trap delivery is asynchronous event and as per
2022       * zicfilp spec CPU should clear up the ELP state. No harm in clearing
2023       * unconditionally.
2024       */
2025      env->elp = false;
2026  
2027      /*
2028       * NOTE: it is not necessary to yield load reservations here. It is only
2029       * necessary for an SC from "another hart" to cause a load reservation
2030       * to be yielded. Refer to the memory consistency model section of the
2031       * RISC-V ISA Specification.
2032       */
2033  
2034      env->two_stage_lookup = false;
2035      env->two_stage_indirect_lookup = false;
2036  }
2037  
2038  #endif /* !CONFIG_USER_ONLY */
2039