1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12
13 /**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_CTRL:
25 return "ICE_VSI_CTRL";
26 case ICE_VSI_CHNL:
27 return "ICE_VSI_CHNL";
28 case ICE_VSI_LB:
29 return "ICE_VSI_LB";
30 case ICE_VSI_SWITCHDEV_CTRL:
31 return "ICE_VSI_SWITCHDEV_CTRL";
32 default:
33 return "unknown";
34 }
35 }
36
37 /**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64 }
65
66 /**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122 err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124 err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126 err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128 err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131 }
132
133 /**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138 {
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SWITCHDEV_CTRL:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158 }
159
160 /**
161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
162 * @vsi: the VSI being configured
163 *
164 * Return 0 on success and a negative value on error
165 */
ice_vsi_set_num_qs(struct ice_vsi * vsi)166 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
167 {
168 enum ice_vsi_type vsi_type = vsi->type;
169 struct ice_pf *pf = vsi->back;
170 struct ice_vf *vf = vsi->vf;
171
172 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
173 return;
174
175 switch (vsi_type) {
176 case ICE_VSI_PF:
177 if (vsi->req_txq) {
178 vsi->alloc_txq = vsi->req_txq;
179 vsi->num_txq = vsi->req_txq;
180 } else {
181 vsi->alloc_txq = min3(pf->num_lan_msix,
182 ice_get_avail_txq_count(pf),
183 (u16)num_online_cpus());
184 }
185
186 pf->num_lan_tx = vsi->alloc_txq;
187
188 /* only 1 Rx queue unless RSS is enabled */
189 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
190 vsi->alloc_rxq = 1;
191 } else {
192 if (vsi->req_rxq) {
193 vsi->alloc_rxq = vsi->req_rxq;
194 vsi->num_rxq = vsi->req_rxq;
195 } else {
196 vsi->alloc_rxq = min3(pf->num_lan_msix,
197 ice_get_avail_rxq_count(pf),
198 (u16)num_online_cpus());
199 }
200 }
201
202 pf->num_lan_rx = vsi->alloc_rxq;
203
204 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
205 max_t(int, vsi->alloc_rxq,
206 vsi->alloc_txq));
207 break;
208 case ICE_VSI_SWITCHDEV_CTRL:
209 /* The number of queues for ctrl VSI is equal to number of VFs.
210 * Each ring is associated to the corresponding VF_PR netdev.
211 */
212 vsi->alloc_txq = ice_get_num_vfs(pf);
213 vsi->alloc_rxq = vsi->alloc_txq;
214 vsi->num_q_vectors = 1;
215 break;
216 case ICE_VSI_VF:
217 if (vf->num_req_qs)
218 vf->num_vf_qs = vf->num_req_qs;
219 vsi->alloc_txq = vf->num_vf_qs;
220 vsi->alloc_rxq = vf->num_vf_qs;
221 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
222 * data queue interrupts). Since vsi->num_q_vectors is number
223 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
224 * original vector count
225 */
226 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
227 break;
228 case ICE_VSI_CTRL:
229 vsi->alloc_txq = 1;
230 vsi->alloc_rxq = 1;
231 vsi->num_q_vectors = 1;
232 break;
233 case ICE_VSI_CHNL:
234 vsi->alloc_txq = 0;
235 vsi->alloc_rxq = 0;
236 break;
237 case ICE_VSI_LB:
238 vsi->alloc_txq = 1;
239 vsi->alloc_rxq = 1;
240 break;
241 default:
242 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
243 break;
244 }
245
246 ice_vsi_set_num_desc(vsi);
247 }
248
249 /**
250 * ice_get_free_slot - get the next non-NULL location index in array
251 * @array: array to search
252 * @size: size of the array
253 * @curr: last known occupied index to be used as a search hint
254 *
255 * void * is being used to keep the functionality generic. This lets us use this
256 * function on any array of pointers.
257 */
ice_get_free_slot(void * array,int size,int curr)258 static int ice_get_free_slot(void *array, int size, int curr)
259 {
260 int **tmp_array = (int **)array;
261 int next;
262
263 if (curr < (size - 1) && !tmp_array[curr + 1]) {
264 next = curr + 1;
265 } else {
266 int i = 0;
267
268 while ((i < size) && (tmp_array[i]))
269 i++;
270 if (i == size)
271 next = ICE_NO_VSI;
272 else
273 next = i;
274 }
275 return next;
276 }
277
278 /**
279 * ice_vsi_delete_from_hw - delete a VSI from the switch
280 * @vsi: pointer to VSI being removed
281 */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)282 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
283 {
284 struct ice_pf *pf = vsi->back;
285 struct ice_vsi_ctx *ctxt;
286 int status;
287
288 ice_fltr_remove_all(vsi);
289 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
290 if (!ctxt)
291 return;
292
293 if (vsi->type == ICE_VSI_VF)
294 ctxt->vf_num = vsi->vf->vf_id;
295 ctxt->vsi_num = vsi->vsi_num;
296
297 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
298
299 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
300 if (status)
301 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
302 vsi->vsi_num, status);
303
304 kfree(ctxt);
305 }
306
307 /**
308 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
309 * @vsi: pointer to VSI being cleared
310 */
ice_vsi_free_arrays(struct ice_vsi * vsi)311 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
312 {
313 struct ice_pf *pf = vsi->back;
314 struct device *dev;
315
316 dev = ice_pf_to_dev(pf);
317
318 /* free the ring and vector containers */
319 devm_kfree(dev, vsi->q_vectors);
320 vsi->q_vectors = NULL;
321 devm_kfree(dev, vsi->tx_rings);
322 vsi->tx_rings = NULL;
323 devm_kfree(dev, vsi->rx_rings);
324 vsi->rx_rings = NULL;
325 devm_kfree(dev, vsi->txq_map);
326 vsi->txq_map = NULL;
327 devm_kfree(dev, vsi->rxq_map);
328 vsi->rxq_map = NULL;
329 }
330
331 /**
332 * ice_vsi_free_stats - Free the ring statistics structures
333 * @vsi: VSI pointer
334 */
ice_vsi_free_stats(struct ice_vsi * vsi)335 static void ice_vsi_free_stats(struct ice_vsi *vsi)
336 {
337 struct ice_vsi_stats *vsi_stat;
338 struct ice_pf *pf = vsi->back;
339 int i;
340
341 if (vsi->type == ICE_VSI_CHNL)
342 return;
343 if (!pf->vsi_stats)
344 return;
345
346 vsi_stat = pf->vsi_stats[vsi->idx];
347 if (!vsi_stat)
348 return;
349
350 ice_for_each_alloc_txq(vsi, i) {
351 if (vsi_stat->tx_ring_stats[i]) {
352 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
353 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
354 }
355 }
356
357 ice_for_each_alloc_rxq(vsi, i) {
358 if (vsi_stat->rx_ring_stats[i]) {
359 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
360 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
361 }
362 }
363
364 kfree(vsi_stat->tx_ring_stats);
365 kfree(vsi_stat->rx_ring_stats);
366 kfree(vsi_stat);
367 pf->vsi_stats[vsi->idx] = NULL;
368 }
369
370 /**
371 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
372 * @vsi: VSI which is having stats allocated
373 */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)374 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
375 {
376 struct ice_ring_stats **tx_ring_stats;
377 struct ice_ring_stats **rx_ring_stats;
378 struct ice_vsi_stats *vsi_stats;
379 struct ice_pf *pf = vsi->back;
380 u16 i;
381
382 vsi_stats = pf->vsi_stats[vsi->idx];
383 tx_ring_stats = vsi_stats->tx_ring_stats;
384 rx_ring_stats = vsi_stats->rx_ring_stats;
385
386 /* Allocate Tx ring stats */
387 ice_for_each_alloc_txq(vsi, i) {
388 struct ice_ring_stats *ring_stats;
389 struct ice_tx_ring *ring;
390
391 ring = vsi->tx_rings[i];
392 ring_stats = tx_ring_stats[i];
393
394 if (!ring_stats) {
395 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
396 if (!ring_stats)
397 goto err_out;
398
399 WRITE_ONCE(tx_ring_stats[i], ring_stats);
400 }
401
402 ring->ring_stats = ring_stats;
403 }
404
405 /* Allocate Rx ring stats */
406 ice_for_each_alloc_rxq(vsi, i) {
407 struct ice_ring_stats *ring_stats;
408 struct ice_rx_ring *ring;
409
410 ring = vsi->rx_rings[i];
411 ring_stats = rx_ring_stats[i];
412
413 if (!ring_stats) {
414 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
415 if (!ring_stats)
416 goto err_out;
417
418 WRITE_ONCE(rx_ring_stats[i], ring_stats);
419 }
420
421 ring->ring_stats = ring_stats;
422 }
423
424 return 0;
425
426 err_out:
427 ice_vsi_free_stats(vsi);
428 return -ENOMEM;
429 }
430
431 /**
432 * ice_vsi_free - clean up and deallocate the provided VSI
433 * @vsi: pointer to VSI being cleared
434 *
435 * This deallocates the VSI's queue resources, removes it from the PF's
436 * VSI array if necessary, and deallocates the VSI
437 */
ice_vsi_free(struct ice_vsi * vsi)438 static void ice_vsi_free(struct ice_vsi *vsi)
439 {
440 struct ice_pf *pf = NULL;
441 struct device *dev;
442
443 if (!vsi || !vsi->back)
444 return;
445
446 pf = vsi->back;
447 dev = ice_pf_to_dev(pf);
448
449 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
450 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
451 return;
452 }
453
454 mutex_lock(&pf->sw_mutex);
455 /* updates the PF for this cleared VSI */
456
457 pf->vsi[vsi->idx] = NULL;
458 pf->next_vsi = vsi->idx;
459
460 ice_vsi_free_stats(vsi);
461 ice_vsi_free_arrays(vsi);
462 mutex_destroy(&vsi->xdp_state_lock);
463 mutex_unlock(&pf->sw_mutex);
464 devm_kfree(dev, vsi);
465 }
466
ice_vsi_delete(struct ice_vsi * vsi)467 void ice_vsi_delete(struct ice_vsi *vsi)
468 {
469 ice_vsi_delete_from_hw(vsi);
470 ice_vsi_free(vsi);
471 }
472
473 /**
474 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
475 * @irq: interrupt number
476 * @data: pointer to a q_vector
477 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)478 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
479 {
480 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
481
482 if (!q_vector->tx.tx_ring)
483 return IRQ_HANDLED;
484
485 #define FDIR_RX_DESC_CLEAN_BUDGET 64
486 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
487 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
488
489 return IRQ_HANDLED;
490 }
491
492 /**
493 * ice_msix_clean_rings - MSIX mode Interrupt Handler
494 * @irq: interrupt number
495 * @data: pointer to a q_vector
496 */
ice_msix_clean_rings(int __always_unused irq,void * data)497 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
498 {
499 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
500
501 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
502 return IRQ_HANDLED;
503
504 q_vector->total_events++;
505
506 napi_schedule(&q_vector->napi);
507
508 return IRQ_HANDLED;
509 }
510
ice_eswitch_msix_clean_rings(int __always_unused irq,void * data)511 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
512 {
513 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
514 struct ice_pf *pf = q_vector->vsi->back;
515 struct ice_vf *vf;
516 unsigned int bkt;
517
518 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
519 return IRQ_HANDLED;
520
521 rcu_read_lock();
522 ice_for_each_vf_rcu(pf, bkt, vf)
523 napi_schedule(&vf->repr->q_vector->napi);
524 rcu_read_unlock();
525
526 return IRQ_HANDLED;
527 }
528
529 /**
530 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
531 * @vsi: VSI pointer
532 */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)533 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
534 {
535 struct ice_vsi_stats *vsi_stat;
536 struct ice_pf *pf = vsi->back;
537
538 if (vsi->type == ICE_VSI_CHNL)
539 return 0;
540 if (!pf->vsi_stats)
541 return -ENOENT;
542
543 if (pf->vsi_stats[vsi->idx])
544 /* realloc will happen in rebuild path */
545 return 0;
546
547 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
548 if (!vsi_stat)
549 return -ENOMEM;
550
551 vsi_stat->tx_ring_stats =
552 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
553 GFP_KERNEL);
554 if (!vsi_stat->tx_ring_stats)
555 goto err_alloc_tx;
556
557 vsi_stat->rx_ring_stats =
558 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
559 GFP_KERNEL);
560 if (!vsi_stat->rx_ring_stats)
561 goto err_alloc_rx;
562
563 pf->vsi_stats[vsi->idx] = vsi_stat;
564
565 return 0;
566
567 err_alloc_rx:
568 kfree(vsi_stat->rx_ring_stats);
569 err_alloc_tx:
570 kfree(vsi_stat->tx_ring_stats);
571 kfree(vsi_stat);
572 pf->vsi_stats[vsi->idx] = NULL;
573 return -ENOMEM;
574 }
575
576 /**
577 * ice_vsi_alloc_def - set default values for already allocated VSI
578 * @vsi: ptr to VSI
579 * @ch: ptr to channel
580 */
581 static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)582 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
583 {
584 if (vsi->type != ICE_VSI_CHNL) {
585 ice_vsi_set_num_qs(vsi);
586 if (ice_vsi_alloc_arrays(vsi))
587 return -ENOMEM;
588 }
589
590 switch (vsi->type) {
591 case ICE_VSI_SWITCHDEV_CTRL:
592 /* Setup eswitch MSIX irq handler for VSI */
593 vsi->irq_handler = ice_eswitch_msix_clean_rings;
594 break;
595 case ICE_VSI_PF:
596 /* Setup default MSIX irq handler for VSI */
597 vsi->irq_handler = ice_msix_clean_rings;
598 break;
599 case ICE_VSI_CTRL:
600 /* Setup ctrl VSI MSIX irq handler */
601 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
602 break;
603 case ICE_VSI_CHNL:
604 if (!ch)
605 return -EINVAL;
606
607 vsi->num_rxq = ch->num_rxq;
608 vsi->num_txq = ch->num_txq;
609 vsi->next_base_q = ch->base_q;
610 break;
611 case ICE_VSI_VF:
612 case ICE_VSI_LB:
613 break;
614 default:
615 ice_vsi_free_arrays(vsi);
616 return -EINVAL;
617 }
618
619 return 0;
620 }
621
622 /**
623 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
624 * @pf: board private structure
625 *
626 * Reserves a VSI index from the PF and allocates an empty VSI structure
627 * without a type. The VSI structure must later be initialized by calling
628 * ice_vsi_cfg().
629 *
630 * returns a pointer to a VSI on success, NULL on failure.
631 */
ice_vsi_alloc(struct ice_pf * pf)632 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
633 {
634 struct device *dev = ice_pf_to_dev(pf);
635 struct ice_vsi *vsi = NULL;
636
637 /* Need to protect the allocation of the VSIs at the PF level */
638 mutex_lock(&pf->sw_mutex);
639
640 /* If we have already allocated our maximum number of VSIs,
641 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
642 * is available to be populated
643 */
644 if (pf->next_vsi == ICE_NO_VSI) {
645 dev_dbg(dev, "out of VSI slots!\n");
646 goto unlock_pf;
647 }
648
649 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
650 if (!vsi)
651 goto unlock_pf;
652
653 vsi->back = pf;
654 set_bit(ICE_VSI_DOWN, vsi->state);
655
656 /* fill slot and make note of the index */
657 vsi->idx = pf->next_vsi;
658 pf->vsi[pf->next_vsi] = vsi;
659
660 /* prepare pf->next_vsi for next use */
661 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
662 pf->next_vsi);
663
664 mutex_init(&vsi->xdp_state_lock);
665
666 unlock_pf:
667 mutex_unlock(&pf->sw_mutex);
668 return vsi;
669 }
670
671 /**
672 * ice_alloc_fd_res - Allocate FD resource for a VSI
673 * @vsi: pointer to the ice_vsi
674 *
675 * This allocates the FD resources
676 *
677 * Returns 0 on success, -EPERM on no-op or -EIO on failure
678 */
ice_alloc_fd_res(struct ice_vsi * vsi)679 static int ice_alloc_fd_res(struct ice_vsi *vsi)
680 {
681 struct ice_pf *pf = vsi->back;
682 u32 g_val, b_val;
683
684 /* Flow Director filters are only allocated/assigned to the PF VSI or
685 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
686 * add/delete filters so resources are not allocated to it
687 */
688 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
689 return -EPERM;
690
691 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
692 vsi->type == ICE_VSI_CHNL))
693 return -EPERM;
694
695 /* FD filters from guaranteed pool per VSI */
696 g_val = pf->hw.func_caps.fd_fltr_guar;
697 if (!g_val)
698 return -EPERM;
699
700 /* FD filters from best effort pool */
701 b_val = pf->hw.func_caps.fd_fltr_best_effort;
702 if (!b_val)
703 return -EPERM;
704
705 /* PF main VSI gets only 64 FD resources from guaranteed pool
706 * when ADQ is configured.
707 */
708 #define ICE_PF_VSI_GFLTR 64
709
710 /* determine FD filter resources per VSI from shared(best effort) and
711 * dedicated pool
712 */
713 if (vsi->type == ICE_VSI_PF) {
714 vsi->num_gfltr = g_val;
715 /* if MQPRIO is configured, main VSI doesn't get all FD
716 * resources from guaranteed pool. PF VSI gets 64 FD resources
717 */
718 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
719 if (g_val < ICE_PF_VSI_GFLTR)
720 return -EPERM;
721 /* allow bare minimum entries for PF VSI */
722 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
723 }
724
725 /* each VSI gets same "best_effort" quota */
726 vsi->num_bfltr = b_val;
727 } else if (vsi->type == ICE_VSI_VF) {
728 vsi->num_gfltr = 0;
729
730 /* each VSI gets same "best_effort" quota */
731 vsi->num_bfltr = b_val;
732 } else {
733 struct ice_vsi *main_vsi;
734 int numtc;
735
736 main_vsi = ice_get_main_vsi(pf);
737 if (!main_vsi)
738 return -EPERM;
739
740 if (!main_vsi->all_numtc)
741 return -EINVAL;
742
743 /* figure out ADQ numtc */
744 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
745
746 /* only one TC but still asking resources for channels,
747 * invalid config
748 */
749 if (numtc < ICE_CHNL_START_TC)
750 return -EPERM;
751
752 g_val -= ICE_PF_VSI_GFLTR;
753 /* channel VSIs gets equal share from guaranteed pool */
754 vsi->num_gfltr = g_val / numtc;
755
756 /* each VSI gets same "best_effort" quota */
757 vsi->num_bfltr = b_val;
758 }
759
760 return 0;
761 }
762
763 /**
764 * ice_vsi_get_qs - Assign queues from PF to VSI
765 * @vsi: the VSI to assign queues to
766 *
767 * Returns 0 on success and a negative value on error
768 */
ice_vsi_get_qs(struct ice_vsi * vsi)769 static int ice_vsi_get_qs(struct ice_vsi *vsi)
770 {
771 struct ice_pf *pf = vsi->back;
772 struct ice_qs_cfg tx_qs_cfg = {
773 .qs_mutex = &pf->avail_q_mutex,
774 .pf_map = pf->avail_txqs,
775 .pf_map_size = pf->max_pf_txqs,
776 .q_count = vsi->alloc_txq,
777 .scatter_count = ICE_MAX_SCATTER_TXQS,
778 .vsi_map = vsi->txq_map,
779 .vsi_map_offset = 0,
780 .mapping_mode = ICE_VSI_MAP_CONTIG
781 };
782 struct ice_qs_cfg rx_qs_cfg = {
783 .qs_mutex = &pf->avail_q_mutex,
784 .pf_map = pf->avail_rxqs,
785 .pf_map_size = pf->max_pf_rxqs,
786 .q_count = vsi->alloc_rxq,
787 .scatter_count = ICE_MAX_SCATTER_RXQS,
788 .vsi_map = vsi->rxq_map,
789 .vsi_map_offset = 0,
790 .mapping_mode = ICE_VSI_MAP_CONTIG
791 };
792 int ret;
793
794 if (vsi->type == ICE_VSI_CHNL)
795 return 0;
796
797 ret = __ice_vsi_get_qs(&tx_qs_cfg);
798 if (ret)
799 return ret;
800 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
801
802 ret = __ice_vsi_get_qs(&rx_qs_cfg);
803 if (ret)
804 return ret;
805 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
806
807 return 0;
808 }
809
810 /**
811 * ice_vsi_put_qs - Release queues from VSI to PF
812 * @vsi: the VSI that is going to release queues
813 */
ice_vsi_put_qs(struct ice_vsi * vsi)814 static void ice_vsi_put_qs(struct ice_vsi *vsi)
815 {
816 struct ice_pf *pf = vsi->back;
817 int i;
818
819 mutex_lock(&pf->avail_q_mutex);
820
821 ice_for_each_alloc_txq(vsi, i) {
822 clear_bit(vsi->txq_map[i], pf->avail_txqs);
823 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
824 }
825
826 ice_for_each_alloc_rxq(vsi, i) {
827 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
828 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
829 }
830
831 mutex_unlock(&pf->avail_q_mutex);
832 }
833
834 /**
835 * ice_is_safe_mode
836 * @pf: pointer to the PF struct
837 *
838 * returns true if driver is in safe mode, false otherwise
839 */
ice_is_safe_mode(struct ice_pf * pf)840 bool ice_is_safe_mode(struct ice_pf *pf)
841 {
842 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
843 }
844
845 /**
846 * ice_is_rdma_ena
847 * @pf: pointer to the PF struct
848 *
849 * returns true if RDMA is currently supported, false otherwise
850 */
ice_is_rdma_ena(struct ice_pf * pf)851 bool ice_is_rdma_ena(struct ice_pf *pf)
852 {
853 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
854 }
855
856 /**
857 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
858 * @vsi: the VSI being cleaned up
859 *
860 * This function deletes RSS input set for all flows that were configured
861 * for this VSI
862 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)863 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
864 {
865 struct ice_pf *pf = vsi->back;
866 int status;
867
868 if (ice_is_safe_mode(pf))
869 return;
870
871 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
872 if (status)
873 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
874 vsi->vsi_num, status);
875 }
876
877 /**
878 * ice_rss_clean - Delete RSS related VSI structures and configuration
879 * @vsi: the VSI being removed
880 */
ice_rss_clean(struct ice_vsi * vsi)881 static void ice_rss_clean(struct ice_vsi *vsi)
882 {
883 struct ice_pf *pf = vsi->back;
884 struct device *dev;
885
886 dev = ice_pf_to_dev(pf);
887
888 devm_kfree(dev, vsi->rss_hkey_user);
889 devm_kfree(dev, vsi->rss_lut_user);
890
891 ice_vsi_clean_rss_flow_fld(vsi);
892 /* remove RSS replay list */
893 if (!ice_is_safe_mode(pf))
894 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
895 }
896
897 /**
898 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
899 * @vsi: the VSI being configured
900 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)901 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
902 {
903 struct ice_hw_common_caps *cap;
904 struct ice_pf *pf = vsi->back;
905 u16 max_rss_size;
906
907 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
908 vsi->rss_size = 1;
909 return;
910 }
911
912 cap = &pf->hw.func_caps.common_cap;
913 max_rss_size = BIT(cap->rss_table_entry_width);
914 switch (vsi->type) {
915 case ICE_VSI_CHNL:
916 case ICE_VSI_PF:
917 /* PF VSI will inherit RSS instance of PF */
918 vsi->rss_table_size = (u16)cap->rss_table_size;
919 if (vsi->type == ICE_VSI_CHNL)
920 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
921 else
922 vsi->rss_size = min_t(u16, num_online_cpus(),
923 max_rss_size);
924 vsi->rss_lut_type = ICE_LUT_PF;
925 break;
926 case ICE_VSI_SWITCHDEV_CTRL:
927 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
928 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
929 vsi->rss_lut_type = ICE_LUT_VSI;
930 break;
931 case ICE_VSI_VF:
932 /* VF VSI will get a small RSS table.
933 * For VSI_LUT, LUT size should be set to 64 bytes.
934 */
935 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
936 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
937 vsi->rss_lut_type = ICE_LUT_VSI;
938 break;
939 case ICE_VSI_LB:
940 break;
941 default:
942 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
943 ice_vsi_type_str(vsi->type));
944 break;
945 }
946 }
947
948 /**
949 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
950 * @hw: HW structure used to determine the VLAN mode of the device
951 * @ctxt: the VSI context being set
952 *
953 * This initializes a default VSI context for all sections except the Queues.
954 */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)955 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
956 {
957 u32 table = 0;
958
959 memset(&ctxt->info, 0, sizeof(ctxt->info));
960 /* VSI's should be allocated from shared pool */
961 ctxt->alloc_from_pool = true;
962 /* Src pruning enabled by default */
963 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
964 /* Traffic from VSI can be sent to LAN */
965 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
966 /* allow all untagged/tagged packets by default on Tx */
967 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
968 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
969 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
970 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
971 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
972 *
973 * DVM - leave inner VLAN in packet by default
974 */
975 if (ice_is_dvm_ena(hw)) {
976 ctxt->info.inner_vlan_flags |=
977 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
978 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
979 ctxt->info.outer_vlan_flags =
980 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
981 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
982 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
983 ctxt->info.outer_vlan_flags |=
984 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
985 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
986 ICE_AQ_VSI_OUTER_TAG_TYPE_M;
987 ctxt->info.outer_vlan_flags |=
988 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
989 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
990 }
991 /* Have 1:1 UP mapping for both ingress/egress tables */
992 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
993 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
994 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
995 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
996 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
997 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
998 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
999 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1000 ctxt->info.ingress_table = cpu_to_le32(table);
1001 ctxt->info.egress_table = cpu_to_le32(table);
1002 /* Have 1:1 UP mapping for outer to inner UP table */
1003 ctxt->info.outer_up_table = cpu_to_le32(table);
1004 /* No Outer tag support outer_tag_flags remains to zero */
1005 }
1006
1007 /**
1008 * ice_vsi_setup_q_map - Setup a VSI queue map
1009 * @vsi: the VSI being configured
1010 * @ctxt: VSI context structure
1011 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1012 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1013 {
1014 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1015 u16 num_txq_per_tc, num_rxq_per_tc;
1016 u16 qcount_tx = vsi->alloc_txq;
1017 u16 qcount_rx = vsi->alloc_rxq;
1018 u8 netdev_tc = 0;
1019 int i;
1020
1021 if (!vsi->tc_cfg.numtc) {
1022 /* at least TC0 should be enabled by default */
1023 vsi->tc_cfg.numtc = 1;
1024 vsi->tc_cfg.ena_tc = 1;
1025 }
1026
1027 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1028 if (!num_rxq_per_tc)
1029 num_rxq_per_tc = 1;
1030 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1031 if (!num_txq_per_tc)
1032 num_txq_per_tc = 1;
1033
1034 /* find the (rounded up) power-of-2 of qcount */
1035 pow = (u16)order_base_2(num_rxq_per_tc);
1036
1037 /* TC mapping is a function of the number of Rx queues assigned to the
1038 * VSI for each traffic class and the offset of these queues.
1039 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1040 * queues allocated to TC0. No:of queues is a power-of-2.
1041 *
1042 * If TC is not enabled, the queue offset is set to 0, and allocate one
1043 * queue, this way, traffic for the given TC will be sent to the default
1044 * queue.
1045 *
1046 * Setup number and offset of Rx queues for all TCs for the VSI
1047 */
1048 ice_for_each_traffic_class(i) {
1049 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1050 /* TC is not enabled */
1051 vsi->tc_cfg.tc_info[i].qoffset = 0;
1052 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1053 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1054 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1055 ctxt->info.tc_mapping[i] = 0;
1056 continue;
1057 }
1058
1059 /* TC is enabled */
1060 vsi->tc_cfg.tc_info[i].qoffset = offset;
1061 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1062 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1063 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1064
1065 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1066 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1067 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1068 ICE_AQ_VSI_TC_Q_NUM_M);
1069 offset += num_rxq_per_tc;
1070 tx_count += num_txq_per_tc;
1071 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1072 }
1073
1074 /* if offset is non-zero, means it is calculated correctly based on
1075 * enabled TCs for a given VSI otherwise qcount_rx will always
1076 * be correct and non-zero because it is based off - VSI's
1077 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1078 * at least 1)
1079 */
1080 if (offset)
1081 rx_count = offset;
1082 else
1083 rx_count = num_rxq_per_tc;
1084
1085 if (rx_count > vsi->alloc_rxq) {
1086 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1087 rx_count, vsi->alloc_rxq);
1088 return -EINVAL;
1089 }
1090
1091 if (tx_count > vsi->alloc_txq) {
1092 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1093 tx_count, vsi->alloc_txq);
1094 return -EINVAL;
1095 }
1096
1097 vsi->num_txq = tx_count;
1098 vsi->num_rxq = rx_count;
1099
1100 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1101 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1102 /* since there is a chance that num_rxq could have been changed
1103 * in the above for loop, make num_txq equal to num_rxq.
1104 */
1105 vsi->num_txq = vsi->num_rxq;
1106 }
1107
1108 /* Rx queue mapping */
1109 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1110 /* q_mapping buffer holds the info for the first queue allocated for
1111 * this VSI in the PF space and also the number of queues associated
1112 * with this VSI.
1113 */
1114 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1115 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1116
1117 return 0;
1118 }
1119
1120 /**
1121 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1122 * @ctxt: the VSI context being set
1123 * @vsi: the VSI being configured
1124 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1125 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1126 {
1127 u8 dflt_q_group, dflt_q_prio;
1128 u16 dflt_q, report_q, val;
1129
1130 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1131 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1132 return;
1133
1134 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1135 ctxt->info.valid_sections |= cpu_to_le16(val);
1136 dflt_q = 0;
1137 dflt_q_group = 0;
1138 report_q = 0;
1139 dflt_q_prio = 0;
1140
1141 /* enable flow director filtering/programming */
1142 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1143 ctxt->info.fd_options = cpu_to_le16(val);
1144 /* max of allocated flow director filters */
1145 ctxt->info.max_fd_fltr_dedicated =
1146 cpu_to_le16(vsi->num_gfltr);
1147 /* max of shared flow director filters any VSI may program */
1148 ctxt->info.max_fd_fltr_shared =
1149 cpu_to_le16(vsi->num_bfltr);
1150 /* default queue index within the VSI of the default FD */
1151 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1152 ICE_AQ_VSI_FD_DEF_Q_M);
1153 /* target queue or queue group to the FD filter */
1154 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1155 ICE_AQ_VSI_FD_DEF_GRP_M);
1156 ctxt->info.fd_def_q = cpu_to_le16(val);
1157 /* queue index on which FD filter completion is reported */
1158 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1159 ICE_AQ_VSI_FD_REPORT_Q_M);
1160 /* priority of the default qindex action */
1161 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1162 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1163 ctxt->info.fd_report_opt = cpu_to_le16(val);
1164 }
1165
1166 /**
1167 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1168 * @ctxt: the VSI context being set
1169 * @vsi: the VSI being configured
1170 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1171 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1172 {
1173 u8 lut_type, hash_type;
1174 struct device *dev;
1175 struct ice_pf *pf;
1176
1177 pf = vsi->back;
1178 dev = ice_pf_to_dev(pf);
1179
1180 switch (vsi->type) {
1181 case ICE_VSI_CHNL:
1182 case ICE_VSI_PF:
1183 /* PF VSI will inherit RSS instance of PF */
1184 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1185 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1186 break;
1187 case ICE_VSI_VF:
1188 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1189 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1190 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1191 break;
1192 default:
1193 dev_dbg(dev, "Unsupported VSI type %s\n",
1194 ice_vsi_type_str(vsi->type));
1195 return;
1196 }
1197
1198 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1199 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1200 (hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1201 }
1202
1203 static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1204 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1205 {
1206 struct ice_pf *pf = vsi->back;
1207 u16 qcount, qmap;
1208 u8 offset = 0;
1209 int pow;
1210
1211 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1212
1213 pow = order_base_2(qcount);
1214 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1215 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1216 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1217 ICE_AQ_VSI_TC_Q_NUM_M);
1218
1219 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1220 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1221 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1222 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1223 }
1224
1225 /**
1226 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1227 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1228 *
1229 * returns true if Rx VLAN pruning is enabled and false otherwise.
1230 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1231 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1232 {
1233 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1234 }
1235
1236 /**
1237 * ice_vsi_init - Create and initialize a VSI
1238 * @vsi: the VSI being configured
1239 * @vsi_flags: VSI configuration flags
1240 *
1241 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1242 * reconfigure an existing context.
1243 *
1244 * This initializes a VSI context depending on the VSI type to be added and
1245 * passes it down to the add_vsi aq command to create a new VSI.
1246 */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1247 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1248 {
1249 struct ice_pf *pf = vsi->back;
1250 struct ice_hw *hw = &pf->hw;
1251 struct ice_vsi_ctx *ctxt;
1252 struct device *dev;
1253 int ret = 0;
1254
1255 dev = ice_pf_to_dev(pf);
1256 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1257 if (!ctxt)
1258 return -ENOMEM;
1259
1260 switch (vsi->type) {
1261 case ICE_VSI_CTRL:
1262 case ICE_VSI_LB:
1263 case ICE_VSI_PF:
1264 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1265 break;
1266 case ICE_VSI_SWITCHDEV_CTRL:
1267 case ICE_VSI_CHNL:
1268 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1269 break;
1270 case ICE_VSI_VF:
1271 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1272 /* VF number here is the absolute VF number (0-255) */
1273 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1274 break;
1275 default:
1276 ret = -ENODEV;
1277 goto out;
1278 }
1279
1280 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1281 * prune enabled
1282 */
1283 if (vsi->type == ICE_VSI_CHNL) {
1284 struct ice_vsi *main_vsi;
1285
1286 main_vsi = ice_get_main_vsi(pf);
1287 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1288 ctxt->info.sw_flags2 |=
1289 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1290 else
1291 ctxt->info.sw_flags2 &=
1292 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1293 }
1294
1295 ice_set_dflt_vsi_ctx(hw, ctxt);
1296 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1297 ice_set_fd_vsi_ctx(ctxt, vsi);
1298 /* if the switch is in VEB mode, allow VSI loopback */
1299 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1300 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1301
1302 /* Set LUT type and HASH type if RSS is enabled */
1303 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1304 vsi->type != ICE_VSI_CTRL) {
1305 ice_set_rss_vsi_ctx(ctxt, vsi);
1306 /* if updating VSI context, make sure to set valid_section:
1307 * to indicate which section of VSI context being updated
1308 */
1309 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1310 ctxt->info.valid_sections |=
1311 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1312 }
1313
1314 ctxt->info.sw_id = vsi->port_info->sw_id;
1315 if (vsi->type == ICE_VSI_CHNL) {
1316 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1317 } else {
1318 ret = ice_vsi_setup_q_map(vsi, ctxt);
1319 if (ret)
1320 goto out;
1321
1322 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1323 /* means VSI being updated */
1324 /* must to indicate which section of VSI context are
1325 * being modified
1326 */
1327 ctxt->info.valid_sections |=
1328 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1329 }
1330
1331 /* Allow control frames out of main VSI */
1332 if (vsi->type == ICE_VSI_PF) {
1333 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1334 ctxt->info.valid_sections |=
1335 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1336 }
1337
1338 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1339 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1340 if (ret) {
1341 dev_err(dev, "Add VSI failed, err %d\n", ret);
1342 ret = -EIO;
1343 goto out;
1344 }
1345 } else {
1346 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1347 if (ret) {
1348 dev_err(dev, "Update VSI failed, err %d\n", ret);
1349 ret = -EIO;
1350 goto out;
1351 }
1352 }
1353
1354 /* keep context for update VSI operations */
1355 vsi->info = ctxt->info;
1356
1357 /* record VSI number returned */
1358 vsi->vsi_num = ctxt->vsi_num;
1359
1360 out:
1361 kfree(ctxt);
1362 return ret;
1363 }
1364
1365 /**
1366 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1367 * @vsi: the VSI having rings deallocated
1368 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1369 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1370 {
1371 int i;
1372
1373 /* Avoid stale references by clearing map from vector to ring */
1374 if (vsi->q_vectors) {
1375 ice_for_each_q_vector(vsi, i) {
1376 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1377
1378 if (q_vector) {
1379 q_vector->tx.tx_ring = NULL;
1380 q_vector->rx.rx_ring = NULL;
1381 }
1382 }
1383 }
1384
1385 if (vsi->tx_rings) {
1386 ice_for_each_alloc_txq(vsi, i) {
1387 if (vsi->tx_rings[i]) {
1388 kfree_rcu(vsi->tx_rings[i], rcu);
1389 WRITE_ONCE(vsi->tx_rings[i], NULL);
1390 }
1391 }
1392 }
1393 if (vsi->rx_rings) {
1394 ice_for_each_alloc_rxq(vsi, i) {
1395 if (vsi->rx_rings[i]) {
1396 kfree_rcu(vsi->rx_rings[i], rcu);
1397 WRITE_ONCE(vsi->rx_rings[i], NULL);
1398 }
1399 }
1400 }
1401 }
1402
1403 /**
1404 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1405 * @vsi: VSI which is having rings allocated
1406 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1407 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1408 {
1409 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1410 struct ice_pf *pf = vsi->back;
1411 struct device *dev;
1412 u16 i;
1413
1414 dev = ice_pf_to_dev(pf);
1415 /* Allocate Tx rings */
1416 ice_for_each_alloc_txq(vsi, i) {
1417 struct ice_tx_ring *ring;
1418
1419 /* allocate with kzalloc(), free with kfree_rcu() */
1420 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1421
1422 if (!ring)
1423 goto err_out;
1424
1425 ring->q_index = i;
1426 ring->reg_idx = vsi->txq_map[i];
1427 ring->vsi = vsi;
1428 ring->tx_tstamps = &pf->ptp.port.tx;
1429 ring->dev = dev;
1430 ring->count = vsi->num_tx_desc;
1431 ring->txq_teid = ICE_INVAL_TEID;
1432 if (dvm_ena)
1433 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1434 else
1435 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1436 WRITE_ONCE(vsi->tx_rings[i], ring);
1437 }
1438
1439 /* Allocate Rx rings */
1440 ice_for_each_alloc_rxq(vsi, i) {
1441 struct ice_rx_ring *ring;
1442
1443 /* allocate with kzalloc(), free with kfree_rcu() */
1444 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1445 if (!ring)
1446 goto err_out;
1447
1448 ring->q_index = i;
1449 ring->reg_idx = vsi->rxq_map[i];
1450 ring->vsi = vsi;
1451 ring->netdev = vsi->netdev;
1452 ring->dev = dev;
1453 ring->count = vsi->num_rx_desc;
1454 ring->cached_phctime = pf->ptp.cached_phc_time;
1455 WRITE_ONCE(vsi->rx_rings[i], ring);
1456 }
1457
1458 return 0;
1459
1460 err_out:
1461 ice_vsi_clear_rings(vsi);
1462 return -ENOMEM;
1463 }
1464
1465 /**
1466 * ice_vsi_manage_rss_lut - disable/enable RSS
1467 * @vsi: the VSI being changed
1468 * @ena: boolean value indicating if this is an enable or disable request
1469 *
1470 * In the event of disable request for RSS, this function will zero out RSS
1471 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1472 * LUT.
1473 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1474 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1475 {
1476 u8 *lut;
1477
1478 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1479 if (!lut)
1480 return;
1481
1482 if (ena) {
1483 if (vsi->rss_lut_user)
1484 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1485 else
1486 ice_fill_rss_lut(lut, vsi->rss_table_size,
1487 vsi->rss_size);
1488 }
1489
1490 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1491 kfree(lut);
1492 }
1493
1494 /**
1495 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1496 * @vsi: VSI to be configured
1497 * @disable: set to true to have FCS / CRC in the frame data
1498 */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1499 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1500 {
1501 int i;
1502
1503 ice_for_each_rxq(vsi, i)
1504 if (disable)
1505 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1506 else
1507 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1508 }
1509
1510 /**
1511 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1512 * @vsi: VSI to be configured
1513 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1514 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1515 {
1516 struct ice_pf *pf = vsi->back;
1517 struct device *dev;
1518 u8 *lut, *key;
1519 int err;
1520
1521 dev = ice_pf_to_dev(pf);
1522 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1523 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1524 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1525 } else {
1526 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1527
1528 /* If orig_rss_size is valid and it is less than determined
1529 * main VSI's rss_size, update main VSI's rss_size to be
1530 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1531 * RSS table gets programmed to be correct (whatever it was
1532 * to begin with (prior to setup-tc for ADQ config)
1533 */
1534 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1535 vsi->orig_rss_size <= vsi->num_rxq) {
1536 vsi->rss_size = vsi->orig_rss_size;
1537 /* now orig_rss_size is used, reset it to zero */
1538 vsi->orig_rss_size = 0;
1539 }
1540 }
1541
1542 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1543 if (!lut)
1544 return -ENOMEM;
1545
1546 if (vsi->rss_lut_user)
1547 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1548 else
1549 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1550
1551 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1552 if (err) {
1553 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1554 goto ice_vsi_cfg_rss_exit;
1555 }
1556
1557 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1558 if (!key) {
1559 err = -ENOMEM;
1560 goto ice_vsi_cfg_rss_exit;
1561 }
1562
1563 if (vsi->rss_hkey_user)
1564 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1565 else
1566 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1567
1568 err = ice_set_rss_key(vsi, key);
1569 if (err)
1570 dev_err(dev, "set_rss_key failed, error %d\n", err);
1571
1572 kfree(key);
1573 ice_vsi_cfg_rss_exit:
1574 kfree(lut);
1575 return err;
1576 }
1577
1578 /**
1579 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1580 * @vsi: VSI to be configured
1581 *
1582 * This function will only be called during the VF VSI setup. Upon successful
1583 * completion of package download, this function will configure default RSS
1584 * input sets for VF VSI.
1585 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1586 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1587 {
1588 struct ice_pf *pf = vsi->back;
1589 struct device *dev;
1590 int status;
1591
1592 dev = ice_pf_to_dev(pf);
1593 if (ice_is_safe_mode(pf)) {
1594 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1595 vsi->vsi_num);
1596 return;
1597 }
1598
1599 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1600 if (status)
1601 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1602 vsi->vsi_num, status);
1603 }
1604
1605 /**
1606 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1607 * @vsi: VSI to be configured
1608 *
1609 * This function will only be called after successful download package call
1610 * during initialization of PF. Since the downloaded package will erase the
1611 * RSS section, this function will configure RSS input sets for different
1612 * flow types. The last profile added has the highest priority, therefore 2
1613 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1614 * (i.e. IPv4 src/dst TCP src/dst port).
1615 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1616 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1617 {
1618 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1619 struct ice_pf *pf = vsi->back;
1620 struct ice_hw *hw = &pf->hw;
1621 struct device *dev;
1622 int status;
1623
1624 dev = ice_pf_to_dev(pf);
1625 if (ice_is_safe_mode(pf)) {
1626 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1627 vsi_num);
1628 return;
1629 }
1630 /* configure RSS for IPv4 with input set IP src/dst */
1631 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1632 ICE_FLOW_SEG_HDR_IPV4);
1633 if (status)
1634 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1635 vsi_num, status);
1636
1637 /* configure RSS for IPv6 with input set IPv6 src/dst */
1638 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1639 ICE_FLOW_SEG_HDR_IPV6);
1640 if (status)
1641 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1642 vsi_num, status);
1643
1644 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1645 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1646 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1647 if (status)
1648 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1649 vsi_num, status);
1650
1651 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1652 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1653 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1654 if (status)
1655 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1656 vsi_num, status);
1657
1658 /* configure RSS for sctp4 with input set IP src/dst */
1659 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1660 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1661 if (status)
1662 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1663 vsi_num, status);
1664
1665 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1666 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1667 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1668 if (status)
1669 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1670 vsi_num, status);
1671
1672 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1673 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1674 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1675 if (status)
1676 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1677 vsi_num, status);
1678
1679 /* configure RSS for sctp6 with input set IPv6 src/dst */
1680 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1681 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1682 if (status)
1683 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1684 vsi_num, status);
1685
1686 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1687 ICE_FLOW_SEG_HDR_ESP);
1688 if (status)
1689 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1690 vsi_num, status);
1691 }
1692
1693 /**
1694 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1695 * @vsi: VSI
1696 */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi)1697 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1698 {
1699 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1700 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1701 vsi->rx_buf_len = ICE_RXBUF_1664;
1702 #if (PAGE_SIZE < 8192)
1703 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1704 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1705 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1706 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1707 #endif
1708 } else {
1709 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1710 vsi->rx_buf_len = ICE_RXBUF_3072;
1711 }
1712 }
1713
1714 /**
1715 * ice_pf_state_is_nominal - checks the PF for nominal state
1716 * @pf: pointer to PF to check
1717 *
1718 * Check the PF's state for a collection of bits that would indicate
1719 * the PF is in a state that would inhibit normal operation for
1720 * driver functionality.
1721 *
1722 * Returns true if PF is in a nominal state, false otherwise
1723 */
ice_pf_state_is_nominal(struct ice_pf * pf)1724 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1725 {
1726 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1727
1728 if (!pf)
1729 return false;
1730
1731 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1732 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1733 return false;
1734
1735 return true;
1736 }
1737
1738 /**
1739 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1740 * @vsi: the VSI to be updated
1741 */
ice_update_eth_stats(struct ice_vsi * vsi)1742 void ice_update_eth_stats(struct ice_vsi *vsi)
1743 {
1744 struct ice_eth_stats *prev_es, *cur_es;
1745 struct ice_hw *hw = &vsi->back->hw;
1746 struct ice_pf *pf = vsi->back;
1747 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1748
1749 prev_es = &vsi->eth_stats_prev;
1750 cur_es = &vsi->eth_stats;
1751
1752 if (ice_is_reset_in_progress(pf->state))
1753 vsi->stat_offsets_loaded = false;
1754
1755 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1756 &prev_es->rx_bytes, &cur_es->rx_bytes);
1757
1758 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1759 &prev_es->rx_unicast, &cur_es->rx_unicast);
1760
1761 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1762 &prev_es->rx_multicast, &cur_es->rx_multicast);
1763
1764 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1765 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1766
1767 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1768 &prev_es->rx_discards, &cur_es->rx_discards);
1769
1770 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1771 &prev_es->tx_bytes, &cur_es->tx_bytes);
1772
1773 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1774 &prev_es->tx_unicast, &cur_es->tx_unicast);
1775
1776 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1777 &prev_es->tx_multicast, &cur_es->tx_multicast);
1778
1779 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1780 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1781
1782 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1783 &prev_es->tx_errors, &cur_es->tx_errors);
1784
1785 vsi->stat_offsets_loaded = true;
1786 }
1787
1788 /**
1789 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1790 * @hw: HW pointer
1791 * @pf_q: index of the Rx queue in the PF's queue space
1792 * @rxdid: flexible descriptor RXDID
1793 * @prio: priority for the RXDID for this queue
1794 * @ena_ts: true to enable timestamp and false to disable timestamp
1795 */
1796 void
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1797 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1798 bool ena_ts)
1799 {
1800 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1801
1802 /* clear any previous values */
1803 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1804 QRXFLXP_CNTXT_RXDID_PRIO_M |
1805 QRXFLXP_CNTXT_TS_M);
1806
1807 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1808 QRXFLXP_CNTXT_RXDID_IDX_M;
1809
1810 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1811 QRXFLXP_CNTXT_RXDID_PRIO_M;
1812
1813 if (ena_ts)
1814 /* Enable TimeSync on this queue */
1815 regval |= QRXFLXP_CNTXT_TS_M;
1816
1817 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1818 }
1819
ice_vsi_cfg_single_rxq(struct ice_vsi * vsi,u16 q_idx)1820 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1821 {
1822 if (q_idx >= vsi->num_rxq)
1823 return -EINVAL;
1824
1825 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1826 }
1827
ice_vsi_cfg_single_txq(struct ice_vsi * vsi,struct ice_tx_ring ** tx_rings,u16 q_idx)1828 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1829 {
1830 struct ice_aqc_add_tx_qgrp *qg_buf;
1831 int err;
1832
1833 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1834 return -EINVAL;
1835
1836 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1837 if (!qg_buf)
1838 return -ENOMEM;
1839
1840 qg_buf->num_txqs = 1;
1841
1842 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1843 kfree(qg_buf);
1844 return err;
1845 }
1846
1847 /**
1848 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1849 * @vsi: the VSI being configured
1850 *
1851 * Return 0 on success and a negative value on error
1852 * Configure the Rx VSI for operation.
1853 */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)1854 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1855 {
1856 u16 i;
1857
1858 if (vsi->type == ICE_VSI_VF)
1859 goto setup_rings;
1860
1861 ice_vsi_cfg_frame_size(vsi);
1862 setup_rings:
1863 /* set up individual rings */
1864 ice_for_each_rxq(vsi, i) {
1865 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1866
1867 if (err)
1868 return err;
1869 }
1870
1871 return 0;
1872 }
1873
1874 /**
1875 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1876 * @vsi: the VSI being configured
1877 * @rings: Tx ring array to be configured
1878 * @count: number of Tx ring array elements
1879 *
1880 * Return 0 on success and a negative value on error
1881 * Configure the Tx VSI for operation.
1882 */
1883 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_tx_ring ** rings,u16 count)1884 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1885 {
1886 struct ice_aqc_add_tx_qgrp *qg_buf;
1887 u16 q_idx = 0;
1888 int err = 0;
1889
1890 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1891 if (!qg_buf)
1892 return -ENOMEM;
1893
1894 qg_buf->num_txqs = 1;
1895
1896 for (q_idx = 0; q_idx < count; q_idx++) {
1897 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1898 if (err)
1899 goto err_cfg_txqs;
1900 }
1901
1902 err_cfg_txqs:
1903 kfree(qg_buf);
1904 return err;
1905 }
1906
1907 /**
1908 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1909 * @vsi: the VSI being configured
1910 *
1911 * Return 0 on success and a negative value on error
1912 * Configure the Tx VSI for operation.
1913 */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1914 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1915 {
1916 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1917 }
1918
1919 /**
1920 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1921 * @vsi: the VSI being configured
1922 *
1923 * Return 0 on success and a negative value on error
1924 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1925 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1926 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1927 {
1928 int ret;
1929 int i;
1930
1931 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1932 if (ret)
1933 return ret;
1934
1935 ice_for_each_rxq(vsi, i)
1936 ice_tx_xsk_pool(vsi, i);
1937
1938 return 0;
1939 }
1940
1941 /**
1942 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1943 * @intrl: interrupt rate limit in usecs
1944 * @gran: interrupt rate limit granularity in usecs
1945 *
1946 * This function converts a decimal interrupt rate limit in usecs to the format
1947 * expected by firmware.
1948 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1949 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1950 {
1951 u32 val = intrl / gran;
1952
1953 if (val)
1954 return val | GLINT_RATE_INTRL_ENA_M;
1955 return 0;
1956 }
1957
1958 /**
1959 * ice_write_intrl - write throttle rate limit to interrupt specific register
1960 * @q_vector: pointer to interrupt specific structure
1961 * @intrl: throttle rate limit in microseconds to write
1962 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1963 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1964 {
1965 struct ice_hw *hw = &q_vector->vsi->back->hw;
1966
1967 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1968 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1969 }
1970
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1971 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1972 {
1973 switch (rc->type) {
1974 case ICE_RX_CONTAINER:
1975 if (rc->rx_ring)
1976 return rc->rx_ring->q_vector;
1977 break;
1978 case ICE_TX_CONTAINER:
1979 if (rc->tx_ring)
1980 return rc->tx_ring->q_vector;
1981 break;
1982 default:
1983 break;
1984 }
1985
1986 return NULL;
1987 }
1988
1989 /**
1990 * __ice_write_itr - write throttle rate to register
1991 * @q_vector: pointer to interrupt data structure
1992 * @rc: pointer to ring container
1993 * @itr: throttle rate in microseconds to write
1994 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1995 static void __ice_write_itr(struct ice_q_vector *q_vector,
1996 struct ice_ring_container *rc, u16 itr)
1997 {
1998 struct ice_hw *hw = &q_vector->vsi->back->hw;
1999
2000 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2001 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2002 }
2003
2004 /**
2005 * ice_write_itr - write throttle rate to queue specific register
2006 * @rc: pointer to ring container
2007 * @itr: throttle rate in microseconds to write
2008 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)2009 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2010 {
2011 struct ice_q_vector *q_vector;
2012
2013 q_vector = ice_pull_qvec_from_rc(rc);
2014 if (!q_vector)
2015 return;
2016
2017 __ice_write_itr(q_vector, rc, itr);
2018 }
2019
2020 /**
2021 * ice_set_q_vector_intrl - set up interrupt rate limiting
2022 * @q_vector: the vector to be configured
2023 *
2024 * Interrupt rate limiting is local to the vector, not per-queue so we must
2025 * detect if either ring container has dynamic moderation enabled to decide
2026 * what to set the interrupt rate limit to via INTRL settings. In the case that
2027 * dynamic moderation is disabled on both, write the value with the cached
2028 * setting to make sure INTRL register matches the user visible value.
2029 */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)2030 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2031 {
2032 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2033 /* in the case of dynamic enabled, cap each vector to no more
2034 * than (4 us) 250,000 ints/sec, which allows low latency
2035 * but still less than 500,000 interrupts per second, which
2036 * reduces CPU a bit in the case of the lowest latency
2037 * setting. The 4 here is a value in microseconds.
2038 */
2039 ice_write_intrl(q_vector, 4);
2040 } else {
2041 ice_write_intrl(q_vector, q_vector->intrl);
2042 }
2043 }
2044
2045 /**
2046 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2047 * @vsi: the VSI being configured
2048 *
2049 * This configures MSIX mode interrupts for the PF VSI, and should not be used
2050 * for the VF VSI.
2051 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)2052 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2053 {
2054 struct ice_pf *pf = vsi->back;
2055 struct ice_hw *hw = &pf->hw;
2056 u16 txq = 0, rxq = 0;
2057 int i, q;
2058
2059 ice_for_each_q_vector(vsi, i) {
2060 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2061 u16 reg_idx = q_vector->reg_idx;
2062
2063 ice_cfg_itr(hw, q_vector);
2064
2065 /* Both Transmit Queue Interrupt Cause Control register
2066 * and Receive Queue Interrupt Cause control register
2067 * expects MSIX_INDX field to be the vector index
2068 * within the function space and not the absolute
2069 * vector index across PF or across device.
2070 * For SR-IOV VF VSIs queue vector index always starts
2071 * with 1 since first vector index(0) is used for OICR
2072 * in VF space. Since VMDq and other PF VSIs are within
2073 * the PF function space, use the vector index that is
2074 * tracked for this PF.
2075 */
2076 for (q = 0; q < q_vector->num_ring_tx; q++) {
2077 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2078 q_vector->tx.itr_idx);
2079 txq++;
2080 }
2081
2082 for (q = 0; q < q_vector->num_ring_rx; q++) {
2083 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2084 q_vector->rx.itr_idx);
2085 rxq++;
2086 }
2087 }
2088 }
2089
2090 /**
2091 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2092 * @vsi: the VSI whose rings are to be enabled
2093 *
2094 * Returns 0 on success and a negative value on error
2095 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)2096 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2097 {
2098 return ice_vsi_ctrl_all_rx_rings(vsi, true);
2099 }
2100
2101 /**
2102 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2103 * @vsi: the VSI whose rings are to be disabled
2104 *
2105 * Returns 0 on success and a negative value on error
2106 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)2107 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2108 {
2109 return ice_vsi_ctrl_all_rx_rings(vsi, false);
2110 }
2111
2112 /**
2113 * ice_vsi_stop_tx_rings - Disable Tx rings
2114 * @vsi: the VSI being configured
2115 * @rst_src: reset source
2116 * @rel_vmvf_num: Relative ID of VF/VM
2117 * @rings: Tx ring array to be stopped
2118 * @count: number of Tx ring array elements
2119 */
2120 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)2121 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2122 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2123 {
2124 u16 q_idx;
2125
2126 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2127 return -EINVAL;
2128
2129 for (q_idx = 0; q_idx < count; q_idx++) {
2130 struct ice_txq_meta txq_meta = { };
2131 int status;
2132
2133 if (!rings || !rings[q_idx])
2134 return -EINVAL;
2135
2136 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2137 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2138 rings[q_idx], &txq_meta);
2139
2140 if (status)
2141 return status;
2142 }
2143
2144 return 0;
2145 }
2146
2147 /**
2148 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2149 * @vsi: the VSI being configured
2150 * @rst_src: reset source
2151 * @rel_vmvf_num: Relative ID of VF/VM
2152 */
2153 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2154 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2155 u16 rel_vmvf_num)
2156 {
2157 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2158 }
2159
2160 /**
2161 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2162 * @vsi: the VSI being configured
2163 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2164 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2165 {
2166 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2167 }
2168
2169 /**
2170 * ice_vsi_is_rx_queue_active
2171 * @vsi: the VSI being configured
2172 *
2173 * Return true if at least one queue is active.
2174 */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2175 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2176 {
2177 struct ice_pf *pf = vsi->back;
2178 struct ice_hw *hw = &pf->hw;
2179 int i;
2180
2181 ice_for_each_rxq(vsi, i) {
2182 u32 rx_reg;
2183 int pf_q;
2184
2185 pf_q = vsi->rxq_map[i];
2186 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2187 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2188 return true;
2189 }
2190
2191 return false;
2192 }
2193
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2194 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2195 {
2196 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2197 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2198 vsi->tc_cfg.numtc = 1;
2199 return;
2200 }
2201
2202 /* set VSI TC information based on DCB config */
2203 ice_vsi_set_dcb_tc_cfg(vsi);
2204 }
2205
2206 /**
2207 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2208 * @vsi: the VSI being configured
2209 * @tx: bool to determine Tx or Rx rule
2210 * @create: bool to determine create or remove Rule
2211 */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2212 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2213 {
2214 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2215 enum ice_sw_fwd_act_type act);
2216 struct ice_pf *pf = vsi->back;
2217 struct device *dev;
2218 int status;
2219
2220 dev = ice_pf_to_dev(pf);
2221 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2222
2223 if (tx) {
2224 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2225 ICE_DROP_PACKET);
2226 } else {
2227 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2228 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2229 create);
2230 } else {
2231 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2232 ICE_FWD_TO_VSI);
2233 }
2234 }
2235
2236 if (status)
2237 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2238 create ? "adding" : "removing", tx ? "TX" : "RX",
2239 vsi->vsi_num, status);
2240 }
2241
2242 /**
2243 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2244 * @vsi: pointer to the VSI
2245 *
2246 * This function will allocate new scheduler aggregator now if needed and will
2247 * move specified VSI into it.
2248 */
ice_set_agg_vsi(struct ice_vsi * vsi)2249 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2250 {
2251 struct device *dev = ice_pf_to_dev(vsi->back);
2252 struct ice_agg_node *agg_node_iter = NULL;
2253 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2254 struct ice_agg_node *agg_node = NULL;
2255 int node_offset, max_agg_nodes = 0;
2256 struct ice_port_info *port_info;
2257 struct ice_pf *pf = vsi->back;
2258 u32 agg_node_id_start = 0;
2259 int status;
2260
2261 /* create (as needed) scheduler aggregator node and move VSI into
2262 * corresponding aggregator node
2263 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2264 * - VF aggregator nodes will contain VF VSI
2265 */
2266 port_info = pf->hw.port_info;
2267 if (!port_info)
2268 return;
2269
2270 switch (vsi->type) {
2271 case ICE_VSI_CTRL:
2272 case ICE_VSI_CHNL:
2273 case ICE_VSI_LB:
2274 case ICE_VSI_PF:
2275 case ICE_VSI_SWITCHDEV_CTRL:
2276 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2277 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2278 agg_node_iter = &pf->pf_agg_node[0];
2279 break;
2280 case ICE_VSI_VF:
2281 /* user can create 'n' VFs on a given PF, but since max children
2282 * per aggregator node can be only 64. Following code handles
2283 * aggregator(s) for VF VSIs, either selects a agg_node which
2284 * was already created provided num_vsis < 64, otherwise
2285 * select next available node, which will be created
2286 */
2287 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2288 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2289 agg_node_iter = &pf->vf_agg_node[0];
2290 break;
2291 default:
2292 /* other VSI type, handle later if needed */
2293 dev_dbg(dev, "unexpected VSI type %s\n",
2294 ice_vsi_type_str(vsi->type));
2295 return;
2296 }
2297
2298 /* find the appropriate aggregator node */
2299 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2300 /* see if we can find space in previously created
2301 * node if num_vsis < 64, otherwise skip
2302 */
2303 if (agg_node_iter->num_vsis &&
2304 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2305 agg_node_iter++;
2306 continue;
2307 }
2308
2309 if (agg_node_iter->valid &&
2310 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2311 agg_id = agg_node_iter->agg_id;
2312 agg_node = agg_node_iter;
2313 break;
2314 }
2315
2316 /* find unclaimed agg_id */
2317 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2318 agg_id = node_offset + agg_node_id_start;
2319 agg_node = agg_node_iter;
2320 break;
2321 }
2322 /* move to next agg_node */
2323 agg_node_iter++;
2324 }
2325
2326 if (!agg_node)
2327 return;
2328
2329 /* if selected aggregator node was not created, create it */
2330 if (!agg_node->valid) {
2331 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2332 (u8)vsi->tc_cfg.ena_tc);
2333 if (status) {
2334 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2335 agg_id);
2336 return;
2337 }
2338 /* aggregator node is created, store the needed info */
2339 agg_node->valid = true;
2340 agg_node->agg_id = agg_id;
2341 }
2342
2343 /* move VSI to corresponding aggregator node */
2344 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2345 (u8)vsi->tc_cfg.ena_tc);
2346 if (status) {
2347 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2348 vsi->idx, agg_id);
2349 return;
2350 }
2351
2352 /* keep active children count for aggregator node */
2353 agg_node->num_vsis++;
2354
2355 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2356 * to aggregator node
2357 */
2358 vsi->agg_node = agg_node;
2359 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2360 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2361 vsi->agg_node->num_vsis);
2362 }
2363
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2364 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2365 {
2366 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2367 struct device *dev = ice_pf_to_dev(pf);
2368 int ret, i;
2369
2370 /* configure VSI nodes based on number of queues and TC's */
2371 ice_for_each_traffic_class(i) {
2372 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2373 continue;
2374
2375 if (vsi->type == ICE_VSI_CHNL) {
2376 if (!vsi->alloc_txq && vsi->num_txq)
2377 max_txqs[i] = vsi->num_txq;
2378 else
2379 max_txqs[i] = pf->num_lan_tx;
2380 } else {
2381 max_txqs[i] = vsi->alloc_txq;
2382 }
2383
2384 if (vsi->type == ICE_VSI_PF)
2385 max_txqs[i] += vsi->num_xdp_txq;
2386 }
2387
2388 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2389 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2390 max_txqs);
2391 if (ret) {
2392 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2393 vsi->vsi_num, ret);
2394 return ret;
2395 }
2396
2397 return 0;
2398 }
2399
2400 /**
2401 * ice_vsi_cfg_def - configure default VSI based on the type
2402 * @vsi: pointer to VSI
2403 * @params: the parameters to configure this VSI with
2404 */
2405 static int
ice_vsi_cfg_def(struct ice_vsi * vsi,struct ice_vsi_cfg_params * params)2406 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2407 {
2408 struct device *dev = ice_pf_to_dev(vsi->back);
2409 struct ice_pf *pf = vsi->back;
2410 int ret;
2411
2412 vsi->vsw = pf->first_sw;
2413
2414 ret = ice_vsi_alloc_def(vsi, params->ch);
2415 if (ret)
2416 return ret;
2417
2418 /* allocate memory for Tx/Rx ring stat pointers */
2419 ret = ice_vsi_alloc_stat_arrays(vsi);
2420 if (ret)
2421 goto unroll_vsi_alloc;
2422
2423 ice_alloc_fd_res(vsi);
2424
2425 ret = ice_vsi_get_qs(vsi);
2426 if (ret) {
2427 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2428 vsi->idx);
2429 goto unroll_vsi_alloc_stat;
2430 }
2431
2432 /* set RSS capabilities */
2433 ice_vsi_set_rss_params(vsi);
2434
2435 /* set TC configuration */
2436 ice_vsi_set_tc_cfg(vsi);
2437
2438 /* create the VSI */
2439 ret = ice_vsi_init(vsi, params->flags);
2440 if (ret)
2441 goto unroll_get_qs;
2442
2443 ice_vsi_init_vlan_ops(vsi);
2444
2445 switch (vsi->type) {
2446 case ICE_VSI_CTRL:
2447 case ICE_VSI_SWITCHDEV_CTRL:
2448 case ICE_VSI_PF:
2449 ret = ice_vsi_alloc_q_vectors(vsi);
2450 if (ret)
2451 goto unroll_vsi_init;
2452
2453 ret = ice_vsi_alloc_rings(vsi);
2454 if (ret)
2455 goto unroll_vector_base;
2456
2457 ret = ice_vsi_alloc_ring_stats(vsi);
2458 if (ret)
2459 goto unroll_vector_base;
2460
2461 ice_vsi_map_rings_to_vectors(vsi);
2462 vsi->stat_offsets_loaded = false;
2463
2464 if (ice_is_xdp_ena_vsi(vsi)) {
2465 ret = ice_vsi_determine_xdp_res(vsi);
2466 if (ret)
2467 goto unroll_vector_base;
2468 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2469 ICE_XDP_CFG_PART);
2470 if (ret)
2471 goto unroll_vector_base;
2472 }
2473
2474 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2475 if (vsi->type != ICE_VSI_CTRL)
2476 /* Do not exit if configuring RSS had an issue, at
2477 * least receive traffic on first queue. Hence no
2478 * need to capture return value
2479 */
2480 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2481 ice_vsi_cfg_rss_lut_key(vsi);
2482 ice_vsi_set_rss_flow_fld(vsi);
2483 }
2484 ice_init_arfs(vsi);
2485 break;
2486 case ICE_VSI_CHNL:
2487 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2488 ice_vsi_cfg_rss_lut_key(vsi);
2489 ice_vsi_set_rss_flow_fld(vsi);
2490 }
2491 break;
2492 case ICE_VSI_VF:
2493 /* VF driver will take care of creating netdev for this type and
2494 * map queues to vectors through Virtchnl, PF driver only
2495 * creates a VSI and corresponding structures for bookkeeping
2496 * purpose
2497 */
2498 ret = ice_vsi_alloc_q_vectors(vsi);
2499 if (ret)
2500 goto unroll_vsi_init;
2501
2502 ret = ice_vsi_alloc_rings(vsi);
2503 if (ret)
2504 goto unroll_alloc_q_vector;
2505
2506 ret = ice_vsi_alloc_ring_stats(vsi);
2507 if (ret)
2508 goto unroll_vector_base;
2509
2510 vsi->stat_offsets_loaded = false;
2511
2512 /* Do not exit if configuring RSS had an issue, at least
2513 * receive traffic on first queue. Hence no need to capture
2514 * return value
2515 */
2516 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2517 ice_vsi_cfg_rss_lut_key(vsi);
2518 ice_vsi_set_vf_rss_flow_fld(vsi);
2519 }
2520 break;
2521 case ICE_VSI_LB:
2522 ret = ice_vsi_alloc_rings(vsi);
2523 if (ret)
2524 goto unroll_vsi_init;
2525
2526 ret = ice_vsi_alloc_ring_stats(vsi);
2527 if (ret)
2528 goto unroll_vector_base;
2529
2530 break;
2531 default:
2532 /* clean up the resources and exit */
2533 ret = -EINVAL;
2534 goto unroll_vsi_init;
2535 }
2536
2537 return 0;
2538
2539 unroll_vector_base:
2540 /* reclaim SW interrupts back to the common pool */
2541 unroll_alloc_q_vector:
2542 ice_vsi_free_q_vectors(vsi);
2543 unroll_vsi_init:
2544 ice_vsi_delete_from_hw(vsi);
2545 unroll_get_qs:
2546 ice_vsi_put_qs(vsi);
2547 unroll_vsi_alloc_stat:
2548 ice_vsi_free_stats(vsi);
2549 unroll_vsi_alloc:
2550 ice_vsi_free_arrays(vsi);
2551 return ret;
2552 }
2553
2554 /**
2555 * ice_vsi_cfg - configure a previously allocated VSI
2556 * @vsi: pointer to VSI
2557 * @params: parameters used to configure this VSI
2558 */
ice_vsi_cfg(struct ice_vsi * vsi,struct ice_vsi_cfg_params * params)2559 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2560 {
2561 struct ice_pf *pf = vsi->back;
2562 int ret;
2563
2564 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2565 return -EINVAL;
2566
2567 vsi->type = params->type;
2568 vsi->port_info = params->pi;
2569
2570 /* For VSIs which don't have a connected VF, this will be NULL */
2571 vsi->vf = params->vf;
2572
2573 ret = ice_vsi_cfg_def(vsi, params);
2574 if (ret)
2575 return ret;
2576
2577 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2578 if (ret)
2579 ice_vsi_decfg(vsi);
2580
2581 if (vsi->type == ICE_VSI_CTRL) {
2582 if (vsi->vf) {
2583 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2584 vsi->vf->ctrl_vsi_idx = vsi->idx;
2585 } else {
2586 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2587 pf->ctrl_vsi_idx = vsi->idx;
2588 }
2589 }
2590
2591 return ret;
2592 }
2593
2594 /**
2595 * ice_vsi_decfg - remove all VSI configuration
2596 * @vsi: pointer to VSI
2597 */
ice_vsi_decfg(struct ice_vsi * vsi)2598 void ice_vsi_decfg(struct ice_vsi *vsi)
2599 {
2600 struct ice_pf *pf = vsi->back;
2601 int err;
2602
2603 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2604 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2605 if (err)
2606 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2607 vsi->vsi_num, err);
2608
2609 if (ice_is_xdp_ena_vsi(vsi))
2610 /* return value check can be skipped here, it always returns
2611 * 0 if reset is in progress
2612 */
2613 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2614
2615 ice_vsi_clear_rings(vsi);
2616 ice_vsi_free_q_vectors(vsi);
2617 ice_vsi_put_qs(vsi);
2618 ice_vsi_free_arrays(vsi);
2619
2620 /* SR-IOV determines needed MSIX resources all at once instead of per
2621 * VSI since when VFs are spawned we know how many VFs there are and how
2622 * many interrupts each VF needs. SR-IOV MSIX resources are also
2623 * cleared in the same manner.
2624 */
2625
2626 if (vsi->type == ICE_VSI_VF &&
2627 vsi->agg_node && vsi->agg_node->valid)
2628 vsi->agg_node->num_vsis--;
2629 }
2630
2631 /**
2632 * ice_vsi_setup - Set up a VSI by a given type
2633 * @pf: board private structure
2634 * @params: parameters to use when creating the VSI
2635 *
2636 * This allocates the sw VSI structure and its queue resources.
2637 *
2638 * Returns pointer to the successfully allocated and configured VSI sw struct on
2639 * success, NULL on failure.
2640 */
2641 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2642 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2643 {
2644 struct device *dev = ice_pf_to_dev(pf);
2645 struct ice_vsi *vsi;
2646 int ret;
2647
2648 /* ice_vsi_setup can only initialize a new VSI, and we must have
2649 * a port_info structure for it.
2650 */
2651 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2652 WARN_ON(!params->pi))
2653 return NULL;
2654
2655 vsi = ice_vsi_alloc(pf);
2656 if (!vsi) {
2657 dev_err(dev, "could not allocate VSI\n");
2658 return NULL;
2659 }
2660
2661 ret = ice_vsi_cfg(vsi, params);
2662 if (ret)
2663 goto err_vsi_cfg;
2664
2665 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2666 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2667 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2668 * The rule is added once for PF VSI in order to create appropriate
2669 * recipe, since VSI/VSI list is ignored with drop action...
2670 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2671 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2672 * settings in the HW.
2673 */
2674 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2675 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2676 ICE_DROP_PACKET);
2677 ice_cfg_sw_lldp(vsi, true, true);
2678 }
2679
2680 if (!vsi->agg_node)
2681 ice_set_agg_vsi(vsi);
2682
2683 return vsi;
2684
2685 err_vsi_cfg:
2686 ice_vsi_free(vsi);
2687
2688 return NULL;
2689 }
2690
2691 /**
2692 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2693 * @vsi: the VSI being cleaned up
2694 */
ice_vsi_release_msix(struct ice_vsi * vsi)2695 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2696 {
2697 struct ice_pf *pf = vsi->back;
2698 struct ice_hw *hw = &pf->hw;
2699 u32 txq = 0;
2700 u32 rxq = 0;
2701 int i, q;
2702
2703 ice_for_each_q_vector(vsi, i) {
2704 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2705
2706 ice_write_intrl(q_vector, 0);
2707 for (q = 0; q < q_vector->num_ring_tx; q++) {
2708 ice_write_itr(&q_vector->tx, 0);
2709 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2710 if (ice_is_xdp_ena_vsi(vsi)) {
2711 u32 xdp_txq = txq + vsi->num_xdp_txq;
2712
2713 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2714 }
2715 txq++;
2716 }
2717
2718 for (q = 0; q < q_vector->num_ring_rx; q++) {
2719 ice_write_itr(&q_vector->rx, 0);
2720 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2721 rxq++;
2722 }
2723 }
2724
2725 ice_flush(hw);
2726 }
2727
2728 /**
2729 * ice_vsi_free_irq - Free the IRQ association with the OS
2730 * @vsi: the VSI being configured
2731 */
ice_vsi_free_irq(struct ice_vsi * vsi)2732 void ice_vsi_free_irq(struct ice_vsi *vsi)
2733 {
2734 struct ice_pf *pf = vsi->back;
2735 int i;
2736
2737 if (!vsi->q_vectors || !vsi->irqs_ready)
2738 return;
2739
2740 ice_vsi_release_msix(vsi);
2741 if (vsi->type == ICE_VSI_VF)
2742 return;
2743
2744 vsi->irqs_ready = false;
2745 ice_free_cpu_rx_rmap(vsi);
2746
2747 ice_for_each_q_vector(vsi, i) {
2748 int irq_num;
2749
2750 irq_num = vsi->q_vectors[i]->irq.virq;
2751
2752 /* free only the irqs that were actually requested */
2753 if (!vsi->q_vectors[i] ||
2754 !(vsi->q_vectors[i]->num_ring_tx ||
2755 vsi->q_vectors[i]->num_ring_rx))
2756 continue;
2757
2758 /* clear the affinity notifier in the IRQ descriptor */
2759 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2760 irq_set_affinity_notifier(irq_num, NULL);
2761
2762 /* clear the affinity_mask in the IRQ descriptor */
2763 irq_set_affinity_hint(irq_num, NULL);
2764 synchronize_irq(irq_num);
2765 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2766 }
2767 }
2768
2769 /**
2770 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2771 * @vsi: the VSI having resources freed
2772 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2773 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2774 {
2775 int i;
2776
2777 if (!vsi->tx_rings)
2778 return;
2779
2780 ice_for_each_txq(vsi, i)
2781 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2782 ice_free_tx_ring(vsi->tx_rings[i]);
2783 }
2784
2785 /**
2786 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2787 * @vsi: the VSI having resources freed
2788 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2789 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2790 {
2791 int i;
2792
2793 if (!vsi->rx_rings)
2794 return;
2795
2796 ice_for_each_rxq(vsi, i)
2797 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2798 ice_free_rx_ring(vsi->rx_rings[i]);
2799 }
2800
2801 /**
2802 * ice_vsi_close - Shut down a VSI
2803 * @vsi: the VSI being shut down
2804 */
ice_vsi_close(struct ice_vsi * vsi)2805 void ice_vsi_close(struct ice_vsi *vsi)
2806 {
2807 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2808 ice_down(vsi);
2809
2810 ice_vsi_free_irq(vsi);
2811 ice_vsi_free_tx_rings(vsi);
2812 ice_vsi_free_rx_rings(vsi);
2813 }
2814
2815 /**
2816 * ice_ena_vsi - resume a VSI
2817 * @vsi: the VSI being resume
2818 * @locked: is the rtnl_lock already held
2819 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2820 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2821 {
2822 int err = 0;
2823
2824 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2825 return 0;
2826
2827 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2828
2829 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2830 if (netif_running(vsi->netdev)) {
2831 if (!locked)
2832 rtnl_lock();
2833
2834 err = ice_open_internal(vsi->netdev);
2835
2836 if (!locked)
2837 rtnl_unlock();
2838 }
2839 } else if (vsi->type == ICE_VSI_CTRL) {
2840 err = ice_vsi_open_ctrl(vsi);
2841 }
2842
2843 return err;
2844 }
2845
2846 /**
2847 * ice_dis_vsi - pause a VSI
2848 * @vsi: the VSI being paused
2849 * @locked: is the rtnl_lock already held
2850 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2851 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2852 {
2853 if (test_bit(ICE_VSI_DOWN, vsi->state))
2854 return;
2855
2856 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2857
2858 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2859 if (netif_running(vsi->netdev)) {
2860 if (!locked)
2861 rtnl_lock();
2862
2863 ice_vsi_close(vsi);
2864
2865 if (!locked)
2866 rtnl_unlock();
2867 } else {
2868 ice_vsi_close(vsi);
2869 }
2870 } else if (vsi->type == ICE_VSI_CTRL ||
2871 vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2872 ice_vsi_close(vsi);
2873 }
2874 }
2875
2876 /**
2877 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2878 * @vsi: the VSI being un-configured
2879 */
ice_vsi_dis_irq(struct ice_vsi * vsi)2880 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2881 {
2882 struct ice_pf *pf = vsi->back;
2883 struct ice_hw *hw = &pf->hw;
2884 u32 val;
2885 int i;
2886
2887 /* disable interrupt causation from each queue */
2888 if (vsi->tx_rings) {
2889 ice_for_each_txq(vsi, i) {
2890 if (vsi->tx_rings[i]) {
2891 u16 reg;
2892
2893 reg = vsi->tx_rings[i]->reg_idx;
2894 val = rd32(hw, QINT_TQCTL(reg));
2895 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2896 wr32(hw, QINT_TQCTL(reg), val);
2897 }
2898 }
2899 }
2900
2901 if (vsi->rx_rings) {
2902 ice_for_each_rxq(vsi, i) {
2903 if (vsi->rx_rings[i]) {
2904 u16 reg;
2905
2906 reg = vsi->rx_rings[i]->reg_idx;
2907 val = rd32(hw, QINT_RQCTL(reg));
2908 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2909 wr32(hw, QINT_RQCTL(reg), val);
2910 }
2911 }
2912 }
2913
2914 /* disable each interrupt */
2915 ice_for_each_q_vector(vsi, i) {
2916 if (!vsi->q_vectors[i])
2917 continue;
2918 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2919 }
2920
2921 ice_flush(hw);
2922
2923 /* don't call synchronize_irq() for VF's from the host */
2924 if (vsi->type == ICE_VSI_VF)
2925 return;
2926
2927 ice_for_each_q_vector(vsi, i)
2928 synchronize_irq(vsi->q_vectors[i]->irq.virq);
2929 }
2930
2931 /**
2932 * ice_vsi_release - Delete a VSI and free its resources
2933 * @vsi: the VSI being removed
2934 *
2935 * Returns 0 on success or < 0 on error
2936 */
ice_vsi_release(struct ice_vsi * vsi)2937 int ice_vsi_release(struct ice_vsi *vsi)
2938 {
2939 struct ice_pf *pf;
2940
2941 if (!vsi->back)
2942 return -ENODEV;
2943 pf = vsi->back;
2944
2945 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2946 ice_rss_clean(vsi);
2947
2948 ice_vsi_close(vsi);
2949
2950 /* The Rx rule will only exist to remove if the LLDP FW
2951 * engine is currently stopped
2952 */
2953 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2954 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2955 ice_cfg_sw_lldp(vsi, false, false);
2956
2957 ice_vsi_decfg(vsi);
2958
2959 /* retain SW VSI data structure since it is needed to unregister and
2960 * free VSI netdev when PF is not in reset recovery pending state,\
2961 * for ex: during rmmod.
2962 */
2963 if (!ice_is_reset_in_progress(pf->state))
2964 ice_vsi_delete(vsi);
2965
2966 return 0;
2967 }
2968
2969 /**
2970 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2971 * @vsi: VSI connected with q_vectors
2972 * @coalesce: array of struct with stored coalesce
2973 *
2974 * Returns array size.
2975 */
2976 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2977 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2978 struct ice_coalesce_stored *coalesce)
2979 {
2980 int i;
2981
2982 ice_for_each_q_vector(vsi, i) {
2983 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2984
2985 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2986 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2987 coalesce[i].intrl = q_vector->intrl;
2988
2989 if (i < vsi->num_txq)
2990 coalesce[i].tx_valid = true;
2991 if (i < vsi->num_rxq)
2992 coalesce[i].rx_valid = true;
2993 }
2994
2995 return vsi->num_q_vectors;
2996 }
2997
2998 /**
2999 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3000 * @vsi: VSI connected with q_vectors
3001 * @coalesce: pointer to array of struct with stored coalesce
3002 * @size: size of coalesce array
3003 *
3004 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3005 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3006 * to default value.
3007 */
3008 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)3009 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3010 struct ice_coalesce_stored *coalesce, int size)
3011 {
3012 struct ice_ring_container *rc;
3013 int i;
3014
3015 if ((size && !coalesce) || !vsi)
3016 return;
3017
3018 /* There are a couple of cases that have to be handled here:
3019 * 1. The case where the number of queue vectors stays the same, but
3020 * the number of Tx or Rx rings changes (the first for loop)
3021 * 2. The case where the number of queue vectors increased (the
3022 * second for loop)
3023 */
3024 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3025 /* There are 2 cases to handle here and they are the same for
3026 * both Tx and Rx:
3027 * if the entry was valid previously (coalesce[i].[tr]x_valid
3028 * and the loop variable is less than the number of rings
3029 * allocated, then write the previous values
3030 *
3031 * if the entry was not valid previously, but the number of
3032 * rings is less than are allocated (this means the number of
3033 * rings increased from previously), then write out the
3034 * values in the first element
3035 *
3036 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
3037 * as there is no harm because the dynamic algorithm
3038 * will just overwrite.
3039 */
3040 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3041 rc = &vsi->q_vectors[i]->rx;
3042 rc->itr_settings = coalesce[i].itr_rx;
3043 ice_write_itr(rc, rc->itr_setting);
3044 } else if (i < vsi->alloc_rxq) {
3045 rc = &vsi->q_vectors[i]->rx;
3046 rc->itr_settings = coalesce[0].itr_rx;
3047 ice_write_itr(rc, rc->itr_setting);
3048 }
3049
3050 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3051 rc = &vsi->q_vectors[i]->tx;
3052 rc->itr_settings = coalesce[i].itr_tx;
3053 ice_write_itr(rc, rc->itr_setting);
3054 } else if (i < vsi->alloc_txq) {
3055 rc = &vsi->q_vectors[i]->tx;
3056 rc->itr_settings = coalesce[0].itr_tx;
3057 ice_write_itr(rc, rc->itr_setting);
3058 }
3059
3060 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3061 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3062 }
3063
3064 /* the number of queue vectors increased so write whatever is in
3065 * the first element
3066 */
3067 for (; i < vsi->num_q_vectors; i++) {
3068 /* transmit */
3069 rc = &vsi->q_vectors[i]->tx;
3070 rc->itr_settings = coalesce[0].itr_tx;
3071 ice_write_itr(rc, rc->itr_setting);
3072
3073 /* receive */
3074 rc = &vsi->q_vectors[i]->rx;
3075 rc->itr_settings = coalesce[0].itr_rx;
3076 ice_write_itr(rc, rc->itr_setting);
3077
3078 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3079 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3080 }
3081 }
3082
3083 /**
3084 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3085 * @vsi: VSI pointer
3086 */
3087 static int
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi)3088 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3089 {
3090 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3091 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3092 struct ice_ring_stats **tx_ring_stats;
3093 struct ice_ring_stats **rx_ring_stats;
3094 struct ice_vsi_stats *vsi_stat;
3095 struct ice_pf *pf = vsi->back;
3096 u16 prev_txq = vsi->alloc_txq;
3097 u16 prev_rxq = vsi->alloc_rxq;
3098 int i;
3099
3100 vsi_stat = pf->vsi_stats[vsi->idx];
3101
3102 if (req_txq < prev_txq) {
3103 for (i = req_txq; i < prev_txq; i++) {
3104 if (vsi_stat->tx_ring_stats[i]) {
3105 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3106 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3107 }
3108 }
3109 }
3110
3111 tx_ring_stats = vsi_stat->tx_ring_stats;
3112 vsi_stat->tx_ring_stats =
3113 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3114 sizeof(*vsi_stat->tx_ring_stats),
3115 GFP_KERNEL | __GFP_ZERO);
3116 if (!vsi_stat->tx_ring_stats) {
3117 vsi_stat->tx_ring_stats = tx_ring_stats;
3118 return -ENOMEM;
3119 }
3120
3121 if (req_rxq < prev_rxq) {
3122 for (i = req_rxq; i < prev_rxq; i++) {
3123 if (vsi_stat->rx_ring_stats[i]) {
3124 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3125 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3126 }
3127 }
3128 }
3129
3130 rx_ring_stats = vsi_stat->rx_ring_stats;
3131 vsi_stat->rx_ring_stats =
3132 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3133 sizeof(*vsi_stat->rx_ring_stats),
3134 GFP_KERNEL | __GFP_ZERO);
3135 if (!vsi_stat->rx_ring_stats) {
3136 vsi_stat->rx_ring_stats = rx_ring_stats;
3137 return -ENOMEM;
3138 }
3139
3140 return 0;
3141 }
3142
3143 /**
3144 * ice_vsi_rebuild - Rebuild VSI after reset
3145 * @vsi: VSI to be rebuild
3146 * @vsi_flags: flags used for VSI rebuild flow
3147 *
3148 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3149 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3150 *
3151 * Returns 0 on success and negative value on failure
3152 */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3153 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3154 {
3155 struct ice_vsi_cfg_params params = {};
3156 struct ice_coalesce_stored *coalesce;
3157 int prev_num_q_vectors;
3158 struct ice_pf *pf;
3159 int ret;
3160
3161 if (!vsi)
3162 return -EINVAL;
3163
3164 params = ice_vsi_to_params(vsi);
3165 params.flags = vsi_flags;
3166
3167 pf = vsi->back;
3168 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3169 return -EINVAL;
3170
3171 mutex_lock(&vsi->xdp_state_lock);
3172
3173 ret = ice_vsi_realloc_stat_arrays(vsi);
3174 if (ret)
3175 goto unlock;
3176
3177 ice_vsi_decfg(vsi);
3178 ret = ice_vsi_cfg_def(vsi, ¶ms);
3179 if (ret)
3180 goto unlock;
3181
3182 coalesce = kcalloc(vsi->num_q_vectors,
3183 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3184 if (!coalesce) {
3185 ret = -ENOMEM;
3186 goto decfg;
3187 }
3188
3189 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3190
3191 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3192 if (ret) {
3193 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3194 ret = -EIO;
3195 goto free_coalesce;
3196 }
3197
3198 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3199 goto free_coalesce;
3200 }
3201
3202 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3203 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3204
3205 free_coalesce:
3206 kfree(coalesce);
3207 decfg:
3208 if (ret)
3209 ice_vsi_decfg(vsi);
3210 unlock:
3211 mutex_unlock(&vsi->xdp_state_lock);
3212 return ret;
3213 }
3214
3215 /**
3216 * ice_is_reset_in_progress - check for a reset in progress
3217 * @state: PF state field
3218 */
ice_is_reset_in_progress(unsigned long * state)3219 bool ice_is_reset_in_progress(unsigned long *state)
3220 {
3221 return test_bit(ICE_RESET_OICR_RECV, state) ||
3222 test_bit(ICE_PFR_REQ, state) ||
3223 test_bit(ICE_CORER_REQ, state) ||
3224 test_bit(ICE_GLOBR_REQ, state);
3225 }
3226
3227 /**
3228 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3229 * @pf: pointer to the PF structure
3230 * @timeout: length of time to wait, in jiffies
3231 *
3232 * Wait (sleep) for a short time until the driver finishes cleaning up from
3233 * a device reset. The caller must be able to sleep. Use this to delay
3234 * operations that could fail while the driver is cleaning up after a device
3235 * reset.
3236 *
3237 * Returns 0 on success, -EBUSY if the reset is not finished within the
3238 * timeout, and -ERESTARTSYS if the thread was interrupted.
3239 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3240 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3241 {
3242 long ret;
3243
3244 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3245 !ice_is_reset_in_progress(pf->state),
3246 timeout);
3247 if (ret < 0)
3248 return ret;
3249 else if (!ret)
3250 return -EBUSY;
3251 else
3252 return 0;
3253 }
3254
3255 /**
3256 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3257 * @vsi: VSI being configured
3258 * @ctx: the context buffer returned from AQ VSI update command
3259 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3260 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3261 {
3262 vsi->info.mapping_flags = ctx->info.mapping_flags;
3263 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3264 sizeof(vsi->info.q_mapping));
3265 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3266 sizeof(vsi->info.tc_mapping));
3267 }
3268
3269 /**
3270 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3271 * @vsi: the VSI being configured
3272 * @ena_tc: TC map to be enabled
3273 */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3274 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3275 {
3276 struct net_device *netdev = vsi->netdev;
3277 struct ice_pf *pf = vsi->back;
3278 int numtc = vsi->tc_cfg.numtc;
3279 struct ice_dcbx_cfg *dcbcfg;
3280 u8 netdev_tc;
3281 int i;
3282
3283 if (!netdev)
3284 return;
3285
3286 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3287 if (vsi->type == ICE_VSI_CHNL)
3288 return;
3289
3290 if (!ena_tc) {
3291 netdev_reset_tc(netdev);
3292 return;
3293 }
3294
3295 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3296 numtc = vsi->all_numtc;
3297
3298 if (netdev_set_num_tc(netdev, numtc))
3299 return;
3300
3301 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3302
3303 ice_for_each_traffic_class(i)
3304 if (vsi->tc_cfg.ena_tc & BIT(i))
3305 netdev_set_tc_queue(netdev,
3306 vsi->tc_cfg.tc_info[i].netdev_tc,
3307 vsi->tc_cfg.tc_info[i].qcount_tx,
3308 vsi->tc_cfg.tc_info[i].qoffset);
3309 /* setup TC queue map for CHNL TCs */
3310 ice_for_each_chnl_tc(i) {
3311 if (!(vsi->all_enatc & BIT(i)))
3312 break;
3313 if (!vsi->mqprio_qopt.qopt.count[i])
3314 break;
3315 netdev_set_tc_queue(netdev, i,
3316 vsi->mqprio_qopt.qopt.count[i],
3317 vsi->mqprio_qopt.qopt.offset[i]);
3318 }
3319
3320 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3321 return;
3322
3323 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3324 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3325
3326 /* Get the mapped netdev TC# for the UP */
3327 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3328 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3329 }
3330 }
3331
3332 /**
3333 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3334 * @vsi: the VSI being configured,
3335 * @ctxt: VSI context structure
3336 * @ena_tc: number of traffic classes to enable
3337 *
3338 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3339 */
3340 static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3341 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3342 u8 ena_tc)
3343 {
3344 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3345 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3346 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3347 u16 new_txq, new_rxq;
3348 u8 netdev_tc = 0;
3349 int i;
3350
3351 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3352
3353 pow = order_base_2(tc0_qcount);
3354 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3355 ICE_AQ_VSI_TC_Q_OFFSET_M) |
3356 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3357
3358 ice_for_each_traffic_class(i) {
3359 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3360 /* TC is not enabled */
3361 vsi->tc_cfg.tc_info[i].qoffset = 0;
3362 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3363 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3364 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3365 ctxt->info.tc_mapping[i] = 0;
3366 continue;
3367 }
3368
3369 offset = vsi->mqprio_qopt.qopt.offset[i];
3370 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3371 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3372 vsi->tc_cfg.tc_info[i].qoffset = offset;
3373 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3374 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3375 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3376 }
3377
3378 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3379 ice_for_each_chnl_tc(i) {
3380 if (!(vsi->all_enatc & BIT(i)))
3381 continue;
3382 offset = vsi->mqprio_qopt.qopt.offset[i];
3383 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3384 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3385 }
3386 }
3387
3388 new_txq = offset + qcount_tx;
3389 if (new_txq > vsi->alloc_txq) {
3390 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3391 new_txq, vsi->alloc_txq);
3392 return -EINVAL;
3393 }
3394
3395 new_rxq = offset + qcount_rx;
3396 if (new_rxq > vsi->alloc_rxq) {
3397 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3398 new_rxq, vsi->alloc_rxq);
3399 return -EINVAL;
3400 }
3401
3402 /* Set actual Tx/Rx queue pairs */
3403 vsi->num_txq = new_txq;
3404 vsi->num_rxq = new_rxq;
3405
3406 /* Setup queue TC[0].qmap for given VSI context */
3407 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3408 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3409 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3410
3411 /* Find queue count available for channel VSIs and starting offset
3412 * for channel VSIs
3413 */
3414 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3415 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3416 vsi->next_base_q = tc0_qcount;
3417 }
3418 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3419 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3420 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3421 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3422
3423 return 0;
3424 }
3425
3426 /**
3427 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3428 * @vsi: VSI to be configured
3429 * @ena_tc: TC bitmap
3430 *
3431 * VSI queues expected to be quiesced before calling this function
3432 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3433 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3434 {
3435 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3436 struct ice_pf *pf = vsi->back;
3437 struct ice_tc_cfg old_tc_cfg;
3438 struct ice_vsi_ctx *ctx;
3439 struct device *dev;
3440 int i, ret = 0;
3441 u8 num_tc = 0;
3442
3443 dev = ice_pf_to_dev(pf);
3444 if (vsi->tc_cfg.ena_tc == ena_tc &&
3445 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3446 return 0;
3447
3448 ice_for_each_traffic_class(i) {
3449 /* build bitmap of enabled TCs */
3450 if (ena_tc & BIT(i))
3451 num_tc++;
3452 /* populate max_txqs per TC */
3453 max_txqs[i] = vsi->alloc_txq;
3454 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3455 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3456 */
3457 if (vsi->type == ICE_VSI_CHNL &&
3458 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3459 max_txqs[i] = vsi->num_txq;
3460 }
3461
3462 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3463 vsi->tc_cfg.ena_tc = ena_tc;
3464 vsi->tc_cfg.numtc = num_tc;
3465
3466 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3467 if (!ctx)
3468 return -ENOMEM;
3469
3470 ctx->vf_num = 0;
3471 ctx->info = vsi->info;
3472
3473 if (vsi->type == ICE_VSI_PF &&
3474 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3475 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3476 else
3477 ret = ice_vsi_setup_q_map(vsi, ctx);
3478
3479 if (ret) {
3480 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3481 goto out;
3482 }
3483
3484 /* must to indicate which section of VSI context are being modified */
3485 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3486 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3487 if (ret) {
3488 dev_info(dev, "Failed VSI Update\n");
3489 goto out;
3490 }
3491
3492 if (vsi->type == ICE_VSI_PF &&
3493 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3494 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3495 else
3496 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3497 vsi->tc_cfg.ena_tc, max_txqs);
3498
3499 if (ret) {
3500 dev_err(dev, "VSI %d failed TC config, error %d\n",
3501 vsi->vsi_num, ret);
3502 goto out;
3503 }
3504 ice_vsi_update_q_map(vsi, ctx);
3505 vsi->info.valid_sections = 0;
3506
3507 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3508 out:
3509 kfree(ctx);
3510 return ret;
3511 }
3512
3513 /**
3514 * ice_update_ring_stats - Update ring statistics
3515 * @stats: stats to be updated
3516 * @pkts: number of processed packets
3517 * @bytes: number of processed bytes
3518 *
3519 * This function assumes that caller has acquired a u64_stats_sync lock.
3520 */
ice_update_ring_stats(struct ice_q_stats * stats,u64 pkts,u64 bytes)3521 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3522 {
3523 stats->bytes += bytes;
3524 stats->pkts += pkts;
3525 }
3526
3527 /**
3528 * ice_update_tx_ring_stats - Update Tx ring specific counters
3529 * @tx_ring: ring to update
3530 * @pkts: number of processed packets
3531 * @bytes: number of processed bytes
3532 */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3533 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3534 {
3535 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3536 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3537 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3538 }
3539
3540 /**
3541 * ice_update_rx_ring_stats - Update Rx ring specific counters
3542 * @rx_ring: ring to update
3543 * @pkts: number of processed packets
3544 * @bytes: number of processed bytes
3545 */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3546 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3547 {
3548 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3549 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3550 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3551 }
3552
3553 /**
3554 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3555 * @pi: port info of the switch with default VSI
3556 *
3557 * Return true if the there is a single VSI in default forwarding VSI list
3558 */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3559 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3560 {
3561 bool exists = false;
3562
3563 ice_check_if_dflt_vsi(pi, 0, &exists);
3564 return exists;
3565 }
3566
3567 /**
3568 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3569 * @vsi: VSI to compare against default forwarding VSI
3570 *
3571 * If this VSI passed in is the default forwarding VSI then return true, else
3572 * return false
3573 */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3574 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3575 {
3576 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3577 }
3578
3579 /**
3580 * ice_set_dflt_vsi - set the default forwarding VSI
3581 * @vsi: VSI getting set as the default forwarding VSI on the switch
3582 *
3583 * If the VSI passed in is already the default VSI and it's enabled just return
3584 * success.
3585 *
3586 * Otherwise try to set the VSI passed in as the switch's default VSI and
3587 * return the result.
3588 */
ice_set_dflt_vsi(struct ice_vsi * vsi)3589 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3590 {
3591 struct device *dev;
3592 int status;
3593
3594 if (!vsi)
3595 return -EINVAL;
3596
3597 dev = ice_pf_to_dev(vsi->back);
3598
3599 if (ice_lag_is_switchdev_running(vsi->back)) {
3600 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3601 vsi->vsi_num);
3602 return 0;
3603 }
3604
3605 /* the VSI passed in is already the default VSI */
3606 if (ice_is_vsi_dflt_vsi(vsi)) {
3607 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3608 vsi->vsi_num);
3609 return 0;
3610 }
3611
3612 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3613 if (status) {
3614 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3615 vsi->vsi_num, status);
3616 return status;
3617 }
3618
3619 return 0;
3620 }
3621
3622 /**
3623 * ice_clear_dflt_vsi - clear the default forwarding VSI
3624 * @vsi: VSI to remove from filter list
3625 *
3626 * If the switch has no default VSI or it's not enabled then return error.
3627 *
3628 * Otherwise try to clear the default VSI and return the result.
3629 */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3630 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3631 {
3632 struct device *dev;
3633 int status;
3634
3635 if (!vsi)
3636 return -EINVAL;
3637
3638 dev = ice_pf_to_dev(vsi->back);
3639
3640 /* there is no default VSI configured */
3641 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3642 return -ENODEV;
3643
3644 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3645 ICE_FLTR_RX);
3646 if (status) {
3647 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3648 vsi->vsi_num, status);
3649 return -EIO;
3650 }
3651
3652 return 0;
3653 }
3654
3655 /**
3656 * ice_get_link_speed_mbps - get link speed in Mbps
3657 * @vsi: the VSI whose link speed is being queried
3658 *
3659 * Return current VSI link speed and 0 if the speed is unknown.
3660 */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3661 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3662 {
3663 unsigned int link_speed;
3664
3665 link_speed = vsi->port_info->phy.link_info.link_speed;
3666
3667 return (int)ice_get_link_speed(fls(link_speed) - 1);
3668 }
3669
3670 /**
3671 * ice_get_link_speed_kbps - get link speed in Kbps
3672 * @vsi: the VSI whose link speed is being queried
3673 *
3674 * Return current VSI link speed and 0 if the speed is unknown.
3675 */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3676 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3677 {
3678 int speed_mbps;
3679
3680 speed_mbps = ice_get_link_speed_mbps(vsi);
3681
3682 return speed_mbps * 1000;
3683 }
3684
3685 /**
3686 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3687 * @vsi: VSI to be configured
3688 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3689 *
3690 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3691 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3692 * on TC 0.
3693 */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3694 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3695 {
3696 struct ice_pf *pf = vsi->back;
3697 struct device *dev;
3698 int status;
3699 int speed;
3700
3701 dev = ice_pf_to_dev(pf);
3702 if (!vsi->port_info) {
3703 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3704 vsi->idx, vsi->type);
3705 return -EINVAL;
3706 }
3707
3708 speed = ice_get_link_speed_kbps(vsi);
3709 if (min_tx_rate > (u64)speed) {
3710 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3711 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3712 speed);
3713 return -EINVAL;
3714 }
3715
3716 /* Configure min BW for VSI limit */
3717 if (min_tx_rate) {
3718 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3719 ICE_MIN_BW, min_tx_rate);
3720 if (status) {
3721 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3722 min_tx_rate, ice_vsi_type_str(vsi->type),
3723 vsi->idx);
3724 return status;
3725 }
3726
3727 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3728 min_tx_rate, ice_vsi_type_str(vsi->type));
3729 } else {
3730 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3731 vsi->idx, 0,
3732 ICE_MIN_BW);
3733 if (status) {
3734 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3735 ice_vsi_type_str(vsi->type), vsi->idx);
3736 return status;
3737 }
3738
3739 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3740 ice_vsi_type_str(vsi->type), vsi->idx);
3741 }
3742
3743 return 0;
3744 }
3745
3746 /**
3747 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3748 * @vsi: VSI to be configured
3749 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3750 *
3751 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3752 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3753 * on TC 0.
3754 */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3755 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3756 {
3757 struct ice_pf *pf = vsi->back;
3758 struct device *dev;
3759 int status;
3760 int speed;
3761
3762 dev = ice_pf_to_dev(pf);
3763 if (!vsi->port_info) {
3764 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3765 vsi->idx, vsi->type);
3766 return -EINVAL;
3767 }
3768
3769 speed = ice_get_link_speed_kbps(vsi);
3770 if (max_tx_rate > (u64)speed) {
3771 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3772 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3773 speed);
3774 return -EINVAL;
3775 }
3776
3777 /* Configure max BW for VSI limit */
3778 if (max_tx_rate) {
3779 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3780 ICE_MAX_BW, max_tx_rate);
3781 if (status) {
3782 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3783 max_tx_rate, ice_vsi_type_str(vsi->type),
3784 vsi->idx);
3785 return status;
3786 }
3787
3788 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3789 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3790 } else {
3791 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3792 vsi->idx, 0,
3793 ICE_MAX_BW);
3794 if (status) {
3795 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3796 ice_vsi_type_str(vsi->type), vsi->idx);
3797 return status;
3798 }
3799
3800 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3801 ice_vsi_type_str(vsi->type), vsi->idx);
3802 }
3803
3804 return 0;
3805 }
3806
3807 /**
3808 * ice_set_link - turn on/off physical link
3809 * @vsi: VSI to modify physical link on
3810 * @ena: turn on/off physical link
3811 */
ice_set_link(struct ice_vsi * vsi,bool ena)3812 int ice_set_link(struct ice_vsi *vsi, bool ena)
3813 {
3814 struct device *dev = ice_pf_to_dev(vsi->back);
3815 struct ice_port_info *pi = vsi->port_info;
3816 struct ice_hw *hw = pi->hw;
3817 int status;
3818
3819 if (vsi->type != ICE_VSI_PF)
3820 return -EINVAL;
3821
3822 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3823
3824 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3825 * this is not a fatal error, so print a warning message and return
3826 * a success code. Return an error if FW returns an error code other
3827 * than ICE_AQ_RC_EMODE
3828 */
3829 if (status == -EIO) {
3830 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3831 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3832 (ena ? "ON" : "OFF"), status,
3833 ice_aq_str(hw->adminq.sq_last_status));
3834 } else if (status) {
3835 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3836 (ena ? "ON" : "OFF"), status,
3837 ice_aq_str(hw->adminq.sq_last_status));
3838 return status;
3839 }
3840
3841 return 0;
3842 }
3843
3844 /**
3845 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3846 * @vsi: VSI used to add VLAN filters
3847 *
3848 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3849 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3850 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3851 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3852 *
3853 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3854 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3855 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3856 *
3857 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3858 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3859 * part of filtering.
3860 */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3861 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3862 {
3863 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3864 struct ice_vlan vlan;
3865 int err;
3866
3867 vlan = ICE_VLAN(0, 0, 0);
3868 err = vlan_ops->add_vlan(vsi, &vlan);
3869 if (err && err != -EEXIST)
3870 return err;
3871
3872 /* in SVM both VLAN 0 filters are identical */
3873 if (!ice_is_dvm_ena(&vsi->back->hw))
3874 return 0;
3875
3876 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3877 err = vlan_ops->add_vlan(vsi, &vlan);
3878 if (err && err != -EEXIST)
3879 return err;
3880
3881 return 0;
3882 }
3883
3884 /**
3885 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3886 * @vsi: VSI used to add VLAN filters
3887 *
3888 * Delete the VLAN 0 filters in the same manner that they were added in
3889 * ice_vsi_add_vlan_zero.
3890 */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3891 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3892 {
3893 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3894 struct ice_vlan vlan;
3895 int err;
3896
3897 vlan = ICE_VLAN(0, 0, 0);
3898 err = vlan_ops->del_vlan(vsi, &vlan);
3899 if (err && err != -EEXIST)
3900 return err;
3901
3902 /* in SVM both VLAN 0 filters are identical */
3903 if (!ice_is_dvm_ena(&vsi->back->hw))
3904 return 0;
3905
3906 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3907 err = vlan_ops->del_vlan(vsi, &vlan);
3908 if (err && err != -EEXIST)
3909 return err;
3910
3911 /* when deleting the last VLAN filter, make sure to disable the VLAN
3912 * promisc mode so the filter isn't left by accident
3913 */
3914 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3915 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3916 }
3917
3918 /**
3919 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3920 * @vsi: VSI used to get the VLAN mode
3921 *
3922 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3923 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3924 */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3925 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3926 {
3927 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3928 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3929 /* no VLAN 0 filter is created when a port VLAN is active */
3930 if (vsi->type == ICE_VSI_VF) {
3931 if (WARN_ON(!vsi->vf))
3932 return 0;
3933
3934 if (ice_vf_is_port_vlan_ena(vsi->vf))
3935 return 0;
3936 }
3937
3938 if (ice_is_dvm_ena(&vsi->back->hw))
3939 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3940 else
3941 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3942 }
3943
3944 /**
3945 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3946 * @vsi: VSI used to determine if any non-zero VLANs have been added
3947 */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3948 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3949 {
3950 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3951 }
3952
3953 /**
3954 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3955 * @vsi: VSI used to get the number of non-zero VLANs added
3956 */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3957 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3958 {
3959 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3960 }
3961
3962 /**
3963 * ice_is_feature_supported
3964 * @pf: pointer to the struct ice_pf instance
3965 * @f: feature enum to be checked
3966 *
3967 * returns true if feature is supported, false otherwise
3968 */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3969 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3970 {
3971 if (f < 0 || f >= ICE_F_MAX)
3972 return false;
3973
3974 return test_bit(f, pf->features);
3975 }
3976
3977 /**
3978 * ice_set_feature_support
3979 * @pf: pointer to the struct ice_pf instance
3980 * @f: feature enum to set
3981 */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3982 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3983 {
3984 if (f < 0 || f >= ICE_F_MAX)
3985 return;
3986
3987 set_bit(f, pf->features);
3988 }
3989
3990 /**
3991 * ice_clear_feature_support
3992 * @pf: pointer to the struct ice_pf instance
3993 * @f: feature enum to clear
3994 */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3995 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3996 {
3997 if (f < 0 || f >= ICE_F_MAX)
3998 return;
3999
4000 clear_bit(f, pf->features);
4001 }
4002
4003 /**
4004 * ice_init_feature_support
4005 * @pf: pointer to the struct ice_pf instance
4006 *
4007 * called during init to setup supported feature
4008 */
ice_init_feature_support(struct ice_pf * pf)4009 void ice_init_feature_support(struct ice_pf *pf)
4010 {
4011 switch (pf->hw.device_id) {
4012 case ICE_DEV_ID_E810C_BACKPLANE:
4013 case ICE_DEV_ID_E810C_QSFP:
4014 case ICE_DEV_ID_E810C_SFP:
4015 ice_set_feature_support(pf, ICE_F_DSCP);
4016 ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4017 if (ice_is_e810t(&pf->hw)) {
4018 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4019 if (ice_gnss_is_gps_present(&pf->hw))
4020 ice_set_feature_support(pf, ICE_F_GNSS);
4021 }
4022 break;
4023 default:
4024 break;
4025 }
4026 }
4027
4028 /**
4029 * ice_vsi_update_security - update security block in VSI
4030 * @vsi: pointer to VSI structure
4031 * @fill: function pointer to fill ctx
4032 */
4033 int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))4034 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4035 {
4036 struct ice_vsi_ctx ctx = { 0 };
4037
4038 ctx.info = vsi->info;
4039 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4040 fill(&ctx);
4041
4042 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4043 return -ENODEV;
4044
4045 vsi->info = ctx.info;
4046 return 0;
4047 }
4048
4049 /**
4050 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4051 * @ctx: pointer to VSI ctx structure
4052 */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)4053 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4054 {
4055 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4056 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4057 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4058 }
4059
4060 /**
4061 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4062 * @ctx: pointer to VSI ctx structure
4063 */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)4064 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4065 {
4066 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4067 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4068 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4069 }
4070
4071 /**
4072 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4073 * @ctx: pointer to VSI ctx structure
4074 */
ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx * ctx)4075 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4076 {
4077 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4078 }
4079
4080 /**
4081 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4082 * @ctx: pointer to VSI ctx structure
4083 */
ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx * ctx)4084 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4085 {
4086 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4087 }
4088
4089 /**
4090 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4091 * @vsi: pointer to VSI structure
4092 * @set: set or unset the bit
4093 */
4094 int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)4095 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4096 {
4097 struct ice_vsi_ctx ctx = {
4098 .info = vsi->info,
4099 };
4100
4101 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4102 if (set)
4103 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4104 else
4105 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4106
4107 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4108 return -ENODEV;
4109
4110 vsi->info = ctx.info;
4111 return 0;
4112 }
4113