1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73 static struct kmem_cache *inode_cachep __read_mostly;
74
get_nr_inodes(void)75 static long get_nr_inodes(void)
76 {
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82 }
83
get_nr_inodes_unused(void)84 static inline long get_nr_inodes_unused(void)
85 {
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91 }
92
get_nr_dirty_inodes(void)93 long get_nr_dirty_inodes(void)
94 {
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98 }
99
100 /*
101 * Handle nr_inode sysctl
102 */
103 #ifdef CONFIG_SYSCTL
104 /*
105 * Statistics gathering..
106 */
107 static struct inodes_stat_t inodes_stat;
108
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116
117 static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133 };
134
init_fs_inode_sysctls(void)135 static int __init init_fs_inode_sysctls(void)
136 {
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142
no_open(struct inode * inode,struct file * file)143 static int no_open(struct inode *inode, struct file *file)
144 {
145 return -ENXIO;
146 }
147
148 /**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
inode_init_always(struct super_block * sb,struct inode * inode)156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(&inode->i_sequence, 0);
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, 0);
175 i_gid_write(inode, 0);
176 atomic_set(&inode->i_writecount, 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193 #endif
194
195 spin_lock_init(&inode->i_lock);
196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197
198 init_rwsem(&inode->i_rwsem);
199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200
201 atomic_set(&inode->i_dio_count, 0);
202
203 mapping->a_ops = &empty_aops;
204 mapping->host = inode;
205 mapping->flags = 0;
206 mapping->wb_err = 0;
207 atomic_set(&mapping->i_mmap_writable, 0);
208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 atomic_set(&mapping->nr_thps, 0);
210 #endif
211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 mapping->private_data = NULL;
213 mapping->writeback_index = 0;
214 init_rwsem(&mapping->invalidate_lock);
215 lockdep_set_class_and_name(&mapping->invalidate_lock,
216 &sb->s_type->invalidate_lock_key,
217 "mapping.invalidate_lock");
218 if (sb->s_iflags & SB_I_STABLE_WRITES)
219 mapping_set_stable_writes(mapping);
220 inode->i_private = NULL;
221 inode->i_mapping = mapping;
222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
223 #ifdef CONFIG_FS_POSIX_ACL
224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225 #endif
226
227 #ifdef CONFIG_FSNOTIFY
228 inode->i_fsnotify_mask = 0;
229 #endif
230 inode->i_flctx = NULL;
231
232 if (unlikely(security_inode_alloc(inode)))
233 return -ENOMEM;
234 this_cpu_inc(nr_inodes);
235
236 return 0;
237 }
238 EXPORT_SYMBOL(inode_init_always);
239
free_inode_nonrcu(struct inode * inode)240 void free_inode_nonrcu(struct inode *inode)
241 {
242 kmem_cache_free(inode_cachep, inode);
243 }
244 EXPORT_SYMBOL(free_inode_nonrcu);
245
i_callback(struct rcu_head * head)246 static void i_callback(struct rcu_head *head)
247 {
248 struct inode *inode = container_of(head, struct inode, i_rcu);
249 if (inode->free_inode)
250 inode->free_inode(inode);
251 else
252 free_inode_nonrcu(inode);
253 }
254
alloc_inode(struct super_block * sb)255 static struct inode *alloc_inode(struct super_block *sb)
256 {
257 const struct super_operations *ops = sb->s_op;
258 struct inode *inode;
259
260 if (ops->alloc_inode)
261 inode = ops->alloc_inode(sb);
262 else
263 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
264
265 if (!inode)
266 return NULL;
267
268 if (unlikely(inode_init_always(sb, inode))) {
269 if (ops->destroy_inode) {
270 ops->destroy_inode(inode);
271 if (!ops->free_inode)
272 return NULL;
273 }
274 inode->free_inode = ops->free_inode;
275 i_callback(&inode->i_rcu);
276 return NULL;
277 }
278
279 return inode;
280 }
281
__destroy_inode(struct inode * inode)282 void __destroy_inode(struct inode *inode)
283 {
284 BUG_ON(inode_has_buffers(inode));
285 inode_detach_wb(inode);
286 security_inode_free(inode);
287 fsnotify_inode_delete(inode);
288 locks_free_lock_context(inode);
289 if (!inode->i_nlink) {
290 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
291 atomic_long_dec(&inode->i_sb->s_remove_count);
292 }
293
294 #ifdef CONFIG_FS_POSIX_ACL
295 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
296 posix_acl_release(inode->i_acl);
297 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
298 posix_acl_release(inode->i_default_acl);
299 #endif
300 this_cpu_dec(nr_inodes);
301 }
302 EXPORT_SYMBOL(__destroy_inode);
303
destroy_inode(struct inode * inode)304 static void destroy_inode(struct inode *inode)
305 {
306 const struct super_operations *ops = inode->i_sb->s_op;
307
308 BUG_ON(!list_empty(&inode->i_lru));
309 __destroy_inode(inode);
310 if (ops->destroy_inode) {
311 ops->destroy_inode(inode);
312 if (!ops->free_inode)
313 return;
314 }
315 inode->free_inode = ops->free_inode;
316 call_rcu(&inode->i_rcu, i_callback);
317 }
318
319 /**
320 * drop_nlink - directly drop an inode's link count
321 * @inode: inode
322 *
323 * This is a low-level filesystem helper to replace any
324 * direct filesystem manipulation of i_nlink. In cases
325 * where we are attempting to track writes to the
326 * filesystem, a decrement to zero means an imminent
327 * write when the file is truncated and actually unlinked
328 * on the filesystem.
329 */
drop_nlink(struct inode * inode)330 void drop_nlink(struct inode *inode)
331 {
332 WARN_ON(inode->i_nlink == 0);
333 inode->__i_nlink--;
334 if (!inode->i_nlink)
335 atomic_long_inc(&inode->i_sb->s_remove_count);
336 }
337 EXPORT_SYMBOL(drop_nlink);
338
339 /**
340 * clear_nlink - directly zero an inode's link count
341 * @inode: inode
342 *
343 * This is a low-level filesystem helper to replace any
344 * direct filesystem manipulation of i_nlink. See
345 * drop_nlink() for why we care about i_nlink hitting zero.
346 */
clear_nlink(struct inode * inode)347 void clear_nlink(struct inode *inode)
348 {
349 if (inode->i_nlink) {
350 inode->__i_nlink = 0;
351 atomic_long_inc(&inode->i_sb->s_remove_count);
352 }
353 }
354 EXPORT_SYMBOL(clear_nlink);
355
356 /**
357 * set_nlink - directly set an inode's link count
358 * @inode: inode
359 * @nlink: new nlink (should be non-zero)
360 *
361 * This is a low-level filesystem helper to replace any
362 * direct filesystem manipulation of i_nlink.
363 */
set_nlink(struct inode * inode,unsigned int nlink)364 void set_nlink(struct inode *inode, unsigned int nlink)
365 {
366 if (!nlink) {
367 clear_nlink(inode);
368 } else {
369 /* Yes, some filesystems do change nlink from zero to one */
370 if (inode->i_nlink == 0)
371 atomic_long_dec(&inode->i_sb->s_remove_count);
372
373 inode->__i_nlink = nlink;
374 }
375 }
376 EXPORT_SYMBOL(set_nlink);
377
378 /**
379 * inc_nlink - directly increment an inode's link count
380 * @inode: inode
381 *
382 * This is a low-level filesystem helper to replace any
383 * direct filesystem manipulation of i_nlink. Currently,
384 * it is only here for parity with dec_nlink().
385 */
inc_nlink(struct inode * inode)386 void inc_nlink(struct inode *inode)
387 {
388 if (unlikely(inode->i_nlink == 0)) {
389 WARN_ON(!(inode->i_state & I_LINKABLE));
390 atomic_long_dec(&inode->i_sb->s_remove_count);
391 }
392
393 inode->__i_nlink++;
394 }
395 EXPORT_SYMBOL(inc_nlink);
396
__address_space_init_once(struct address_space * mapping)397 static void __address_space_init_once(struct address_space *mapping)
398 {
399 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
400 init_rwsem(&mapping->i_mmap_rwsem);
401 INIT_LIST_HEAD(&mapping->private_list);
402 spin_lock_init(&mapping->private_lock);
403 mapping->i_mmap = RB_ROOT_CACHED;
404 }
405
address_space_init_once(struct address_space * mapping)406 void address_space_init_once(struct address_space *mapping)
407 {
408 memset(mapping, 0, sizeof(*mapping));
409 __address_space_init_once(mapping);
410 }
411 EXPORT_SYMBOL(address_space_init_once);
412
413 /*
414 * These are initializations that only need to be done
415 * once, because the fields are idempotent across use
416 * of the inode, so let the slab aware of that.
417 */
inode_init_once(struct inode * inode)418 void inode_init_once(struct inode *inode)
419 {
420 memset(inode, 0, sizeof(*inode));
421 INIT_HLIST_NODE(&inode->i_hash);
422 INIT_LIST_HEAD(&inode->i_devices);
423 INIT_LIST_HEAD(&inode->i_io_list);
424 INIT_LIST_HEAD(&inode->i_wb_list);
425 INIT_LIST_HEAD(&inode->i_lru);
426 INIT_LIST_HEAD(&inode->i_sb_list);
427 __address_space_init_once(&inode->i_data);
428 i_size_ordered_init(inode);
429 }
430 EXPORT_SYMBOL(inode_init_once);
431
init_once(void * foo)432 static void init_once(void *foo)
433 {
434 struct inode *inode = (struct inode *) foo;
435
436 inode_init_once(inode);
437 }
438
439 /*
440 * inode->i_lock must be held
441 */
__iget(struct inode * inode)442 void __iget(struct inode *inode)
443 {
444 atomic_inc(&inode->i_count);
445 }
446
447 /*
448 * get additional reference to inode; caller must already hold one.
449 */
ihold(struct inode * inode)450 void ihold(struct inode *inode)
451 {
452 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
453 }
454 EXPORT_SYMBOL(ihold);
455
__inode_add_lru(struct inode * inode,bool rotate)456 static void __inode_add_lru(struct inode *inode, bool rotate)
457 {
458 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
459 return;
460 if (atomic_read(&inode->i_count))
461 return;
462 if (!(inode->i_sb->s_flags & SB_ACTIVE))
463 return;
464 if (!mapping_shrinkable(&inode->i_data))
465 return;
466
467 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
468 this_cpu_inc(nr_unused);
469 else if (rotate)
470 inode->i_state |= I_REFERENCED;
471 }
472
473 /*
474 * Add inode to LRU if needed (inode is unused and clean).
475 *
476 * Needs inode->i_lock held.
477 */
inode_add_lru(struct inode * inode)478 void inode_add_lru(struct inode *inode)
479 {
480 __inode_add_lru(inode, false);
481 }
482
inode_lru_list_del(struct inode * inode)483 static void inode_lru_list_del(struct inode *inode)
484 {
485 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
486 this_cpu_dec(nr_unused);
487 }
488
inode_pin_lru_isolating(struct inode * inode)489 static void inode_pin_lru_isolating(struct inode *inode)
490 {
491 lockdep_assert_held(&inode->i_lock);
492 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
493 inode->i_state |= I_LRU_ISOLATING;
494 }
495
inode_unpin_lru_isolating(struct inode * inode)496 static void inode_unpin_lru_isolating(struct inode *inode)
497 {
498 spin_lock(&inode->i_lock);
499 WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
500 inode->i_state &= ~I_LRU_ISOLATING;
501 smp_mb();
502 wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
503 spin_unlock(&inode->i_lock);
504 }
505
inode_wait_for_lru_isolating(struct inode * inode)506 static void inode_wait_for_lru_isolating(struct inode *inode)
507 {
508 spin_lock(&inode->i_lock);
509 if (inode->i_state & I_LRU_ISOLATING) {
510 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
511 wait_queue_head_t *wqh;
512
513 wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
514 spin_unlock(&inode->i_lock);
515 __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
516 spin_lock(&inode->i_lock);
517 WARN_ON(inode->i_state & I_LRU_ISOLATING);
518 }
519 spin_unlock(&inode->i_lock);
520 }
521
522 /**
523 * inode_sb_list_add - add inode to the superblock list of inodes
524 * @inode: inode to add
525 */
inode_sb_list_add(struct inode * inode)526 void inode_sb_list_add(struct inode *inode)
527 {
528 spin_lock(&inode->i_sb->s_inode_list_lock);
529 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
530 spin_unlock(&inode->i_sb->s_inode_list_lock);
531 }
532 EXPORT_SYMBOL_GPL(inode_sb_list_add);
533
inode_sb_list_del(struct inode * inode)534 static inline void inode_sb_list_del(struct inode *inode)
535 {
536 if (!list_empty(&inode->i_sb_list)) {
537 spin_lock(&inode->i_sb->s_inode_list_lock);
538 list_del_init(&inode->i_sb_list);
539 spin_unlock(&inode->i_sb->s_inode_list_lock);
540 }
541 }
542
hash(struct super_block * sb,unsigned long hashval)543 static unsigned long hash(struct super_block *sb, unsigned long hashval)
544 {
545 unsigned long tmp;
546
547 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
548 L1_CACHE_BYTES;
549 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
550 return tmp & i_hash_mask;
551 }
552
553 /**
554 * __insert_inode_hash - hash an inode
555 * @inode: unhashed inode
556 * @hashval: unsigned long value used to locate this object in the
557 * inode_hashtable.
558 *
559 * Add an inode to the inode hash for this superblock.
560 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)561 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
562 {
563 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
564
565 spin_lock(&inode_hash_lock);
566 spin_lock(&inode->i_lock);
567 hlist_add_head_rcu(&inode->i_hash, b);
568 spin_unlock(&inode->i_lock);
569 spin_unlock(&inode_hash_lock);
570 }
571 EXPORT_SYMBOL(__insert_inode_hash);
572
573 /**
574 * __remove_inode_hash - remove an inode from the hash
575 * @inode: inode to unhash
576 *
577 * Remove an inode from the superblock.
578 */
__remove_inode_hash(struct inode * inode)579 void __remove_inode_hash(struct inode *inode)
580 {
581 spin_lock(&inode_hash_lock);
582 spin_lock(&inode->i_lock);
583 hlist_del_init_rcu(&inode->i_hash);
584 spin_unlock(&inode->i_lock);
585 spin_unlock(&inode_hash_lock);
586 }
587 EXPORT_SYMBOL(__remove_inode_hash);
588
dump_mapping(const struct address_space * mapping)589 void dump_mapping(const struct address_space *mapping)
590 {
591 struct inode *host;
592 const struct address_space_operations *a_ops;
593 struct hlist_node *dentry_first;
594 struct dentry *dentry_ptr;
595 struct dentry dentry;
596 unsigned long ino;
597
598 /*
599 * If mapping is an invalid pointer, we don't want to crash
600 * accessing it, so probe everything depending on it carefully.
601 */
602 if (get_kernel_nofault(host, &mapping->host) ||
603 get_kernel_nofault(a_ops, &mapping->a_ops)) {
604 pr_warn("invalid mapping:%px\n", mapping);
605 return;
606 }
607
608 if (!host) {
609 pr_warn("aops:%ps\n", a_ops);
610 return;
611 }
612
613 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
614 get_kernel_nofault(ino, &host->i_ino)) {
615 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
616 return;
617 }
618
619 if (!dentry_first) {
620 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
621 return;
622 }
623
624 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
625 if (get_kernel_nofault(dentry, dentry_ptr)) {
626 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
627 a_ops, ino, dentry_ptr);
628 return;
629 }
630
631 /*
632 * if dentry is corrupted, the %pd handler may still crash,
633 * but it's unlikely that we reach here with a corrupt mapping
634 */
635 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
636 }
637
clear_inode(struct inode * inode)638 void clear_inode(struct inode *inode)
639 {
640 /*
641 * We have to cycle the i_pages lock here because reclaim can be in the
642 * process of removing the last page (in __filemap_remove_folio())
643 * and we must not free the mapping under it.
644 */
645 xa_lock_irq(&inode->i_data.i_pages);
646 BUG_ON(inode->i_data.nrpages);
647 /*
648 * Almost always, mapping_empty(&inode->i_data) here; but there are
649 * two known and long-standing ways in which nodes may get left behind
650 * (when deep radix-tree node allocation failed partway; or when THP
651 * collapse_file() failed). Until those two known cases are cleaned up,
652 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
653 * nor even WARN_ON(!mapping_empty).
654 */
655 xa_unlock_irq(&inode->i_data.i_pages);
656 BUG_ON(!list_empty(&inode->i_data.private_list));
657 BUG_ON(!(inode->i_state & I_FREEING));
658 BUG_ON(inode->i_state & I_CLEAR);
659 BUG_ON(!list_empty(&inode->i_wb_list));
660 /* don't need i_lock here, no concurrent mods to i_state */
661 inode->i_state = I_FREEING | I_CLEAR;
662 }
663 EXPORT_SYMBOL(clear_inode);
664
665 /*
666 * Free the inode passed in, removing it from the lists it is still connected
667 * to. We remove any pages still attached to the inode and wait for any IO that
668 * is still in progress before finally destroying the inode.
669 *
670 * An inode must already be marked I_FREEING so that we avoid the inode being
671 * moved back onto lists if we race with other code that manipulates the lists
672 * (e.g. writeback_single_inode). The caller is responsible for setting this.
673 *
674 * An inode must already be removed from the LRU list before being evicted from
675 * the cache. This should occur atomically with setting the I_FREEING state
676 * flag, so no inodes here should ever be on the LRU when being evicted.
677 */
evict(struct inode * inode)678 static void evict(struct inode *inode)
679 {
680 const struct super_operations *op = inode->i_sb->s_op;
681
682 BUG_ON(!(inode->i_state & I_FREEING));
683 BUG_ON(!list_empty(&inode->i_lru));
684
685 if (!list_empty(&inode->i_io_list))
686 inode_io_list_del(inode);
687
688 inode_sb_list_del(inode);
689
690 inode_wait_for_lru_isolating(inode);
691
692 /*
693 * Wait for flusher thread to be done with the inode so that filesystem
694 * does not start destroying it while writeback is still running. Since
695 * the inode has I_FREEING set, flusher thread won't start new work on
696 * the inode. We just have to wait for running writeback to finish.
697 */
698 inode_wait_for_writeback(inode);
699
700 if (op->evict_inode) {
701 op->evict_inode(inode);
702 } else {
703 truncate_inode_pages_final(&inode->i_data);
704 clear_inode(inode);
705 }
706 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
707 cd_forget(inode);
708
709 remove_inode_hash(inode);
710
711 spin_lock(&inode->i_lock);
712 wake_up_bit(&inode->i_state, __I_NEW);
713 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
714 spin_unlock(&inode->i_lock);
715
716 destroy_inode(inode);
717 }
718
719 /*
720 * dispose_list - dispose of the contents of a local list
721 * @head: the head of the list to free
722 *
723 * Dispose-list gets a local list with local inodes in it, so it doesn't
724 * need to worry about list corruption and SMP locks.
725 */
dispose_list(struct list_head * head)726 static void dispose_list(struct list_head *head)
727 {
728 while (!list_empty(head)) {
729 struct inode *inode;
730
731 inode = list_first_entry(head, struct inode, i_lru);
732 list_del_init(&inode->i_lru);
733
734 evict(inode);
735 cond_resched();
736 }
737 }
738
739 /**
740 * evict_inodes - evict all evictable inodes for a superblock
741 * @sb: superblock to operate on
742 *
743 * Make sure that no inodes with zero refcount are retained. This is
744 * called by superblock shutdown after having SB_ACTIVE flag removed,
745 * so any inode reaching zero refcount during or after that call will
746 * be immediately evicted.
747 */
evict_inodes(struct super_block * sb)748 void evict_inodes(struct super_block *sb)
749 {
750 struct inode *inode, *next;
751 LIST_HEAD(dispose);
752
753 again:
754 spin_lock(&sb->s_inode_list_lock);
755 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
756 if (atomic_read(&inode->i_count))
757 continue;
758
759 spin_lock(&inode->i_lock);
760 if (atomic_read(&inode->i_count)) {
761 spin_unlock(&inode->i_lock);
762 continue;
763 }
764 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
765 spin_unlock(&inode->i_lock);
766 continue;
767 }
768
769 inode->i_state |= I_FREEING;
770 inode_lru_list_del(inode);
771 spin_unlock(&inode->i_lock);
772 list_add(&inode->i_lru, &dispose);
773
774 /*
775 * We can have a ton of inodes to evict at unmount time given
776 * enough memory, check to see if we need to go to sleep for a
777 * bit so we don't livelock.
778 */
779 if (need_resched()) {
780 spin_unlock(&sb->s_inode_list_lock);
781 cond_resched();
782 dispose_list(&dispose);
783 goto again;
784 }
785 }
786 spin_unlock(&sb->s_inode_list_lock);
787
788 dispose_list(&dispose);
789 }
790 EXPORT_SYMBOL_GPL(evict_inodes);
791
792 /**
793 * invalidate_inodes - attempt to free all inodes on a superblock
794 * @sb: superblock to operate on
795 *
796 * Attempts to free all inodes (including dirty inodes) for a given superblock.
797 */
invalidate_inodes(struct super_block * sb)798 void invalidate_inodes(struct super_block *sb)
799 {
800 struct inode *inode, *next;
801 LIST_HEAD(dispose);
802
803 again:
804 spin_lock(&sb->s_inode_list_lock);
805 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
806 spin_lock(&inode->i_lock);
807 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
808 spin_unlock(&inode->i_lock);
809 continue;
810 }
811 if (atomic_read(&inode->i_count)) {
812 spin_unlock(&inode->i_lock);
813 continue;
814 }
815
816 inode->i_state |= I_FREEING;
817 inode_lru_list_del(inode);
818 spin_unlock(&inode->i_lock);
819 list_add(&inode->i_lru, &dispose);
820 if (need_resched()) {
821 spin_unlock(&sb->s_inode_list_lock);
822 cond_resched();
823 dispose_list(&dispose);
824 goto again;
825 }
826 }
827 spin_unlock(&sb->s_inode_list_lock);
828
829 dispose_list(&dispose);
830 }
831
832 /*
833 * Isolate the inode from the LRU in preparation for freeing it.
834 *
835 * If the inode has the I_REFERENCED flag set, then it means that it has been
836 * used recently - the flag is set in iput_final(). When we encounter such an
837 * inode, clear the flag and move it to the back of the LRU so it gets another
838 * pass through the LRU before it gets reclaimed. This is necessary because of
839 * the fact we are doing lazy LRU updates to minimise lock contention so the
840 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
841 * with this flag set because they are the inodes that are out of order.
842 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)843 static enum lru_status inode_lru_isolate(struct list_head *item,
844 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
845 {
846 struct list_head *freeable = arg;
847 struct inode *inode = container_of(item, struct inode, i_lru);
848
849 /*
850 * We are inverting the lru lock/inode->i_lock here, so use a
851 * trylock. If we fail to get the lock, just skip it.
852 */
853 if (!spin_trylock(&inode->i_lock))
854 return LRU_SKIP;
855
856 /*
857 * Inodes can get referenced, redirtied, or repopulated while
858 * they're already on the LRU, and this can make them
859 * unreclaimable for a while. Remove them lazily here; iput,
860 * sync, or the last page cache deletion will requeue them.
861 */
862 if (atomic_read(&inode->i_count) ||
863 (inode->i_state & ~I_REFERENCED) ||
864 !mapping_shrinkable(&inode->i_data)) {
865 list_lru_isolate(lru, &inode->i_lru);
866 spin_unlock(&inode->i_lock);
867 this_cpu_dec(nr_unused);
868 return LRU_REMOVED;
869 }
870
871 /* Recently referenced inodes get one more pass */
872 if (inode->i_state & I_REFERENCED) {
873 inode->i_state &= ~I_REFERENCED;
874 spin_unlock(&inode->i_lock);
875 return LRU_ROTATE;
876 }
877
878 /*
879 * On highmem systems, mapping_shrinkable() permits dropping
880 * page cache in order to free up struct inodes: lowmem might
881 * be under pressure before the cache inside the highmem zone.
882 */
883 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
884 inode_pin_lru_isolating(inode);
885 spin_unlock(&inode->i_lock);
886 spin_unlock(lru_lock);
887 if (remove_inode_buffers(inode)) {
888 unsigned long reap;
889 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
890 if (current_is_kswapd())
891 __count_vm_events(KSWAPD_INODESTEAL, reap);
892 else
893 __count_vm_events(PGINODESTEAL, reap);
894 mm_account_reclaimed_pages(reap);
895 }
896 inode_unpin_lru_isolating(inode);
897 spin_lock(lru_lock);
898 return LRU_RETRY;
899 }
900
901 WARN_ON(inode->i_state & I_NEW);
902 inode->i_state |= I_FREEING;
903 list_lru_isolate_move(lru, &inode->i_lru, freeable);
904 spin_unlock(&inode->i_lock);
905
906 this_cpu_dec(nr_unused);
907 return LRU_REMOVED;
908 }
909
910 /*
911 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
912 * This is called from the superblock shrinker function with a number of inodes
913 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
914 * then are freed outside inode_lock by dispose_list().
915 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)916 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
917 {
918 LIST_HEAD(freeable);
919 long freed;
920
921 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
922 inode_lru_isolate, &freeable);
923 dispose_list(&freeable);
924 return freed;
925 }
926
927 static void __wait_on_freeing_inode(struct inode *inode);
928 /*
929 * Called with the inode lock held.
930 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)931 static struct inode *find_inode(struct super_block *sb,
932 struct hlist_head *head,
933 int (*test)(struct inode *, void *),
934 void *data)
935 {
936 struct inode *inode = NULL;
937
938 repeat:
939 hlist_for_each_entry(inode, head, i_hash) {
940 if (inode->i_sb != sb)
941 continue;
942 if (!test(inode, data))
943 continue;
944 spin_lock(&inode->i_lock);
945 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
946 __wait_on_freeing_inode(inode);
947 goto repeat;
948 }
949 if (unlikely(inode->i_state & I_CREATING)) {
950 spin_unlock(&inode->i_lock);
951 return ERR_PTR(-ESTALE);
952 }
953 __iget(inode);
954 spin_unlock(&inode->i_lock);
955 return inode;
956 }
957 return NULL;
958 }
959
960 /*
961 * find_inode_fast is the fast path version of find_inode, see the comment at
962 * iget_locked for details.
963 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)964 static struct inode *find_inode_fast(struct super_block *sb,
965 struct hlist_head *head, unsigned long ino)
966 {
967 struct inode *inode = NULL;
968
969 repeat:
970 hlist_for_each_entry(inode, head, i_hash) {
971 if (inode->i_ino != ino)
972 continue;
973 if (inode->i_sb != sb)
974 continue;
975 spin_lock(&inode->i_lock);
976 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
977 __wait_on_freeing_inode(inode);
978 goto repeat;
979 }
980 if (unlikely(inode->i_state & I_CREATING)) {
981 spin_unlock(&inode->i_lock);
982 return ERR_PTR(-ESTALE);
983 }
984 __iget(inode);
985 spin_unlock(&inode->i_lock);
986 return inode;
987 }
988 return NULL;
989 }
990
991 /*
992 * Each cpu owns a range of LAST_INO_BATCH numbers.
993 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
994 * to renew the exhausted range.
995 *
996 * This does not significantly increase overflow rate because every CPU can
997 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
998 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
999 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1000 * overflow rate by 2x, which does not seem too significant.
1001 *
1002 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1003 * error if st_ino won't fit in target struct field. Use 32bit counter
1004 * here to attempt to avoid that.
1005 */
1006 #define LAST_INO_BATCH 1024
1007 static DEFINE_PER_CPU(unsigned int, last_ino);
1008
get_next_ino(void)1009 unsigned int get_next_ino(void)
1010 {
1011 unsigned int *p = &get_cpu_var(last_ino);
1012 unsigned int res = *p;
1013
1014 #ifdef CONFIG_SMP
1015 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1016 static atomic_t shared_last_ino;
1017 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1018
1019 res = next - LAST_INO_BATCH;
1020 }
1021 #endif
1022
1023 res++;
1024 /* get_next_ino should not provide a 0 inode number */
1025 if (unlikely(!res))
1026 res++;
1027 *p = res;
1028 put_cpu_var(last_ino);
1029 return res;
1030 }
1031 EXPORT_SYMBOL(get_next_ino);
1032
1033 /**
1034 * new_inode_pseudo - obtain an inode
1035 * @sb: superblock
1036 *
1037 * Allocates a new inode for given superblock.
1038 * Inode wont be chained in superblock s_inodes list
1039 * This means :
1040 * - fs can't be unmount
1041 * - quotas, fsnotify, writeback can't work
1042 */
new_inode_pseudo(struct super_block * sb)1043 struct inode *new_inode_pseudo(struct super_block *sb)
1044 {
1045 struct inode *inode = alloc_inode(sb);
1046
1047 if (inode) {
1048 spin_lock(&inode->i_lock);
1049 inode->i_state = 0;
1050 spin_unlock(&inode->i_lock);
1051 }
1052 return inode;
1053 }
1054
1055 /**
1056 * new_inode - obtain an inode
1057 * @sb: superblock
1058 *
1059 * Allocates a new inode for given superblock. The default gfp_mask
1060 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1061 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1062 * for the page cache are not reclaimable or migratable,
1063 * mapping_set_gfp_mask() must be called with suitable flags on the
1064 * newly created inode's mapping
1065 *
1066 */
new_inode(struct super_block * sb)1067 struct inode *new_inode(struct super_block *sb)
1068 {
1069 struct inode *inode;
1070
1071 inode = new_inode_pseudo(sb);
1072 if (inode)
1073 inode_sb_list_add(inode);
1074 return inode;
1075 }
1076 EXPORT_SYMBOL(new_inode);
1077
1078 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1079 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1080 {
1081 if (S_ISDIR(inode->i_mode)) {
1082 struct file_system_type *type = inode->i_sb->s_type;
1083
1084 /* Set new key only if filesystem hasn't already changed it */
1085 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1086 /*
1087 * ensure nobody is actually holding i_mutex
1088 */
1089 // mutex_destroy(&inode->i_mutex);
1090 init_rwsem(&inode->i_rwsem);
1091 lockdep_set_class(&inode->i_rwsem,
1092 &type->i_mutex_dir_key);
1093 }
1094 }
1095 }
1096 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1097 #endif
1098
1099 /**
1100 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1101 * @inode: new inode to unlock
1102 *
1103 * Called when the inode is fully initialised to clear the new state of the
1104 * inode and wake up anyone waiting for the inode to finish initialisation.
1105 */
unlock_new_inode(struct inode * inode)1106 void unlock_new_inode(struct inode *inode)
1107 {
1108 lockdep_annotate_inode_mutex_key(inode);
1109 spin_lock(&inode->i_lock);
1110 WARN_ON(!(inode->i_state & I_NEW));
1111 inode->i_state &= ~I_NEW & ~I_CREATING;
1112 smp_mb();
1113 wake_up_bit(&inode->i_state, __I_NEW);
1114 spin_unlock(&inode->i_lock);
1115 }
1116 EXPORT_SYMBOL(unlock_new_inode);
1117
discard_new_inode(struct inode * inode)1118 void discard_new_inode(struct inode *inode)
1119 {
1120 lockdep_annotate_inode_mutex_key(inode);
1121 spin_lock(&inode->i_lock);
1122 WARN_ON(!(inode->i_state & I_NEW));
1123 inode->i_state &= ~I_NEW;
1124 smp_mb();
1125 wake_up_bit(&inode->i_state, __I_NEW);
1126 spin_unlock(&inode->i_lock);
1127 iput(inode);
1128 }
1129 EXPORT_SYMBOL(discard_new_inode);
1130
1131 /**
1132 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1133 *
1134 * Lock any non-NULL argument. The caller must make sure that if he is passing
1135 * in two directories, one is not ancestor of the other. Zero, one or two
1136 * objects may be locked by this function.
1137 *
1138 * @inode1: first inode to lock
1139 * @inode2: second inode to lock
1140 * @subclass1: inode lock subclass for the first lock obtained
1141 * @subclass2: inode lock subclass for the second lock obtained
1142 */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1143 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1144 unsigned subclass1, unsigned subclass2)
1145 {
1146 if (!inode1 || !inode2) {
1147 /*
1148 * Make sure @subclass1 will be used for the acquired lock.
1149 * This is not strictly necessary (no current caller cares) but
1150 * let's keep things consistent.
1151 */
1152 if (!inode1)
1153 swap(inode1, inode2);
1154 goto lock;
1155 }
1156
1157 /*
1158 * If one object is directory and the other is not, we must make sure
1159 * to lock directory first as the other object may be its child.
1160 */
1161 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1162 if (inode1 > inode2)
1163 swap(inode1, inode2);
1164 } else if (!S_ISDIR(inode1->i_mode))
1165 swap(inode1, inode2);
1166 lock:
1167 if (inode1)
1168 inode_lock_nested(inode1, subclass1);
1169 if (inode2 && inode2 != inode1)
1170 inode_lock_nested(inode2, subclass2);
1171 }
1172
1173 /**
1174 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1175 *
1176 * Lock any non-NULL argument. Passed objects must not be directories.
1177 * Zero, one or two objects may be locked by this function.
1178 *
1179 * @inode1: first inode to lock
1180 * @inode2: second inode to lock
1181 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1182 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1183 {
1184 if (inode1)
1185 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1186 if (inode2)
1187 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1188 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
1189 }
1190 EXPORT_SYMBOL(lock_two_nondirectories);
1191
1192 /**
1193 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1194 * @inode1: first inode to unlock
1195 * @inode2: second inode to unlock
1196 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1197 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1198 {
1199 if (inode1) {
1200 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1201 inode_unlock(inode1);
1202 }
1203 if (inode2 && inode2 != inode1) {
1204 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1205 inode_unlock(inode2);
1206 }
1207 }
1208 EXPORT_SYMBOL(unlock_two_nondirectories);
1209
1210 /**
1211 * inode_insert5 - obtain an inode from a mounted file system
1212 * @inode: pre-allocated inode to use for insert to cache
1213 * @hashval: hash value (usually inode number) to get
1214 * @test: callback used for comparisons between inodes
1215 * @set: callback used to initialize a new struct inode
1216 * @data: opaque data pointer to pass to @test and @set
1217 *
1218 * Search for the inode specified by @hashval and @data in the inode cache,
1219 * and if present it is return it with an increased reference count. This is
1220 * a variant of iget5_locked() for callers that don't want to fail on memory
1221 * allocation of inode.
1222 *
1223 * If the inode is not in cache, insert the pre-allocated inode to cache and
1224 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1225 * to fill it in before unlocking it via unlock_new_inode().
1226 *
1227 * Note both @test and @set are called with the inode_hash_lock held, so can't
1228 * sleep.
1229 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1230 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1231 int (*test)(struct inode *, void *),
1232 int (*set)(struct inode *, void *), void *data)
1233 {
1234 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1235 struct inode *old;
1236
1237 again:
1238 spin_lock(&inode_hash_lock);
1239 old = find_inode(inode->i_sb, head, test, data);
1240 if (unlikely(old)) {
1241 /*
1242 * Uhhuh, somebody else created the same inode under us.
1243 * Use the old inode instead of the preallocated one.
1244 */
1245 spin_unlock(&inode_hash_lock);
1246 if (IS_ERR(old))
1247 return NULL;
1248 wait_on_inode(old);
1249 if (unlikely(inode_unhashed(old))) {
1250 iput(old);
1251 goto again;
1252 }
1253 return old;
1254 }
1255
1256 if (set && unlikely(set(inode, data))) {
1257 inode = NULL;
1258 goto unlock;
1259 }
1260
1261 /*
1262 * Return the locked inode with I_NEW set, the
1263 * caller is responsible for filling in the contents
1264 */
1265 spin_lock(&inode->i_lock);
1266 inode->i_state |= I_NEW;
1267 hlist_add_head_rcu(&inode->i_hash, head);
1268 spin_unlock(&inode->i_lock);
1269
1270 /*
1271 * Add inode to the sb list if it's not already. It has I_NEW at this
1272 * point, so it should be safe to test i_sb_list locklessly.
1273 */
1274 if (list_empty(&inode->i_sb_list))
1275 inode_sb_list_add(inode);
1276 unlock:
1277 spin_unlock(&inode_hash_lock);
1278
1279 return inode;
1280 }
1281 EXPORT_SYMBOL(inode_insert5);
1282
1283 /**
1284 * iget5_locked - obtain an inode from a mounted file system
1285 * @sb: super block of file system
1286 * @hashval: hash value (usually inode number) to get
1287 * @test: callback used for comparisons between inodes
1288 * @set: callback used to initialize a new struct inode
1289 * @data: opaque data pointer to pass to @test and @set
1290 *
1291 * Search for the inode specified by @hashval and @data in the inode cache,
1292 * and if present it is return it with an increased reference count. This is
1293 * a generalized version of iget_locked() for file systems where the inode
1294 * number is not sufficient for unique identification of an inode.
1295 *
1296 * If the inode is not in cache, allocate a new inode and return it locked,
1297 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1298 * before unlocking it via unlock_new_inode().
1299 *
1300 * Note both @test and @set are called with the inode_hash_lock held, so can't
1301 * sleep.
1302 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1303 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1304 int (*test)(struct inode *, void *),
1305 int (*set)(struct inode *, void *), void *data)
1306 {
1307 struct inode *inode = ilookup5(sb, hashval, test, data);
1308
1309 if (!inode) {
1310 struct inode *new = alloc_inode(sb);
1311
1312 if (new) {
1313 new->i_state = 0;
1314 inode = inode_insert5(new, hashval, test, set, data);
1315 if (unlikely(inode != new))
1316 destroy_inode(new);
1317 }
1318 }
1319 return inode;
1320 }
1321 EXPORT_SYMBOL(iget5_locked);
1322
1323 /**
1324 * iget_locked - obtain an inode from a mounted file system
1325 * @sb: super block of file system
1326 * @ino: inode number to get
1327 *
1328 * Search for the inode specified by @ino in the inode cache and if present
1329 * return it with an increased reference count. This is for file systems
1330 * where the inode number is sufficient for unique identification of an inode.
1331 *
1332 * If the inode is not in cache, allocate a new inode and return it locked,
1333 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1334 * before unlocking it via unlock_new_inode().
1335 */
iget_locked(struct super_block * sb,unsigned long ino)1336 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1337 {
1338 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1339 struct inode *inode;
1340 again:
1341 spin_lock(&inode_hash_lock);
1342 inode = find_inode_fast(sb, head, ino);
1343 spin_unlock(&inode_hash_lock);
1344 if (inode) {
1345 if (IS_ERR(inode))
1346 return NULL;
1347 wait_on_inode(inode);
1348 if (unlikely(inode_unhashed(inode))) {
1349 iput(inode);
1350 goto again;
1351 }
1352 return inode;
1353 }
1354
1355 inode = alloc_inode(sb);
1356 if (inode) {
1357 struct inode *old;
1358
1359 spin_lock(&inode_hash_lock);
1360 /* We released the lock, so.. */
1361 old = find_inode_fast(sb, head, ino);
1362 if (!old) {
1363 inode->i_ino = ino;
1364 spin_lock(&inode->i_lock);
1365 inode->i_state = I_NEW;
1366 hlist_add_head_rcu(&inode->i_hash, head);
1367 spin_unlock(&inode->i_lock);
1368 inode_sb_list_add(inode);
1369 spin_unlock(&inode_hash_lock);
1370
1371 /* Return the locked inode with I_NEW set, the
1372 * caller is responsible for filling in the contents
1373 */
1374 return inode;
1375 }
1376
1377 /*
1378 * Uhhuh, somebody else created the same inode under
1379 * us. Use the old inode instead of the one we just
1380 * allocated.
1381 */
1382 spin_unlock(&inode_hash_lock);
1383 destroy_inode(inode);
1384 if (IS_ERR(old))
1385 return NULL;
1386 inode = old;
1387 wait_on_inode(inode);
1388 if (unlikely(inode_unhashed(inode))) {
1389 iput(inode);
1390 goto again;
1391 }
1392 }
1393 return inode;
1394 }
1395 EXPORT_SYMBOL(iget_locked);
1396
1397 /*
1398 * search the inode cache for a matching inode number.
1399 * If we find one, then the inode number we are trying to
1400 * allocate is not unique and so we should not use it.
1401 *
1402 * Returns 1 if the inode number is unique, 0 if it is not.
1403 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1404 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1405 {
1406 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1407 struct inode *inode;
1408
1409 hlist_for_each_entry_rcu(inode, b, i_hash) {
1410 if (inode->i_ino == ino && inode->i_sb == sb)
1411 return 0;
1412 }
1413 return 1;
1414 }
1415
1416 /**
1417 * iunique - get a unique inode number
1418 * @sb: superblock
1419 * @max_reserved: highest reserved inode number
1420 *
1421 * Obtain an inode number that is unique on the system for a given
1422 * superblock. This is used by file systems that have no natural
1423 * permanent inode numbering system. An inode number is returned that
1424 * is higher than the reserved limit but unique.
1425 *
1426 * BUGS:
1427 * With a large number of inodes live on the file system this function
1428 * currently becomes quite slow.
1429 */
iunique(struct super_block * sb,ino_t max_reserved)1430 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1431 {
1432 /*
1433 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1434 * error if st_ino won't fit in target struct field. Use 32bit counter
1435 * here to attempt to avoid that.
1436 */
1437 static DEFINE_SPINLOCK(iunique_lock);
1438 static unsigned int counter;
1439 ino_t res;
1440
1441 rcu_read_lock();
1442 spin_lock(&iunique_lock);
1443 do {
1444 if (counter <= max_reserved)
1445 counter = max_reserved + 1;
1446 res = counter++;
1447 } while (!test_inode_iunique(sb, res));
1448 spin_unlock(&iunique_lock);
1449 rcu_read_unlock();
1450
1451 return res;
1452 }
1453 EXPORT_SYMBOL(iunique);
1454
igrab(struct inode * inode)1455 struct inode *igrab(struct inode *inode)
1456 {
1457 spin_lock(&inode->i_lock);
1458 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1459 __iget(inode);
1460 spin_unlock(&inode->i_lock);
1461 } else {
1462 spin_unlock(&inode->i_lock);
1463 /*
1464 * Handle the case where s_op->clear_inode is not been
1465 * called yet, and somebody is calling igrab
1466 * while the inode is getting freed.
1467 */
1468 inode = NULL;
1469 }
1470 return inode;
1471 }
1472 EXPORT_SYMBOL(igrab);
1473
1474 /**
1475 * ilookup5_nowait - search for an inode in the inode cache
1476 * @sb: super block of file system to search
1477 * @hashval: hash value (usually inode number) to search for
1478 * @test: callback used for comparisons between inodes
1479 * @data: opaque data pointer to pass to @test
1480 *
1481 * Search for the inode specified by @hashval and @data in the inode cache.
1482 * If the inode is in the cache, the inode is returned with an incremented
1483 * reference count.
1484 *
1485 * Note: I_NEW is not waited upon so you have to be very careful what you do
1486 * with the returned inode. You probably should be using ilookup5() instead.
1487 *
1488 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1489 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1490 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1491 int (*test)(struct inode *, void *), void *data)
1492 {
1493 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1494 struct inode *inode;
1495
1496 spin_lock(&inode_hash_lock);
1497 inode = find_inode(sb, head, test, data);
1498 spin_unlock(&inode_hash_lock);
1499
1500 return IS_ERR(inode) ? NULL : inode;
1501 }
1502 EXPORT_SYMBOL(ilookup5_nowait);
1503
1504 /**
1505 * ilookup5 - search for an inode in the inode cache
1506 * @sb: super block of file system to search
1507 * @hashval: hash value (usually inode number) to search for
1508 * @test: callback used for comparisons between inodes
1509 * @data: opaque data pointer to pass to @test
1510 *
1511 * Search for the inode specified by @hashval and @data in the inode cache,
1512 * and if the inode is in the cache, return the inode with an incremented
1513 * reference count. Waits on I_NEW before returning the inode.
1514 * returned with an incremented reference count.
1515 *
1516 * This is a generalized version of ilookup() for file systems where the
1517 * inode number is not sufficient for unique identification of an inode.
1518 *
1519 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1520 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1521 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1522 int (*test)(struct inode *, void *), void *data)
1523 {
1524 struct inode *inode;
1525 again:
1526 inode = ilookup5_nowait(sb, hashval, test, data);
1527 if (inode) {
1528 wait_on_inode(inode);
1529 if (unlikely(inode_unhashed(inode))) {
1530 iput(inode);
1531 goto again;
1532 }
1533 }
1534 return inode;
1535 }
1536 EXPORT_SYMBOL(ilookup5);
1537
1538 /**
1539 * ilookup - search for an inode in the inode cache
1540 * @sb: super block of file system to search
1541 * @ino: inode number to search for
1542 *
1543 * Search for the inode @ino in the inode cache, and if the inode is in the
1544 * cache, the inode is returned with an incremented reference count.
1545 */
ilookup(struct super_block * sb,unsigned long ino)1546 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1547 {
1548 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1549 struct inode *inode;
1550 again:
1551 spin_lock(&inode_hash_lock);
1552 inode = find_inode_fast(sb, head, ino);
1553 spin_unlock(&inode_hash_lock);
1554
1555 if (inode) {
1556 if (IS_ERR(inode))
1557 return NULL;
1558 wait_on_inode(inode);
1559 if (unlikely(inode_unhashed(inode))) {
1560 iput(inode);
1561 goto again;
1562 }
1563 }
1564 return inode;
1565 }
1566 EXPORT_SYMBOL(ilookup);
1567
1568 /**
1569 * find_inode_nowait - find an inode in the inode cache
1570 * @sb: super block of file system to search
1571 * @hashval: hash value (usually inode number) to search for
1572 * @match: callback used for comparisons between inodes
1573 * @data: opaque data pointer to pass to @match
1574 *
1575 * Search for the inode specified by @hashval and @data in the inode
1576 * cache, where the helper function @match will return 0 if the inode
1577 * does not match, 1 if the inode does match, and -1 if the search
1578 * should be stopped. The @match function must be responsible for
1579 * taking the i_lock spin_lock and checking i_state for an inode being
1580 * freed or being initialized, and incrementing the reference count
1581 * before returning 1. It also must not sleep, since it is called with
1582 * the inode_hash_lock spinlock held.
1583 *
1584 * This is a even more generalized version of ilookup5() when the
1585 * function must never block --- find_inode() can block in
1586 * __wait_on_freeing_inode() --- or when the caller can not increment
1587 * the reference count because the resulting iput() might cause an
1588 * inode eviction. The tradeoff is that the @match funtion must be
1589 * very carefully implemented.
1590 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1591 struct inode *find_inode_nowait(struct super_block *sb,
1592 unsigned long hashval,
1593 int (*match)(struct inode *, unsigned long,
1594 void *),
1595 void *data)
1596 {
1597 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1598 struct inode *inode, *ret_inode = NULL;
1599 int mval;
1600
1601 spin_lock(&inode_hash_lock);
1602 hlist_for_each_entry(inode, head, i_hash) {
1603 if (inode->i_sb != sb)
1604 continue;
1605 mval = match(inode, hashval, data);
1606 if (mval == 0)
1607 continue;
1608 if (mval == 1)
1609 ret_inode = inode;
1610 goto out;
1611 }
1612 out:
1613 spin_unlock(&inode_hash_lock);
1614 return ret_inode;
1615 }
1616 EXPORT_SYMBOL(find_inode_nowait);
1617
1618 /**
1619 * find_inode_rcu - find an inode in the inode cache
1620 * @sb: Super block of file system to search
1621 * @hashval: Key to hash
1622 * @test: Function to test match on an inode
1623 * @data: Data for test function
1624 *
1625 * Search for the inode specified by @hashval and @data in the inode cache,
1626 * where the helper function @test will return 0 if the inode does not match
1627 * and 1 if it does. The @test function must be responsible for taking the
1628 * i_lock spin_lock and checking i_state for an inode being freed or being
1629 * initialized.
1630 *
1631 * If successful, this will return the inode for which the @test function
1632 * returned 1 and NULL otherwise.
1633 *
1634 * The @test function is not permitted to take a ref on any inode presented.
1635 * It is also not permitted to sleep.
1636 *
1637 * The caller must hold the RCU read lock.
1638 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1639 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1640 int (*test)(struct inode *, void *), void *data)
1641 {
1642 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1643 struct inode *inode;
1644
1645 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1646 "suspicious find_inode_rcu() usage");
1647
1648 hlist_for_each_entry_rcu(inode, head, i_hash) {
1649 if (inode->i_sb == sb &&
1650 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1651 test(inode, data))
1652 return inode;
1653 }
1654 return NULL;
1655 }
1656 EXPORT_SYMBOL(find_inode_rcu);
1657
1658 /**
1659 * find_inode_by_ino_rcu - Find an inode in the inode cache
1660 * @sb: Super block of file system to search
1661 * @ino: The inode number to match
1662 *
1663 * Search for the inode specified by @hashval and @data in the inode cache,
1664 * where the helper function @test will return 0 if the inode does not match
1665 * and 1 if it does. The @test function must be responsible for taking the
1666 * i_lock spin_lock and checking i_state for an inode being freed or being
1667 * initialized.
1668 *
1669 * If successful, this will return the inode for which the @test function
1670 * returned 1 and NULL otherwise.
1671 *
1672 * The @test function is not permitted to take a ref on any inode presented.
1673 * It is also not permitted to sleep.
1674 *
1675 * The caller must hold the RCU read lock.
1676 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1677 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1678 unsigned long ino)
1679 {
1680 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1681 struct inode *inode;
1682
1683 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1684 "suspicious find_inode_by_ino_rcu() usage");
1685
1686 hlist_for_each_entry_rcu(inode, head, i_hash) {
1687 if (inode->i_ino == ino &&
1688 inode->i_sb == sb &&
1689 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1690 return inode;
1691 }
1692 return NULL;
1693 }
1694 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1695
insert_inode_locked(struct inode * inode)1696 int insert_inode_locked(struct inode *inode)
1697 {
1698 struct super_block *sb = inode->i_sb;
1699 ino_t ino = inode->i_ino;
1700 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1701
1702 while (1) {
1703 struct inode *old = NULL;
1704 spin_lock(&inode_hash_lock);
1705 hlist_for_each_entry(old, head, i_hash) {
1706 if (old->i_ino != ino)
1707 continue;
1708 if (old->i_sb != sb)
1709 continue;
1710 spin_lock(&old->i_lock);
1711 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1712 spin_unlock(&old->i_lock);
1713 continue;
1714 }
1715 break;
1716 }
1717 if (likely(!old)) {
1718 spin_lock(&inode->i_lock);
1719 inode->i_state |= I_NEW | I_CREATING;
1720 hlist_add_head_rcu(&inode->i_hash, head);
1721 spin_unlock(&inode->i_lock);
1722 spin_unlock(&inode_hash_lock);
1723 return 0;
1724 }
1725 if (unlikely(old->i_state & I_CREATING)) {
1726 spin_unlock(&old->i_lock);
1727 spin_unlock(&inode_hash_lock);
1728 return -EBUSY;
1729 }
1730 __iget(old);
1731 spin_unlock(&old->i_lock);
1732 spin_unlock(&inode_hash_lock);
1733 wait_on_inode(old);
1734 if (unlikely(!inode_unhashed(old))) {
1735 iput(old);
1736 return -EBUSY;
1737 }
1738 iput(old);
1739 }
1740 }
1741 EXPORT_SYMBOL(insert_inode_locked);
1742
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1743 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1744 int (*test)(struct inode *, void *), void *data)
1745 {
1746 struct inode *old;
1747
1748 inode->i_state |= I_CREATING;
1749 old = inode_insert5(inode, hashval, test, NULL, data);
1750
1751 if (old != inode) {
1752 iput(old);
1753 return -EBUSY;
1754 }
1755 return 0;
1756 }
1757 EXPORT_SYMBOL(insert_inode_locked4);
1758
1759
generic_delete_inode(struct inode * inode)1760 int generic_delete_inode(struct inode *inode)
1761 {
1762 return 1;
1763 }
1764 EXPORT_SYMBOL(generic_delete_inode);
1765
1766 /*
1767 * Called when we're dropping the last reference
1768 * to an inode.
1769 *
1770 * Call the FS "drop_inode()" function, defaulting to
1771 * the legacy UNIX filesystem behaviour. If it tells
1772 * us to evict inode, do so. Otherwise, retain inode
1773 * in cache if fs is alive, sync and evict if fs is
1774 * shutting down.
1775 */
iput_final(struct inode * inode)1776 static void iput_final(struct inode *inode)
1777 {
1778 struct super_block *sb = inode->i_sb;
1779 const struct super_operations *op = inode->i_sb->s_op;
1780 unsigned long state;
1781 int drop;
1782
1783 WARN_ON(inode->i_state & I_NEW);
1784
1785 if (op->drop_inode)
1786 drop = op->drop_inode(inode);
1787 else
1788 drop = generic_drop_inode(inode);
1789
1790 if (!drop &&
1791 !(inode->i_state & I_DONTCACHE) &&
1792 (sb->s_flags & SB_ACTIVE)) {
1793 __inode_add_lru(inode, true);
1794 spin_unlock(&inode->i_lock);
1795 return;
1796 }
1797
1798 state = inode->i_state;
1799 if (!drop) {
1800 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1801 spin_unlock(&inode->i_lock);
1802
1803 write_inode_now(inode, 1);
1804
1805 spin_lock(&inode->i_lock);
1806 state = inode->i_state;
1807 WARN_ON(state & I_NEW);
1808 state &= ~I_WILL_FREE;
1809 }
1810
1811 WRITE_ONCE(inode->i_state, state | I_FREEING);
1812 if (!list_empty(&inode->i_lru))
1813 inode_lru_list_del(inode);
1814 spin_unlock(&inode->i_lock);
1815
1816 evict(inode);
1817 }
1818
1819 /**
1820 * iput - put an inode
1821 * @inode: inode to put
1822 *
1823 * Puts an inode, dropping its usage count. If the inode use count hits
1824 * zero, the inode is then freed and may also be destroyed.
1825 *
1826 * Consequently, iput() can sleep.
1827 */
iput(struct inode * inode)1828 void iput(struct inode *inode)
1829 {
1830 if (!inode)
1831 return;
1832 BUG_ON(inode->i_state & I_CLEAR);
1833 retry:
1834 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1835 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1836 atomic_inc(&inode->i_count);
1837 spin_unlock(&inode->i_lock);
1838 trace_writeback_lazytime_iput(inode);
1839 mark_inode_dirty_sync(inode);
1840 goto retry;
1841 }
1842 iput_final(inode);
1843 }
1844 }
1845 EXPORT_SYMBOL(iput);
1846
1847 #ifdef CONFIG_BLOCK
1848 /**
1849 * bmap - find a block number in a file
1850 * @inode: inode owning the block number being requested
1851 * @block: pointer containing the block to find
1852 *
1853 * Replaces the value in ``*block`` with the block number on the device holding
1854 * corresponding to the requested block number in the file.
1855 * That is, asked for block 4 of inode 1 the function will replace the
1856 * 4 in ``*block``, with disk block relative to the disk start that holds that
1857 * block of the file.
1858 *
1859 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1860 * hole, returns 0 and ``*block`` is also set to 0.
1861 */
bmap(struct inode * inode,sector_t * block)1862 int bmap(struct inode *inode, sector_t *block)
1863 {
1864 if (!inode->i_mapping->a_ops->bmap)
1865 return -EINVAL;
1866
1867 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1868 return 0;
1869 }
1870 EXPORT_SYMBOL(bmap);
1871 #endif
1872
1873 /*
1874 * With relative atime, only update atime if the previous atime is
1875 * earlier than or equal to either the ctime or mtime,
1876 * or if at least a day has passed since the last atime update.
1877 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1878 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1879 struct timespec64 now)
1880 {
1881 struct timespec64 ctime;
1882
1883 if (!(mnt->mnt_flags & MNT_RELATIME))
1884 return 1;
1885 /*
1886 * Is mtime younger than or equal to atime? If yes, update atime:
1887 */
1888 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1889 return 1;
1890 /*
1891 * Is ctime younger than or equal to atime? If yes, update atime:
1892 */
1893 ctime = inode_get_ctime(inode);
1894 if (timespec64_compare(&ctime, &inode->i_atime) >= 0)
1895 return 1;
1896
1897 /*
1898 * Is the previous atime value older than a day? If yes,
1899 * update atime:
1900 */
1901 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1902 return 1;
1903 /*
1904 * Good, we can skip the atime update:
1905 */
1906 return 0;
1907 }
1908
1909 /**
1910 * inode_update_timestamps - update the timestamps on the inode
1911 * @inode: inode to be updated
1912 * @flags: S_* flags that needed to be updated
1913 *
1914 * The update_time function is called when an inode's timestamps need to be
1915 * updated for a read or write operation. This function handles updating the
1916 * actual timestamps. It's up to the caller to ensure that the inode is marked
1917 * dirty appropriately.
1918 *
1919 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1920 * attempt to update all three of them. S_ATIME updates can be handled
1921 * independently of the rest.
1922 *
1923 * Returns a set of S_* flags indicating which values changed.
1924 */
inode_update_timestamps(struct inode * inode,int flags)1925 int inode_update_timestamps(struct inode *inode, int flags)
1926 {
1927 int updated = 0;
1928 struct timespec64 now;
1929
1930 if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1931 struct timespec64 ctime = inode_get_ctime(inode);
1932
1933 now = inode_set_ctime_current(inode);
1934 if (!timespec64_equal(&now, &ctime))
1935 updated |= S_CTIME;
1936 if (!timespec64_equal(&now, &inode->i_mtime)) {
1937 inode->i_mtime = now;
1938 updated |= S_MTIME;
1939 }
1940 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1941 updated |= S_VERSION;
1942 } else {
1943 now = current_time(inode);
1944 }
1945
1946 if (flags & S_ATIME) {
1947 if (!timespec64_equal(&now, &inode->i_atime)) {
1948 inode->i_atime = now;
1949 updated |= S_ATIME;
1950 }
1951 }
1952 return updated;
1953 }
1954 EXPORT_SYMBOL(inode_update_timestamps);
1955
1956 /**
1957 * generic_update_time - update the timestamps on the inode
1958 * @inode: inode to be updated
1959 * @flags: S_* flags that needed to be updated
1960 *
1961 * The update_time function is called when an inode's timestamps need to be
1962 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1963 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1964 * updates can be handled done independently of the rest.
1965 *
1966 * Returns a S_* mask indicating which fields were updated.
1967 */
generic_update_time(struct inode * inode,int flags)1968 int generic_update_time(struct inode *inode, int flags)
1969 {
1970 int updated = inode_update_timestamps(inode, flags);
1971 int dirty_flags = 0;
1972
1973 if (updated & (S_ATIME|S_MTIME|S_CTIME))
1974 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1975 if (updated & S_VERSION)
1976 dirty_flags |= I_DIRTY_SYNC;
1977 __mark_inode_dirty(inode, dirty_flags);
1978 return updated;
1979 }
1980 EXPORT_SYMBOL(generic_update_time);
1981
1982 /*
1983 * This does the actual work of updating an inodes time or version. Must have
1984 * had called mnt_want_write() before calling this.
1985 */
inode_update_time(struct inode * inode,int flags)1986 int inode_update_time(struct inode *inode, int flags)
1987 {
1988 if (inode->i_op->update_time)
1989 return inode->i_op->update_time(inode, flags);
1990 generic_update_time(inode, flags);
1991 return 0;
1992 }
1993 EXPORT_SYMBOL(inode_update_time);
1994
1995 /**
1996 * atime_needs_update - update the access time
1997 * @path: the &struct path to update
1998 * @inode: inode to update
1999 *
2000 * Update the accessed time on an inode and mark it for writeback.
2001 * This function automatically handles read only file systems and media,
2002 * as well as the "noatime" flag and inode specific "noatime" markers.
2003 */
atime_needs_update(const struct path * path,struct inode * inode)2004 bool atime_needs_update(const struct path *path, struct inode *inode)
2005 {
2006 struct vfsmount *mnt = path->mnt;
2007 struct timespec64 now;
2008
2009 if (inode->i_flags & S_NOATIME)
2010 return false;
2011
2012 /* Atime updates will likely cause i_uid and i_gid to be written
2013 * back improprely if their true value is unknown to the vfs.
2014 */
2015 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2016 return false;
2017
2018 if (IS_NOATIME(inode))
2019 return false;
2020 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2021 return false;
2022
2023 if (mnt->mnt_flags & MNT_NOATIME)
2024 return false;
2025 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2026 return false;
2027
2028 now = current_time(inode);
2029
2030 if (!relatime_need_update(mnt, inode, now))
2031 return false;
2032
2033 if (timespec64_equal(&inode->i_atime, &now))
2034 return false;
2035
2036 return true;
2037 }
2038
touch_atime(const struct path * path)2039 void touch_atime(const struct path *path)
2040 {
2041 struct vfsmount *mnt = path->mnt;
2042 struct inode *inode = d_inode(path->dentry);
2043
2044 if (!atime_needs_update(path, inode))
2045 return;
2046
2047 if (!sb_start_write_trylock(inode->i_sb))
2048 return;
2049
2050 if (__mnt_want_write(mnt) != 0)
2051 goto skip_update;
2052 /*
2053 * File systems can error out when updating inodes if they need to
2054 * allocate new space to modify an inode (such is the case for
2055 * Btrfs), but since we touch atime while walking down the path we
2056 * really don't care if we failed to update the atime of the file,
2057 * so just ignore the return value.
2058 * We may also fail on filesystems that have the ability to make parts
2059 * of the fs read only, e.g. subvolumes in Btrfs.
2060 */
2061 inode_update_time(inode, S_ATIME);
2062 __mnt_drop_write(mnt);
2063 skip_update:
2064 sb_end_write(inode->i_sb);
2065 }
2066 EXPORT_SYMBOL(touch_atime);
2067
2068 /*
2069 * Return mask of changes for notify_change() that need to be done as a
2070 * response to write or truncate. Return 0 if nothing has to be changed.
2071 * Negative value on error (change should be denied).
2072 */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2073 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2074 struct dentry *dentry)
2075 {
2076 struct inode *inode = d_inode(dentry);
2077 int mask = 0;
2078 int ret;
2079
2080 if (IS_NOSEC(inode))
2081 return 0;
2082
2083 mask = setattr_should_drop_suidgid(idmap, inode);
2084 ret = security_inode_need_killpriv(dentry);
2085 if (ret < 0)
2086 return ret;
2087 if (ret)
2088 mask |= ATTR_KILL_PRIV;
2089 return mask;
2090 }
2091
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2092 static int __remove_privs(struct mnt_idmap *idmap,
2093 struct dentry *dentry, int kill)
2094 {
2095 struct iattr newattrs;
2096
2097 newattrs.ia_valid = ATTR_FORCE | kill;
2098 /*
2099 * Note we call this on write, so notify_change will not
2100 * encounter any conflicting delegations:
2101 */
2102 return notify_change(idmap, dentry, &newattrs, NULL);
2103 }
2104
__file_remove_privs(struct file * file,unsigned int flags)2105 static int __file_remove_privs(struct file *file, unsigned int flags)
2106 {
2107 struct dentry *dentry = file_dentry(file);
2108 struct inode *inode = file_inode(file);
2109 int error = 0;
2110 int kill;
2111
2112 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2113 return 0;
2114
2115 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2116 if (kill < 0)
2117 return kill;
2118
2119 if (kill) {
2120 if (flags & IOCB_NOWAIT)
2121 return -EAGAIN;
2122
2123 error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2124 }
2125
2126 if (!error)
2127 inode_has_no_xattr(inode);
2128 return error;
2129 }
2130
2131 /**
2132 * file_remove_privs - remove special file privileges (suid, capabilities)
2133 * @file: file to remove privileges from
2134 *
2135 * When file is modified by a write or truncation ensure that special
2136 * file privileges are removed.
2137 *
2138 * Return: 0 on success, negative errno on failure.
2139 */
file_remove_privs(struct file * file)2140 int file_remove_privs(struct file *file)
2141 {
2142 return __file_remove_privs(file, 0);
2143 }
2144 EXPORT_SYMBOL(file_remove_privs);
2145
inode_needs_update_time(struct inode * inode)2146 static int inode_needs_update_time(struct inode *inode)
2147 {
2148 int sync_it = 0;
2149 struct timespec64 now = current_time(inode);
2150 struct timespec64 ctime;
2151
2152 /* First try to exhaust all avenues to not sync */
2153 if (IS_NOCMTIME(inode))
2154 return 0;
2155
2156 if (!timespec64_equal(&inode->i_mtime, &now))
2157 sync_it = S_MTIME;
2158
2159 ctime = inode_get_ctime(inode);
2160 if (!timespec64_equal(&ctime, &now))
2161 sync_it |= S_CTIME;
2162
2163 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2164 sync_it |= S_VERSION;
2165
2166 return sync_it;
2167 }
2168
__file_update_time(struct file * file,int sync_mode)2169 static int __file_update_time(struct file *file, int sync_mode)
2170 {
2171 int ret = 0;
2172 struct inode *inode = file_inode(file);
2173
2174 /* try to update time settings */
2175 if (!__mnt_want_write_file(file)) {
2176 ret = inode_update_time(inode, sync_mode);
2177 __mnt_drop_write_file(file);
2178 }
2179
2180 return ret;
2181 }
2182
2183 /**
2184 * file_update_time - update mtime and ctime time
2185 * @file: file accessed
2186 *
2187 * Update the mtime and ctime members of an inode and mark the inode for
2188 * writeback. Note that this function is meant exclusively for usage in
2189 * the file write path of filesystems, and filesystems may choose to
2190 * explicitly ignore updates via this function with the _NOCMTIME inode
2191 * flag, e.g. for network filesystem where these imestamps are handled
2192 * by the server. This can return an error for file systems who need to
2193 * allocate space in order to update an inode.
2194 *
2195 * Return: 0 on success, negative errno on failure.
2196 */
file_update_time(struct file * file)2197 int file_update_time(struct file *file)
2198 {
2199 int ret;
2200 struct inode *inode = file_inode(file);
2201
2202 ret = inode_needs_update_time(inode);
2203 if (ret <= 0)
2204 return ret;
2205
2206 return __file_update_time(file, ret);
2207 }
2208 EXPORT_SYMBOL(file_update_time);
2209
2210 /**
2211 * file_modified_flags - handle mandated vfs changes when modifying a file
2212 * @file: file that was modified
2213 * @flags: kiocb flags
2214 *
2215 * When file has been modified ensure that special
2216 * file privileges are removed and time settings are updated.
2217 *
2218 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2219 * time settings will not be updated. It will return -EAGAIN.
2220 *
2221 * Context: Caller must hold the file's inode lock.
2222 *
2223 * Return: 0 on success, negative errno on failure.
2224 */
file_modified_flags(struct file * file,int flags)2225 static int file_modified_flags(struct file *file, int flags)
2226 {
2227 int ret;
2228 struct inode *inode = file_inode(file);
2229
2230 /*
2231 * Clear the security bits if the process is not being run by root.
2232 * This keeps people from modifying setuid and setgid binaries.
2233 */
2234 ret = __file_remove_privs(file, flags);
2235 if (ret)
2236 return ret;
2237
2238 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2239 return 0;
2240
2241 ret = inode_needs_update_time(inode);
2242 if (ret <= 0)
2243 return ret;
2244 if (flags & IOCB_NOWAIT)
2245 return -EAGAIN;
2246
2247 return __file_update_time(file, ret);
2248 }
2249
2250 /**
2251 * file_modified - handle mandated vfs changes when modifying a file
2252 * @file: file that was modified
2253 *
2254 * When file has been modified ensure that special
2255 * file privileges are removed and time settings are updated.
2256 *
2257 * Context: Caller must hold the file's inode lock.
2258 *
2259 * Return: 0 on success, negative errno on failure.
2260 */
file_modified(struct file * file)2261 int file_modified(struct file *file)
2262 {
2263 return file_modified_flags(file, 0);
2264 }
2265 EXPORT_SYMBOL(file_modified);
2266
2267 /**
2268 * kiocb_modified - handle mandated vfs changes when modifying a file
2269 * @iocb: iocb that was modified
2270 *
2271 * When file has been modified ensure that special
2272 * file privileges are removed and time settings are updated.
2273 *
2274 * Context: Caller must hold the file's inode lock.
2275 *
2276 * Return: 0 on success, negative errno on failure.
2277 */
kiocb_modified(struct kiocb * iocb)2278 int kiocb_modified(struct kiocb *iocb)
2279 {
2280 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2281 }
2282 EXPORT_SYMBOL_GPL(kiocb_modified);
2283
inode_needs_sync(struct inode * inode)2284 int inode_needs_sync(struct inode *inode)
2285 {
2286 if (IS_SYNC(inode))
2287 return 1;
2288 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2289 return 1;
2290 return 0;
2291 }
2292 EXPORT_SYMBOL(inode_needs_sync);
2293
2294 /*
2295 * If we try to find an inode in the inode hash while it is being
2296 * deleted, we have to wait until the filesystem completes its
2297 * deletion before reporting that it isn't found. This function waits
2298 * until the deletion _might_ have completed. Callers are responsible
2299 * to recheck inode state.
2300 *
2301 * It doesn't matter if I_NEW is not set initially, a call to
2302 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2303 * will DTRT.
2304 */
__wait_on_freeing_inode(struct inode * inode)2305 static void __wait_on_freeing_inode(struct inode *inode)
2306 {
2307 wait_queue_head_t *wq;
2308 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2309 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2310 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2311 spin_unlock(&inode->i_lock);
2312 spin_unlock(&inode_hash_lock);
2313 schedule();
2314 finish_wait(wq, &wait.wq_entry);
2315 spin_lock(&inode_hash_lock);
2316 }
2317
2318 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2319 static int __init set_ihash_entries(char *str)
2320 {
2321 if (!str)
2322 return 0;
2323 ihash_entries = simple_strtoul(str, &str, 0);
2324 return 1;
2325 }
2326 __setup("ihash_entries=", set_ihash_entries);
2327
2328 /*
2329 * Initialize the waitqueues and inode hash table.
2330 */
inode_init_early(void)2331 void __init inode_init_early(void)
2332 {
2333 /* If hashes are distributed across NUMA nodes, defer
2334 * hash allocation until vmalloc space is available.
2335 */
2336 if (hashdist)
2337 return;
2338
2339 inode_hashtable =
2340 alloc_large_system_hash("Inode-cache",
2341 sizeof(struct hlist_head),
2342 ihash_entries,
2343 14,
2344 HASH_EARLY | HASH_ZERO,
2345 &i_hash_shift,
2346 &i_hash_mask,
2347 0,
2348 0);
2349 }
2350
inode_init(void)2351 void __init inode_init(void)
2352 {
2353 /* inode slab cache */
2354 inode_cachep = kmem_cache_create("inode_cache",
2355 sizeof(struct inode),
2356 0,
2357 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2358 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2359 init_once);
2360
2361 /* Hash may have been set up in inode_init_early */
2362 if (!hashdist)
2363 return;
2364
2365 inode_hashtable =
2366 alloc_large_system_hash("Inode-cache",
2367 sizeof(struct hlist_head),
2368 ihash_entries,
2369 14,
2370 HASH_ZERO,
2371 &i_hash_shift,
2372 &i_hash_mask,
2373 0,
2374 0);
2375 }
2376
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2377 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2378 {
2379 inode->i_mode = mode;
2380 if (S_ISCHR(mode)) {
2381 inode->i_fop = &def_chr_fops;
2382 inode->i_rdev = rdev;
2383 } else if (S_ISBLK(mode)) {
2384 if (IS_ENABLED(CONFIG_BLOCK))
2385 inode->i_fop = &def_blk_fops;
2386 inode->i_rdev = rdev;
2387 } else if (S_ISFIFO(mode))
2388 inode->i_fop = &pipefifo_fops;
2389 else if (S_ISSOCK(mode))
2390 ; /* leave it no_open_fops */
2391 else
2392 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2393 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2394 inode->i_ino);
2395 }
2396 EXPORT_SYMBOL(init_special_inode);
2397
2398 /**
2399 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2400 * @idmap: idmap of the mount the inode was created from
2401 * @inode: New inode
2402 * @dir: Directory inode
2403 * @mode: mode of the new inode
2404 *
2405 * If the inode has been created through an idmapped mount the idmap of
2406 * the vfsmount must be passed through @idmap. This function will then take
2407 * care to map the inode according to @idmap before checking permissions
2408 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2409 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2410 */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2411 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2412 const struct inode *dir, umode_t mode)
2413 {
2414 inode_fsuid_set(inode, idmap);
2415 if (dir && dir->i_mode & S_ISGID) {
2416 inode->i_gid = dir->i_gid;
2417
2418 /* Directories are special, and always inherit S_ISGID */
2419 if (S_ISDIR(mode))
2420 mode |= S_ISGID;
2421 } else
2422 inode_fsgid_set(inode, idmap);
2423 inode->i_mode = mode;
2424 }
2425 EXPORT_SYMBOL(inode_init_owner);
2426
2427 /**
2428 * inode_owner_or_capable - check current task permissions to inode
2429 * @idmap: idmap of the mount the inode was found from
2430 * @inode: inode being checked
2431 *
2432 * Return true if current either has CAP_FOWNER in a namespace with the
2433 * inode owner uid mapped, or owns the file.
2434 *
2435 * If the inode has been found through an idmapped mount the idmap of
2436 * the vfsmount must be passed through @idmap. This function will then take
2437 * care to map the inode according to @idmap before checking permissions.
2438 * On non-idmapped mounts or if permission checking is to be performed on the
2439 * raw inode simply passs @nop_mnt_idmap.
2440 */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2441 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2442 const struct inode *inode)
2443 {
2444 vfsuid_t vfsuid;
2445 struct user_namespace *ns;
2446
2447 vfsuid = i_uid_into_vfsuid(idmap, inode);
2448 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2449 return true;
2450
2451 ns = current_user_ns();
2452 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2453 return true;
2454 return false;
2455 }
2456 EXPORT_SYMBOL(inode_owner_or_capable);
2457
2458 /*
2459 * Direct i/o helper functions
2460 */
__inode_dio_wait(struct inode * inode)2461 static void __inode_dio_wait(struct inode *inode)
2462 {
2463 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2464 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2465
2466 do {
2467 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2468 if (atomic_read(&inode->i_dio_count))
2469 schedule();
2470 } while (atomic_read(&inode->i_dio_count));
2471 finish_wait(wq, &q.wq_entry);
2472 }
2473
2474 /**
2475 * inode_dio_wait - wait for outstanding DIO requests to finish
2476 * @inode: inode to wait for
2477 *
2478 * Waits for all pending direct I/O requests to finish so that we can
2479 * proceed with a truncate or equivalent operation.
2480 *
2481 * Must be called under a lock that serializes taking new references
2482 * to i_dio_count, usually by inode->i_mutex.
2483 */
inode_dio_wait(struct inode * inode)2484 void inode_dio_wait(struct inode *inode)
2485 {
2486 if (atomic_read(&inode->i_dio_count))
2487 __inode_dio_wait(inode);
2488 }
2489 EXPORT_SYMBOL(inode_dio_wait);
2490
2491 /*
2492 * inode_set_flags - atomically set some inode flags
2493 *
2494 * Note: the caller should be holding i_mutex, or else be sure that
2495 * they have exclusive access to the inode structure (i.e., while the
2496 * inode is being instantiated). The reason for the cmpxchg() loop
2497 * --- which wouldn't be necessary if all code paths which modify
2498 * i_flags actually followed this rule, is that there is at least one
2499 * code path which doesn't today so we use cmpxchg() out of an abundance
2500 * of caution.
2501 *
2502 * In the long run, i_mutex is overkill, and we should probably look
2503 * at using the i_lock spinlock to protect i_flags, and then make sure
2504 * it is so documented in include/linux/fs.h and that all code follows
2505 * the locking convention!!
2506 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2507 void inode_set_flags(struct inode *inode, unsigned int flags,
2508 unsigned int mask)
2509 {
2510 WARN_ON_ONCE(flags & ~mask);
2511 set_mask_bits(&inode->i_flags, mask, flags);
2512 }
2513 EXPORT_SYMBOL(inode_set_flags);
2514
inode_nohighmem(struct inode * inode)2515 void inode_nohighmem(struct inode *inode)
2516 {
2517 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2518 }
2519 EXPORT_SYMBOL(inode_nohighmem);
2520
2521 /**
2522 * timestamp_truncate - Truncate timespec to a granularity
2523 * @t: Timespec
2524 * @inode: inode being updated
2525 *
2526 * Truncate a timespec to the granularity supported by the fs
2527 * containing the inode. Always rounds down. gran must
2528 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2529 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2530 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2531 {
2532 struct super_block *sb = inode->i_sb;
2533 unsigned int gran = sb->s_time_gran;
2534
2535 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2536 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2537 t.tv_nsec = 0;
2538
2539 /* Avoid division in the common cases 1 ns and 1 s. */
2540 if (gran == 1)
2541 ; /* nothing */
2542 else if (gran == NSEC_PER_SEC)
2543 t.tv_nsec = 0;
2544 else if (gran > 1 && gran < NSEC_PER_SEC)
2545 t.tv_nsec -= t.tv_nsec % gran;
2546 else
2547 WARN(1, "invalid file time granularity: %u", gran);
2548 return t;
2549 }
2550 EXPORT_SYMBOL(timestamp_truncate);
2551
2552 /**
2553 * current_time - Return FS time
2554 * @inode: inode.
2555 *
2556 * Return the current time truncated to the time granularity supported by
2557 * the fs.
2558 *
2559 * Note that inode and inode->sb cannot be NULL.
2560 * Otherwise, the function warns and returns time without truncation.
2561 */
current_time(struct inode * inode)2562 struct timespec64 current_time(struct inode *inode)
2563 {
2564 struct timespec64 now;
2565
2566 ktime_get_coarse_real_ts64(&now);
2567 return timestamp_truncate(now, inode);
2568 }
2569 EXPORT_SYMBOL(current_time);
2570
2571 /**
2572 * inode_set_ctime_current - set the ctime to current_time
2573 * @inode: inode
2574 *
2575 * Set the inode->i_ctime to the current value for the inode. Returns
2576 * the current value that was assigned to i_ctime.
2577 */
inode_set_ctime_current(struct inode * inode)2578 struct timespec64 inode_set_ctime_current(struct inode *inode)
2579 {
2580 struct timespec64 now = current_time(inode);
2581
2582 inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2583 return now;
2584 }
2585 EXPORT_SYMBOL(inode_set_ctime_current);
2586
2587 /**
2588 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2589 * @idmap: idmap of the mount @inode was found from
2590 * @inode: inode to check
2591 * @vfsgid: the new/current vfsgid of @inode
2592 *
2593 * Check wether @vfsgid is in the caller's group list or if the caller is
2594 * privileged with CAP_FSETID over @inode. This can be used to determine
2595 * whether the setgid bit can be kept or must be dropped.
2596 *
2597 * Return: true if the caller is sufficiently privileged, false if not.
2598 */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2599 bool in_group_or_capable(struct mnt_idmap *idmap,
2600 const struct inode *inode, vfsgid_t vfsgid)
2601 {
2602 if (vfsgid_in_group_p(vfsgid))
2603 return true;
2604 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2605 return true;
2606 return false;
2607 }
2608
2609 /**
2610 * mode_strip_sgid - handle the sgid bit for non-directories
2611 * @idmap: idmap of the mount the inode was created from
2612 * @dir: parent directory inode
2613 * @mode: mode of the file to be created in @dir
2614 *
2615 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2616 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2617 * either in the group of the parent directory or they have CAP_FSETID
2618 * in their user namespace and are privileged over the parent directory.
2619 * In all other cases, strip the S_ISGID bit from @mode.
2620 *
2621 * Return: the new mode to use for the file
2622 */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2623 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2624 const struct inode *dir, umode_t mode)
2625 {
2626 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2627 return mode;
2628 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2629 return mode;
2630 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2631 return mode;
2632 return mode & ~S_ISGID;
2633 }
2634 EXPORT_SYMBOL(mode_strip_sgid);
2635