1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9
10 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
11 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
12 EXPORT_SYMBOL(physical_mask);
13 #endif
14
15 #ifdef CONFIG_HIGHPTE
16 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
17 #else
18 #define PGTABLE_HIGHMEM 0
19 #endif
20
21 #ifndef CONFIG_PARAVIRT
22 static inline
paravirt_tlb_remove_table(struct mmu_gather * tlb,void * table)23 void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
24 {
25 tlb_remove_page(tlb, table);
26 }
27 #endif
28
29 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
30
pte_alloc_one(struct mm_struct * mm)31 pgtable_t pte_alloc_one(struct mm_struct *mm)
32 {
33 return __pte_alloc_one(mm, __userpte_alloc_gfp);
34 }
35
setup_userpte(char * arg)36 static int __init setup_userpte(char *arg)
37 {
38 if (!arg)
39 return -EINVAL;
40
41 /*
42 * "userpte=nohigh" disables allocation of user pagetables in
43 * high memory.
44 */
45 if (strcmp(arg, "nohigh") == 0)
46 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
47 else
48 return -EINVAL;
49 return 0;
50 }
51 early_param("userpte", setup_userpte);
52
___pte_free_tlb(struct mmu_gather * tlb,struct page * pte)53 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
54 {
55 pagetable_pte_dtor(page_ptdesc(pte));
56 paravirt_release_pte(page_to_pfn(pte));
57 paravirt_tlb_remove_table(tlb, pte);
58 }
59
60 #if CONFIG_PGTABLE_LEVELS > 2
___pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)61 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
62 {
63 struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
64 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
65 /*
66 * NOTE! For PAE, any changes to the top page-directory-pointer-table
67 * entries need a full cr3 reload to flush.
68 */
69 #ifdef CONFIG_X86_PAE
70 tlb->need_flush_all = 1;
71 #endif
72 pagetable_pmd_dtor(ptdesc);
73 paravirt_tlb_remove_table(tlb, ptdesc_page(ptdesc));
74 }
75
76 #if CONFIG_PGTABLE_LEVELS > 3
___pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)77 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
78 {
79 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
80 paravirt_tlb_remove_table(tlb, virt_to_page(pud));
81 }
82
83 #if CONFIG_PGTABLE_LEVELS > 4
___p4d_free_tlb(struct mmu_gather * tlb,p4d_t * p4d)84 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
85 {
86 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
87 paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
88 }
89 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
90 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
91 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
92
pgd_list_add(pgd_t * pgd)93 static inline void pgd_list_add(pgd_t *pgd)
94 {
95 struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
96
97 list_add(&ptdesc->pt_list, &pgd_list);
98 }
99
pgd_list_del(pgd_t * pgd)100 static inline void pgd_list_del(pgd_t *pgd)
101 {
102 struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
103
104 list_del(&ptdesc->pt_list);
105 }
106
107 #define UNSHARED_PTRS_PER_PGD \
108 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
109 #define MAX_UNSHARED_PTRS_PER_PGD \
110 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
111
112
pgd_set_mm(pgd_t * pgd,struct mm_struct * mm)113 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
114 {
115 virt_to_ptdesc(pgd)->pt_mm = mm;
116 }
117
pgd_page_get_mm(struct page * page)118 struct mm_struct *pgd_page_get_mm(struct page *page)
119 {
120 return page_ptdesc(page)->pt_mm;
121 }
122
pgd_ctor(struct mm_struct * mm,pgd_t * pgd)123 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
124 {
125 /* If the pgd points to a shared pagetable level (either the
126 ptes in non-PAE, or shared PMD in PAE), then just copy the
127 references from swapper_pg_dir. */
128 if (CONFIG_PGTABLE_LEVELS == 2 ||
129 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
130 CONFIG_PGTABLE_LEVELS >= 4) {
131 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
132 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
133 KERNEL_PGD_PTRS);
134 }
135
136 /* list required to sync kernel mapping updates */
137 if (!SHARED_KERNEL_PMD) {
138 pgd_set_mm(pgd, mm);
139 pgd_list_add(pgd);
140 }
141 }
142
pgd_dtor(pgd_t * pgd)143 static void pgd_dtor(pgd_t *pgd)
144 {
145 if (SHARED_KERNEL_PMD)
146 return;
147
148 spin_lock(&pgd_lock);
149 pgd_list_del(pgd);
150 spin_unlock(&pgd_lock);
151 }
152
153 /*
154 * List of all pgd's needed for non-PAE so it can invalidate entries
155 * in both cached and uncached pgd's; not needed for PAE since the
156 * kernel pmd is shared. If PAE were not to share the pmd a similar
157 * tactic would be needed. This is essentially codepath-based locking
158 * against pageattr.c; it is the unique case in which a valid change
159 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
160 * vmalloc faults work because attached pagetables are never freed.
161 * -- nyc
162 */
163
164 #ifdef CONFIG_X86_PAE
165 /*
166 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
167 * updating the top-level pagetable entries to guarantee the
168 * processor notices the update. Since this is expensive, and
169 * all 4 top-level entries are used almost immediately in a
170 * new process's life, we just pre-populate them here.
171 *
172 * Also, if we're in a paravirt environment where the kernel pmd is
173 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
174 * and initialize the kernel pmds here.
175 */
176 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
177 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
178
179 /*
180 * We allocate separate PMDs for the kernel part of the user page-table
181 * when PTI is enabled. We need them to map the per-process LDT into the
182 * user-space page-table.
183 */
184 #define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \
185 KERNEL_PGD_PTRS : 0)
186 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
187
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)188 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
189 {
190 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
191
192 /* Note: almost everything apart from _PAGE_PRESENT is
193 reserved at the pmd (PDPT) level. */
194 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
195
196 /*
197 * According to Intel App note "TLBs, Paging-Structure Caches,
198 * and Their Invalidation", April 2007, document 317080-001,
199 * section 8.1: in PAE mode we explicitly have to flush the
200 * TLB via cr3 if the top-level pgd is changed...
201 */
202 flush_tlb_mm(mm);
203 }
204 #else /* !CONFIG_X86_PAE */
205
206 /* No need to prepopulate any pagetable entries in non-PAE modes. */
207 #define PREALLOCATED_PMDS 0
208 #define MAX_PREALLOCATED_PMDS 0
209 #define PREALLOCATED_USER_PMDS 0
210 #define MAX_PREALLOCATED_USER_PMDS 0
211 #endif /* CONFIG_X86_PAE */
212
free_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)213 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
214 {
215 int i;
216 struct ptdesc *ptdesc;
217
218 for (i = 0; i < count; i++)
219 if (pmds[i]) {
220 ptdesc = virt_to_ptdesc(pmds[i]);
221
222 pagetable_pmd_dtor(ptdesc);
223 pagetable_free(ptdesc);
224 mm_dec_nr_pmds(mm);
225 }
226 }
227
preallocate_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)228 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
229 {
230 int i;
231 bool failed = false;
232 gfp_t gfp = GFP_PGTABLE_USER;
233
234 if (mm == &init_mm)
235 gfp &= ~__GFP_ACCOUNT;
236 gfp &= ~__GFP_HIGHMEM;
237
238 for (i = 0; i < count; i++) {
239 pmd_t *pmd = NULL;
240 struct ptdesc *ptdesc = pagetable_alloc(gfp, 0);
241
242 if (!ptdesc)
243 failed = true;
244 if (ptdesc && !pagetable_pmd_ctor(ptdesc)) {
245 pagetable_free(ptdesc);
246 ptdesc = NULL;
247 failed = true;
248 }
249 if (ptdesc) {
250 mm_inc_nr_pmds(mm);
251 pmd = ptdesc_address(ptdesc);
252 }
253
254 pmds[i] = pmd;
255 }
256
257 if (failed) {
258 free_pmds(mm, pmds, count);
259 return -ENOMEM;
260 }
261
262 return 0;
263 }
264
265 /*
266 * Mop up any pmd pages which may still be attached to the pgd.
267 * Normally they will be freed by munmap/exit_mmap, but any pmd we
268 * preallocate which never got a corresponding vma will need to be
269 * freed manually.
270 */
mop_up_one_pmd(struct mm_struct * mm,pgd_t * pgdp)271 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
272 {
273 pgd_t pgd = *pgdp;
274
275 if (pgd_val(pgd) != 0) {
276 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
277
278 pgd_clear(pgdp);
279
280 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
281 pmd_free(mm, pmd);
282 mm_dec_nr_pmds(mm);
283 }
284 }
285
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)286 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
287 {
288 int i;
289
290 for (i = 0; i < PREALLOCATED_PMDS; i++)
291 mop_up_one_pmd(mm, &pgdp[i]);
292
293 #ifdef CONFIG_PAGE_TABLE_ISOLATION
294
295 if (!boot_cpu_has(X86_FEATURE_PTI))
296 return;
297
298 pgdp = kernel_to_user_pgdp(pgdp);
299
300 for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
301 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
302 #endif
303 }
304
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])305 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
306 {
307 p4d_t *p4d;
308 pud_t *pud;
309 int i;
310
311 p4d = p4d_offset(pgd, 0);
312 pud = pud_offset(p4d, 0);
313
314 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
315 pmd_t *pmd = pmds[i];
316
317 if (i >= KERNEL_PGD_BOUNDARY)
318 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
319 sizeof(pmd_t) * PTRS_PER_PMD);
320
321 pud_populate(mm, pud, pmd);
322 }
323 }
324
325 #ifdef CONFIG_PAGE_TABLE_ISOLATION
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])326 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
327 pgd_t *k_pgd, pmd_t *pmds[])
328 {
329 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
330 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
331 p4d_t *u_p4d;
332 pud_t *u_pud;
333 int i;
334
335 u_p4d = p4d_offset(u_pgd, 0);
336 u_pud = pud_offset(u_p4d, 0);
337
338 s_pgd += KERNEL_PGD_BOUNDARY;
339 u_pud += KERNEL_PGD_BOUNDARY;
340
341 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
342 pmd_t *pmd = pmds[i];
343
344 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
345 sizeof(pmd_t) * PTRS_PER_PMD);
346
347 pud_populate(mm, u_pud, pmd);
348 }
349
350 }
351 #else
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])352 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
353 pgd_t *k_pgd, pmd_t *pmds[])
354 {
355 }
356 #endif
357 /*
358 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
359 * assumes that pgd should be in one page.
360 *
361 * But kernel with PAE paging that is not running as a Xen domain
362 * only needs to allocate 32 bytes for pgd instead of one page.
363 */
364 #ifdef CONFIG_X86_PAE
365
366 #include <linux/slab.h>
367
368 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
369 #define PGD_ALIGN 32
370
371 static struct kmem_cache *pgd_cache;
372
pgtable_cache_init(void)373 void __init pgtable_cache_init(void)
374 {
375 /*
376 * When PAE kernel is running as a Xen domain, it does not use
377 * shared kernel pmd. And this requires a whole page for pgd.
378 */
379 if (!SHARED_KERNEL_PMD)
380 return;
381
382 /*
383 * when PAE kernel is not running as a Xen domain, it uses
384 * shared kernel pmd. Shared kernel pmd does not require a whole
385 * page for pgd. We are able to just allocate a 32-byte for pgd.
386 * During boot time, we create a 32-byte slab for pgd table allocation.
387 */
388 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
389 SLAB_PANIC, NULL);
390 }
391
_pgd_alloc(void)392 static inline pgd_t *_pgd_alloc(void)
393 {
394 /*
395 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
396 * We allocate one page for pgd.
397 */
398 if (!SHARED_KERNEL_PMD)
399 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
400 PGD_ALLOCATION_ORDER);
401
402 /*
403 * Now PAE kernel is not running as a Xen domain. We can allocate
404 * a 32-byte slab for pgd to save memory space.
405 */
406 return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
407 }
408
_pgd_free(pgd_t * pgd)409 static inline void _pgd_free(pgd_t *pgd)
410 {
411 if (!SHARED_KERNEL_PMD)
412 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
413 else
414 kmem_cache_free(pgd_cache, pgd);
415 }
416 #else
417
_pgd_alloc(void)418 static inline pgd_t *_pgd_alloc(void)
419 {
420 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
421 PGD_ALLOCATION_ORDER);
422 }
423
_pgd_free(pgd_t * pgd)424 static inline void _pgd_free(pgd_t *pgd)
425 {
426 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
427 }
428 #endif /* CONFIG_X86_PAE */
429
pgd_alloc(struct mm_struct * mm)430 pgd_t *pgd_alloc(struct mm_struct *mm)
431 {
432 pgd_t *pgd;
433 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
434 pmd_t *pmds[MAX_PREALLOCATED_PMDS];
435
436 pgd = _pgd_alloc();
437
438 if (pgd == NULL)
439 goto out;
440
441 mm->pgd = pgd;
442
443 if (sizeof(pmds) != 0 &&
444 preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
445 goto out_free_pgd;
446
447 if (sizeof(u_pmds) != 0 &&
448 preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
449 goto out_free_pmds;
450
451 if (paravirt_pgd_alloc(mm) != 0)
452 goto out_free_user_pmds;
453
454 /*
455 * Make sure that pre-populating the pmds is atomic with
456 * respect to anything walking the pgd_list, so that they
457 * never see a partially populated pgd.
458 */
459 spin_lock(&pgd_lock);
460
461 pgd_ctor(mm, pgd);
462 if (sizeof(pmds) != 0)
463 pgd_prepopulate_pmd(mm, pgd, pmds);
464
465 if (sizeof(u_pmds) != 0)
466 pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
467
468 spin_unlock(&pgd_lock);
469
470 return pgd;
471
472 out_free_user_pmds:
473 if (sizeof(u_pmds) != 0)
474 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
475 out_free_pmds:
476 if (sizeof(pmds) != 0)
477 free_pmds(mm, pmds, PREALLOCATED_PMDS);
478 out_free_pgd:
479 _pgd_free(pgd);
480 out:
481 return NULL;
482 }
483
pgd_free(struct mm_struct * mm,pgd_t * pgd)484 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
485 {
486 pgd_mop_up_pmds(mm, pgd);
487 pgd_dtor(pgd);
488 paravirt_pgd_free(mm, pgd);
489 _pgd_free(pgd);
490 }
491
492 /*
493 * Used to set accessed or dirty bits in the page table entries
494 * on other architectures. On x86, the accessed and dirty bits
495 * are tracked by hardware. However, do_wp_page calls this function
496 * to also make the pte writeable at the same time the dirty bit is
497 * set. In that case we do actually need to write the PTE.
498 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)499 int ptep_set_access_flags(struct vm_area_struct *vma,
500 unsigned long address, pte_t *ptep,
501 pte_t entry, int dirty)
502 {
503 int changed = !pte_same(*ptep, entry);
504
505 if (changed && dirty)
506 set_pte(ptep, entry);
507
508 return changed;
509 }
510
511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)512 int pmdp_set_access_flags(struct vm_area_struct *vma,
513 unsigned long address, pmd_t *pmdp,
514 pmd_t entry, int dirty)
515 {
516 int changed = !pmd_same(*pmdp, entry);
517
518 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
519
520 if (changed && dirty) {
521 set_pmd(pmdp, entry);
522 /*
523 * We had a write-protection fault here and changed the pmd
524 * to to more permissive. No need to flush the TLB for that,
525 * #PF is architecturally guaranteed to do that and in the
526 * worst-case we'll generate a spurious fault.
527 */
528 }
529
530 return changed;
531 }
532
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)533 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
534 pud_t *pudp, pud_t entry, int dirty)
535 {
536 int changed = !pud_same(*pudp, entry);
537
538 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
539
540 if (changed && dirty) {
541 set_pud(pudp, entry);
542 /*
543 * We had a write-protection fault here and changed the pud
544 * to to more permissive. No need to flush the TLB for that,
545 * #PF is architecturally guaranteed to do that and in the
546 * worst-case we'll generate a spurious fault.
547 */
548 }
549
550 return changed;
551 }
552 #endif
553
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)554 int ptep_test_and_clear_young(struct vm_area_struct *vma,
555 unsigned long addr, pte_t *ptep)
556 {
557 int ret = 0;
558
559 if (pte_young(*ptep))
560 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
561 (unsigned long *) &ptep->pte);
562
563 return ret;
564 }
565
566 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)567 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
568 unsigned long addr, pmd_t *pmdp)
569 {
570 int ret = 0;
571
572 if (pmd_young(*pmdp))
573 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
574 (unsigned long *)pmdp);
575
576 return ret;
577 }
578 #endif
579
580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp)581 int pudp_test_and_clear_young(struct vm_area_struct *vma,
582 unsigned long addr, pud_t *pudp)
583 {
584 int ret = 0;
585
586 if (pud_young(*pudp))
587 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
588 (unsigned long *)pudp);
589
590 return ret;
591 }
592 #endif
593
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)594 int ptep_clear_flush_young(struct vm_area_struct *vma,
595 unsigned long address, pte_t *ptep)
596 {
597 /*
598 * On x86 CPUs, clearing the accessed bit without a TLB flush
599 * doesn't cause data corruption. [ It could cause incorrect
600 * page aging and the (mistaken) reclaim of hot pages, but the
601 * chance of that should be relatively low. ]
602 *
603 * So as a performance optimization don't flush the TLB when
604 * clearing the accessed bit, it will eventually be flushed by
605 * a context switch or a VM operation anyway. [ In the rare
606 * event of it not getting flushed for a long time the delay
607 * shouldn't really matter because there's no real memory
608 * pressure for swapout to react to. ]
609 */
610 return ptep_test_and_clear_young(vma, address, ptep);
611 }
612
613 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)614 int pmdp_clear_flush_young(struct vm_area_struct *vma,
615 unsigned long address, pmd_t *pmdp)
616 {
617 int young;
618
619 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
620
621 young = pmdp_test_and_clear_young(vma, address, pmdp);
622 if (young)
623 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
624
625 return young;
626 }
627
pmdp_invalidate_ad(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)628 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
629 pmd_t *pmdp)
630 {
631 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
632
633 /*
634 * No flush is necessary. Once an invalid PTE is established, the PTE's
635 * access and dirty bits cannot be updated.
636 */
637 return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
638 }
639 #endif
640
641 /**
642 * reserve_top_address - reserves a hole in the top of kernel address space
643 * @reserve - size of hole to reserve
644 *
645 * Can be used to relocate the fixmap area and poke a hole in the top
646 * of kernel address space to make room for a hypervisor.
647 */
reserve_top_address(unsigned long reserve)648 void __init reserve_top_address(unsigned long reserve)
649 {
650 #ifdef CONFIG_X86_32
651 BUG_ON(fixmaps_set > 0);
652 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
653 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
654 -reserve, __FIXADDR_TOP + PAGE_SIZE);
655 #endif
656 }
657
658 int fixmaps_set;
659
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)660 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
661 {
662 unsigned long address = __fix_to_virt(idx);
663
664 #ifdef CONFIG_X86_64
665 /*
666 * Ensure that the static initial page tables are covering the
667 * fixmap completely.
668 */
669 BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
670 (FIXMAP_PMD_NUM * PTRS_PER_PTE));
671 #endif
672
673 if (idx >= __end_of_fixed_addresses) {
674 BUG();
675 return;
676 }
677 set_pte_vaddr(address, pte);
678 fixmaps_set++;
679 }
680
native_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t flags)681 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
682 phys_addr_t phys, pgprot_t flags)
683 {
684 /* Sanitize 'prot' against any unsupported bits: */
685 pgprot_val(flags) &= __default_kernel_pte_mask;
686
687 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
688 }
689
690 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
691 #ifdef CONFIG_X86_5LEVEL
692 /**
693 * p4d_set_huge - setup kernel P4D mapping
694 *
695 * No 512GB pages yet -- always return 0
696 */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)697 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
698 {
699 return 0;
700 }
701
702 /**
703 * p4d_clear_huge - clear kernel P4D mapping when it is set
704 *
705 * No 512GB pages yet -- always return 0
706 */
p4d_clear_huge(p4d_t * p4d)707 void p4d_clear_huge(p4d_t *p4d)
708 {
709 }
710 #endif
711
712 /**
713 * pud_set_huge - setup kernel PUD mapping
714 *
715 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
716 * function sets up a huge page only if the complete range has the same MTRR
717 * caching mode.
718 *
719 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
720 * page mapping attempt fails.
721 *
722 * Returns 1 on success and 0 on failure.
723 */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)724 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
725 {
726 u8 uniform;
727
728 mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
729 if (!uniform)
730 return 0;
731
732 /* Bail out if we are we on a populated non-leaf entry: */
733 if (pud_present(*pud) && !pud_huge(*pud))
734 return 0;
735
736 set_pte((pte_t *)pud, pfn_pte(
737 (u64)addr >> PAGE_SHIFT,
738 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
739
740 return 1;
741 }
742
743 /**
744 * pmd_set_huge - setup kernel PMD mapping
745 *
746 * See text over pud_set_huge() above.
747 *
748 * Returns 1 on success and 0 on failure.
749 */
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)750 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
751 {
752 u8 uniform;
753
754 mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
755 if (!uniform) {
756 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
757 __func__, addr, addr + PMD_SIZE);
758 return 0;
759 }
760
761 /* Bail out if we are we on a populated non-leaf entry: */
762 if (pmd_present(*pmd) && !pmd_huge(*pmd))
763 return 0;
764
765 set_pte((pte_t *)pmd, pfn_pte(
766 (u64)addr >> PAGE_SHIFT,
767 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
768
769 return 1;
770 }
771
772 /**
773 * pud_clear_huge - clear kernel PUD mapping when it is set
774 *
775 * Returns 1 on success and 0 on failure (no PUD map is found).
776 */
pud_clear_huge(pud_t * pud)777 int pud_clear_huge(pud_t *pud)
778 {
779 if (pud_leaf(*pud)) {
780 pud_clear(pud);
781 return 1;
782 }
783
784 return 0;
785 }
786
787 /**
788 * pmd_clear_huge - clear kernel PMD mapping when it is set
789 *
790 * Returns 1 on success and 0 on failure (no PMD map is found).
791 */
pmd_clear_huge(pmd_t * pmd)792 int pmd_clear_huge(pmd_t *pmd)
793 {
794 if (pmd_large(*pmd)) {
795 pmd_clear(pmd);
796 return 1;
797 }
798
799 return 0;
800 }
801
802 #ifdef CONFIG_X86_64
803 /**
804 * pud_free_pmd_page - Clear pud entry and free pmd page.
805 * @pud: Pointer to a PUD.
806 * @addr: Virtual address associated with pud.
807 *
808 * Context: The pud range has been unmapped and TLB purged.
809 * Return: 1 if clearing the entry succeeded. 0 otherwise.
810 *
811 * NOTE: Callers must allow a single page allocation.
812 */
pud_free_pmd_page(pud_t * pud,unsigned long addr)813 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
814 {
815 pmd_t *pmd, *pmd_sv;
816 pte_t *pte;
817 int i;
818
819 pmd = pud_pgtable(*pud);
820 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
821 if (!pmd_sv)
822 return 0;
823
824 for (i = 0; i < PTRS_PER_PMD; i++) {
825 pmd_sv[i] = pmd[i];
826 if (!pmd_none(pmd[i]))
827 pmd_clear(&pmd[i]);
828 }
829
830 pud_clear(pud);
831
832 /* INVLPG to clear all paging-structure caches */
833 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
834
835 for (i = 0; i < PTRS_PER_PMD; i++) {
836 if (!pmd_none(pmd_sv[i])) {
837 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
838 free_page((unsigned long)pte);
839 }
840 }
841
842 free_page((unsigned long)pmd_sv);
843
844 pagetable_pmd_dtor(virt_to_ptdesc(pmd));
845 free_page((unsigned long)pmd);
846
847 return 1;
848 }
849
850 /**
851 * pmd_free_pte_page - Clear pmd entry and free pte page.
852 * @pmd: Pointer to a PMD.
853 * @addr: Virtual address associated with pmd.
854 *
855 * Context: The pmd range has been unmapped and TLB purged.
856 * Return: 1 if clearing the entry succeeded. 0 otherwise.
857 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)858 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
859 {
860 pte_t *pte;
861
862 pte = (pte_t *)pmd_page_vaddr(*pmd);
863 pmd_clear(pmd);
864
865 /* INVLPG to clear all paging-structure caches */
866 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
867
868 free_page((unsigned long)pte);
869
870 return 1;
871 }
872
873 #else /* !CONFIG_X86_64 */
874
875 /*
876 * Disable free page handling on x86-PAE. This assures that ioremap()
877 * does not update sync'd pmd entries. See vmalloc_sync_one().
878 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)879 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
880 {
881 return pmd_none(*pmd);
882 }
883
884 #endif /* CONFIG_X86_64 */
885 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
886
pte_mkwrite(pte_t pte,struct vm_area_struct * vma)887 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
888 {
889 if (vma->vm_flags & VM_SHADOW_STACK)
890 return pte_mkwrite_shstk(pte);
891
892 pte = pte_mkwrite_novma(pte);
893
894 return pte_clear_saveddirty(pte);
895 }
896
pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)897 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
898 {
899 if (vma->vm_flags & VM_SHADOW_STACK)
900 return pmd_mkwrite_shstk(pmd);
901
902 pmd = pmd_mkwrite_novma(pmd);
903
904 return pmd_clear_saveddirty(pmd);
905 }
906
arch_check_zapped_pte(struct vm_area_struct * vma,pte_t pte)907 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte)
908 {
909 /*
910 * Hardware before shadow stack can (rarely) set Dirty=1
911 * on a Write=0 PTE. So the below condition
912 * only indicates a software bug when shadow stack is
913 * supported by the HW. This checking is covered in
914 * pte_shstk().
915 */
916 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
917 pte_shstk(pte));
918 }
919
arch_check_zapped_pmd(struct vm_area_struct * vma,pmd_t pmd)920 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd)
921 {
922 /* See note in arch_check_zapped_pte() */
923 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
924 pmd_shstk(pmd));
925 }
926