1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2
3 #include <linux/bpf.h>
4 #include <linux/crash_dump.h>
5 #include <linux/etherdevice.h>
6 #include <linux/ethtool.h>
7 #include <linux/filter.h>
8 #include <linux/idr.h>
9 #include <linux/if_vlan.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/pci.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/inetdevice.h>
15
16 #include "funeth.h"
17 #include "funeth_devlink.h"
18 #include "funeth_ktls.h"
19 #include "fun_port.h"
20 #include "fun_queue.h"
21 #include "funeth_txrx.h"
22
23 #define ADMIN_SQ_DEPTH 32
24 #define ADMIN_CQ_DEPTH 64
25 #define ADMIN_RQ_DEPTH 16
26
27 /* Default number of Tx/Rx queues. */
28 #define FUN_DFLT_QUEUES 16U
29
30 enum {
31 FUN_SERV_RES_CHANGE = FUN_SERV_FIRST_AVAIL,
32 FUN_SERV_DEL_PORTS,
33 };
34
35 static const struct pci_device_id funeth_id_table[] = {
36 { PCI_VDEVICE(FUNGIBLE, 0x0101) },
37 { PCI_VDEVICE(FUNGIBLE, 0x0181) },
38 { 0, }
39 };
40
41 /* Issue a port write admin command with @n key/value pairs. */
fun_port_write_cmds(struct funeth_priv * fp,unsigned int n,const int * keys,const u64 * data)42 static int fun_port_write_cmds(struct funeth_priv *fp, unsigned int n,
43 const int *keys, const u64 *data)
44 {
45 unsigned int cmd_size, i;
46 union {
47 struct fun_admin_port_req req;
48 struct fun_admin_port_rsp rsp;
49 u8 v[ADMIN_SQE_SIZE];
50 } cmd;
51
52 cmd_size = offsetof(struct fun_admin_port_req, u.write.write48) +
53 n * sizeof(struct fun_admin_write48_req);
54 if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN)
55 return -EINVAL;
56
57 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
58 cmd_size);
59 cmd.req.u.write =
60 FUN_ADMIN_PORT_WRITE_REQ_INIT(FUN_ADMIN_SUBOP_WRITE, 0,
61 fp->netdev->dev_port);
62 for (i = 0; i < n; i++)
63 cmd.req.u.write.write48[i] =
64 FUN_ADMIN_WRITE48_REQ_INIT(keys[i], data[i]);
65
66 return fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
67 &cmd.rsp, cmd_size, 0);
68 }
69
fun_port_write_cmd(struct funeth_priv * fp,int key,u64 data)70 int fun_port_write_cmd(struct funeth_priv *fp, int key, u64 data)
71 {
72 return fun_port_write_cmds(fp, 1, &key, &data);
73 }
74
75 /* Issue a port read admin command with @n key/value pairs. */
fun_port_read_cmds(struct funeth_priv * fp,unsigned int n,const int * keys,u64 * data)76 static int fun_port_read_cmds(struct funeth_priv *fp, unsigned int n,
77 const int *keys, u64 *data)
78 {
79 const struct fun_admin_read48_rsp *r48rsp;
80 unsigned int cmd_size, i;
81 int rc;
82 union {
83 struct fun_admin_port_req req;
84 struct fun_admin_port_rsp rsp;
85 u8 v[ADMIN_SQE_SIZE];
86 } cmd;
87
88 cmd_size = offsetof(struct fun_admin_port_req, u.read.read48) +
89 n * sizeof(struct fun_admin_read48_req);
90 if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN)
91 return -EINVAL;
92
93 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
94 cmd_size);
95 cmd.req.u.read =
96 FUN_ADMIN_PORT_READ_REQ_INIT(FUN_ADMIN_SUBOP_READ, 0,
97 fp->netdev->dev_port);
98 for (i = 0; i < n; i++)
99 cmd.req.u.read.read48[i] = FUN_ADMIN_READ48_REQ_INIT(keys[i]);
100
101 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
102 &cmd.rsp, cmd_size, 0);
103 if (rc)
104 return rc;
105
106 for (r48rsp = cmd.rsp.u.read.read48, i = 0; i < n; i++, r48rsp++) {
107 data[i] = FUN_ADMIN_READ48_RSP_DATA_G(r48rsp->key_to_data);
108 dev_dbg(fp->fdev->dev,
109 "port_read_rsp lport=%u (key_to_data=0x%llx) key=%d data:%lld retval:%lld",
110 fp->lport, r48rsp->key_to_data, keys[i], data[i],
111 FUN_ADMIN_READ48_RSP_RET_G(r48rsp->key_to_data));
112 }
113 return 0;
114 }
115
fun_port_read_cmd(struct funeth_priv * fp,int key,u64 * data)116 int fun_port_read_cmd(struct funeth_priv *fp, int key, u64 *data)
117 {
118 return fun_port_read_cmds(fp, 1, &key, data);
119 }
120
fun_report_link(struct net_device * netdev)121 static void fun_report_link(struct net_device *netdev)
122 {
123 if (netif_carrier_ok(netdev)) {
124 const struct funeth_priv *fp = netdev_priv(netdev);
125 const char *fec = "", *pause = "";
126 int speed = fp->link_speed;
127 char unit = 'M';
128
129 if (fp->link_speed >= SPEED_1000) {
130 speed /= 1000;
131 unit = 'G';
132 }
133
134 if (fp->active_fec & FUN_PORT_FEC_RS)
135 fec = ", RS-FEC";
136 else if (fp->active_fec & FUN_PORT_FEC_FC)
137 fec = ", BASER-FEC";
138
139 if ((fp->active_fc & FUN_PORT_CAP_PAUSE_MASK) == FUN_PORT_CAP_PAUSE_MASK)
140 pause = ", Tx/Rx PAUSE";
141 else if (fp->active_fc & FUN_PORT_CAP_RX_PAUSE)
142 pause = ", Rx PAUSE";
143 else if (fp->active_fc & FUN_PORT_CAP_TX_PAUSE)
144 pause = ", Tx PAUSE";
145
146 netdev_info(netdev, "Link up at %d %cb/s full-duplex%s%s\n",
147 speed, unit, pause, fec);
148 } else {
149 netdev_info(netdev, "Link down\n");
150 }
151 }
152
fun_adi_write(struct fun_dev * fdev,enum fun_admin_adi_attr attr,unsigned int adi_id,const struct fun_adi_param * param)153 static int fun_adi_write(struct fun_dev *fdev, enum fun_admin_adi_attr attr,
154 unsigned int adi_id, const struct fun_adi_param *param)
155 {
156 struct fun_admin_adi_req req = {
157 .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ADI,
158 sizeof(req)),
159 .u.write.subop = FUN_ADMIN_SUBOP_WRITE,
160 .u.write.attribute = attr,
161 .u.write.id = cpu_to_be32(adi_id),
162 .u.write.param = *param
163 };
164
165 return fun_submit_admin_sync_cmd(fdev, &req.common, NULL, 0, 0);
166 }
167
168 /* Configure RSS for the given port. @op determines whether a new RSS context
169 * is to be created or whether an existing one should be reconfigured. The
170 * remaining parameters specify the hashing algorithm, key, and indirection
171 * table.
172 *
173 * This initiates packet delivery to the Rx queues set in the indirection
174 * table.
175 */
fun_config_rss(struct net_device * dev,int algo,const u8 * key,const u32 * qtable,u8 op)176 int fun_config_rss(struct net_device *dev, int algo, const u8 *key,
177 const u32 *qtable, u8 op)
178 {
179 struct funeth_priv *fp = netdev_priv(dev);
180 unsigned int table_len = fp->indir_table_nentries;
181 unsigned int len = FUN_ETH_RSS_MAX_KEY_SIZE + sizeof(u32) * table_len;
182 struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs);
183 union {
184 struct {
185 struct fun_admin_rss_req req;
186 struct fun_dataop_gl gl;
187 };
188 struct fun_admin_generic_create_rsp rsp;
189 } cmd;
190 __be32 *indir_tab;
191 u16 flags;
192 int rc;
193
194 if (op != FUN_ADMIN_SUBOP_CREATE && fp->rss_hw_id == FUN_HCI_ID_INVALID)
195 return -EINVAL;
196
197 flags = op == FUN_ADMIN_SUBOP_CREATE ?
198 FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR : 0;
199 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_RSS,
200 sizeof(cmd));
201 cmd.req.u.create =
202 FUN_ADMIN_RSS_CREATE_REQ_INIT(op, flags, fp->rss_hw_id,
203 dev->dev_port, algo,
204 FUN_ETH_RSS_MAX_KEY_SIZE,
205 table_len, 0,
206 FUN_ETH_RSS_MAX_KEY_SIZE);
207 cmd.req.u.create.dataop = FUN_DATAOP_HDR_INIT(1, 0, 1, 0, len);
208 fun_dataop_gl_init(&cmd.gl, 0, 0, len, fp->rss_dma_addr);
209
210 /* write the key and indirection table into the RSS DMA area */
211 memcpy(fp->rss_cfg, key, FUN_ETH_RSS_MAX_KEY_SIZE);
212 indir_tab = fp->rss_cfg + FUN_ETH_RSS_MAX_KEY_SIZE;
213 for (rc = 0; rc < table_len; rc++)
214 *indir_tab++ = cpu_to_be32(rxqs[*qtable++]->hw_cqid);
215
216 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
217 &cmd.rsp, sizeof(cmd.rsp), 0);
218 if (!rc && op == FUN_ADMIN_SUBOP_CREATE)
219 fp->rss_hw_id = be32_to_cpu(cmd.rsp.id);
220 return rc;
221 }
222
223 /* Destroy the HW RSS conntext associated with the given port. This also stops
224 * all packet delivery to our Rx queues.
225 */
fun_destroy_rss(struct funeth_priv * fp)226 static void fun_destroy_rss(struct funeth_priv *fp)
227 {
228 if (fp->rss_hw_id != FUN_HCI_ID_INVALID) {
229 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_RSS, 0, fp->rss_hw_id);
230 fp->rss_hw_id = FUN_HCI_ID_INVALID;
231 }
232 }
233
fun_irq_aff_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)234 static void fun_irq_aff_notify(struct irq_affinity_notify *notify,
235 const cpumask_t *mask)
236 {
237 struct fun_irq *p = container_of(notify, struct fun_irq, aff_notify);
238
239 cpumask_copy(&p->affinity_mask, mask);
240 }
241
fun_irq_aff_release(struct kref __always_unused * ref)242 static void fun_irq_aff_release(struct kref __always_unused *ref)
243 {
244 }
245
246 /* Allocate an IRQ structure, assign an MSI-X index and initial affinity to it,
247 * and add it to the IRQ XArray.
248 */
fun_alloc_qirq(struct funeth_priv * fp,unsigned int idx,int node,unsigned int xa_idx_offset)249 static struct fun_irq *fun_alloc_qirq(struct funeth_priv *fp, unsigned int idx,
250 int node, unsigned int xa_idx_offset)
251 {
252 struct fun_irq *irq;
253 int cpu, res;
254
255 cpu = cpumask_local_spread(idx, node);
256 node = cpu_to_mem(cpu);
257
258 irq = kzalloc_node(sizeof(*irq), GFP_KERNEL, node);
259 if (!irq)
260 return ERR_PTR(-ENOMEM);
261
262 res = fun_reserve_irqs(fp->fdev, 1, &irq->irq_idx);
263 if (res != 1)
264 goto free_irq;
265
266 res = xa_insert(&fp->irqs, idx + xa_idx_offset, irq, GFP_KERNEL);
267 if (res)
268 goto release_irq;
269
270 irq->irq = pci_irq_vector(fp->pdev, irq->irq_idx);
271 cpumask_set_cpu(cpu, &irq->affinity_mask);
272 irq->aff_notify.notify = fun_irq_aff_notify;
273 irq->aff_notify.release = fun_irq_aff_release;
274 irq->state = FUN_IRQ_INIT;
275 return irq;
276
277 release_irq:
278 fun_release_irqs(fp->fdev, 1, &irq->irq_idx);
279 free_irq:
280 kfree(irq);
281 return ERR_PTR(res);
282 }
283
fun_free_qirq(struct funeth_priv * fp,struct fun_irq * irq)284 static void fun_free_qirq(struct funeth_priv *fp, struct fun_irq *irq)
285 {
286 netif_napi_del(&irq->napi);
287 fun_release_irqs(fp->fdev, 1, &irq->irq_idx);
288 kfree(irq);
289 }
290
291 /* Release the IRQs reserved for Tx/Rx queues that aren't being used. */
fun_prune_queue_irqs(struct net_device * dev)292 static void fun_prune_queue_irqs(struct net_device *dev)
293 {
294 struct funeth_priv *fp = netdev_priv(dev);
295 unsigned int nreleased = 0;
296 struct fun_irq *irq;
297 unsigned long idx;
298
299 xa_for_each(&fp->irqs, idx, irq) {
300 if (irq->txq || irq->rxq) /* skip those in use */
301 continue;
302
303 xa_erase(&fp->irqs, idx);
304 fun_free_qirq(fp, irq);
305 nreleased++;
306 if (idx < fp->rx_irq_ofst)
307 fp->num_tx_irqs--;
308 else
309 fp->num_rx_irqs--;
310 }
311 netif_info(fp, intr, dev, "Released %u queue IRQs\n", nreleased);
312 }
313
314 /* Reserve IRQs, one per queue, to acommodate the requested queue numbers @ntx
315 * and @nrx. IRQs are added incrementally to those we already have.
316 * We hold on to allocated IRQs until garbage collection of unused IRQs is
317 * separately requested.
318 */
fun_alloc_queue_irqs(struct net_device * dev,unsigned int ntx,unsigned int nrx)319 static int fun_alloc_queue_irqs(struct net_device *dev, unsigned int ntx,
320 unsigned int nrx)
321 {
322 struct funeth_priv *fp = netdev_priv(dev);
323 int node = dev_to_node(&fp->pdev->dev);
324 struct fun_irq *irq;
325 unsigned int i;
326
327 for (i = fp->num_tx_irqs; i < ntx; i++) {
328 irq = fun_alloc_qirq(fp, i, node, 0);
329 if (IS_ERR(irq))
330 return PTR_ERR(irq);
331
332 fp->num_tx_irqs++;
333 netif_napi_add_tx(dev, &irq->napi, fun_txq_napi_poll);
334 }
335
336 for (i = fp->num_rx_irqs; i < nrx; i++) {
337 irq = fun_alloc_qirq(fp, i, node, fp->rx_irq_ofst);
338 if (IS_ERR(irq))
339 return PTR_ERR(irq);
340
341 fp->num_rx_irqs++;
342 netif_napi_add(dev, &irq->napi, fun_rxq_napi_poll);
343 }
344
345 netif_info(fp, intr, dev, "Reserved %u/%u IRQs for Tx/Rx queues\n",
346 ntx, nrx);
347 return 0;
348 }
349
free_txqs(struct funeth_txq ** txqs,unsigned int nqs,unsigned int start,int state)350 static void free_txqs(struct funeth_txq **txqs, unsigned int nqs,
351 unsigned int start, int state)
352 {
353 unsigned int i;
354
355 for (i = start; i < nqs && txqs[i]; i++)
356 txqs[i] = funeth_txq_free(txqs[i], state);
357 }
358
alloc_txqs(struct net_device * dev,struct funeth_txq ** txqs,unsigned int nqs,unsigned int depth,unsigned int start,int state)359 static int alloc_txqs(struct net_device *dev, struct funeth_txq **txqs,
360 unsigned int nqs, unsigned int depth, unsigned int start,
361 int state)
362 {
363 struct funeth_priv *fp = netdev_priv(dev);
364 unsigned int i;
365 int err;
366
367 for (i = start; i < nqs; i++) {
368 err = funeth_txq_create(dev, i, depth, xa_load(&fp->irqs, i),
369 state, &txqs[i]);
370 if (err) {
371 free_txqs(txqs, nqs, start, FUN_QSTATE_DESTROYED);
372 return err;
373 }
374 }
375 return 0;
376 }
377
free_rxqs(struct funeth_rxq ** rxqs,unsigned int nqs,unsigned int start,int state)378 static void free_rxqs(struct funeth_rxq **rxqs, unsigned int nqs,
379 unsigned int start, int state)
380 {
381 unsigned int i;
382
383 for (i = start; i < nqs && rxqs[i]; i++)
384 rxqs[i] = funeth_rxq_free(rxqs[i], state);
385 }
386
alloc_rxqs(struct net_device * dev,struct funeth_rxq ** rxqs,unsigned int nqs,unsigned int ncqe,unsigned int nrqe,unsigned int start,int state)387 static int alloc_rxqs(struct net_device *dev, struct funeth_rxq **rxqs,
388 unsigned int nqs, unsigned int ncqe, unsigned int nrqe,
389 unsigned int start, int state)
390 {
391 struct funeth_priv *fp = netdev_priv(dev);
392 unsigned int i;
393 int err;
394
395 for (i = start; i < nqs; i++) {
396 err = funeth_rxq_create(dev, i, ncqe, nrqe,
397 xa_load(&fp->irqs, i + fp->rx_irq_ofst),
398 state, &rxqs[i]);
399 if (err) {
400 free_rxqs(rxqs, nqs, start, FUN_QSTATE_DESTROYED);
401 return err;
402 }
403 }
404 return 0;
405 }
406
free_xdpqs(struct funeth_txq ** xdpqs,unsigned int nqs,unsigned int start,int state)407 static void free_xdpqs(struct funeth_txq **xdpqs, unsigned int nqs,
408 unsigned int start, int state)
409 {
410 unsigned int i;
411
412 for (i = start; i < nqs && xdpqs[i]; i++)
413 xdpqs[i] = funeth_txq_free(xdpqs[i], state);
414
415 if (state == FUN_QSTATE_DESTROYED)
416 kfree(xdpqs);
417 }
418
alloc_xdpqs(struct net_device * dev,unsigned int nqs,unsigned int depth,unsigned int start,int state)419 static struct funeth_txq **alloc_xdpqs(struct net_device *dev, unsigned int nqs,
420 unsigned int depth, unsigned int start,
421 int state)
422 {
423 struct funeth_txq **xdpqs;
424 unsigned int i;
425 int err;
426
427 xdpqs = kcalloc(nqs, sizeof(*xdpqs), GFP_KERNEL);
428 if (!xdpqs)
429 return ERR_PTR(-ENOMEM);
430
431 for (i = start; i < nqs; i++) {
432 err = funeth_txq_create(dev, i, depth, NULL, state, &xdpqs[i]);
433 if (err) {
434 free_xdpqs(xdpqs, nqs, start, FUN_QSTATE_DESTROYED);
435 return ERR_PTR(err);
436 }
437 }
438 return xdpqs;
439 }
440
fun_free_rings(struct net_device * netdev,struct fun_qset * qset)441 static void fun_free_rings(struct net_device *netdev, struct fun_qset *qset)
442 {
443 struct funeth_priv *fp = netdev_priv(netdev);
444 struct funeth_txq **xdpqs = qset->xdpqs;
445 struct funeth_rxq **rxqs = qset->rxqs;
446
447 /* qset may not specify any queues to operate on. In that case the
448 * currently installed queues are implied.
449 */
450 if (!rxqs) {
451 rxqs = rtnl_dereference(fp->rxqs);
452 xdpqs = rtnl_dereference(fp->xdpqs);
453 qset->txqs = fp->txqs;
454 qset->nrxqs = netdev->real_num_rx_queues;
455 qset->ntxqs = netdev->real_num_tx_queues;
456 qset->nxdpqs = fp->num_xdpqs;
457 }
458 if (!rxqs)
459 return;
460
461 if (rxqs == rtnl_dereference(fp->rxqs)) {
462 rcu_assign_pointer(fp->rxqs, NULL);
463 rcu_assign_pointer(fp->xdpqs, NULL);
464 synchronize_net();
465 fp->txqs = NULL;
466 }
467
468 free_rxqs(rxqs, qset->nrxqs, qset->rxq_start, qset->state);
469 free_txqs(qset->txqs, qset->ntxqs, qset->txq_start, qset->state);
470 free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, qset->state);
471 if (qset->state == FUN_QSTATE_DESTROYED)
472 kfree(rxqs);
473
474 /* Tell the caller which queues were operated on. */
475 qset->rxqs = rxqs;
476 qset->xdpqs = xdpqs;
477 }
478
fun_alloc_rings(struct net_device * netdev,struct fun_qset * qset)479 static int fun_alloc_rings(struct net_device *netdev, struct fun_qset *qset)
480 {
481 struct funeth_txq **xdpqs = NULL, **txqs;
482 struct funeth_rxq **rxqs;
483 int err;
484
485 err = fun_alloc_queue_irqs(netdev, qset->ntxqs, qset->nrxqs);
486 if (err)
487 return err;
488
489 rxqs = kcalloc(qset->ntxqs + qset->nrxqs, sizeof(*rxqs), GFP_KERNEL);
490 if (!rxqs)
491 return -ENOMEM;
492
493 if (qset->nxdpqs) {
494 xdpqs = alloc_xdpqs(netdev, qset->nxdpqs, qset->sq_depth,
495 qset->xdpq_start, qset->state);
496 if (IS_ERR(xdpqs)) {
497 err = PTR_ERR(xdpqs);
498 goto free_qvec;
499 }
500 }
501
502 txqs = (struct funeth_txq **)&rxqs[qset->nrxqs];
503 err = alloc_txqs(netdev, txqs, qset->ntxqs, qset->sq_depth,
504 qset->txq_start, qset->state);
505 if (err)
506 goto free_xdpqs;
507
508 err = alloc_rxqs(netdev, rxqs, qset->nrxqs, qset->cq_depth,
509 qset->rq_depth, qset->rxq_start, qset->state);
510 if (err)
511 goto free_txqs;
512
513 qset->rxqs = rxqs;
514 qset->txqs = txqs;
515 qset->xdpqs = xdpqs;
516 return 0;
517
518 free_txqs:
519 free_txqs(txqs, qset->ntxqs, qset->txq_start, FUN_QSTATE_DESTROYED);
520 free_xdpqs:
521 free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, FUN_QSTATE_DESTROYED);
522 free_qvec:
523 kfree(rxqs);
524 return err;
525 }
526
527 /* Take queues to the next level. Presently this means creating them on the
528 * device.
529 */
fun_advance_ring_state(struct net_device * dev,struct fun_qset * qset)530 static int fun_advance_ring_state(struct net_device *dev, struct fun_qset *qset)
531 {
532 struct funeth_priv *fp = netdev_priv(dev);
533 int i, err;
534
535 for (i = 0; i < qset->nrxqs; i++) {
536 err = fun_rxq_create_dev(qset->rxqs[i],
537 xa_load(&fp->irqs,
538 i + fp->rx_irq_ofst));
539 if (err)
540 goto out;
541 }
542
543 for (i = 0; i < qset->ntxqs; i++) {
544 err = fun_txq_create_dev(qset->txqs[i], xa_load(&fp->irqs, i));
545 if (err)
546 goto out;
547 }
548
549 for (i = 0; i < qset->nxdpqs; i++) {
550 err = fun_txq_create_dev(qset->xdpqs[i], NULL);
551 if (err)
552 goto out;
553 }
554
555 return 0;
556
557 out:
558 fun_free_rings(dev, qset);
559 return err;
560 }
561
fun_port_create(struct net_device * netdev)562 static int fun_port_create(struct net_device *netdev)
563 {
564 struct funeth_priv *fp = netdev_priv(netdev);
565 union {
566 struct fun_admin_port_req req;
567 struct fun_admin_port_rsp rsp;
568 } cmd;
569 int rc;
570
571 if (fp->lport != INVALID_LPORT)
572 return 0;
573
574 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
575 sizeof(cmd.req));
576 cmd.req.u.create =
577 FUN_ADMIN_PORT_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 0,
578 netdev->dev_port);
579
580 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp,
581 sizeof(cmd.rsp), 0);
582
583 if (!rc)
584 fp->lport = be16_to_cpu(cmd.rsp.u.create.lport);
585 return rc;
586 }
587
fun_port_destroy(struct net_device * netdev)588 static int fun_port_destroy(struct net_device *netdev)
589 {
590 struct funeth_priv *fp = netdev_priv(netdev);
591
592 if (fp->lport == INVALID_LPORT)
593 return 0;
594
595 fp->lport = INVALID_LPORT;
596 return fun_res_destroy(fp->fdev, FUN_ADMIN_OP_PORT, 0,
597 netdev->dev_port);
598 }
599
fun_eth_create(struct funeth_priv * fp)600 static int fun_eth_create(struct funeth_priv *fp)
601 {
602 union {
603 struct fun_admin_eth_req req;
604 struct fun_admin_generic_create_rsp rsp;
605 } cmd;
606 int rc;
607
608 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ETH,
609 sizeof(cmd.req));
610 cmd.req.u.create = FUN_ADMIN_ETH_CREATE_REQ_INIT(
611 FUN_ADMIN_SUBOP_CREATE,
612 FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR,
613 0, fp->netdev->dev_port);
614
615 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp,
616 sizeof(cmd.rsp), 0);
617 return rc ? rc : be32_to_cpu(cmd.rsp.id);
618 }
619
fun_vi_create(struct funeth_priv * fp)620 static int fun_vi_create(struct funeth_priv *fp)
621 {
622 struct fun_admin_vi_req req = {
623 .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_VI,
624 sizeof(req)),
625 .u.create = FUN_ADMIN_VI_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE,
626 0,
627 fp->netdev->dev_port,
628 fp->netdev->dev_port)
629 };
630
631 return fun_submit_admin_sync_cmd(fp->fdev, &req.common, NULL, 0, 0);
632 }
633
634 /* Helper to create an ETH flow and bind an SQ to it.
635 * Returns the ETH id (>= 0) on success or a negative error.
636 */
fun_create_and_bind_tx(struct funeth_priv * fp,u32 sqid)637 int fun_create_and_bind_tx(struct funeth_priv *fp, u32 sqid)
638 {
639 int rc, ethid;
640
641 ethid = fun_eth_create(fp);
642 if (ethid >= 0) {
643 rc = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_EPSQ, sqid,
644 FUN_ADMIN_BIND_TYPE_ETH, ethid);
645 if (rc) {
646 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, ethid);
647 ethid = rc;
648 }
649 }
650 return ethid;
651 }
652
fun_queue_irq_handler(int irq,void * data)653 static irqreturn_t fun_queue_irq_handler(int irq, void *data)
654 {
655 struct fun_irq *p = data;
656
657 if (p->rxq) {
658 prefetch(p->rxq->next_cqe_info);
659 p->rxq->irq_cnt++;
660 }
661 napi_schedule_irqoff(&p->napi);
662 return IRQ_HANDLED;
663 }
664
fun_enable_irqs(struct net_device * dev)665 static int fun_enable_irqs(struct net_device *dev)
666 {
667 struct funeth_priv *fp = netdev_priv(dev);
668 unsigned long idx, last;
669 unsigned int qidx;
670 struct fun_irq *p;
671 const char *qtype;
672 int err;
673
674 xa_for_each(&fp->irqs, idx, p) {
675 if (p->txq) {
676 qtype = "tx";
677 qidx = p->txq->qidx;
678 } else if (p->rxq) {
679 qtype = "rx";
680 qidx = p->rxq->qidx;
681 } else {
682 continue;
683 }
684
685 if (p->state != FUN_IRQ_INIT)
686 continue;
687
688 snprintf(p->name, sizeof(p->name) - 1, "%s-%s-%u", dev->name,
689 qtype, qidx);
690 err = request_irq(p->irq, fun_queue_irq_handler, 0, p->name, p);
691 if (err) {
692 netdev_err(dev, "Failed to allocate IRQ %u, err %d\n",
693 p->irq, err);
694 goto unroll;
695 }
696 p->state = FUN_IRQ_REQUESTED;
697 }
698
699 xa_for_each(&fp->irqs, idx, p) {
700 if (p->state != FUN_IRQ_REQUESTED)
701 continue;
702 irq_set_affinity_notifier(p->irq, &p->aff_notify);
703 irq_set_affinity_and_hint(p->irq, &p->affinity_mask);
704 napi_enable(&p->napi);
705 p->state = FUN_IRQ_ENABLED;
706 }
707
708 return 0;
709
710 unroll:
711 last = idx - 1;
712 xa_for_each_range(&fp->irqs, idx, p, 0, last)
713 if (p->state == FUN_IRQ_REQUESTED) {
714 free_irq(p->irq, p);
715 p->state = FUN_IRQ_INIT;
716 }
717
718 return err;
719 }
720
fun_disable_one_irq(struct fun_irq * irq)721 static void fun_disable_one_irq(struct fun_irq *irq)
722 {
723 napi_disable(&irq->napi);
724 irq_set_affinity_notifier(irq->irq, NULL);
725 irq_update_affinity_hint(irq->irq, NULL);
726 free_irq(irq->irq, irq);
727 irq->state = FUN_IRQ_INIT;
728 }
729
fun_disable_irqs(struct net_device * dev)730 static void fun_disable_irqs(struct net_device *dev)
731 {
732 struct funeth_priv *fp = netdev_priv(dev);
733 struct fun_irq *p;
734 unsigned long idx;
735
736 xa_for_each(&fp->irqs, idx, p)
737 if (p->state == FUN_IRQ_ENABLED)
738 fun_disable_one_irq(p);
739 }
740
fun_down(struct net_device * dev,struct fun_qset * qset)741 static void fun_down(struct net_device *dev, struct fun_qset *qset)
742 {
743 struct funeth_priv *fp = netdev_priv(dev);
744
745 /* If we don't have queues the data path is already down.
746 * Note netif_running(dev) may be true.
747 */
748 if (!rcu_access_pointer(fp->rxqs))
749 return;
750
751 /* It is also down if the queues aren't on the device. */
752 if (fp->txqs[0]->init_state >= FUN_QSTATE_INIT_FULL) {
753 netif_info(fp, ifdown, dev,
754 "Tearing down data path on device\n");
755 fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_DISABLE, 0);
756
757 netif_carrier_off(dev);
758 netif_tx_disable(dev);
759
760 fun_destroy_rss(fp);
761 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port);
762 fun_disable_irqs(dev);
763 }
764
765 fun_free_rings(dev, qset);
766 }
767
fun_up(struct net_device * dev,struct fun_qset * qset)768 static int fun_up(struct net_device *dev, struct fun_qset *qset)
769 {
770 static const int port_keys[] = {
771 FUN_ADMIN_PORT_KEY_STATS_DMA_LOW,
772 FUN_ADMIN_PORT_KEY_STATS_DMA_HIGH,
773 FUN_ADMIN_PORT_KEY_ENABLE
774 };
775
776 struct funeth_priv *fp = netdev_priv(dev);
777 u64 vals[] = {
778 lower_32_bits(fp->stats_dma_addr),
779 upper_32_bits(fp->stats_dma_addr),
780 FUN_PORT_FLAG_ENABLE_NOTIFY
781 };
782 int err;
783
784 netif_info(fp, ifup, dev, "Setting up data path on device\n");
785
786 if (qset->rxqs[0]->init_state < FUN_QSTATE_INIT_FULL) {
787 err = fun_advance_ring_state(dev, qset);
788 if (err)
789 return err;
790 }
791
792 err = fun_vi_create(fp);
793 if (err)
794 goto free_queues;
795
796 fp->txqs = qset->txqs;
797 rcu_assign_pointer(fp->rxqs, qset->rxqs);
798 rcu_assign_pointer(fp->xdpqs, qset->xdpqs);
799
800 err = fun_enable_irqs(dev);
801 if (err)
802 goto destroy_vi;
803
804 if (fp->rss_cfg) {
805 err = fun_config_rss(dev, fp->hash_algo, fp->rss_key,
806 fp->indir_table, FUN_ADMIN_SUBOP_CREATE);
807 } else {
808 /* The non-RSS case has only 1 queue. */
809 err = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_VI, dev->dev_port,
810 FUN_ADMIN_BIND_TYPE_EPCQ,
811 qset->rxqs[0]->hw_cqid);
812 }
813 if (err)
814 goto disable_irqs;
815
816 err = fun_port_write_cmds(fp, 3, port_keys, vals);
817 if (err)
818 goto free_rss;
819
820 netif_tx_start_all_queues(dev);
821 return 0;
822
823 free_rss:
824 fun_destroy_rss(fp);
825 disable_irqs:
826 fun_disable_irqs(dev);
827 destroy_vi:
828 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port);
829 free_queues:
830 fun_free_rings(dev, qset);
831 return err;
832 }
833
funeth_open(struct net_device * netdev)834 static int funeth_open(struct net_device *netdev)
835 {
836 struct funeth_priv *fp = netdev_priv(netdev);
837 struct fun_qset qset = {
838 .nrxqs = netdev->real_num_rx_queues,
839 .ntxqs = netdev->real_num_tx_queues,
840 .nxdpqs = fp->num_xdpqs,
841 .cq_depth = fp->cq_depth,
842 .rq_depth = fp->rq_depth,
843 .sq_depth = fp->sq_depth,
844 .state = FUN_QSTATE_INIT_FULL,
845 };
846 int rc;
847
848 rc = fun_alloc_rings(netdev, &qset);
849 if (rc)
850 return rc;
851
852 rc = fun_up(netdev, &qset);
853 if (rc) {
854 qset.state = FUN_QSTATE_DESTROYED;
855 fun_free_rings(netdev, &qset);
856 }
857
858 return rc;
859 }
860
funeth_close(struct net_device * netdev)861 static int funeth_close(struct net_device *netdev)
862 {
863 struct fun_qset qset = { .state = FUN_QSTATE_DESTROYED };
864
865 fun_down(netdev, &qset);
866 return 0;
867 }
868
fun_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)869 static void fun_get_stats64(struct net_device *netdev,
870 struct rtnl_link_stats64 *stats)
871 {
872 struct funeth_priv *fp = netdev_priv(netdev);
873 struct funeth_txq **xdpqs;
874 struct funeth_rxq **rxqs;
875 unsigned int i, start;
876
877 stats->tx_packets = fp->tx_packets;
878 stats->tx_bytes = fp->tx_bytes;
879 stats->tx_dropped = fp->tx_dropped;
880
881 stats->rx_packets = fp->rx_packets;
882 stats->rx_bytes = fp->rx_bytes;
883 stats->rx_dropped = fp->rx_dropped;
884
885 rcu_read_lock();
886 rxqs = rcu_dereference(fp->rxqs);
887 if (!rxqs)
888 goto unlock;
889
890 for (i = 0; i < netdev->real_num_tx_queues; i++) {
891 struct funeth_txq_stats txs;
892
893 FUN_QSTAT_READ(fp->txqs[i], start, txs);
894 stats->tx_packets += txs.tx_pkts;
895 stats->tx_bytes += txs.tx_bytes;
896 stats->tx_dropped += txs.tx_map_err;
897 }
898
899 for (i = 0; i < netdev->real_num_rx_queues; i++) {
900 struct funeth_rxq_stats rxs;
901
902 FUN_QSTAT_READ(rxqs[i], start, rxs);
903 stats->rx_packets += rxs.rx_pkts;
904 stats->rx_bytes += rxs.rx_bytes;
905 stats->rx_dropped += rxs.rx_map_err + rxs.rx_mem_drops;
906 }
907
908 xdpqs = rcu_dereference(fp->xdpqs);
909 if (!xdpqs)
910 goto unlock;
911
912 for (i = 0; i < fp->num_xdpqs; i++) {
913 struct funeth_txq_stats txs;
914
915 FUN_QSTAT_READ(xdpqs[i], start, txs);
916 stats->tx_packets += txs.tx_pkts;
917 stats->tx_bytes += txs.tx_bytes;
918 }
919 unlock:
920 rcu_read_unlock();
921 }
922
fun_change_mtu(struct net_device * netdev,int new_mtu)923 static int fun_change_mtu(struct net_device *netdev, int new_mtu)
924 {
925 struct funeth_priv *fp = netdev_priv(netdev);
926 int rc;
927
928 rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MTU, new_mtu);
929 if (!rc)
930 netdev->mtu = new_mtu;
931 return rc;
932 }
933
fun_set_macaddr(struct net_device * netdev,void * addr)934 static int fun_set_macaddr(struct net_device *netdev, void *addr)
935 {
936 struct funeth_priv *fp = netdev_priv(netdev);
937 struct sockaddr *saddr = addr;
938 int rc;
939
940 if (!is_valid_ether_addr(saddr->sa_data))
941 return -EADDRNOTAVAIL;
942
943 if (ether_addr_equal(netdev->dev_addr, saddr->sa_data))
944 return 0;
945
946 rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR,
947 ether_addr_to_u64(saddr->sa_data));
948 if (!rc)
949 eth_hw_addr_set(netdev, saddr->sa_data);
950 return rc;
951 }
952
fun_get_port_attributes(struct net_device * netdev)953 static int fun_get_port_attributes(struct net_device *netdev)
954 {
955 static const int keys[] = {
956 FUN_ADMIN_PORT_KEY_MACADDR, FUN_ADMIN_PORT_KEY_CAPABILITIES,
957 FUN_ADMIN_PORT_KEY_ADVERT, FUN_ADMIN_PORT_KEY_MTU
958 };
959 static const int phys_keys[] = {
960 FUN_ADMIN_PORT_KEY_LANE_ATTRS,
961 };
962
963 struct funeth_priv *fp = netdev_priv(netdev);
964 u64 data[ARRAY_SIZE(keys)];
965 u8 mac[ETH_ALEN];
966 int i, rc;
967
968 rc = fun_port_read_cmds(fp, ARRAY_SIZE(keys), keys, data);
969 if (rc)
970 return rc;
971
972 for (i = 0; i < ARRAY_SIZE(keys); i++) {
973 switch (keys[i]) {
974 case FUN_ADMIN_PORT_KEY_MACADDR:
975 u64_to_ether_addr(data[i], mac);
976 if (is_zero_ether_addr(mac)) {
977 eth_hw_addr_random(netdev);
978 } else if (is_valid_ether_addr(mac)) {
979 eth_hw_addr_set(netdev, mac);
980 } else {
981 netdev_err(netdev,
982 "device provided a bad MAC address %pM\n",
983 mac);
984 return -EINVAL;
985 }
986 break;
987
988 case FUN_ADMIN_PORT_KEY_CAPABILITIES:
989 fp->port_caps = data[i];
990 break;
991
992 case FUN_ADMIN_PORT_KEY_ADVERT:
993 fp->advertising = data[i];
994 break;
995
996 case FUN_ADMIN_PORT_KEY_MTU:
997 netdev->mtu = data[i];
998 break;
999 }
1000 }
1001
1002 if (!(fp->port_caps & FUN_PORT_CAP_VPORT)) {
1003 rc = fun_port_read_cmds(fp, ARRAY_SIZE(phys_keys), phys_keys,
1004 data);
1005 if (rc)
1006 return rc;
1007
1008 fp->lane_attrs = data[0];
1009 }
1010
1011 if (netdev->addr_assign_type == NET_ADDR_RANDOM)
1012 return fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR,
1013 ether_addr_to_u64(netdev->dev_addr));
1014 return 0;
1015 }
1016
fun_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)1017 static int fun_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1018 {
1019 const struct funeth_priv *fp = netdev_priv(dev);
1020
1021 return copy_to_user(ifr->ifr_data, &fp->hwtstamp_cfg,
1022 sizeof(fp->hwtstamp_cfg)) ? -EFAULT : 0;
1023 }
1024
fun_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)1025 static int fun_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1026 {
1027 struct funeth_priv *fp = netdev_priv(dev);
1028 struct hwtstamp_config cfg;
1029
1030 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1031 return -EFAULT;
1032
1033 /* no TX HW timestamps */
1034 cfg.tx_type = HWTSTAMP_TX_OFF;
1035
1036 switch (cfg.rx_filter) {
1037 case HWTSTAMP_FILTER_NONE:
1038 break;
1039 case HWTSTAMP_FILTER_ALL:
1040 case HWTSTAMP_FILTER_SOME:
1041 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1042 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1043 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1044 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1045 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1046 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1047 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1048 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1049 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1050 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1051 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1052 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1053 case HWTSTAMP_FILTER_NTP_ALL:
1054 cfg.rx_filter = HWTSTAMP_FILTER_ALL;
1055 break;
1056 default:
1057 return -ERANGE;
1058 }
1059
1060 fp->hwtstamp_cfg = cfg;
1061 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1062 }
1063
fun_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1064 static int fun_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1065 {
1066 switch (cmd) {
1067 case SIOCSHWTSTAMP:
1068 return fun_hwtstamp_set(dev, ifr);
1069 case SIOCGHWTSTAMP:
1070 return fun_hwtstamp_get(dev, ifr);
1071 default:
1072 return -EOPNOTSUPP;
1073 }
1074 }
1075
1076 /* Prepare the queues for XDP. */
fun_enter_xdp(struct net_device * dev,struct bpf_prog * prog)1077 static int fun_enter_xdp(struct net_device *dev, struct bpf_prog *prog)
1078 {
1079 struct funeth_priv *fp = netdev_priv(dev);
1080 unsigned int i, nqs = num_online_cpus();
1081 struct funeth_txq **xdpqs;
1082 struct funeth_rxq **rxqs;
1083 int err;
1084
1085 xdpqs = alloc_xdpqs(dev, nqs, fp->sq_depth, 0, FUN_QSTATE_INIT_FULL);
1086 if (IS_ERR(xdpqs))
1087 return PTR_ERR(xdpqs);
1088
1089 rxqs = rtnl_dereference(fp->rxqs);
1090 for (i = 0; i < dev->real_num_rx_queues; i++) {
1091 err = fun_rxq_set_bpf(rxqs[i], prog);
1092 if (err)
1093 goto out;
1094 }
1095
1096 fp->num_xdpqs = nqs;
1097 rcu_assign_pointer(fp->xdpqs, xdpqs);
1098 return 0;
1099 out:
1100 while (i--)
1101 fun_rxq_set_bpf(rxqs[i], NULL);
1102
1103 free_xdpqs(xdpqs, nqs, 0, FUN_QSTATE_DESTROYED);
1104 return err;
1105 }
1106
1107 /* Set the queues for non-XDP operation. */
fun_end_xdp(struct net_device * dev)1108 static void fun_end_xdp(struct net_device *dev)
1109 {
1110 struct funeth_priv *fp = netdev_priv(dev);
1111 struct funeth_txq **xdpqs;
1112 struct funeth_rxq **rxqs;
1113 unsigned int i;
1114
1115 xdpqs = rtnl_dereference(fp->xdpqs);
1116 rcu_assign_pointer(fp->xdpqs, NULL);
1117 synchronize_net();
1118 /* at this point both Rx and Tx XDP processing has ended */
1119
1120 free_xdpqs(xdpqs, fp->num_xdpqs, 0, FUN_QSTATE_DESTROYED);
1121 fp->num_xdpqs = 0;
1122
1123 rxqs = rtnl_dereference(fp->rxqs);
1124 for (i = 0; i < dev->real_num_rx_queues; i++)
1125 fun_rxq_set_bpf(rxqs[i], NULL);
1126 }
1127
1128 #define XDP_MAX_MTU \
1129 (PAGE_SIZE - FUN_XDP_HEADROOM - VLAN_ETH_HLEN - FUN_RX_TAILROOM)
1130
fun_xdp_setup(struct net_device * dev,struct netdev_bpf * xdp)1131 static int fun_xdp_setup(struct net_device *dev, struct netdev_bpf *xdp)
1132 {
1133 struct bpf_prog *old_prog, *prog = xdp->prog;
1134 struct funeth_priv *fp = netdev_priv(dev);
1135 int i, err;
1136
1137 /* XDP uses at most one buffer */
1138 if (prog && dev->mtu > XDP_MAX_MTU) {
1139 netdev_err(dev, "device MTU %u too large for XDP\n", dev->mtu);
1140 NL_SET_ERR_MSG_MOD(xdp->extack,
1141 "Device MTU too large for XDP");
1142 return -EINVAL;
1143 }
1144
1145 if (!netif_running(dev)) {
1146 fp->num_xdpqs = prog ? num_online_cpus() : 0;
1147 } else if (prog && !fp->xdp_prog) {
1148 err = fun_enter_xdp(dev, prog);
1149 if (err) {
1150 NL_SET_ERR_MSG_MOD(xdp->extack,
1151 "Failed to set queues for XDP.");
1152 return err;
1153 }
1154 } else if (!prog && fp->xdp_prog) {
1155 fun_end_xdp(dev);
1156 } else {
1157 struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs);
1158
1159 for (i = 0; i < dev->real_num_rx_queues; i++)
1160 WRITE_ONCE(rxqs[i]->xdp_prog, prog);
1161 }
1162
1163 if (prog)
1164 xdp_features_set_redirect_target(dev, true);
1165 else
1166 xdp_features_clear_redirect_target(dev);
1167
1168 dev->max_mtu = prog ? XDP_MAX_MTU : FUN_MAX_MTU;
1169 old_prog = xchg(&fp->xdp_prog, prog);
1170 if (old_prog)
1171 bpf_prog_put(old_prog);
1172
1173 return 0;
1174 }
1175
fun_xdp(struct net_device * dev,struct netdev_bpf * xdp)1176 static int fun_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1177 {
1178 switch (xdp->command) {
1179 case XDP_SETUP_PROG:
1180 return fun_xdp_setup(dev, xdp);
1181 default:
1182 return -EINVAL;
1183 }
1184 }
1185
fun_init_vports(struct fun_ethdev * ed,unsigned int n)1186 static int fun_init_vports(struct fun_ethdev *ed, unsigned int n)
1187 {
1188 if (ed->num_vports)
1189 return -EINVAL;
1190
1191 ed->vport_info = kvcalloc(n, sizeof(*ed->vport_info), GFP_KERNEL);
1192 if (!ed->vport_info)
1193 return -ENOMEM;
1194 ed->num_vports = n;
1195 return 0;
1196 }
1197
fun_free_vports(struct fun_ethdev * ed)1198 static void fun_free_vports(struct fun_ethdev *ed)
1199 {
1200 kvfree(ed->vport_info);
1201 ed->vport_info = NULL;
1202 ed->num_vports = 0;
1203 }
1204
fun_get_vport(struct fun_ethdev * ed,unsigned int vport)1205 static struct fun_vport_info *fun_get_vport(struct fun_ethdev *ed,
1206 unsigned int vport)
1207 {
1208 if (!ed->vport_info || vport >= ed->num_vports)
1209 return NULL;
1210
1211 return ed->vport_info + vport;
1212 }
1213
fun_set_vf_mac(struct net_device * dev,int vf,u8 * mac)1214 static int fun_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
1215 {
1216 struct funeth_priv *fp = netdev_priv(dev);
1217 struct fun_adi_param mac_param = {};
1218 struct fun_dev *fdev = fp->fdev;
1219 struct fun_ethdev *ed = to_fun_ethdev(fdev);
1220 struct fun_vport_info *vi;
1221 int rc = -EINVAL;
1222
1223 if (is_multicast_ether_addr(mac))
1224 return -EINVAL;
1225
1226 mutex_lock(&ed->state_mutex);
1227 vi = fun_get_vport(ed, vf);
1228 if (!vi)
1229 goto unlock;
1230
1231 mac_param.u.mac = FUN_ADI_MAC_INIT(ether_addr_to_u64(mac));
1232 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_MACADDR, vf + 1,
1233 &mac_param);
1234 if (!rc)
1235 ether_addr_copy(vi->mac, mac);
1236 unlock:
1237 mutex_unlock(&ed->state_mutex);
1238 return rc;
1239 }
1240
fun_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)1241 static int fun_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos,
1242 __be16 vlan_proto)
1243 {
1244 struct funeth_priv *fp = netdev_priv(dev);
1245 struct fun_adi_param vlan_param = {};
1246 struct fun_dev *fdev = fp->fdev;
1247 struct fun_ethdev *ed = to_fun_ethdev(fdev);
1248 struct fun_vport_info *vi;
1249 int rc = -EINVAL;
1250
1251 if (vlan > 4095 || qos > 7)
1252 return -EINVAL;
1253 if (vlan_proto && vlan_proto != htons(ETH_P_8021Q) &&
1254 vlan_proto != htons(ETH_P_8021AD))
1255 return -EINVAL;
1256
1257 mutex_lock(&ed->state_mutex);
1258 vi = fun_get_vport(ed, vf);
1259 if (!vi)
1260 goto unlock;
1261
1262 vlan_param.u.vlan = FUN_ADI_VLAN_INIT(be16_to_cpu(vlan_proto),
1263 ((u16)qos << VLAN_PRIO_SHIFT) | vlan);
1264 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_VLAN, vf + 1, &vlan_param);
1265 if (!rc) {
1266 vi->vlan = vlan;
1267 vi->qos = qos;
1268 vi->vlan_proto = vlan_proto;
1269 }
1270 unlock:
1271 mutex_unlock(&ed->state_mutex);
1272 return rc;
1273 }
1274
fun_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)1275 static int fun_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
1276 int max_tx_rate)
1277 {
1278 struct funeth_priv *fp = netdev_priv(dev);
1279 struct fun_adi_param rate_param = {};
1280 struct fun_dev *fdev = fp->fdev;
1281 struct fun_ethdev *ed = to_fun_ethdev(fdev);
1282 struct fun_vport_info *vi;
1283 int rc = -EINVAL;
1284
1285 if (min_tx_rate)
1286 return -EINVAL;
1287
1288 mutex_lock(&ed->state_mutex);
1289 vi = fun_get_vport(ed, vf);
1290 if (!vi)
1291 goto unlock;
1292
1293 rate_param.u.rate = FUN_ADI_RATE_INIT(max_tx_rate);
1294 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_RATE, vf + 1, &rate_param);
1295 if (!rc)
1296 vi->max_rate = max_tx_rate;
1297 unlock:
1298 mutex_unlock(&ed->state_mutex);
1299 return rc;
1300 }
1301
fun_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)1302 static int fun_get_vf_config(struct net_device *dev, int vf,
1303 struct ifla_vf_info *ivi)
1304 {
1305 struct funeth_priv *fp = netdev_priv(dev);
1306 struct fun_ethdev *ed = to_fun_ethdev(fp->fdev);
1307 const struct fun_vport_info *vi;
1308
1309 mutex_lock(&ed->state_mutex);
1310 vi = fun_get_vport(ed, vf);
1311 if (!vi)
1312 goto unlock;
1313
1314 memset(ivi, 0, sizeof(*ivi));
1315 ivi->vf = vf;
1316 ether_addr_copy(ivi->mac, vi->mac);
1317 ivi->vlan = vi->vlan;
1318 ivi->qos = vi->qos;
1319 ivi->vlan_proto = vi->vlan_proto;
1320 ivi->max_tx_rate = vi->max_rate;
1321 ivi->spoofchk = vi->spoofchk;
1322 unlock:
1323 mutex_unlock(&ed->state_mutex);
1324 return vi ? 0 : -EINVAL;
1325 }
1326
fun_uninit(struct net_device * dev)1327 static void fun_uninit(struct net_device *dev)
1328 {
1329 struct funeth_priv *fp = netdev_priv(dev);
1330
1331 fun_prune_queue_irqs(dev);
1332 xa_destroy(&fp->irqs);
1333 }
1334
1335 static const struct net_device_ops fun_netdev_ops = {
1336 .ndo_open = funeth_open,
1337 .ndo_stop = funeth_close,
1338 .ndo_start_xmit = fun_start_xmit,
1339 .ndo_get_stats64 = fun_get_stats64,
1340 .ndo_change_mtu = fun_change_mtu,
1341 .ndo_set_mac_address = fun_set_macaddr,
1342 .ndo_validate_addr = eth_validate_addr,
1343 .ndo_eth_ioctl = fun_ioctl,
1344 .ndo_uninit = fun_uninit,
1345 .ndo_bpf = fun_xdp,
1346 .ndo_xdp_xmit = fun_xdp_xmit_frames,
1347 .ndo_set_vf_mac = fun_set_vf_mac,
1348 .ndo_set_vf_vlan = fun_set_vf_vlan,
1349 .ndo_set_vf_rate = fun_set_vf_rate,
1350 .ndo_get_vf_config = fun_get_vf_config,
1351 };
1352
1353 #define GSO_ENCAP_FLAGS (NETIF_F_GSO_GRE | NETIF_F_GSO_IPXIP4 | \
1354 NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL | \
1355 NETIF_F_GSO_UDP_TUNNEL_CSUM)
1356 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
1357 NETIF_F_GSO_UDP_L4)
1358 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_HW_CSUM | TSO_FLAGS | \
1359 GSO_ENCAP_FLAGS | NETIF_F_HIGHDMA)
1360
fun_dflt_rss_indir(struct funeth_priv * fp,unsigned int nrx)1361 static void fun_dflt_rss_indir(struct funeth_priv *fp, unsigned int nrx)
1362 {
1363 unsigned int i;
1364
1365 for (i = 0; i < fp->indir_table_nentries; i++)
1366 fp->indir_table[i] = ethtool_rxfh_indir_default(i, nrx);
1367 }
1368
1369 /* Reset the RSS indirection table to equal distribution across the current
1370 * number of Rx queues. Called at init time and whenever the number of Rx
1371 * queues changes subsequently. Note that this may also resize the indirection
1372 * table.
1373 */
fun_reset_rss_indir(struct net_device * dev,unsigned int nrx)1374 static void fun_reset_rss_indir(struct net_device *dev, unsigned int nrx)
1375 {
1376 struct funeth_priv *fp = netdev_priv(dev);
1377
1378 if (!fp->rss_cfg)
1379 return;
1380
1381 /* Set the table size to the max possible that allows an equal number
1382 * of occurrences of each CQ.
1383 */
1384 fp->indir_table_nentries = rounddown(FUN_ETH_RSS_MAX_INDIR_ENT, nrx);
1385 fun_dflt_rss_indir(fp, nrx);
1386 }
1387
1388 /* Update the RSS LUT to contain only queues in [0, nrx). Normally this will
1389 * update the LUT to an equal distribution among nrx queues, If @only_if_needed
1390 * is set the LUT is left unchanged if it already does not reference any queues
1391 * >= nrx.
1392 */
fun_rss_set_qnum(struct net_device * dev,unsigned int nrx,bool only_if_needed)1393 static int fun_rss_set_qnum(struct net_device *dev, unsigned int nrx,
1394 bool only_if_needed)
1395 {
1396 struct funeth_priv *fp = netdev_priv(dev);
1397 u32 old_lut[FUN_ETH_RSS_MAX_INDIR_ENT];
1398 unsigned int i, oldsz;
1399 int err;
1400
1401 if (!fp->rss_cfg)
1402 return 0;
1403
1404 if (only_if_needed) {
1405 for (i = 0; i < fp->indir_table_nentries; i++)
1406 if (fp->indir_table[i] >= nrx)
1407 break;
1408
1409 if (i >= fp->indir_table_nentries)
1410 return 0;
1411 }
1412
1413 memcpy(old_lut, fp->indir_table, sizeof(old_lut));
1414 oldsz = fp->indir_table_nentries;
1415 fun_reset_rss_indir(dev, nrx);
1416
1417 err = fun_config_rss(dev, fp->hash_algo, fp->rss_key,
1418 fp->indir_table, FUN_ADMIN_SUBOP_MODIFY);
1419 if (!err)
1420 return 0;
1421
1422 memcpy(fp->indir_table, old_lut, sizeof(old_lut));
1423 fp->indir_table_nentries = oldsz;
1424 return err;
1425 }
1426
1427 /* Allocate the DMA area for the RSS configuration commands to the device, and
1428 * initialize the hash, hash key, indirection table size and its entries to
1429 * their defaults. The indirection table defaults to equal distribution across
1430 * the Rx queues.
1431 */
fun_init_rss(struct net_device * dev)1432 static int fun_init_rss(struct net_device *dev)
1433 {
1434 struct funeth_priv *fp = netdev_priv(dev);
1435 size_t size = sizeof(fp->rss_key) + sizeof(fp->indir_table);
1436
1437 fp->rss_hw_id = FUN_HCI_ID_INVALID;
1438 if (!(fp->port_caps & FUN_PORT_CAP_OFFLOADS))
1439 return 0;
1440
1441 fp->rss_cfg = dma_alloc_coherent(&fp->pdev->dev, size,
1442 &fp->rss_dma_addr, GFP_KERNEL);
1443 if (!fp->rss_cfg)
1444 return -ENOMEM;
1445
1446 fp->hash_algo = FUN_ETH_RSS_ALG_TOEPLITZ;
1447 netdev_rss_key_fill(fp->rss_key, sizeof(fp->rss_key));
1448 fun_reset_rss_indir(dev, dev->real_num_rx_queues);
1449 return 0;
1450 }
1451
fun_free_rss(struct funeth_priv * fp)1452 static void fun_free_rss(struct funeth_priv *fp)
1453 {
1454 if (fp->rss_cfg) {
1455 dma_free_coherent(&fp->pdev->dev,
1456 sizeof(fp->rss_key) + sizeof(fp->indir_table),
1457 fp->rss_cfg, fp->rss_dma_addr);
1458 fp->rss_cfg = NULL;
1459 }
1460 }
1461
fun_set_ring_count(struct net_device * netdev,unsigned int ntx,unsigned int nrx)1462 void fun_set_ring_count(struct net_device *netdev, unsigned int ntx,
1463 unsigned int nrx)
1464 {
1465 netif_set_real_num_tx_queues(netdev, ntx);
1466 if (nrx != netdev->real_num_rx_queues) {
1467 netif_set_real_num_rx_queues(netdev, nrx);
1468 fun_reset_rss_indir(netdev, nrx);
1469 }
1470 }
1471
fun_init_stats_area(struct funeth_priv * fp)1472 static int fun_init_stats_area(struct funeth_priv *fp)
1473 {
1474 unsigned int nstats;
1475
1476 if (!(fp->port_caps & FUN_PORT_CAP_STATS))
1477 return 0;
1478
1479 nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX +
1480 PORT_MAC_FEC_STATS_MAX;
1481
1482 fp->stats = dma_alloc_coherent(&fp->pdev->dev, nstats * sizeof(u64),
1483 &fp->stats_dma_addr, GFP_KERNEL);
1484 if (!fp->stats)
1485 return -ENOMEM;
1486 return 0;
1487 }
1488
fun_free_stats_area(struct funeth_priv * fp)1489 static void fun_free_stats_area(struct funeth_priv *fp)
1490 {
1491 unsigned int nstats;
1492
1493 if (fp->stats) {
1494 nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX;
1495 dma_free_coherent(&fp->pdev->dev, nstats * sizeof(u64),
1496 fp->stats, fp->stats_dma_addr);
1497 fp->stats = NULL;
1498 }
1499 }
1500
fun_dl_port_register(struct net_device * netdev)1501 static int fun_dl_port_register(struct net_device *netdev)
1502 {
1503 struct funeth_priv *fp = netdev_priv(netdev);
1504 struct devlink *dl = priv_to_devlink(fp->fdev);
1505 struct devlink_port_attrs attrs = {};
1506 unsigned int idx;
1507
1508 if (fp->port_caps & FUN_PORT_CAP_VPORT) {
1509 attrs.flavour = DEVLINK_PORT_FLAVOUR_VIRTUAL;
1510 idx = fp->lport;
1511 } else {
1512 idx = netdev->dev_port;
1513 attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
1514 attrs.lanes = fp->lane_attrs & 7;
1515 if (fp->lane_attrs & FUN_PORT_LANE_SPLIT) {
1516 attrs.split = 1;
1517 attrs.phys.port_number = fp->lport & ~3;
1518 attrs.phys.split_subport_number = fp->lport & 3;
1519 } else {
1520 attrs.phys.port_number = fp->lport;
1521 }
1522 }
1523
1524 devlink_port_attrs_set(&fp->dl_port, &attrs);
1525
1526 return devlink_port_register(dl, &fp->dl_port, idx);
1527 }
1528
1529 /* Determine the max Tx/Rx queues for a port. */
fun_max_qs(struct fun_ethdev * ed,unsigned int * ntx,unsigned int * nrx)1530 static int fun_max_qs(struct fun_ethdev *ed, unsigned int *ntx,
1531 unsigned int *nrx)
1532 {
1533 int neth;
1534
1535 if (ed->num_ports > 1 || is_kdump_kernel()) {
1536 *ntx = 1;
1537 *nrx = 1;
1538 return 0;
1539 }
1540
1541 neth = fun_get_res_count(&ed->fdev, FUN_ADMIN_OP_ETH);
1542 if (neth < 0)
1543 return neth;
1544
1545 /* We determine the max number of queues based on the CPU
1546 * cores, device interrupts and queues, RSS size, and device Tx flows.
1547 *
1548 * - At least 1 Rx and 1 Tx queues.
1549 * - At most 1 Rx/Tx queue per core.
1550 * - Each Rx/Tx queue needs 1 SQ.
1551 */
1552 *ntx = min(ed->nsqs_per_port - 1, num_online_cpus());
1553 *nrx = *ntx;
1554 if (*ntx > neth)
1555 *ntx = neth;
1556 if (*nrx > FUN_ETH_RSS_MAX_INDIR_ENT)
1557 *nrx = FUN_ETH_RSS_MAX_INDIR_ENT;
1558 return 0;
1559 }
1560
fun_queue_defaults(struct net_device * dev,unsigned int nsqs)1561 static void fun_queue_defaults(struct net_device *dev, unsigned int nsqs)
1562 {
1563 unsigned int ntx, nrx;
1564
1565 ntx = min(dev->num_tx_queues, FUN_DFLT_QUEUES);
1566 nrx = min(dev->num_rx_queues, FUN_DFLT_QUEUES);
1567 if (ntx <= nrx) {
1568 ntx = min(ntx, nsqs / 2);
1569 nrx = min(nrx, nsqs - ntx);
1570 } else {
1571 nrx = min(nrx, nsqs / 2);
1572 ntx = min(ntx, nsqs - nrx);
1573 }
1574
1575 netif_set_real_num_tx_queues(dev, ntx);
1576 netif_set_real_num_rx_queues(dev, nrx);
1577 }
1578
1579 /* Replace the existing Rx/Tx/XDP queues with equal number of queues with
1580 * different settings, e.g. depth. This is a disruptive replacement that
1581 * temporarily shuts down the data path and should be limited to changes that
1582 * can't be applied to live queues. The old queues are always discarded.
1583 */
fun_replace_queues(struct net_device * dev,struct fun_qset * newqs,struct netlink_ext_ack * extack)1584 int fun_replace_queues(struct net_device *dev, struct fun_qset *newqs,
1585 struct netlink_ext_ack *extack)
1586 {
1587 struct fun_qset oldqs = { .state = FUN_QSTATE_DESTROYED };
1588 struct funeth_priv *fp = netdev_priv(dev);
1589 int err;
1590
1591 newqs->nrxqs = dev->real_num_rx_queues;
1592 newqs->ntxqs = dev->real_num_tx_queues;
1593 newqs->nxdpqs = fp->num_xdpqs;
1594 newqs->state = FUN_QSTATE_INIT_SW;
1595 err = fun_alloc_rings(dev, newqs);
1596 if (err) {
1597 NL_SET_ERR_MSG_MOD(extack,
1598 "Unable to allocate memory for new queues, keeping current settings");
1599 return err;
1600 }
1601
1602 fun_down(dev, &oldqs);
1603
1604 err = fun_up(dev, newqs);
1605 if (!err)
1606 return 0;
1607
1608 /* The new queues couldn't be installed. We do not retry the old queues
1609 * as they are the same to the device as the new queues and would
1610 * similarly fail.
1611 */
1612 newqs->state = FUN_QSTATE_DESTROYED;
1613 fun_free_rings(dev, newqs);
1614 NL_SET_ERR_MSG_MOD(extack, "Unable to restore the data path with the new queues.");
1615 return err;
1616 }
1617
1618 /* Change the number of Rx/Tx queues of a device while it is up. This is done
1619 * by incrementally adding/removing queues to meet the new requirements while
1620 * handling ongoing traffic.
1621 */
fun_change_num_queues(struct net_device * dev,unsigned int ntx,unsigned int nrx)1622 int fun_change_num_queues(struct net_device *dev, unsigned int ntx,
1623 unsigned int nrx)
1624 {
1625 unsigned int keep_tx = min(dev->real_num_tx_queues, ntx);
1626 unsigned int keep_rx = min(dev->real_num_rx_queues, nrx);
1627 struct funeth_priv *fp = netdev_priv(dev);
1628 struct fun_qset oldqs = {
1629 .rxqs = rtnl_dereference(fp->rxqs),
1630 .txqs = fp->txqs,
1631 .nrxqs = dev->real_num_rx_queues,
1632 .ntxqs = dev->real_num_tx_queues,
1633 .rxq_start = keep_rx,
1634 .txq_start = keep_tx,
1635 .state = FUN_QSTATE_DESTROYED
1636 };
1637 struct fun_qset newqs = {
1638 .nrxqs = nrx,
1639 .ntxqs = ntx,
1640 .rxq_start = keep_rx,
1641 .txq_start = keep_tx,
1642 .cq_depth = fp->cq_depth,
1643 .rq_depth = fp->rq_depth,
1644 .sq_depth = fp->sq_depth,
1645 .state = FUN_QSTATE_INIT_FULL
1646 };
1647 int i, err;
1648
1649 err = fun_alloc_rings(dev, &newqs);
1650 if (err)
1651 goto free_irqs;
1652
1653 err = fun_enable_irqs(dev); /* of any newly added queues */
1654 if (err)
1655 goto free_rings;
1656
1657 /* copy the queues we are keeping to the new set */
1658 memcpy(newqs.rxqs, oldqs.rxqs, keep_rx * sizeof(*oldqs.rxqs));
1659 memcpy(newqs.txqs, fp->txqs, keep_tx * sizeof(*fp->txqs));
1660
1661 if (nrx < dev->real_num_rx_queues) {
1662 err = fun_rss_set_qnum(dev, nrx, true);
1663 if (err)
1664 goto disable_tx_irqs;
1665
1666 for (i = nrx; i < dev->real_num_rx_queues; i++)
1667 fun_disable_one_irq(container_of(oldqs.rxqs[i]->napi,
1668 struct fun_irq, napi));
1669
1670 netif_set_real_num_rx_queues(dev, nrx);
1671 }
1672
1673 if (ntx < dev->real_num_tx_queues)
1674 netif_set_real_num_tx_queues(dev, ntx);
1675
1676 rcu_assign_pointer(fp->rxqs, newqs.rxqs);
1677 fp->txqs = newqs.txqs;
1678 synchronize_net();
1679
1680 if (ntx > dev->real_num_tx_queues)
1681 netif_set_real_num_tx_queues(dev, ntx);
1682
1683 if (nrx > dev->real_num_rx_queues) {
1684 netif_set_real_num_rx_queues(dev, nrx);
1685 fun_rss_set_qnum(dev, nrx, false);
1686 }
1687
1688 /* disable interrupts of any excess Tx queues */
1689 for (i = keep_tx; i < oldqs.ntxqs; i++)
1690 fun_disable_one_irq(oldqs.txqs[i]->irq);
1691
1692 fun_free_rings(dev, &oldqs);
1693 fun_prune_queue_irqs(dev);
1694 return 0;
1695
1696 disable_tx_irqs:
1697 for (i = oldqs.ntxqs; i < ntx; i++)
1698 fun_disable_one_irq(newqs.txqs[i]->irq);
1699 free_rings:
1700 newqs.state = FUN_QSTATE_DESTROYED;
1701 fun_free_rings(dev, &newqs);
1702 free_irqs:
1703 fun_prune_queue_irqs(dev);
1704 return err;
1705 }
1706
fun_create_netdev(struct fun_ethdev * ed,unsigned int portid)1707 static int fun_create_netdev(struct fun_ethdev *ed, unsigned int portid)
1708 {
1709 struct fun_dev *fdev = &ed->fdev;
1710 struct net_device *netdev;
1711 struct funeth_priv *fp;
1712 unsigned int ntx, nrx;
1713 int rc;
1714
1715 rc = fun_max_qs(ed, &ntx, &nrx);
1716 if (rc)
1717 return rc;
1718
1719 netdev = alloc_etherdev_mqs(sizeof(*fp), ntx, nrx);
1720 if (!netdev) {
1721 rc = -ENOMEM;
1722 goto done;
1723 }
1724
1725 netdev->dev_port = portid;
1726 fun_queue_defaults(netdev, ed->nsqs_per_port);
1727
1728 fp = netdev_priv(netdev);
1729 fp->fdev = fdev;
1730 fp->pdev = to_pci_dev(fdev->dev);
1731 fp->netdev = netdev;
1732 xa_init(&fp->irqs);
1733 fp->rx_irq_ofst = ntx;
1734 seqcount_init(&fp->link_seq);
1735
1736 fp->lport = INVALID_LPORT;
1737 rc = fun_port_create(netdev);
1738 if (rc)
1739 goto free_netdev;
1740
1741 /* bind port to admin CQ for async events */
1742 rc = fun_bind(fdev, FUN_ADMIN_BIND_TYPE_PORT, portid,
1743 FUN_ADMIN_BIND_TYPE_EPCQ, 0);
1744 if (rc)
1745 goto destroy_port;
1746
1747 rc = fun_get_port_attributes(netdev);
1748 if (rc)
1749 goto destroy_port;
1750
1751 rc = fun_init_rss(netdev);
1752 if (rc)
1753 goto destroy_port;
1754
1755 rc = fun_init_stats_area(fp);
1756 if (rc)
1757 goto free_rss;
1758
1759 SET_NETDEV_DEV(netdev, fdev->dev);
1760 SET_NETDEV_DEVLINK_PORT(netdev, &fp->dl_port);
1761 netdev->netdev_ops = &fun_netdev_ops;
1762
1763 netdev->hw_features = NETIF_F_SG | NETIF_F_RXHASH | NETIF_F_RXCSUM;
1764 if (fp->port_caps & FUN_PORT_CAP_OFFLOADS)
1765 netdev->hw_features |= NETIF_F_HW_CSUM | TSO_FLAGS;
1766 if (fp->port_caps & FUN_PORT_CAP_ENCAP_OFFLOADS)
1767 netdev->hw_features |= GSO_ENCAP_FLAGS;
1768
1769 netdev->features |= netdev->hw_features | NETIF_F_HIGHDMA;
1770 netdev->vlan_features = netdev->features & VLAN_FEAT;
1771 netdev->mpls_features = netdev->vlan_features;
1772 netdev->hw_enc_features = netdev->hw_features;
1773 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
1774
1775 netdev->min_mtu = ETH_MIN_MTU;
1776 netdev->max_mtu = FUN_MAX_MTU;
1777
1778 fun_set_ethtool_ops(netdev);
1779
1780 /* configurable parameters */
1781 fp->sq_depth = min(SQ_DEPTH, fdev->q_depth);
1782 fp->cq_depth = min(CQ_DEPTH, fdev->q_depth);
1783 fp->rq_depth = min_t(unsigned int, RQ_DEPTH, fdev->q_depth);
1784 fp->rx_coal_usec = CQ_INTCOAL_USEC;
1785 fp->rx_coal_count = CQ_INTCOAL_NPKT;
1786 fp->tx_coal_usec = SQ_INTCOAL_USEC;
1787 fp->tx_coal_count = SQ_INTCOAL_NPKT;
1788 fp->cq_irq_db = FUN_IRQ_CQ_DB(fp->rx_coal_usec, fp->rx_coal_count);
1789
1790 rc = fun_dl_port_register(netdev);
1791 if (rc)
1792 goto free_stats;
1793
1794 fp->ktls_id = FUN_HCI_ID_INVALID;
1795 fun_ktls_init(netdev); /* optional, failure OK */
1796
1797 netif_carrier_off(netdev);
1798 ed->netdevs[portid] = netdev;
1799 rc = register_netdev(netdev);
1800 if (rc)
1801 goto unreg_devlink;
1802 return 0;
1803
1804 unreg_devlink:
1805 ed->netdevs[portid] = NULL;
1806 fun_ktls_cleanup(fp);
1807 devlink_port_unregister(&fp->dl_port);
1808 free_stats:
1809 fun_free_stats_area(fp);
1810 free_rss:
1811 fun_free_rss(fp);
1812 destroy_port:
1813 fun_port_destroy(netdev);
1814 free_netdev:
1815 free_netdev(netdev);
1816 done:
1817 dev_err(fdev->dev, "couldn't allocate port %u, error %d", portid, rc);
1818 return rc;
1819 }
1820
fun_destroy_netdev(struct net_device * netdev)1821 static void fun_destroy_netdev(struct net_device *netdev)
1822 {
1823 struct funeth_priv *fp;
1824
1825 fp = netdev_priv(netdev);
1826 unregister_netdev(netdev);
1827 devlink_port_unregister(&fp->dl_port);
1828 fun_ktls_cleanup(fp);
1829 fun_free_stats_area(fp);
1830 fun_free_rss(fp);
1831 fun_port_destroy(netdev);
1832 free_netdev(netdev);
1833 }
1834
fun_create_ports(struct fun_ethdev * ed,unsigned int nports)1835 static int fun_create_ports(struct fun_ethdev *ed, unsigned int nports)
1836 {
1837 struct fun_dev *fd = &ed->fdev;
1838 int i, rc;
1839
1840 /* The admin queue takes 1 IRQ and 2 SQs. */
1841 ed->nsqs_per_port = min(fd->num_irqs - 1,
1842 fd->kern_end_qid - 2) / nports;
1843 if (ed->nsqs_per_port < 2) {
1844 dev_err(fd->dev, "Too few SQs for %u ports", nports);
1845 return -EINVAL;
1846 }
1847
1848 ed->netdevs = kcalloc(nports, sizeof(*ed->netdevs), GFP_KERNEL);
1849 if (!ed->netdevs)
1850 return -ENOMEM;
1851
1852 ed->num_ports = nports;
1853 for (i = 0; i < nports; i++) {
1854 rc = fun_create_netdev(ed, i);
1855 if (rc)
1856 goto free_netdevs;
1857 }
1858
1859 return 0;
1860
1861 free_netdevs:
1862 while (i)
1863 fun_destroy_netdev(ed->netdevs[--i]);
1864 kfree(ed->netdevs);
1865 ed->netdevs = NULL;
1866 ed->num_ports = 0;
1867 return rc;
1868 }
1869
fun_destroy_ports(struct fun_ethdev * ed)1870 static void fun_destroy_ports(struct fun_ethdev *ed)
1871 {
1872 unsigned int i;
1873
1874 for (i = 0; i < ed->num_ports; i++)
1875 fun_destroy_netdev(ed->netdevs[i]);
1876
1877 kfree(ed->netdevs);
1878 ed->netdevs = NULL;
1879 ed->num_ports = 0;
1880 }
1881
fun_update_link_state(const struct fun_ethdev * ed,const struct fun_admin_port_notif * notif)1882 static void fun_update_link_state(const struct fun_ethdev *ed,
1883 const struct fun_admin_port_notif *notif)
1884 {
1885 unsigned int port_idx = be16_to_cpu(notif->id);
1886 struct net_device *netdev;
1887 struct funeth_priv *fp;
1888
1889 if (port_idx >= ed->num_ports)
1890 return;
1891
1892 netdev = ed->netdevs[port_idx];
1893 fp = netdev_priv(netdev);
1894
1895 write_seqcount_begin(&fp->link_seq);
1896 fp->link_speed = be32_to_cpu(notif->speed) * 10; /* 10 Mbps->Mbps */
1897 fp->active_fc = notif->flow_ctrl;
1898 fp->active_fec = notif->fec;
1899 fp->xcvr_type = notif->xcvr_type;
1900 fp->link_down_reason = notif->link_down_reason;
1901 fp->lp_advertising = be64_to_cpu(notif->lp_advertising);
1902
1903 if ((notif->link_state | notif->missed_events) & FUN_PORT_FLAG_MAC_DOWN)
1904 netif_carrier_off(netdev);
1905 if (notif->link_state & FUN_PORT_FLAG_MAC_UP)
1906 netif_carrier_on(netdev);
1907
1908 write_seqcount_end(&fp->link_seq);
1909 fun_report_link(netdev);
1910 }
1911
1912 /* handler for async events delivered through the admin CQ */
fun_event_cb(struct fun_dev * fdev,void * entry)1913 static void fun_event_cb(struct fun_dev *fdev, void *entry)
1914 {
1915 u8 op = ((struct fun_admin_rsp_common *)entry)->op;
1916
1917 if (op == FUN_ADMIN_OP_PORT) {
1918 const struct fun_admin_port_notif *rsp = entry;
1919
1920 if (rsp->subop == FUN_ADMIN_SUBOP_NOTIFY) {
1921 fun_update_link_state(to_fun_ethdev(fdev), rsp);
1922 } else if (rsp->subop == FUN_ADMIN_SUBOP_RES_COUNT) {
1923 const struct fun_admin_res_count_rsp *r = entry;
1924
1925 if (r->count.data)
1926 set_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags);
1927 else
1928 set_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags);
1929 fun_serv_sched(fdev);
1930 } else {
1931 dev_info(fdev->dev, "adminq event unexpected op %u subop %u",
1932 op, rsp->subop);
1933 }
1934 } else {
1935 dev_info(fdev->dev, "adminq event unexpected op %u", op);
1936 }
1937 }
1938
1939 /* handler for pending work managed by the service task */
fun_service_cb(struct fun_dev * fdev)1940 static void fun_service_cb(struct fun_dev *fdev)
1941 {
1942 struct fun_ethdev *ed = to_fun_ethdev(fdev);
1943 int rc;
1944
1945 if (test_and_clear_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags))
1946 fun_destroy_ports(ed);
1947
1948 if (!test_and_clear_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags))
1949 return;
1950
1951 rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT);
1952 if (rc < 0 || rc == ed->num_ports)
1953 return;
1954
1955 if (ed->num_ports)
1956 fun_destroy_ports(ed);
1957 if (rc)
1958 fun_create_ports(ed, rc);
1959 }
1960
funeth_sriov_configure(struct pci_dev * pdev,int nvfs)1961 static int funeth_sriov_configure(struct pci_dev *pdev, int nvfs)
1962 {
1963 struct fun_dev *fdev = pci_get_drvdata(pdev);
1964 struct fun_ethdev *ed = to_fun_ethdev(fdev);
1965 int rc;
1966
1967 if (nvfs == 0) {
1968 if (pci_vfs_assigned(pdev)) {
1969 dev_warn(&pdev->dev,
1970 "Cannot disable SR-IOV while VFs are assigned\n");
1971 return -EPERM;
1972 }
1973
1974 mutex_lock(&ed->state_mutex);
1975 fun_free_vports(ed);
1976 mutex_unlock(&ed->state_mutex);
1977 pci_disable_sriov(pdev);
1978 return 0;
1979 }
1980
1981 rc = pci_enable_sriov(pdev, nvfs);
1982 if (rc)
1983 return rc;
1984
1985 mutex_lock(&ed->state_mutex);
1986 rc = fun_init_vports(ed, nvfs);
1987 mutex_unlock(&ed->state_mutex);
1988 if (rc) {
1989 pci_disable_sriov(pdev);
1990 return rc;
1991 }
1992
1993 return nvfs;
1994 }
1995
funeth_probe(struct pci_dev * pdev,const struct pci_device_id * id)1996 static int funeth_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1997 {
1998 struct fun_dev_params aqreq = {
1999 .cqe_size_log2 = ilog2(ADMIN_CQE_SIZE),
2000 .sqe_size_log2 = ilog2(ADMIN_SQE_SIZE),
2001 .cq_depth = ADMIN_CQ_DEPTH,
2002 .sq_depth = ADMIN_SQ_DEPTH,
2003 .rq_depth = ADMIN_RQ_DEPTH,
2004 .min_msix = 2, /* 1 Rx + 1 Tx */
2005 .event_cb = fun_event_cb,
2006 .serv_cb = fun_service_cb,
2007 };
2008 struct devlink *devlink;
2009 struct fun_ethdev *ed;
2010 struct fun_dev *fdev;
2011 int rc;
2012
2013 devlink = fun_devlink_alloc(&pdev->dev);
2014 if (!devlink) {
2015 dev_err(&pdev->dev, "devlink alloc failed\n");
2016 return -ENOMEM;
2017 }
2018
2019 ed = devlink_priv(devlink);
2020 mutex_init(&ed->state_mutex);
2021
2022 fdev = &ed->fdev;
2023 rc = fun_dev_enable(fdev, pdev, &aqreq, KBUILD_MODNAME);
2024 if (rc)
2025 goto free_devlink;
2026
2027 rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT);
2028 if (rc > 0)
2029 rc = fun_create_ports(ed, rc);
2030 if (rc < 0)
2031 goto disable_dev;
2032
2033 fun_serv_restart(fdev);
2034 fun_devlink_register(devlink);
2035 return 0;
2036
2037 disable_dev:
2038 fun_dev_disable(fdev);
2039 free_devlink:
2040 mutex_destroy(&ed->state_mutex);
2041 fun_devlink_free(devlink);
2042 return rc;
2043 }
2044
funeth_remove(struct pci_dev * pdev)2045 static void funeth_remove(struct pci_dev *pdev)
2046 {
2047 struct fun_dev *fdev = pci_get_drvdata(pdev);
2048 struct devlink *devlink;
2049 struct fun_ethdev *ed;
2050
2051 ed = to_fun_ethdev(fdev);
2052 devlink = priv_to_devlink(ed);
2053 fun_devlink_unregister(devlink);
2054
2055 #ifdef CONFIG_PCI_IOV
2056 funeth_sriov_configure(pdev, 0);
2057 #endif
2058
2059 fun_serv_stop(fdev);
2060 fun_destroy_ports(ed);
2061 fun_dev_disable(fdev);
2062 mutex_destroy(&ed->state_mutex);
2063
2064 fun_devlink_free(devlink);
2065 }
2066
2067 static struct pci_driver funeth_driver = {
2068 .name = KBUILD_MODNAME,
2069 .id_table = funeth_id_table,
2070 .probe = funeth_probe,
2071 .remove = funeth_remove,
2072 .shutdown = funeth_remove,
2073 .sriov_configure = funeth_sriov_configure,
2074 };
2075
2076 module_pci_driver(funeth_driver);
2077
2078 MODULE_AUTHOR("Dimitris Michailidis <dmichail@fungible.com>");
2079 MODULE_DESCRIPTION("Fungible Ethernet Network Driver");
2080 MODULE_LICENSE("Dual BSD/GPL");
2081 MODULE_DEVICE_TABLE(pci, funeth_id_table);
2082