xref: /openbmc/linux/fs/inode.c (revision 0eed942b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72 
73 static struct kmem_cache *inode_cachep __read_mostly;
74 
get_nr_inodes(void)75 static long get_nr_inodes(void)
76 {
77 	int i;
78 	long sum = 0;
79 	for_each_possible_cpu(i)
80 		sum += per_cpu(nr_inodes, i);
81 	return sum < 0 ? 0 : sum;
82 }
83 
get_nr_inodes_unused(void)84 static inline long get_nr_inodes_unused(void)
85 {
86 	int i;
87 	long sum = 0;
88 	for_each_possible_cpu(i)
89 		sum += per_cpu(nr_unused, i);
90 	return sum < 0 ? 0 : sum;
91 }
92 
get_nr_dirty_inodes(void)93 long get_nr_dirty_inodes(void)
94 {
95 	/* not actually dirty inodes, but a wild approximation */
96 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 	return nr_dirty > 0 ? nr_dirty : 0;
98 }
99 
100 /*
101  * Handle nr_inode sysctl
102  */
103 #ifdef CONFIG_SYSCTL
104 /*
105  * Statistics gathering..
106  */
107 static struct inodes_stat_t inodes_stat;
108 
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 			  size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 
117 static struct ctl_table inodes_sysctls[] = {
118 	{
119 		.procname	= "inode-nr",
120 		.data		= &inodes_stat,
121 		.maxlen		= 2*sizeof(long),
122 		.mode		= 0444,
123 		.proc_handler	= proc_nr_inodes,
124 	},
125 	{
126 		.procname	= "inode-state",
127 		.data		= &inodes_stat,
128 		.maxlen		= 7*sizeof(long),
129 		.mode		= 0444,
130 		.proc_handler	= proc_nr_inodes,
131 	},
132 	{ }
133 };
134 
init_fs_inode_sysctls(void)135 static int __init init_fs_inode_sysctls(void)
136 {
137 	register_sysctl_init("fs", inodes_sysctls);
138 	return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142 
no_open(struct inode * inode,struct file * file)143 static int no_open(struct inode *inode, struct file *file)
144 {
145 	return -ENXIO;
146 }
147 
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
inode_init_always(struct super_block * sb,struct inode * inode)156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 	static const struct inode_operations empty_iops;
159 	static const struct file_operations no_open_fops = {.open = no_open};
160 	struct address_space *const mapping = &inode->i_data;
161 
162 	inode->i_sb = sb;
163 	inode->i_blkbits = sb->s_blocksize_bits;
164 	inode->i_flags = 0;
165 	atomic64_set(&inode->i_sequence, 0);
166 	atomic_set(&inode->i_count, 1);
167 	inode->i_op = &empty_iops;
168 	inode->i_fop = &no_open_fops;
169 	inode->i_ino = 0;
170 	inode->__i_nlink = 1;
171 	inode->i_opflags = 0;
172 	if (sb->s_xattr)
173 		inode->i_opflags |= IOP_XATTR;
174 	i_uid_write(inode, 0);
175 	i_gid_write(inode, 0);
176 	atomic_set(&inode->i_writecount, 0);
177 	inode->i_size = 0;
178 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 	inode->i_blocks = 0;
180 	inode->i_bytes = 0;
181 	inode->i_generation = 0;
182 	inode->i_pipe = NULL;
183 	inode->i_cdev = NULL;
184 	inode->i_link = NULL;
185 	inode->i_dir_seq = 0;
186 	inode->i_rdev = 0;
187 	inode->dirtied_when = 0;
188 
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 	inode->i_wb_frn_winner = 0;
191 	inode->i_wb_frn_avg_time = 0;
192 	inode->i_wb_frn_history = 0;
193 #endif
194 
195 	spin_lock_init(&inode->i_lock);
196 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197 
198 	init_rwsem(&inode->i_rwsem);
199 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200 
201 	atomic_set(&inode->i_dio_count, 0);
202 
203 	mapping->a_ops = &empty_aops;
204 	mapping->host = inode;
205 	mapping->flags = 0;
206 	mapping->wb_err = 0;
207 	atomic_set(&mapping->i_mmap_writable, 0);
208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 	atomic_set(&mapping->nr_thps, 0);
210 #endif
211 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 	mapping->private_data = NULL;
213 	mapping->writeback_index = 0;
214 	init_rwsem(&mapping->invalidate_lock);
215 	lockdep_set_class_and_name(&mapping->invalidate_lock,
216 				   &sb->s_type->invalidate_lock_key,
217 				   "mapping.invalidate_lock");
218 	if (sb->s_iflags & SB_I_STABLE_WRITES)
219 		mapping_set_stable_writes(mapping);
220 	inode->i_private = NULL;
221 	inode->i_mapping = mapping;
222 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
223 #ifdef CONFIG_FS_POSIX_ACL
224 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225 #endif
226 
227 #ifdef CONFIG_FSNOTIFY
228 	inode->i_fsnotify_mask = 0;
229 #endif
230 	inode->i_flctx = NULL;
231 
232 	if (unlikely(security_inode_alloc(inode)))
233 		return -ENOMEM;
234 	this_cpu_inc(nr_inodes);
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL(inode_init_always);
239 
free_inode_nonrcu(struct inode * inode)240 void free_inode_nonrcu(struct inode *inode)
241 {
242 	kmem_cache_free(inode_cachep, inode);
243 }
244 EXPORT_SYMBOL(free_inode_nonrcu);
245 
i_callback(struct rcu_head * head)246 static void i_callback(struct rcu_head *head)
247 {
248 	struct inode *inode = container_of(head, struct inode, i_rcu);
249 	if (inode->free_inode)
250 		inode->free_inode(inode);
251 	else
252 		free_inode_nonrcu(inode);
253 }
254 
alloc_inode(struct super_block * sb)255 static struct inode *alloc_inode(struct super_block *sb)
256 {
257 	const struct super_operations *ops = sb->s_op;
258 	struct inode *inode;
259 
260 	if (ops->alloc_inode)
261 		inode = ops->alloc_inode(sb);
262 	else
263 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
264 
265 	if (!inode)
266 		return NULL;
267 
268 	if (unlikely(inode_init_always(sb, inode))) {
269 		if (ops->destroy_inode) {
270 			ops->destroy_inode(inode);
271 			if (!ops->free_inode)
272 				return NULL;
273 		}
274 		inode->free_inode = ops->free_inode;
275 		i_callback(&inode->i_rcu);
276 		return NULL;
277 	}
278 
279 	return inode;
280 }
281 
__destroy_inode(struct inode * inode)282 void __destroy_inode(struct inode *inode)
283 {
284 	BUG_ON(inode_has_buffers(inode));
285 	inode_detach_wb(inode);
286 	security_inode_free(inode);
287 	fsnotify_inode_delete(inode);
288 	locks_free_lock_context(inode);
289 	if (!inode->i_nlink) {
290 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
291 		atomic_long_dec(&inode->i_sb->s_remove_count);
292 	}
293 
294 #ifdef CONFIG_FS_POSIX_ACL
295 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
296 		posix_acl_release(inode->i_acl);
297 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
298 		posix_acl_release(inode->i_default_acl);
299 #endif
300 	this_cpu_dec(nr_inodes);
301 }
302 EXPORT_SYMBOL(__destroy_inode);
303 
destroy_inode(struct inode * inode)304 static void destroy_inode(struct inode *inode)
305 {
306 	const struct super_operations *ops = inode->i_sb->s_op;
307 
308 	BUG_ON(!list_empty(&inode->i_lru));
309 	__destroy_inode(inode);
310 	if (ops->destroy_inode) {
311 		ops->destroy_inode(inode);
312 		if (!ops->free_inode)
313 			return;
314 	}
315 	inode->free_inode = ops->free_inode;
316 	call_rcu(&inode->i_rcu, i_callback);
317 }
318 
319 /**
320  * drop_nlink - directly drop an inode's link count
321  * @inode: inode
322  *
323  * This is a low-level filesystem helper to replace any
324  * direct filesystem manipulation of i_nlink.  In cases
325  * where we are attempting to track writes to the
326  * filesystem, a decrement to zero means an imminent
327  * write when the file is truncated and actually unlinked
328  * on the filesystem.
329  */
drop_nlink(struct inode * inode)330 void drop_nlink(struct inode *inode)
331 {
332 	WARN_ON(inode->i_nlink == 0);
333 	inode->__i_nlink--;
334 	if (!inode->i_nlink)
335 		atomic_long_inc(&inode->i_sb->s_remove_count);
336 }
337 EXPORT_SYMBOL(drop_nlink);
338 
339 /**
340  * clear_nlink - directly zero an inode's link count
341  * @inode: inode
342  *
343  * This is a low-level filesystem helper to replace any
344  * direct filesystem manipulation of i_nlink.  See
345  * drop_nlink() for why we care about i_nlink hitting zero.
346  */
clear_nlink(struct inode * inode)347 void clear_nlink(struct inode *inode)
348 {
349 	if (inode->i_nlink) {
350 		inode->__i_nlink = 0;
351 		atomic_long_inc(&inode->i_sb->s_remove_count);
352 	}
353 }
354 EXPORT_SYMBOL(clear_nlink);
355 
356 /**
357  * set_nlink - directly set an inode's link count
358  * @inode: inode
359  * @nlink: new nlink (should be non-zero)
360  *
361  * This is a low-level filesystem helper to replace any
362  * direct filesystem manipulation of i_nlink.
363  */
set_nlink(struct inode * inode,unsigned int nlink)364 void set_nlink(struct inode *inode, unsigned int nlink)
365 {
366 	if (!nlink) {
367 		clear_nlink(inode);
368 	} else {
369 		/* Yes, some filesystems do change nlink from zero to one */
370 		if (inode->i_nlink == 0)
371 			atomic_long_dec(&inode->i_sb->s_remove_count);
372 
373 		inode->__i_nlink = nlink;
374 	}
375 }
376 EXPORT_SYMBOL(set_nlink);
377 
378 /**
379  * inc_nlink - directly increment an inode's link count
380  * @inode: inode
381  *
382  * This is a low-level filesystem helper to replace any
383  * direct filesystem manipulation of i_nlink.  Currently,
384  * it is only here for parity with dec_nlink().
385  */
inc_nlink(struct inode * inode)386 void inc_nlink(struct inode *inode)
387 {
388 	if (unlikely(inode->i_nlink == 0)) {
389 		WARN_ON(!(inode->i_state & I_LINKABLE));
390 		atomic_long_dec(&inode->i_sb->s_remove_count);
391 	}
392 
393 	inode->__i_nlink++;
394 }
395 EXPORT_SYMBOL(inc_nlink);
396 
__address_space_init_once(struct address_space * mapping)397 static void __address_space_init_once(struct address_space *mapping)
398 {
399 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
400 	init_rwsem(&mapping->i_mmap_rwsem);
401 	INIT_LIST_HEAD(&mapping->private_list);
402 	spin_lock_init(&mapping->private_lock);
403 	mapping->i_mmap = RB_ROOT_CACHED;
404 }
405 
address_space_init_once(struct address_space * mapping)406 void address_space_init_once(struct address_space *mapping)
407 {
408 	memset(mapping, 0, sizeof(*mapping));
409 	__address_space_init_once(mapping);
410 }
411 EXPORT_SYMBOL(address_space_init_once);
412 
413 /*
414  * These are initializations that only need to be done
415  * once, because the fields are idempotent across use
416  * of the inode, so let the slab aware of that.
417  */
inode_init_once(struct inode * inode)418 void inode_init_once(struct inode *inode)
419 {
420 	memset(inode, 0, sizeof(*inode));
421 	INIT_HLIST_NODE(&inode->i_hash);
422 	INIT_LIST_HEAD(&inode->i_devices);
423 	INIT_LIST_HEAD(&inode->i_io_list);
424 	INIT_LIST_HEAD(&inode->i_wb_list);
425 	INIT_LIST_HEAD(&inode->i_lru);
426 	INIT_LIST_HEAD(&inode->i_sb_list);
427 	__address_space_init_once(&inode->i_data);
428 	i_size_ordered_init(inode);
429 }
430 EXPORT_SYMBOL(inode_init_once);
431 
init_once(void * foo)432 static void init_once(void *foo)
433 {
434 	struct inode *inode = (struct inode *) foo;
435 
436 	inode_init_once(inode);
437 }
438 
439 /*
440  * inode->i_lock must be held
441  */
__iget(struct inode * inode)442 void __iget(struct inode *inode)
443 {
444 	atomic_inc(&inode->i_count);
445 }
446 
447 /*
448  * get additional reference to inode; caller must already hold one.
449  */
ihold(struct inode * inode)450 void ihold(struct inode *inode)
451 {
452 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
453 }
454 EXPORT_SYMBOL(ihold);
455 
__inode_add_lru(struct inode * inode,bool rotate)456 static void __inode_add_lru(struct inode *inode, bool rotate)
457 {
458 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
459 		return;
460 	if (atomic_read(&inode->i_count))
461 		return;
462 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
463 		return;
464 	if (!mapping_shrinkable(&inode->i_data))
465 		return;
466 
467 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
468 		this_cpu_inc(nr_unused);
469 	else if (rotate)
470 		inode->i_state |= I_REFERENCED;
471 }
472 
473 /*
474  * Add inode to LRU if needed (inode is unused and clean).
475  *
476  * Needs inode->i_lock held.
477  */
inode_add_lru(struct inode * inode)478 void inode_add_lru(struct inode *inode)
479 {
480 	__inode_add_lru(inode, false);
481 }
482 
inode_lru_list_del(struct inode * inode)483 static void inode_lru_list_del(struct inode *inode)
484 {
485 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
486 		this_cpu_dec(nr_unused);
487 }
488 
inode_pin_lru_isolating(struct inode * inode)489 static void inode_pin_lru_isolating(struct inode *inode)
490 {
491 	lockdep_assert_held(&inode->i_lock);
492 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
493 	inode->i_state |= I_LRU_ISOLATING;
494 }
495 
inode_unpin_lru_isolating(struct inode * inode)496 static void inode_unpin_lru_isolating(struct inode *inode)
497 {
498 	spin_lock(&inode->i_lock);
499 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
500 	inode->i_state &= ~I_LRU_ISOLATING;
501 	smp_mb();
502 	wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
503 	spin_unlock(&inode->i_lock);
504 }
505 
inode_wait_for_lru_isolating(struct inode * inode)506 static void inode_wait_for_lru_isolating(struct inode *inode)
507 {
508 	spin_lock(&inode->i_lock);
509 	if (inode->i_state & I_LRU_ISOLATING) {
510 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
511 		wait_queue_head_t *wqh;
512 
513 		wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
514 		spin_unlock(&inode->i_lock);
515 		__wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
516 		spin_lock(&inode->i_lock);
517 		WARN_ON(inode->i_state & I_LRU_ISOLATING);
518 	}
519 	spin_unlock(&inode->i_lock);
520 }
521 
522 /**
523  * inode_sb_list_add - add inode to the superblock list of inodes
524  * @inode: inode to add
525  */
inode_sb_list_add(struct inode * inode)526 void inode_sb_list_add(struct inode *inode)
527 {
528 	spin_lock(&inode->i_sb->s_inode_list_lock);
529 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
530 	spin_unlock(&inode->i_sb->s_inode_list_lock);
531 }
532 EXPORT_SYMBOL_GPL(inode_sb_list_add);
533 
inode_sb_list_del(struct inode * inode)534 static inline void inode_sb_list_del(struct inode *inode)
535 {
536 	if (!list_empty(&inode->i_sb_list)) {
537 		spin_lock(&inode->i_sb->s_inode_list_lock);
538 		list_del_init(&inode->i_sb_list);
539 		spin_unlock(&inode->i_sb->s_inode_list_lock);
540 	}
541 }
542 
hash(struct super_block * sb,unsigned long hashval)543 static unsigned long hash(struct super_block *sb, unsigned long hashval)
544 {
545 	unsigned long tmp;
546 
547 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
548 			L1_CACHE_BYTES;
549 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
550 	return tmp & i_hash_mask;
551 }
552 
553 /**
554  *	__insert_inode_hash - hash an inode
555  *	@inode: unhashed inode
556  *	@hashval: unsigned long value used to locate this object in the
557  *		inode_hashtable.
558  *
559  *	Add an inode to the inode hash for this superblock.
560  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)561 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
562 {
563 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
564 
565 	spin_lock(&inode_hash_lock);
566 	spin_lock(&inode->i_lock);
567 	hlist_add_head_rcu(&inode->i_hash, b);
568 	spin_unlock(&inode->i_lock);
569 	spin_unlock(&inode_hash_lock);
570 }
571 EXPORT_SYMBOL(__insert_inode_hash);
572 
573 /**
574  *	__remove_inode_hash - remove an inode from the hash
575  *	@inode: inode to unhash
576  *
577  *	Remove an inode from the superblock.
578  */
__remove_inode_hash(struct inode * inode)579 void __remove_inode_hash(struct inode *inode)
580 {
581 	spin_lock(&inode_hash_lock);
582 	spin_lock(&inode->i_lock);
583 	hlist_del_init_rcu(&inode->i_hash);
584 	spin_unlock(&inode->i_lock);
585 	spin_unlock(&inode_hash_lock);
586 }
587 EXPORT_SYMBOL(__remove_inode_hash);
588 
dump_mapping(const struct address_space * mapping)589 void dump_mapping(const struct address_space *mapping)
590 {
591 	struct inode *host;
592 	const struct address_space_operations *a_ops;
593 	struct hlist_node *dentry_first;
594 	struct dentry *dentry_ptr;
595 	struct dentry dentry;
596 	unsigned long ino;
597 
598 	/*
599 	 * If mapping is an invalid pointer, we don't want to crash
600 	 * accessing it, so probe everything depending on it carefully.
601 	 */
602 	if (get_kernel_nofault(host, &mapping->host) ||
603 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
604 		pr_warn("invalid mapping:%px\n", mapping);
605 		return;
606 	}
607 
608 	if (!host) {
609 		pr_warn("aops:%ps\n", a_ops);
610 		return;
611 	}
612 
613 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
614 	    get_kernel_nofault(ino, &host->i_ino)) {
615 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
616 		return;
617 	}
618 
619 	if (!dentry_first) {
620 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
621 		return;
622 	}
623 
624 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
625 	if (get_kernel_nofault(dentry, dentry_ptr)) {
626 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
627 				a_ops, ino, dentry_ptr);
628 		return;
629 	}
630 
631 	/*
632 	 * if dentry is corrupted, the %pd handler may still crash,
633 	 * but it's unlikely that we reach here with a corrupt mapping
634 	 */
635 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
636 }
637 
clear_inode(struct inode * inode)638 void clear_inode(struct inode *inode)
639 {
640 	/*
641 	 * We have to cycle the i_pages lock here because reclaim can be in the
642 	 * process of removing the last page (in __filemap_remove_folio())
643 	 * and we must not free the mapping under it.
644 	 */
645 	xa_lock_irq(&inode->i_data.i_pages);
646 	BUG_ON(inode->i_data.nrpages);
647 	/*
648 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
649 	 * two known and long-standing ways in which nodes may get left behind
650 	 * (when deep radix-tree node allocation failed partway; or when THP
651 	 * collapse_file() failed). Until those two known cases are cleaned up,
652 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
653 	 * nor even WARN_ON(!mapping_empty).
654 	 */
655 	xa_unlock_irq(&inode->i_data.i_pages);
656 	BUG_ON(!list_empty(&inode->i_data.private_list));
657 	BUG_ON(!(inode->i_state & I_FREEING));
658 	BUG_ON(inode->i_state & I_CLEAR);
659 	BUG_ON(!list_empty(&inode->i_wb_list));
660 	/* don't need i_lock here, no concurrent mods to i_state */
661 	inode->i_state = I_FREEING | I_CLEAR;
662 }
663 EXPORT_SYMBOL(clear_inode);
664 
665 /*
666  * Free the inode passed in, removing it from the lists it is still connected
667  * to. We remove any pages still attached to the inode and wait for any IO that
668  * is still in progress before finally destroying the inode.
669  *
670  * An inode must already be marked I_FREEING so that we avoid the inode being
671  * moved back onto lists if we race with other code that manipulates the lists
672  * (e.g. writeback_single_inode). The caller is responsible for setting this.
673  *
674  * An inode must already be removed from the LRU list before being evicted from
675  * the cache. This should occur atomically with setting the I_FREEING state
676  * flag, so no inodes here should ever be on the LRU when being evicted.
677  */
evict(struct inode * inode)678 static void evict(struct inode *inode)
679 {
680 	const struct super_operations *op = inode->i_sb->s_op;
681 
682 	BUG_ON(!(inode->i_state & I_FREEING));
683 	BUG_ON(!list_empty(&inode->i_lru));
684 
685 	if (!list_empty(&inode->i_io_list))
686 		inode_io_list_del(inode);
687 
688 	inode_sb_list_del(inode);
689 
690 	inode_wait_for_lru_isolating(inode);
691 
692 	/*
693 	 * Wait for flusher thread to be done with the inode so that filesystem
694 	 * does not start destroying it while writeback is still running. Since
695 	 * the inode has I_FREEING set, flusher thread won't start new work on
696 	 * the inode.  We just have to wait for running writeback to finish.
697 	 */
698 	inode_wait_for_writeback(inode);
699 
700 	if (op->evict_inode) {
701 		op->evict_inode(inode);
702 	} else {
703 		truncate_inode_pages_final(&inode->i_data);
704 		clear_inode(inode);
705 	}
706 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
707 		cd_forget(inode);
708 
709 	remove_inode_hash(inode);
710 
711 	spin_lock(&inode->i_lock);
712 	wake_up_bit(&inode->i_state, __I_NEW);
713 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
714 	spin_unlock(&inode->i_lock);
715 
716 	destroy_inode(inode);
717 }
718 
719 /*
720  * dispose_list - dispose of the contents of a local list
721  * @head: the head of the list to free
722  *
723  * Dispose-list gets a local list with local inodes in it, so it doesn't
724  * need to worry about list corruption and SMP locks.
725  */
dispose_list(struct list_head * head)726 static void dispose_list(struct list_head *head)
727 {
728 	while (!list_empty(head)) {
729 		struct inode *inode;
730 
731 		inode = list_first_entry(head, struct inode, i_lru);
732 		list_del_init(&inode->i_lru);
733 
734 		evict(inode);
735 		cond_resched();
736 	}
737 }
738 
739 /**
740  * evict_inodes	- evict all evictable inodes for a superblock
741  * @sb:		superblock to operate on
742  *
743  * Make sure that no inodes with zero refcount are retained.  This is
744  * called by superblock shutdown after having SB_ACTIVE flag removed,
745  * so any inode reaching zero refcount during or after that call will
746  * be immediately evicted.
747  */
evict_inodes(struct super_block * sb)748 void evict_inodes(struct super_block *sb)
749 {
750 	struct inode *inode, *next;
751 	LIST_HEAD(dispose);
752 
753 again:
754 	spin_lock(&sb->s_inode_list_lock);
755 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
756 		if (atomic_read(&inode->i_count))
757 			continue;
758 
759 		spin_lock(&inode->i_lock);
760 		if (atomic_read(&inode->i_count)) {
761 			spin_unlock(&inode->i_lock);
762 			continue;
763 		}
764 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
765 			spin_unlock(&inode->i_lock);
766 			continue;
767 		}
768 
769 		inode->i_state |= I_FREEING;
770 		inode_lru_list_del(inode);
771 		spin_unlock(&inode->i_lock);
772 		list_add(&inode->i_lru, &dispose);
773 
774 		/*
775 		 * We can have a ton of inodes to evict at unmount time given
776 		 * enough memory, check to see if we need to go to sleep for a
777 		 * bit so we don't livelock.
778 		 */
779 		if (need_resched()) {
780 			spin_unlock(&sb->s_inode_list_lock);
781 			cond_resched();
782 			dispose_list(&dispose);
783 			goto again;
784 		}
785 	}
786 	spin_unlock(&sb->s_inode_list_lock);
787 
788 	dispose_list(&dispose);
789 }
790 EXPORT_SYMBOL_GPL(evict_inodes);
791 
792 /**
793  * invalidate_inodes	- attempt to free all inodes on a superblock
794  * @sb:		superblock to operate on
795  *
796  * Attempts to free all inodes (including dirty inodes) for a given superblock.
797  */
invalidate_inodes(struct super_block * sb)798 void invalidate_inodes(struct super_block *sb)
799 {
800 	struct inode *inode, *next;
801 	LIST_HEAD(dispose);
802 
803 again:
804 	spin_lock(&sb->s_inode_list_lock);
805 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
806 		spin_lock(&inode->i_lock);
807 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
808 			spin_unlock(&inode->i_lock);
809 			continue;
810 		}
811 		if (atomic_read(&inode->i_count)) {
812 			spin_unlock(&inode->i_lock);
813 			continue;
814 		}
815 
816 		inode->i_state |= I_FREEING;
817 		inode_lru_list_del(inode);
818 		spin_unlock(&inode->i_lock);
819 		list_add(&inode->i_lru, &dispose);
820 		if (need_resched()) {
821 			spin_unlock(&sb->s_inode_list_lock);
822 			cond_resched();
823 			dispose_list(&dispose);
824 			goto again;
825 		}
826 	}
827 	spin_unlock(&sb->s_inode_list_lock);
828 
829 	dispose_list(&dispose);
830 }
831 
832 /*
833  * Isolate the inode from the LRU in preparation for freeing it.
834  *
835  * If the inode has the I_REFERENCED flag set, then it means that it has been
836  * used recently - the flag is set in iput_final(). When we encounter such an
837  * inode, clear the flag and move it to the back of the LRU so it gets another
838  * pass through the LRU before it gets reclaimed. This is necessary because of
839  * the fact we are doing lazy LRU updates to minimise lock contention so the
840  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
841  * with this flag set because they are the inodes that are out of order.
842  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)843 static enum lru_status inode_lru_isolate(struct list_head *item,
844 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
845 {
846 	struct list_head *freeable = arg;
847 	struct inode	*inode = container_of(item, struct inode, i_lru);
848 
849 	/*
850 	 * We are inverting the lru lock/inode->i_lock here, so use a
851 	 * trylock. If we fail to get the lock, just skip it.
852 	 */
853 	if (!spin_trylock(&inode->i_lock))
854 		return LRU_SKIP;
855 
856 	/*
857 	 * Inodes can get referenced, redirtied, or repopulated while
858 	 * they're already on the LRU, and this can make them
859 	 * unreclaimable for a while. Remove them lazily here; iput,
860 	 * sync, or the last page cache deletion will requeue them.
861 	 */
862 	if (atomic_read(&inode->i_count) ||
863 	    (inode->i_state & ~I_REFERENCED) ||
864 	    !mapping_shrinkable(&inode->i_data)) {
865 		list_lru_isolate(lru, &inode->i_lru);
866 		spin_unlock(&inode->i_lock);
867 		this_cpu_dec(nr_unused);
868 		return LRU_REMOVED;
869 	}
870 
871 	/* Recently referenced inodes get one more pass */
872 	if (inode->i_state & I_REFERENCED) {
873 		inode->i_state &= ~I_REFERENCED;
874 		spin_unlock(&inode->i_lock);
875 		return LRU_ROTATE;
876 	}
877 
878 	/*
879 	 * On highmem systems, mapping_shrinkable() permits dropping
880 	 * page cache in order to free up struct inodes: lowmem might
881 	 * be under pressure before the cache inside the highmem zone.
882 	 */
883 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
884 		inode_pin_lru_isolating(inode);
885 		spin_unlock(&inode->i_lock);
886 		spin_unlock(lru_lock);
887 		if (remove_inode_buffers(inode)) {
888 			unsigned long reap;
889 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
890 			if (current_is_kswapd())
891 				__count_vm_events(KSWAPD_INODESTEAL, reap);
892 			else
893 				__count_vm_events(PGINODESTEAL, reap);
894 			mm_account_reclaimed_pages(reap);
895 		}
896 		inode_unpin_lru_isolating(inode);
897 		spin_lock(lru_lock);
898 		return LRU_RETRY;
899 	}
900 
901 	WARN_ON(inode->i_state & I_NEW);
902 	inode->i_state |= I_FREEING;
903 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
904 	spin_unlock(&inode->i_lock);
905 
906 	this_cpu_dec(nr_unused);
907 	return LRU_REMOVED;
908 }
909 
910 /*
911  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
912  * This is called from the superblock shrinker function with a number of inodes
913  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
914  * then are freed outside inode_lock by dispose_list().
915  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)916 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
917 {
918 	LIST_HEAD(freeable);
919 	long freed;
920 
921 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
922 				     inode_lru_isolate, &freeable);
923 	dispose_list(&freeable);
924 	return freed;
925 }
926 
927 static void __wait_on_freeing_inode(struct inode *inode);
928 /*
929  * Called with the inode lock held.
930  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)931 static struct inode *find_inode(struct super_block *sb,
932 				struct hlist_head *head,
933 				int (*test)(struct inode *, void *),
934 				void *data)
935 {
936 	struct inode *inode = NULL;
937 
938 repeat:
939 	hlist_for_each_entry(inode, head, i_hash) {
940 		if (inode->i_sb != sb)
941 			continue;
942 		if (!test(inode, data))
943 			continue;
944 		spin_lock(&inode->i_lock);
945 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
946 			__wait_on_freeing_inode(inode);
947 			goto repeat;
948 		}
949 		if (unlikely(inode->i_state & I_CREATING)) {
950 			spin_unlock(&inode->i_lock);
951 			return ERR_PTR(-ESTALE);
952 		}
953 		__iget(inode);
954 		spin_unlock(&inode->i_lock);
955 		return inode;
956 	}
957 	return NULL;
958 }
959 
960 /*
961  * find_inode_fast is the fast path version of find_inode, see the comment at
962  * iget_locked for details.
963  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)964 static struct inode *find_inode_fast(struct super_block *sb,
965 				struct hlist_head *head, unsigned long ino)
966 {
967 	struct inode *inode = NULL;
968 
969 repeat:
970 	hlist_for_each_entry(inode, head, i_hash) {
971 		if (inode->i_ino != ino)
972 			continue;
973 		if (inode->i_sb != sb)
974 			continue;
975 		spin_lock(&inode->i_lock);
976 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
977 			__wait_on_freeing_inode(inode);
978 			goto repeat;
979 		}
980 		if (unlikely(inode->i_state & I_CREATING)) {
981 			spin_unlock(&inode->i_lock);
982 			return ERR_PTR(-ESTALE);
983 		}
984 		__iget(inode);
985 		spin_unlock(&inode->i_lock);
986 		return inode;
987 	}
988 	return NULL;
989 }
990 
991 /*
992  * Each cpu owns a range of LAST_INO_BATCH numbers.
993  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
994  * to renew the exhausted range.
995  *
996  * This does not significantly increase overflow rate because every CPU can
997  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
998  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
999  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1000  * overflow rate by 2x, which does not seem too significant.
1001  *
1002  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1003  * error if st_ino won't fit in target struct field. Use 32bit counter
1004  * here to attempt to avoid that.
1005  */
1006 #define LAST_INO_BATCH 1024
1007 static DEFINE_PER_CPU(unsigned int, last_ino);
1008 
get_next_ino(void)1009 unsigned int get_next_ino(void)
1010 {
1011 	unsigned int *p = &get_cpu_var(last_ino);
1012 	unsigned int res = *p;
1013 
1014 #ifdef CONFIG_SMP
1015 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1016 		static atomic_t shared_last_ino;
1017 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1018 
1019 		res = next - LAST_INO_BATCH;
1020 	}
1021 #endif
1022 
1023 	res++;
1024 	/* get_next_ino should not provide a 0 inode number */
1025 	if (unlikely(!res))
1026 		res++;
1027 	*p = res;
1028 	put_cpu_var(last_ino);
1029 	return res;
1030 }
1031 EXPORT_SYMBOL(get_next_ino);
1032 
1033 /**
1034  *	new_inode_pseudo 	- obtain an inode
1035  *	@sb: superblock
1036  *
1037  *	Allocates a new inode for given superblock.
1038  *	Inode wont be chained in superblock s_inodes list
1039  *	This means :
1040  *	- fs can't be unmount
1041  *	- quotas, fsnotify, writeback can't work
1042  */
new_inode_pseudo(struct super_block * sb)1043 struct inode *new_inode_pseudo(struct super_block *sb)
1044 {
1045 	struct inode *inode = alloc_inode(sb);
1046 
1047 	if (inode) {
1048 		spin_lock(&inode->i_lock);
1049 		inode->i_state = 0;
1050 		spin_unlock(&inode->i_lock);
1051 	}
1052 	return inode;
1053 }
1054 
1055 /**
1056  *	new_inode 	- obtain an inode
1057  *	@sb: superblock
1058  *
1059  *	Allocates a new inode for given superblock. The default gfp_mask
1060  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1061  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1062  *	for the page cache are not reclaimable or migratable,
1063  *	mapping_set_gfp_mask() must be called with suitable flags on the
1064  *	newly created inode's mapping
1065  *
1066  */
new_inode(struct super_block * sb)1067 struct inode *new_inode(struct super_block *sb)
1068 {
1069 	struct inode *inode;
1070 
1071 	inode = new_inode_pseudo(sb);
1072 	if (inode)
1073 		inode_sb_list_add(inode);
1074 	return inode;
1075 }
1076 EXPORT_SYMBOL(new_inode);
1077 
1078 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1079 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1080 {
1081 	if (S_ISDIR(inode->i_mode)) {
1082 		struct file_system_type *type = inode->i_sb->s_type;
1083 
1084 		/* Set new key only if filesystem hasn't already changed it */
1085 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1086 			/*
1087 			 * ensure nobody is actually holding i_mutex
1088 			 */
1089 			// mutex_destroy(&inode->i_mutex);
1090 			init_rwsem(&inode->i_rwsem);
1091 			lockdep_set_class(&inode->i_rwsem,
1092 					  &type->i_mutex_dir_key);
1093 		}
1094 	}
1095 }
1096 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1097 #endif
1098 
1099 /**
1100  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1101  * @inode:	new inode to unlock
1102  *
1103  * Called when the inode is fully initialised to clear the new state of the
1104  * inode and wake up anyone waiting for the inode to finish initialisation.
1105  */
unlock_new_inode(struct inode * inode)1106 void unlock_new_inode(struct inode *inode)
1107 {
1108 	lockdep_annotate_inode_mutex_key(inode);
1109 	spin_lock(&inode->i_lock);
1110 	WARN_ON(!(inode->i_state & I_NEW));
1111 	inode->i_state &= ~I_NEW & ~I_CREATING;
1112 	smp_mb();
1113 	wake_up_bit(&inode->i_state, __I_NEW);
1114 	spin_unlock(&inode->i_lock);
1115 }
1116 EXPORT_SYMBOL(unlock_new_inode);
1117 
discard_new_inode(struct inode * inode)1118 void discard_new_inode(struct inode *inode)
1119 {
1120 	lockdep_annotate_inode_mutex_key(inode);
1121 	spin_lock(&inode->i_lock);
1122 	WARN_ON(!(inode->i_state & I_NEW));
1123 	inode->i_state &= ~I_NEW;
1124 	smp_mb();
1125 	wake_up_bit(&inode->i_state, __I_NEW);
1126 	spin_unlock(&inode->i_lock);
1127 	iput(inode);
1128 }
1129 EXPORT_SYMBOL(discard_new_inode);
1130 
1131 /**
1132  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1133  *
1134  * Lock any non-NULL argument. The caller must make sure that if he is passing
1135  * in two directories, one is not ancestor of the other.  Zero, one or two
1136  * objects may be locked by this function.
1137  *
1138  * @inode1: first inode to lock
1139  * @inode2: second inode to lock
1140  * @subclass1: inode lock subclass for the first lock obtained
1141  * @subclass2: inode lock subclass for the second lock obtained
1142  */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1143 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1144 		     unsigned subclass1, unsigned subclass2)
1145 {
1146 	if (!inode1 || !inode2) {
1147 		/*
1148 		 * Make sure @subclass1 will be used for the acquired lock.
1149 		 * This is not strictly necessary (no current caller cares) but
1150 		 * let's keep things consistent.
1151 		 */
1152 		if (!inode1)
1153 			swap(inode1, inode2);
1154 		goto lock;
1155 	}
1156 
1157 	/*
1158 	 * If one object is directory and the other is not, we must make sure
1159 	 * to lock directory first as the other object may be its child.
1160 	 */
1161 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1162 		if (inode1 > inode2)
1163 			swap(inode1, inode2);
1164 	} else if (!S_ISDIR(inode1->i_mode))
1165 		swap(inode1, inode2);
1166 lock:
1167 	if (inode1)
1168 		inode_lock_nested(inode1, subclass1);
1169 	if (inode2 && inode2 != inode1)
1170 		inode_lock_nested(inode2, subclass2);
1171 }
1172 
1173 /**
1174  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1175  *
1176  * Lock any non-NULL argument. Passed objects must not be directories.
1177  * Zero, one or two objects may be locked by this function.
1178  *
1179  * @inode1: first inode to lock
1180  * @inode2: second inode to lock
1181  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1182 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1183 {
1184 	if (inode1)
1185 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1186 	if (inode2)
1187 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1188 	lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
1189 }
1190 EXPORT_SYMBOL(lock_two_nondirectories);
1191 
1192 /**
1193  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1194  * @inode1: first inode to unlock
1195  * @inode2: second inode to unlock
1196  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1197 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1198 {
1199 	if (inode1) {
1200 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1201 		inode_unlock(inode1);
1202 	}
1203 	if (inode2 && inode2 != inode1) {
1204 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1205 		inode_unlock(inode2);
1206 	}
1207 }
1208 EXPORT_SYMBOL(unlock_two_nondirectories);
1209 
1210 /**
1211  * inode_insert5 - obtain an inode from a mounted file system
1212  * @inode:	pre-allocated inode to use for insert to cache
1213  * @hashval:	hash value (usually inode number) to get
1214  * @test:	callback used for comparisons between inodes
1215  * @set:	callback used to initialize a new struct inode
1216  * @data:	opaque data pointer to pass to @test and @set
1217  *
1218  * Search for the inode specified by @hashval and @data in the inode cache,
1219  * and if present it is return it with an increased reference count. This is
1220  * a variant of iget5_locked() for callers that don't want to fail on memory
1221  * allocation of inode.
1222  *
1223  * If the inode is not in cache, insert the pre-allocated inode to cache and
1224  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1225  * to fill it in before unlocking it via unlock_new_inode().
1226  *
1227  * Note both @test and @set are called with the inode_hash_lock held, so can't
1228  * sleep.
1229  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1230 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1231 			    int (*test)(struct inode *, void *),
1232 			    int (*set)(struct inode *, void *), void *data)
1233 {
1234 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1235 	struct inode *old;
1236 
1237 again:
1238 	spin_lock(&inode_hash_lock);
1239 	old = find_inode(inode->i_sb, head, test, data);
1240 	if (unlikely(old)) {
1241 		/*
1242 		 * Uhhuh, somebody else created the same inode under us.
1243 		 * Use the old inode instead of the preallocated one.
1244 		 */
1245 		spin_unlock(&inode_hash_lock);
1246 		if (IS_ERR(old))
1247 			return NULL;
1248 		wait_on_inode(old);
1249 		if (unlikely(inode_unhashed(old))) {
1250 			iput(old);
1251 			goto again;
1252 		}
1253 		return old;
1254 	}
1255 
1256 	if (set && unlikely(set(inode, data))) {
1257 		inode = NULL;
1258 		goto unlock;
1259 	}
1260 
1261 	/*
1262 	 * Return the locked inode with I_NEW set, the
1263 	 * caller is responsible for filling in the contents
1264 	 */
1265 	spin_lock(&inode->i_lock);
1266 	inode->i_state |= I_NEW;
1267 	hlist_add_head_rcu(&inode->i_hash, head);
1268 	spin_unlock(&inode->i_lock);
1269 
1270 	/*
1271 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1272 	 * point, so it should be safe to test i_sb_list locklessly.
1273 	 */
1274 	if (list_empty(&inode->i_sb_list))
1275 		inode_sb_list_add(inode);
1276 unlock:
1277 	spin_unlock(&inode_hash_lock);
1278 
1279 	return inode;
1280 }
1281 EXPORT_SYMBOL(inode_insert5);
1282 
1283 /**
1284  * iget5_locked - obtain an inode from a mounted file system
1285  * @sb:		super block of file system
1286  * @hashval:	hash value (usually inode number) to get
1287  * @test:	callback used for comparisons between inodes
1288  * @set:	callback used to initialize a new struct inode
1289  * @data:	opaque data pointer to pass to @test and @set
1290  *
1291  * Search for the inode specified by @hashval and @data in the inode cache,
1292  * and if present it is return it with an increased reference count. This is
1293  * a generalized version of iget_locked() for file systems where the inode
1294  * number is not sufficient for unique identification of an inode.
1295  *
1296  * If the inode is not in cache, allocate a new inode and return it locked,
1297  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1298  * before unlocking it via unlock_new_inode().
1299  *
1300  * Note both @test and @set are called with the inode_hash_lock held, so can't
1301  * sleep.
1302  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1303 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1304 		int (*test)(struct inode *, void *),
1305 		int (*set)(struct inode *, void *), void *data)
1306 {
1307 	struct inode *inode = ilookup5(sb, hashval, test, data);
1308 
1309 	if (!inode) {
1310 		struct inode *new = alloc_inode(sb);
1311 
1312 		if (new) {
1313 			new->i_state = 0;
1314 			inode = inode_insert5(new, hashval, test, set, data);
1315 			if (unlikely(inode != new))
1316 				destroy_inode(new);
1317 		}
1318 	}
1319 	return inode;
1320 }
1321 EXPORT_SYMBOL(iget5_locked);
1322 
1323 /**
1324  * iget_locked - obtain an inode from a mounted file system
1325  * @sb:		super block of file system
1326  * @ino:	inode number to get
1327  *
1328  * Search for the inode specified by @ino in the inode cache and if present
1329  * return it with an increased reference count. This is for file systems
1330  * where the inode number is sufficient for unique identification of an inode.
1331  *
1332  * If the inode is not in cache, allocate a new inode and return it locked,
1333  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1334  * before unlocking it via unlock_new_inode().
1335  */
iget_locked(struct super_block * sb,unsigned long ino)1336 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1337 {
1338 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1339 	struct inode *inode;
1340 again:
1341 	spin_lock(&inode_hash_lock);
1342 	inode = find_inode_fast(sb, head, ino);
1343 	spin_unlock(&inode_hash_lock);
1344 	if (inode) {
1345 		if (IS_ERR(inode))
1346 			return NULL;
1347 		wait_on_inode(inode);
1348 		if (unlikely(inode_unhashed(inode))) {
1349 			iput(inode);
1350 			goto again;
1351 		}
1352 		return inode;
1353 	}
1354 
1355 	inode = alloc_inode(sb);
1356 	if (inode) {
1357 		struct inode *old;
1358 
1359 		spin_lock(&inode_hash_lock);
1360 		/* We released the lock, so.. */
1361 		old = find_inode_fast(sb, head, ino);
1362 		if (!old) {
1363 			inode->i_ino = ino;
1364 			spin_lock(&inode->i_lock);
1365 			inode->i_state = I_NEW;
1366 			hlist_add_head_rcu(&inode->i_hash, head);
1367 			spin_unlock(&inode->i_lock);
1368 			inode_sb_list_add(inode);
1369 			spin_unlock(&inode_hash_lock);
1370 
1371 			/* Return the locked inode with I_NEW set, the
1372 			 * caller is responsible for filling in the contents
1373 			 */
1374 			return inode;
1375 		}
1376 
1377 		/*
1378 		 * Uhhuh, somebody else created the same inode under
1379 		 * us. Use the old inode instead of the one we just
1380 		 * allocated.
1381 		 */
1382 		spin_unlock(&inode_hash_lock);
1383 		destroy_inode(inode);
1384 		if (IS_ERR(old))
1385 			return NULL;
1386 		inode = old;
1387 		wait_on_inode(inode);
1388 		if (unlikely(inode_unhashed(inode))) {
1389 			iput(inode);
1390 			goto again;
1391 		}
1392 	}
1393 	return inode;
1394 }
1395 EXPORT_SYMBOL(iget_locked);
1396 
1397 /*
1398  * search the inode cache for a matching inode number.
1399  * If we find one, then the inode number we are trying to
1400  * allocate is not unique and so we should not use it.
1401  *
1402  * Returns 1 if the inode number is unique, 0 if it is not.
1403  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1404 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1405 {
1406 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1407 	struct inode *inode;
1408 
1409 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1410 		if (inode->i_ino == ino && inode->i_sb == sb)
1411 			return 0;
1412 	}
1413 	return 1;
1414 }
1415 
1416 /**
1417  *	iunique - get a unique inode number
1418  *	@sb: superblock
1419  *	@max_reserved: highest reserved inode number
1420  *
1421  *	Obtain an inode number that is unique on the system for a given
1422  *	superblock. This is used by file systems that have no natural
1423  *	permanent inode numbering system. An inode number is returned that
1424  *	is higher than the reserved limit but unique.
1425  *
1426  *	BUGS:
1427  *	With a large number of inodes live on the file system this function
1428  *	currently becomes quite slow.
1429  */
iunique(struct super_block * sb,ino_t max_reserved)1430 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1431 {
1432 	/*
1433 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1434 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1435 	 * here to attempt to avoid that.
1436 	 */
1437 	static DEFINE_SPINLOCK(iunique_lock);
1438 	static unsigned int counter;
1439 	ino_t res;
1440 
1441 	rcu_read_lock();
1442 	spin_lock(&iunique_lock);
1443 	do {
1444 		if (counter <= max_reserved)
1445 			counter = max_reserved + 1;
1446 		res = counter++;
1447 	} while (!test_inode_iunique(sb, res));
1448 	spin_unlock(&iunique_lock);
1449 	rcu_read_unlock();
1450 
1451 	return res;
1452 }
1453 EXPORT_SYMBOL(iunique);
1454 
igrab(struct inode * inode)1455 struct inode *igrab(struct inode *inode)
1456 {
1457 	spin_lock(&inode->i_lock);
1458 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1459 		__iget(inode);
1460 		spin_unlock(&inode->i_lock);
1461 	} else {
1462 		spin_unlock(&inode->i_lock);
1463 		/*
1464 		 * Handle the case where s_op->clear_inode is not been
1465 		 * called yet, and somebody is calling igrab
1466 		 * while the inode is getting freed.
1467 		 */
1468 		inode = NULL;
1469 	}
1470 	return inode;
1471 }
1472 EXPORT_SYMBOL(igrab);
1473 
1474 /**
1475  * ilookup5_nowait - search for an inode in the inode cache
1476  * @sb:		super block of file system to search
1477  * @hashval:	hash value (usually inode number) to search for
1478  * @test:	callback used for comparisons between inodes
1479  * @data:	opaque data pointer to pass to @test
1480  *
1481  * Search for the inode specified by @hashval and @data in the inode cache.
1482  * If the inode is in the cache, the inode is returned with an incremented
1483  * reference count.
1484  *
1485  * Note: I_NEW is not waited upon so you have to be very careful what you do
1486  * with the returned inode.  You probably should be using ilookup5() instead.
1487  *
1488  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1489  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1490 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1491 		int (*test)(struct inode *, void *), void *data)
1492 {
1493 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1494 	struct inode *inode;
1495 
1496 	spin_lock(&inode_hash_lock);
1497 	inode = find_inode(sb, head, test, data);
1498 	spin_unlock(&inode_hash_lock);
1499 
1500 	return IS_ERR(inode) ? NULL : inode;
1501 }
1502 EXPORT_SYMBOL(ilookup5_nowait);
1503 
1504 /**
1505  * ilookup5 - search for an inode in the inode cache
1506  * @sb:		super block of file system to search
1507  * @hashval:	hash value (usually inode number) to search for
1508  * @test:	callback used for comparisons between inodes
1509  * @data:	opaque data pointer to pass to @test
1510  *
1511  * Search for the inode specified by @hashval and @data in the inode cache,
1512  * and if the inode is in the cache, return the inode with an incremented
1513  * reference count.  Waits on I_NEW before returning the inode.
1514  * returned with an incremented reference count.
1515  *
1516  * This is a generalized version of ilookup() for file systems where the
1517  * inode number is not sufficient for unique identification of an inode.
1518  *
1519  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1520  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1521 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1522 		int (*test)(struct inode *, void *), void *data)
1523 {
1524 	struct inode *inode;
1525 again:
1526 	inode = ilookup5_nowait(sb, hashval, test, data);
1527 	if (inode) {
1528 		wait_on_inode(inode);
1529 		if (unlikely(inode_unhashed(inode))) {
1530 			iput(inode);
1531 			goto again;
1532 		}
1533 	}
1534 	return inode;
1535 }
1536 EXPORT_SYMBOL(ilookup5);
1537 
1538 /**
1539  * ilookup - search for an inode in the inode cache
1540  * @sb:		super block of file system to search
1541  * @ino:	inode number to search for
1542  *
1543  * Search for the inode @ino in the inode cache, and if the inode is in the
1544  * cache, the inode is returned with an incremented reference count.
1545  */
ilookup(struct super_block * sb,unsigned long ino)1546 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1547 {
1548 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1549 	struct inode *inode;
1550 again:
1551 	spin_lock(&inode_hash_lock);
1552 	inode = find_inode_fast(sb, head, ino);
1553 	spin_unlock(&inode_hash_lock);
1554 
1555 	if (inode) {
1556 		if (IS_ERR(inode))
1557 			return NULL;
1558 		wait_on_inode(inode);
1559 		if (unlikely(inode_unhashed(inode))) {
1560 			iput(inode);
1561 			goto again;
1562 		}
1563 	}
1564 	return inode;
1565 }
1566 EXPORT_SYMBOL(ilookup);
1567 
1568 /**
1569  * find_inode_nowait - find an inode in the inode cache
1570  * @sb:		super block of file system to search
1571  * @hashval:	hash value (usually inode number) to search for
1572  * @match:	callback used for comparisons between inodes
1573  * @data:	opaque data pointer to pass to @match
1574  *
1575  * Search for the inode specified by @hashval and @data in the inode
1576  * cache, where the helper function @match will return 0 if the inode
1577  * does not match, 1 if the inode does match, and -1 if the search
1578  * should be stopped.  The @match function must be responsible for
1579  * taking the i_lock spin_lock and checking i_state for an inode being
1580  * freed or being initialized, and incrementing the reference count
1581  * before returning 1.  It also must not sleep, since it is called with
1582  * the inode_hash_lock spinlock held.
1583  *
1584  * This is a even more generalized version of ilookup5() when the
1585  * function must never block --- find_inode() can block in
1586  * __wait_on_freeing_inode() --- or when the caller can not increment
1587  * the reference count because the resulting iput() might cause an
1588  * inode eviction.  The tradeoff is that the @match funtion must be
1589  * very carefully implemented.
1590  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1591 struct inode *find_inode_nowait(struct super_block *sb,
1592 				unsigned long hashval,
1593 				int (*match)(struct inode *, unsigned long,
1594 					     void *),
1595 				void *data)
1596 {
1597 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1598 	struct inode *inode, *ret_inode = NULL;
1599 	int mval;
1600 
1601 	spin_lock(&inode_hash_lock);
1602 	hlist_for_each_entry(inode, head, i_hash) {
1603 		if (inode->i_sb != sb)
1604 			continue;
1605 		mval = match(inode, hashval, data);
1606 		if (mval == 0)
1607 			continue;
1608 		if (mval == 1)
1609 			ret_inode = inode;
1610 		goto out;
1611 	}
1612 out:
1613 	spin_unlock(&inode_hash_lock);
1614 	return ret_inode;
1615 }
1616 EXPORT_SYMBOL(find_inode_nowait);
1617 
1618 /**
1619  * find_inode_rcu - find an inode in the inode cache
1620  * @sb:		Super block of file system to search
1621  * @hashval:	Key to hash
1622  * @test:	Function to test match on an inode
1623  * @data:	Data for test function
1624  *
1625  * Search for the inode specified by @hashval and @data in the inode cache,
1626  * where the helper function @test will return 0 if the inode does not match
1627  * and 1 if it does.  The @test function must be responsible for taking the
1628  * i_lock spin_lock and checking i_state for an inode being freed or being
1629  * initialized.
1630  *
1631  * If successful, this will return the inode for which the @test function
1632  * returned 1 and NULL otherwise.
1633  *
1634  * The @test function is not permitted to take a ref on any inode presented.
1635  * It is also not permitted to sleep.
1636  *
1637  * The caller must hold the RCU read lock.
1638  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1639 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1640 			     int (*test)(struct inode *, void *), void *data)
1641 {
1642 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1643 	struct inode *inode;
1644 
1645 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1646 			 "suspicious find_inode_rcu() usage");
1647 
1648 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1649 		if (inode->i_sb == sb &&
1650 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1651 		    test(inode, data))
1652 			return inode;
1653 	}
1654 	return NULL;
1655 }
1656 EXPORT_SYMBOL(find_inode_rcu);
1657 
1658 /**
1659  * find_inode_by_ino_rcu - Find an inode in the inode cache
1660  * @sb:		Super block of file system to search
1661  * @ino:	The inode number to match
1662  *
1663  * Search for the inode specified by @hashval and @data in the inode cache,
1664  * where the helper function @test will return 0 if the inode does not match
1665  * and 1 if it does.  The @test function must be responsible for taking the
1666  * i_lock spin_lock and checking i_state for an inode being freed or being
1667  * initialized.
1668  *
1669  * If successful, this will return the inode for which the @test function
1670  * returned 1 and NULL otherwise.
1671  *
1672  * The @test function is not permitted to take a ref on any inode presented.
1673  * It is also not permitted to sleep.
1674  *
1675  * The caller must hold the RCU read lock.
1676  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1677 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1678 				    unsigned long ino)
1679 {
1680 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1681 	struct inode *inode;
1682 
1683 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1684 			 "suspicious find_inode_by_ino_rcu() usage");
1685 
1686 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1687 		if (inode->i_ino == ino &&
1688 		    inode->i_sb == sb &&
1689 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1690 		    return inode;
1691 	}
1692 	return NULL;
1693 }
1694 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1695 
insert_inode_locked(struct inode * inode)1696 int insert_inode_locked(struct inode *inode)
1697 {
1698 	struct super_block *sb = inode->i_sb;
1699 	ino_t ino = inode->i_ino;
1700 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1701 
1702 	while (1) {
1703 		struct inode *old = NULL;
1704 		spin_lock(&inode_hash_lock);
1705 		hlist_for_each_entry(old, head, i_hash) {
1706 			if (old->i_ino != ino)
1707 				continue;
1708 			if (old->i_sb != sb)
1709 				continue;
1710 			spin_lock(&old->i_lock);
1711 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1712 				spin_unlock(&old->i_lock);
1713 				continue;
1714 			}
1715 			break;
1716 		}
1717 		if (likely(!old)) {
1718 			spin_lock(&inode->i_lock);
1719 			inode->i_state |= I_NEW | I_CREATING;
1720 			hlist_add_head_rcu(&inode->i_hash, head);
1721 			spin_unlock(&inode->i_lock);
1722 			spin_unlock(&inode_hash_lock);
1723 			return 0;
1724 		}
1725 		if (unlikely(old->i_state & I_CREATING)) {
1726 			spin_unlock(&old->i_lock);
1727 			spin_unlock(&inode_hash_lock);
1728 			return -EBUSY;
1729 		}
1730 		__iget(old);
1731 		spin_unlock(&old->i_lock);
1732 		spin_unlock(&inode_hash_lock);
1733 		wait_on_inode(old);
1734 		if (unlikely(!inode_unhashed(old))) {
1735 			iput(old);
1736 			return -EBUSY;
1737 		}
1738 		iput(old);
1739 	}
1740 }
1741 EXPORT_SYMBOL(insert_inode_locked);
1742 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1743 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1744 		int (*test)(struct inode *, void *), void *data)
1745 {
1746 	struct inode *old;
1747 
1748 	inode->i_state |= I_CREATING;
1749 	old = inode_insert5(inode, hashval, test, NULL, data);
1750 
1751 	if (old != inode) {
1752 		iput(old);
1753 		return -EBUSY;
1754 	}
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL(insert_inode_locked4);
1758 
1759 
generic_delete_inode(struct inode * inode)1760 int generic_delete_inode(struct inode *inode)
1761 {
1762 	return 1;
1763 }
1764 EXPORT_SYMBOL(generic_delete_inode);
1765 
1766 /*
1767  * Called when we're dropping the last reference
1768  * to an inode.
1769  *
1770  * Call the FS "drop_inode()" function, defaulting to
1771  * the legacy UNIX filesystem behaviour.  If it tells
1772  * us to evict inode, do so.  Otherwise, retain inode
1773  * in cache if fs is alive, sync and evict if fs is
1774  * shutting down.
1775  */
iput_final(struct inode * inode)1776 static void iput_final(struct inode *inode)
1777 {
1778 	struct super_block *sb = inode->i_sb;
1779 	const struct super_operations *op = inode->i_sb->s_op;
1780 	unsigned long state;
1781 	int drop;
1782 
1783 	WARN_ON(inode->i_state & I_NEW);
1784 
1785 	if (op->drop_inode)
1786 		drop = op->drop_inode(inode);
1787 	else
1788 		drop = generic_drop_inode(inode);
1789 
1790 	if (!drop &&
1791 	    !(inode->i_state & I_DONTCACHE) &&
1792 	    (sb->s_flags & SB_ACTIVE)) {
1793 		__inode_add_lru(inode, true);
1794 		spin_unlock(&inode->i_lock);
1795 		return;
1796 	}
1797 
1798 	state = inode->i_state;
1799 	if (!drop) {
1800 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1801 		spin_unlock(&inode->i_lock);
1802 
1803 		write_inode_now(inode, 1);
1804 
1805 		spin_lock(&inode->i_lock);
1806 		state = inode->i_state;
1807 		WARN_ON(state & I_NEW);
1808 		state &= ~I_WILL_FREE;
1809 	}
1810 
1811 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1812 	if (!list_empty(&inode->i_lru))
1813 		inode_lru_list_del(inode);
1814 	spin_unlock(&inode->i_lock);
1815 
1816 	evict(inode);
1817 }
1818 
1819 /**
1820  *	iput	- put an inode
1821  *	@inode: inode to put
1822  *
1823  *	Puts an inode, dropping its usage count. If the inode use count hits
1824  *	zero, the inode is then freed and may also be destroyed.
1825  *
1826  *	Consequently, iput() can sleep.
1827  */
iput(struct inode * inode)1828 void iput(struct inode *inode)
1829 {
1830 	if (!inode)
1831 		return;
1832 	BUG_ON(inode->i_state & I_CLEAR);
1833 retry:
1834 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1835 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1836 			atomic_inc(&inode->i_count);
1837 			spin_unlock(&inode->i_lock);
1838 			trace_writeback_lazytime_iput(inode);
1839 			mark_inode_dirty_sync(inode);
1840 			goto retry;
1841 		}
1842 		iput_final(inode);
1843 	}
1844 }
1845 EXPORT_SYMBOL(iput);
1846 
1847 #ifdef CONFIG_BLOCK
1848 /**
1849  *	bmap	- find a block number in a file
1850  *	@inode:  inode owning the block number being requested
1851  *	@block: pointer containing the block to find
1852  *
1853  *	Replaces the value in ``*block`` with the block number on the device holding
1854  *	corresponding to the requested block number in the file.
1855  *	That is, asked for block 4 of inode 1 the function will replace the
1856  *	4 in ``*block``, with disk block relative to the disk start that holds that
1857  *	block of the file.
1858  *
1859  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1860  *	hole, returns 0 and ``*block`` is also set to 0.
1861  */
bmap(struct inode * inode,sector_t * block)1862 int bmap(struct inode *inode, sector_t *block)
1863 {
1864 	if (!inode->i_mapping->a_ops->bmap)
1865 		return -EINVAL;
1866 
1867 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1868 	return 0;
1869 }
1870 EXPORT_SYMBOL(bmap);
1871 #endif
1872 
1873 /*
1874  * With relative atime, only update atime if the previous atime is
1875  * earlier than or equal to either the ctime or mtime,
1876  * or if at least a day has passed since the last atime update.
1877  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1878 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1879 			     struct timespec64 now)
1880 {
1881 	struct timespec64 ctime;
1882 
1883 	if (!(mnt->mnt_flags & MNT_RELATIME))
1884 		return 1;
1885 	/*
1886 	 * Is mtime younger than or equal to atime? If yes, update atime:
1887 	 */
1888 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1889 		return 1;
1890 	/*
1891 	 * Is ctime younger than or equal to atime? If yes, update atime:
1892 	 */
1893 	ctime = inode_get_ctime(inode);
1894 	if (timespec64_compare(&ctime, &inode->i_atime) >= 0)
1895 		return 1;
1896 
1897 	/*
1898 	 * Is the previous atime value older than a day? If yes,
1899 	 * update atime:
1900 	 */
1901 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1902 		return 1;
1903 	/*
1904 	 * Good, we can skip the atime update:
1905 	 */
1906 	return 0;
1907 }
1908 
1909 /**
1910  * inode_update_timestamps - update the timestamps on the inode
1911  * @inode: inode to be updated
1912  * @flags: S_* flags that needed to be updated
1913  *
1914  * The update_time function is called when an inode's timestamps need to be
1915  * updated for a read or write operation. This function handles updating the
1916  * actual timestamps. It's up to the caller to ensure that the inode is marked
1917  * dirty appropriately.
1918  *
1919  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1920  * attempt to update all three of them. S_ATIME updates can be handled
1921  * independently of the rest.
1922  *
1923  * Returns a set of S_* flags indicating which values changed.
1924  */
inode_update_timestamps(struct inode * inode,int flags)1925 int inode_update_timestamps(struct inode *inode, int flags)
1926 {
1927 	int updated = 0;
1928 	struct timespec64 now;
1929 
1930 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1931 		struct timespec64 ctime = inode_get_ctime(inode);
1932 
1933 		now = inode_set_ctime_current(inode);
1934 		if (!timespec64_equal(&now, &ctime))
1935 			updated |= S_CTIME;
1936 		if (!timespec64_equal(&now, &inode->i_mtime)) {
1937 			inode->i_mtime = now;
1938 			updated |= S_MTIME;
1939 		}
1940 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1941 			updated |= S_VERSION;
1942 	} else {
1943 		now = current_time(inode);
1944 	}
1945 
1946 	if (flags & S_ATIME) {
1947 		if (!timespec64_equal(&now, &inode->i_atime)) {
1948 			inode->i_atime = now;
1949 			updated |= S_ATIME;
1950 		}
1951 	}
1952 	return updated;
1953 }
1954 EXPORT_SYMBOL(inode_update_timestamps);
1955 
1956 /**
1957  * generic_update_time - update the timestamps on the inode
1958  * @inode: inode to be updated
1959  * @flags: S_* flags that needed to be updated
1960  *
1961  * The update_time function is called when an inode's timestamps need to be
1962  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1963  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1964  * updates can be handled done independently of the rest.
1965  *
1966  * Returns a S_* mask indicating which fields were updated.
1967  */
generic_update_time(struct inode * inode,int flags)1968 int generic_update_time(struct inode *inode, int flags)
1969 {
1970 	int updated = inode_update_timestamps(inode, flags);
1971 	int dirty_flags = 0;
1972 
1973 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1974 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1975 	if (updated & S_VERSION)
1976 		dirty_flags |= I_DIRTY_SYNC;
1977 	__mark_inode_dirty(inode, dirty_flags);
1978 	return updated;
1979 }
1980 EXPORT_SYMBOL(generic_update_time);
1981 
1982 /*
1983  * This does the actual work of updating an inodes time or version.  Must have
1984  * had called mnt_want_write() before calling this.
1985  */
inode_update_time(struct inode * inode,int flags)1986 int inode_update_time(struct inode *inode, int flags)
1987 {
1988 	if (inode->i_op->update_time)
1989 		return inode->i_op->update_time(inode, flags);
1990 	generic_update_time(inode, flags);
1991 	return 0;
1992 }
1993 EXPORT_SYMBOL(inode_update_time);
1994 
1995 /**
1996  *	atime_needs_update	-	update the access time
1997  *	@path: the &struct path to update
1998  *	@inode: inode to update
1999  *
2000  *	Update the accessed time on an inode and mark it for writeback.
2001  *	This function automatically handles read only file systems and media,
2002  *	as well as the "noatime" flag and inode specific "noatime" markers.
2003  */
atime_needs_update(const struct path * path,struct inode * inode)2004 bool atime_needs_update(const struct path *path, struct inode *inode)
2005 {
2006 	struct vfsmount *mnt = path->mnt;
2007 	struct timespec64 now;
2008 
2009 	if (inode->i_flags & S_NOATIME)
2010 		return false;
2011 
2012 	/* Atime updates will likely cause i_uid and i_gid to be written
2013 	 * back improprely if their true value is unknown to the vfs.
2014 	 */
2015 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2016 		return false;
2017 
2018 	if (IS_NOATIME(inode))
2019 		return false;
2020 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2021 		return false;
2022 
2023 	if (mnt->mnt_flags & MNT_NOATIME)
2024 		return false;
2025 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2026 		return false;
2027 
2028 	now = current_time(inode);
2029 
2030 	if (!relatime_need_update(mnt, inode, now))
2031 		return false;
2032 
2033 	if (timespec64_equal(&inode->i_atime, &now))
2034 		return false;
2035 
2036 	return true;
2037 }
2038 
touch_atime(const struct path * path)2039 void touch_atime(const struct path *path)
2040 {
2041 	struct vfsmount *mnt = path->mnt;
2042 	struct inode *inode = d_inode(path->dentry);
2043 
2044 	if (!atime_needs_update(path, inode))
2045 		return;
2046 
2047 	if (!sb_start_write_trylock(inode->i_sb))
2048 		return;
2049 
2050 	if (__mnt_want_write(mnt) != 0)
2051 		goto skip_update;
2052 	/*
2053 	 * File systems can error out when updating inodes if they need to
2054 	 * allocate new space to modify an inode (such is the case for
2055 	 * Btrfs), but since we touch atime while walking down the path we
2056 	 * really don't care if we failed to update the atime of the file,
2057 	 * so just ignore the return value.
2058 	 * We may also fail on filesystems that have the ability to make parts
2059 	 * of the fs read only, e.g. subvolumes in Btrfs.
2060 	 */
2061 	inode_update_time(inode, S_ATIME);
2062 	__mnt_drop_write(mnt);
2063 skip_update:
2064 	sb_end_write(inode->i_sb);
2065 }
2066 EXPORT_SYMBOL(touch_atime);
2067 
2068 /*
2069  * Return mask of changes for notify_change() that need to be done as a
2070  * response to write or truncate. Return 0 if nothing has to be changed.
2071  * Negative value on error (change should be denied).
2072  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2073 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2074 			      struct dentry *dentry)
2075 {
2076 	struct inode *inode = d_inode(dentry);
2077 	int mask = 0;
2078 	int ret;
2079 
2080 	if (IS_NOSEC(inode))
2081 		return 0;
2082 
2083 	mask = setattr_should_drop_suidgid(idmap, inode);
2084 	ret = security_inode_need_killpriv(dentry);
2085 	if (ret < 0)
2086 		return ret;
2087 	if (ret)
2088 		mask |= ATTR_KILL_PRIV;
2089 	return mask;
2090 }
2091 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2092 static int __remove_privs(struct mnt_idmap *idmap,
2093 			  struct dentry *dentry, int kill)
2094 {
2095 	struct iattr newattrs;
2096 
2097 	newattrs.ia_valid = ATTR_FORCE | kill;
2098 	/*
2099 	 * Note we call this on write, so notify_change will not
2100 	 * encounter any conflicting delegations:
2101 	 */
2102 	return notify_change(idmap, dentry, &newattrs, NULL);
2103 }
2104 
__file_remove_privs(struct file * file,unsigned int flags)2105 static int __file_remove_privs(struct file *file, unsigned int flags)
2106 {
2107 	struct dentry *dentry = file_dentry(file);
2108 	struct inode *inode = file_inode(file);
2109 	int error = 0;
2110 	int kill;
2111 
2112 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2113 		return 0;
2114 
2115 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2116 	if (kill < 0)
2117 		return kill;
2118 
2119 	if (kill) {
2120 		if (flags & IOCB_NOWAIT)
2121 			return -EAGAIN;
2122 
2123 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2124 	}
2125 
2126 	if (!error)
2127 		inode_has_no_xattr(inode);
2128 	return error;
2129 }
2130 
2131 /**
2132  * file_remove_privs - remove special file privileges (suid, capabilities)
2133  * @file: file to remove privileges from
2134  *
2135  * When file is modified by a write or truncation ensure that special
2136  * file privileges are removed.
2137  *
2138  * Return: 0 on success, negative errno on failure.
2139  */
file_remove_privs(struct file * file)2140 int file_remove_privs(struct file *file)
2141 {
2142 	return __file_remove_privs(file, 0);
2143 }
2144 EXPORT_SYMBOL(file_remove_privs);
2145 
inode_needs_update_time(struct inode * inode)2146 static int inode_needs_update_time(struct inode *inode)
2147 {
2148 	int sync_it = 0;
2149 	struct timespec64 now = current_time(inode);
2150 	struct timespec64 ctime;
2151 
2152 	/* First try to exhaust all avenues to not sync */
2153 	if (IS_NOCMTIME(inode))
2154 		return 0;
2155 
2156 	if (!timespec64_equal(&inode->i_mtime, &now))
2157 		sync_it = S_MTIME;
2158 
2159 	ctime = inode_get_ctime(inode);
2160 	if (!timespec64_equal(&ctime, &now))
2161 		sync_it |= S_CTIME;
2162 
2163 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2164 		sync_it |= S_VERSION;
2165 
2166 	return sync_it;
2167 }
2168 
__file_update_time(struct file * file,int sync_mode)2169 static int __file_update_time(struct file *file, int sync_mode)
2170 {
2171 	int ret = 0;
2172 	struct inode *inode = file_inode(file);
2173 
2174 	/* try to update time settings */
2175 	if (!__mnt_want_write_file(file)) {
2176 		ret = inode_update_time(inode, sync_mode);
2177 		__mnt_drop_write_file(file);
2178 	}
2179 
2180 	return ret;
2181 }
2182 
2183 /**
2184  * file_update_time - update mtime and ctime time
2185  * @file: file accessed
2186  *
2187  * Update the mtime and ctime members of an inode and mark the inode for
2188  * writeback. Note that this function is meant exclusively for usage in
2189  * the file write path of filesystems, and filesystems may choose to
2190  * explicitly ignore updates via this function with the _NOCMTIME inode
2191  * flag, e.g. for network filesystem where these imestamps are handled
2192  * by the server. This can return an error for file systems who need to
2193  * allocate space in order to update an inode.
2194  *
2195  * Return: 0 on success, negative errno on failure.
2196  */
file_update_time(struct file * file)2197 int file_update_time(struct file *file)
2198 {
2199 	int ret;
2200 	struct inode *inode = file_inode(file);
2201 
2202 	ret = inode_needs_update_time(inode);
2203 	if (ret <= 0)
2204 		return ret;
2205 
2206 	return __file_update_time(file, ret);
2207 }
2208 EXPORT_SYMBOL(file_update_time);
2209 
2210 /**
2211  * file_modified_flags - handle mandated vfs changes when modifying a file
2212  * @file: file that was modified
2213  * @flags: kiocb flags
2214  *
2215  * When file has been modified ensure that special
2216  * file privileges are removed and time settings are updated.
2217  *
2218  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2219  * time settings will not be updated. It will return -EAGAIN.
2220  *
2221  * Context: Caller must hold the file's inode lock.
2222  *
2223  * Return: 0 on success, negative errno on failure.
2224  */
file_modified_flags(struct file * file,int flags)2225 static int file_modified_flags(struct file *file, int flags)
2226 {
2227 	int ret;
2228 	struct inode *inode = file_inode(file);
2229 
2230 	/*
2231 	 * Clear the security bits if the process is not being run by root.
2232 	 * This keeps people from modifying setuid and setgid binaries.
2233 	 */
2234 	ret = __file_remove_privs(file, flags);
2235 	if (ret)
2236 		return ret;
2237 
2238 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2239 		return 0;
2240 
2241 	ret = inode_needs_update_time(inode);
2242 	if (ret <= 0)
2243 		return ret;
2244 	if (flags & IOCB_NOWAIT)
2245 		return -EAGAIN;
2246 
2247 	return __file_update_time(file, ret);
2248 }
2249 
2250 /**
2251  * file_modified - handle mandated vfs changes when modifying a file
2252  * @file: file that was modified
2253  *
2254  * When file has been modified ensure that special
2255  * file privileges are removed and time settings are updated.
2256  *
2257  * Context: Caller must hold the file's inode lock.
2258  *
2259  * Return: 0 on success, negative errno on failure.
2260  */
file_modified(struct file * file)2261 int file_modified(struct file *file)
2262 {
2263 	return file_modified_flags(file, 0);
2264 }
2265 EXPORT_SYMBOL(file_modified);
2266 
2267 /**
2268  * kiocb_modified - handle mandated vfs changes when modifying a file
2269  * @iocb: iocb that was modified
2270  *
2271  * When file has been modified ensure that special
2272  * file privileges are removed and time settings are updated.
2273  *
2274  * Context: Caller must hold the file's inode lock.
2275  *
2276  * Return: 0 on success, negative errno on failure.
2277  */
kiocb_modified(struct kiocb * iocb)2278 int kiocb_modified(struct kiocb *iocb)
2279 {
2280 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2281 }
2282 EXPORT_SYMBOL_GPL(kiocb_modified);
2283 
inode_needs_sync(struct inode * inode)2284 int inode_needs_sync(struct inode *inode)
2285 {
2286 	if (IS_SYNC(inode))
2287 		return 1;
2288 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2289 		return 1;
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL(inode_needs_sync);
2293 
2294 /*
2295  * If we try to find an inode in the inode hash while it is being
2296  * deleted, we have to wait until the filesystem completes its
2297  * deletion before reporting that it isn't found.  This function waits
2298  * until the deletion _might_ have completed.  Callers are responsible
2299  * to recheck inode state.
2300  *
2301  * It doesn't matter if I_NEW is not set initially, a call to
2302  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2303  * will DTRT.
2304  */
__wait_on_freeing_inode(struct inode * inode)2305 static void __wait_on_freeing_inode(struct inode *inode)
2306 {
2307 	wait_queue_head_t *wq;
2308 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2309 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2310 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2311 	spin_unlock(&inode->i_lock);
2312 	spin_unlock(&inode_hash_lock);
2313 	schedule();
2314 	finish_wait(wq, &wait.wq_entry);
2315 	spin_lock(&inode_hash_lock);
2316 }
2317 
2318 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2319 static int __init set_ihash_entries(char *str)
2320 {
2321 	if (!str)
2322 		return 0;
2323 	ihash_entries = simple_strtoul(str, &str, 0);
2324 	return 1;
2325 }
2326 __setup("ihash_entries=", set_ihash_entries);
2327 
2328 /*
2329  * Initialize the waitqueues and inode hash table.
2330  */
inode_init_early(void)2331 void __init inode_init_early(void)
2332 {
2333 	/* If hashes are distributed across NUMA nodes, defer
2334 	 * hash allocation until vmalloc space is available.
2335 	 */
2336 	if (hashdist)
2337 		return;
2338 
2339 	inode_hashtable =
2340 		alloc_large_system_hash("Inode-cache",
2341 					sizeof(struct hlist_head),
2342 					ihash_entries,
2343 					14,
2344 					HASH_EARLY | HASH_ZERO,
2345 					&i_hash_shift,
2346 					&i_hash_mask,
2347 					0,
2348 					0);
2349 }
2350 
inode_init(void)2351 void __init inode_init(void)
2352 {
2353 	/* inode slab cache */
2354 	inode_cachep = kmem_cache_create("inode_cache",
2355 					 sizeof(struct inode),
2356 					 0,
2357 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2358 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2359 					 init_once);
2360 
2361 	/* Hash may have been set up in inode_init_early */
2362 	if (!hashdist)
2363 		return;
2364 
2365 	inode_hashtable =
2366 		alloc_large_system_hash("Inode-cache",
2367 					sizeof(struct hlist_head),
2368 					ihash_entries,
2369 					14,
2370 					HASH_ZERO,
2371 					&i_hash_shift,
2372 					&i_hash_mask,
2373 					0,
2374 					0);
2375 }
2376 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2377 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2378 {
2379 	inode->i_mode = mode;
2380 	if (S_ISCHR(mode)) {
2381 		inode->i_fop = &def_chr_fops;
2382 		inode->i_rdev = rdev;
2383 	} else if (S_ISBLK(mode)) {
2384 		if (IS_ENABLED(CONFIG_BLOCK))
2385 			inode->i_fop = &def_blk_fops;
2386 		inode->i_rdev = rdev;
2387 	} else if (S_ISFIFO(mode))
2388 		inode->i_fop = &pipefifo_fops;
2389 	else if (S_ISSOCK(mode))
2390 		;	/* leave it no_open_fops */
2391 	else
2392 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2393 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2394 				  inode->i_ino);
2395 }
2396 EXPORT_SYMBOL(init_special_inode);
2397 
2398 /**
2399  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2400  * @idmap: idmap of the mount the inode was created from
2401  * @inode: New inode
2402  * @dir: Directory inode
2403  * @mode: mode of the new inode
2404  *
2405  * If the inode has been created through an idmapped mount the idmap of
2406  * the vfsmount must be passed through @idmap. This function will then take
2407  * care to map the inode according to @idmap before checking permissions
2408  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2409  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2410  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2411 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2412 		      const struct inode *dir, umode_t mode)
2413 {
2414 	inode_fsuid_set(inode, idmap);
2415 	if (dir && dir->i_mode & S_ISGID) {
2416 		inode->i_gid = dir->i_gid;
2417 
2418 		/* Directories are special, and always inherit S_ISGID */
2419 		if (S_ISDIR(mode))
2420 			mode |= S_ISGID;
2421 	} else
2422 		inode_fsgid_set(inode, idmap);
2423 	inode->i_mode = mode;
2424 }
2425 EXPORT_SYMBOL(inode_init_owner);
2426 
2427 /**
2428  * inode_owner_or_capable - check current task permissions to inode
2429  * @idmap: idmap of the mount the inode was found from
2430  * @inode: inode being checked
2431  *
2432  * Return true if current either has CAP_FOWNER in a namespace with the
2433  * inode owner uid mapped, or owns the file.
2434  *
2435  * If the inode has been found through an idmapped mount the idmap of
2436  * the vfsmount must be passed through @idmap. This function will then take
2437  * care to map the inode according to @idmap before checking permissions.
2438  * On non-idmapped mounts or if permission checking is to be performed on the
2439  * raw inode simply passs @nop_mnt_idmap.
2440  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2441 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2442 			    const struct inode *inode)
2443 {
2444 	vfsuid_t vfsuid;
2445 	struct user_namespace *ns;
2446 
2447 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2448 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2449 		return true;
2450 
2451 	ns = current_user_ns();
2452 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2453 		return true;
2454 	return false;
2455 }
2456 EXPORT_SYMBOL(inode_owner_or_capable);
2457 
2458 /*
2459  * Direct i/o helper functions
2460  */
__inode_dio_wait(struct inode * inode)2461 static void __inode_dio_wait(struct inode *inode)
2462 {
2463 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2464 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2465 
2466 	do {
2467 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2468 		if (atomic_read(&inode->i_dio_count))
2469 			schedule();
2470 	} while (atomic_read(&inode->i_dio_count));
2471 	finish_wait(wq, &q.wq_entry);
2472 }
2473 
2474 /**
2475  * inode_dio_wait - wait for outstanding DIO requests to finish
2476  * @inode: inode to wait for
2477  *
2478  * Waits for all pending direct I/O requests to finish so that we can
2479  * proceed with a truncate or equivalent operation.
2480  *
2481  * Must be called under a lock that serializes taking new references
2482  * to i_dio_count, usually by inode->i_mutex.
2483  */
inode_dio_wait(struct inode * inode)2484 void inode_dio_wait(struct inode *inode)
2485 {
2486 	if (atomic_read(&inode->i_dio_count))
2487 		__inode_dio_wait(inode);
2488 }
2489 EXPORT_SYMBOL(inode_dio_wait);
2490 
2491 /*
2492  * inode_set_flags - atomically set some inode flags
2493  *
2494  * Note: the caller should be holding i_mutex, or else be sure that
2495  * they have exclusive access to the inode structure (i.e., while the
2496  * inode is being instantiated).  The reason for the cmpxchg() loop
2497  * --- which wouldn't be necessary if all code paths which modify
2498  * i_flags actually followed this rule, is that there is at least one
2499  * code path which doesn't today so we use cmpxchg() out of an abundance
2500  * of caution.
2501  *
2502  * In the long run, i_mutex is overkill, and we should probably look
2503  * at using the i_lock spinlock to protect i_flags, and then make sure
2504  * it is so documented in include/linux/fs.h and that all code follows
2505  * the locking convention!!
2506  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2507 void inode_set_flags(struct inode *inode, unsigned int flags,
2508 		     unsigned int mask)
2509 {
2510 	WARN_ON_ONCE(flags & ~mask);
2511 	set_mask_bits(&inode->i_flags, mask, flags);
2512 }
2513 EXPORT_SYMBOL(inode_set_flags);
2514 
inode_nohighmem(struct inode * inode)2515 void inode_nohighmem(struct inode *inode)
2516 {
2517 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2518 }
2519 EXPORT_SYMBOL(inode_nohighmem);
2520 
2521 /**
2522  * timestamp_truncate - Truncate timespec to a granularity
2523  * @t: Timespec
2524  * @inode: inode being updated
2525  *
2526  * Truncate a timespec to the granularity supported by the fs
2527  * containing the inode. Always rounds down. gran must
2528  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2529  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2530 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2531 {
2532 	struct super_block *sb = inode->i_sb;
2533 	unsigned int gran = sb->s_time_gran;
2534 
2535 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2536 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2537 		t.tv_nsec = 0;
2538 
2539 	/* Avoid division in the common cases 1 ns and 1 s. */
2540 	if (gran == 1)
2541 		; /* nothing */
2542 	else if (gran == NSEC_PER_SEC)
2543 		t.tv_nsec = 0;
2544 	else if (gran > 1 && gran < NSEC_PER_SEC)
2545 		t.tv_nsec -= t.tv_nsec % gran;
2546 	else
2547 		WARN(1, "invalid file time granularity: %u", gran);
2548 	return t;
2549 }
2550 EXPORT_SYMBOL(timestamp_truncate);
2551 
2552 /**
2553  * current_time - Return FS time
2554  * @inode: inode.
2555  *
2556  * Return the current time truncated to the time granularity supported by
2557  * the fs.
2558  *
2559  * Note that inode and inode->sb cannot be NULL.
2560  * Otherwise, the function warns and returns time without truncation.
2561  */
current_time(struct inode * inode)2562 struct timespec64 current_time(struct inode *inode)
2563 {
2564 	struct timespec64 now;
2565 
2566 	ktime_get_coarse_real_ts64(&now);
2567 	return timestamp_truncate(now, inode);
2568 }
2569 EXPORT_SYMBOL(current_time);
2570 
2571 /**
2572  * inode_set_ctime_current - set the ctime to current_time
2573  * @inode: inode
2574  *
2575  * Set the inode->i_ctime to the current value for the inode. Returns
2576  * the current value that was assigned to i_ctime.
2577  */
inode_set_ctime_current(struct inode * inode)2578 struct timespec64 inode_set_ctime_current(struct inode *inode)
2579 {
2580 	struct timespec64 now = current_time(inode);
2581 
2582 	inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2583 	return now;
2584 }
2585 EXPORT_SYMBOL(inode_set_ctime_current);
2586 
2587 /**
2588  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2589  * @idmap:	idmap of the mount @inode was found from
2590  * @inode:	inode to check
2591  * @vfsgid:	the new/current vfsgid of @inode
2592  *
2593  * Check wether @vfsgid is in the caller's group list or if the caller is
2594  * privileged with CAP_FSETID over @inode. This can be used to determine
2595  * whether the setgid bit can be kept or must be dropped.
2596  *
2597  * Return: true if the caller is sufficiently privileged, false if not.
2598  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2599 bool in_group_or_capable(struct mnt_idmap *idmap,
2600 			 const struct inode *inode, vfsgid_t vfsgid)
2601 {
2602 	if (vfsgid_in_group_p(vfsgid))
2603 		return true;
2604 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2605 		return true;
2606 	return false;
2607 }
2608 
2609 /**
2610  * mode_strip_sgid - handle the sgid bit for non-directories
2611  * @idmap: idmap of the mount the inode was created from
2612  * @dir: parent directory inode
2613  * @mode: mode of the file to be created in @dir
2614  *
2615  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2616  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2617  * either in the group of the parent directory or they have CAP_FSETID
2618  * in their user namespace and are privileged over the parent directory.
2619  * In all other cases, strip the S_ISGID bit from @mode.
2620  *
2621  * Return: the new mode to use for the file
2622  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2623 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2624 			const struct inode *dir, umode_t mode)
2625 {
2626 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2627 		return mode;
2628 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2629 		return mode;
2630 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2631 		return mode;
2632 	return mode & ~S_ISGID;
2633 }
2634 EXPORT_SYMBOL(mode_strip_sgid);
2635