1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _PARISC_PGTABLE_H
3 #define _PARISC_PGTABLE_H
4
5 #include <asm/page.h>
6
7 #if CONFIG_PGTABLE_LEVELS == 3
8 #include <asm-generic/pgtable-nopud.h>
9 #elif CONFIG_PGTABLE_LEVELS == 2
10 #include <asm-generic/pgtable-nopmd.h>
11 #endif
12
13 #include <asm/fixmap.h>
14
15 #ifndef __ASSEMBLY__
16 /*
17 * we simulate an x86-style page table for the linux mm code
18 */
19
20 #include <linux/bitops.h>
21 #include <linux/spinlock.h>
22 #include <linux/mm_types.h>
23 #include <asm/processor.h>
24 #include <asm/cache.h>
25
26 /* This is for the serialization of PxTLB broadcasts. At least on the N class
27 * systems, only one PxTLB inter processor broadcast can be active at any one
28 * time on the Merced bus. */
29 extern spinlock_t pa_tlb_flush_lock;
30 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
31 extern int pa_serialize_tlb_flushes;
32 #else
33 #define pa_serialize_tlb_flushes (0)
34 #endif
35
36 #define purge_tlb_start(flags) do { \
37 if (pa_serialize_tlb_flushes) \
38 spin_lock_irqsave(&pa_tlb_flush_lock, flags); \
39 else \
40 local_irq_save(flags); \
41 } while (0)
42 #define purge_tlb_end(flags) do { \
43 if (pa_serialize_tlb_flushes) \
44 spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \
45 else \
46 local_irq_restore(flags); \
47 } while (0)
48
49 /* Purge data and instruction TLB entries. The TLB purge instructions
50 * are slow on SMP machines since the purge must be broadcast to all CPUs.
51 */
52
purge_tlb_entries(struct mm_struct * mm,unsigned long addr)53 static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
54 {
55 unsigned long flags;
56
57 purge_tlb_start(flags);
58 mtsp(mm->context.space_id, SR_TEMP1);
59 pdtlb(SR_TEMP1, addr);
60 pitlb(SR_TEMP1, addr);
61 purge_tlb_end(flags);
62 }
63
64 extern void __update_cache(pte_t pte);
65
66 /* Certain architectures need to do special things when PTEs
67 * within a page table are directly modified. Thus, the following
68 * hook is made available.
69 */
70 #define set_pte(pteptr, pteval) \
71 do { \
72 *(pteptr) = (pteval); \
73 mb(); \
74 } while(0)
75
76 #endif /* !__ASSEMBLY__ */
77
78 #define pte_ERROR(e) \
79 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
80 #if CONFIG_PGTABLE_LEVELS == 3
81 #define pmd_ERROR(e) \
82 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
83 #endif
84 #define pgd_ERROR(e) \
85 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
86
87 /* This is the size of the initially mapped kernel memory */
88 #if defined(CONFIG_64BIT)
89 #define KERNEL_INITIAL_ORDER 26 /* 1<<26 = 64MB */
90 #else
91 #define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */
92 #endif
93 #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
94
95 #if CONFIG_PGTABLE_LEVELS == 3
96 #define PMD_TABLE_ORDER 1
97 #define PGD_TABLE_ORDER 0
98 #else
99 #define PGD_TABLE_ORDER 1
100 #endif
101
102 /* Definitions for 3rd level (we use PLD here for Page Lower directory
103 * because PTE_SHIFT is used lower down to mean shift that has to be
104 * done to get usable bits out of the PTE) */
105 #define PLD_SHIFT PAGE_SHIFT
106 #define PLD_SIZE PAGE_SIZE
107 #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
108 #define PTRS_PER_PTE (1UL << BITS_PER_PTE)
109
110 /* Definitions for 2nd level */
111 #if CONFIG_PGTABLE_LEVELS == 3
112 #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
113 #define PMD_SIZE (1UL << PMD_SHIFT)
114 #define PMD_MASK (~(PMD_SIZE-1))
115 #define BITS_PER_PMD (PAGE_SHIFT + PMD_TABLE_ORDER - BITS_PER_PMD_ENTRY)
116 #define PTRS_PER_PMD (1UL << BITS_PER_PMD)
117 #else
118 #define BITS_PER_PMD 0
119 #endif
120
121 /* Definitions for 1st level */
122 #define PGDIR_SHIFT (PLD_SHIFT + BITS_PER_PTE + BITS_PER_PMD)
123 #if (PGDIR_SHIFT + PAGE_SHIFT + PGD_TABLE_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
124 #define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT)
125 #else
126 #define BITS_PER_PGD (PAGE_SHIFT + PGD_TABLE_ORDER - BITS_PER_PGD_ENTRY)
127 #endif
128 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
129 #define PGDIR_MASK (~(PGDIR_SIZE-1))
130 #define PTRS_PER_PGD (1UL << BITS_PER_PGD)
131 #define USER_PTRS_PER_PGD PTRS_PER_PGD
132
133 #ifdef CONFIG_64BIT
134 #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
135 #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
136 #define SPACEID_SHIFT (MAX_ADDRBITS - 32)
137 #else
138 #define MAX_ADDRBITS (BITS_PER_LONG)
139 #define MAX_ADDRESS (1ULL << MAX_ADDRBITS)
140 #define SPACEID_SHIFT 0
141 #endif
142
143 /* This calculates the number of initial pages we need for the initial
144 * page tables */
145 #if (KERNEL_INITIAL_ORDER) >= (PLD_SHIFT + BITS_PER_PTE)
146 # define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PLD_SHIFT - BITS_PER_PTE))
147 #else
148 # define PT_INITIAL (1) /* all initial PTEs fit into one page */
149 #endif
150
151 /*
152 * pgd entries used up by user/kernel:
153 */
154
155 /* NB: The tlb miss handlers make certain assumptions about the order */
156 /* of the following bits, so be careful (One example, bits 25-31 */
157 /* are moved together in one instruction). */
158
159 #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
160 #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
161 #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
162 #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
163 #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
164 #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
165 #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
166 #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
167 #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
168 #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
169 #define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */
170 #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
171 #ifdef CONFIG_HUGETLB_PAGE
172 #define _PAGE_SPECIAL_BIT _PAGE_DMB_BIT /* DMB feature is currently unused */
173 #else
174 #define _PAGE_SPECIAL_BIT _PAGE_HPAGE_BIT /* use unused HUGE PAGE bit */
175 #endif
176
177 /* N.B. The bits are defined in terms of a 32 bit word above, so the */
178 /* following macro is ok for both 32 and 64 bit. */
179
180 #define xlate_pabit(x) (31 - x)
181
182 /* this defines the shift to the usable bits in the PTE it is set so
183 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
184 * to zero */
185 #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
186
187 /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
188 #define PFN_PTE_SHIFT 12
189
190 #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
191 #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
192 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
193 #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
194 #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
195 #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
196 #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
197 #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
198 #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
199 #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
200 #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
201 #define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT))
202 #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
203 #define _PAGE_SPECIAL (1 << xlate_pabit(_PAGE_SPECIAL_BIT))
204
205 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
206 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_SPECIAL)
207 #define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
208 #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC)
209 #define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
210 #define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE)
211
212 /* We borrow bit 23 to store the exclusive marker in swap PTEs. */
213 #define _PAGE_SWP_EXCLUSIVE _PAGE_ACCESSED
214
215 /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
216 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
217 * for a few meta-information bits, so we shift the address to be
218 * able to effectively address 40/42/44-bits of physical address space
219 * depending on 4k/16k/64k PAGE_SIZE */
220 #define _PxD_PRESENT_BIT 31
221 #define _PxD_VALID_BIT 30
222
223 #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
224 #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
225 #define PxD_FLAG_MASK (0xf)
226 #define PxD_FLAG_SHIFT (4)
227 #define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT)
228
229 #ifndef __ASSEMBLY__
230
231 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER)
232 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE)
233 /* Others seem to make this executable, I don't know if that's correct
234 or not. The stack is mapped this way though so this is necessary
235 in the short term - dhd@linuxcare.com, 2000-08-08 */
236 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ)
237 #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE)
238 #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC)
239 #define PAGE_COPY PAGE_EXECREAD
240 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
241 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
242 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
243 #define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
244 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
245 #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
246 #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ)
247
248
249 /*
250 * We could have an execute only page using "gateway - promote to priv
251 * level 3", but that is kind of silly. So, the way things are defined
252 * now, we must always have read permission for pages with execute
253 * permission. For the fun of it we'll go ahead and support write only
254 * pages.
255 */
256
257 /*xwr*/
258
259 extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
260
261 /* initial page tables for 0-8MB for kernel */
262
263 extern pte_t pg0[];
264
265 /* zero page used for uninitialized stuff */
266
267 extern unsigned long *empty_zero_page;
268
269 /*
270 * ZERO_PAGE is a global shared page that is always zero: used
271 * for zero-mapped memory areas etc..
272 */
273
274 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
275
276 #define pte_none(x) (pte_val(x) == 0)
277 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
278 #define pte_user(x) (pte_val(x) & _PAGE_USER)
279 #define pte_clear(mm, addr, xp) set_pte(xp, __pte(0))
280
281 #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
282 #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
283 #define pud_flag(x) (pud_val(x) & PxD_FLAG_MASK)
284 #define pud_address(x) ((unsigned long)(pud_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
285 #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
286 #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
287
288 #define pmd_none(x) (!pmd_val(x))
289 #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
290 #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
pmd_clear(pmd_t * pmd)291 static inline void pmd_clear(pmd_t *pmd) {
292 set_pmd(pmd, __pmd(0));
293 }
294
295
296
297 #if CONFIG_PGTABLE_LEVELS == 3
298 #define pud_pgtable(pud) ((pmd_t *) __va(pud_address(pud)))
299 #define pud_page(pud) virt_to_page((void *)pud_pgtable(pud))
300
301 /* For 64 bit we have three level tables */
302
303 #define pud_none(x) (!pud_val(x))
304 #define pud_bad(x) (!(pud_flag(x) & PxD_FLAG_VALID))
305 #define pud_present(x) (pud_flag(x) & PxD_FLAG_PRESENT)
pud_clear(pud_t * pud)306 static inline void pud_clear(pud_t *pud) {
307 set_pud(pud, __pud(0));
308 }
309 #endif
310
311 /*
312 * The following only work if pte_present() is true.
313 * Undefined behaviour if not..
314 */
pte_dirty(pte_t pte)315 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)316 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
pte_write(pte_t pte)317 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
pte_special(pte_t pte)318 static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
319
pte_mkclean(pte_t pte)320 static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
pte_mkold(pte_t pte)321 static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_wrprotect(pte_t pte)322 static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
pte_mkdirty(pte_t pte)323 static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)324 static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkwrite_novma(pte_t pte)325 static inline pte_t pte_mkwrite_novma(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
pte_mkspecial(pte_t pte)326 static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; }
327
328 /*
329 * Huge pte definitions.
330 */
331 #ifdef CONFIG_HUGETLB_PAGE
332 #define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE)
333 #define pte_mkhuge(pte) (__pte(pte_val(pte) | \
334 (parisc_requires_coherency() ? 0 : _PAGE_HUGE)))
335 #else
336 #define pte_huge(pte) (0)
337 #define pte_mkhuge(pte) (pte)
338 #endif
339
340
341 /*
342 * Conversion functions: convert a page and protection to a page entry,
343 * and a page entry and page directory to the page they refer to.
344 */
345 #define __mk_pte(addr,pgprot) \
346 ({ \
347 pte_t __pte; \
348 \
349 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \
350 \
351 __pte; \
352 })
353
354 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
355
pfn_pte(unsigned long pfn,pgprot_t pgprot)356 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
357 {
358 pte_t pte;
359 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
360 return pte;
361 }
362
pte_modify(pte_t pte,pgprot_t newprot)363 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
364 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
365
366 /* Permanent address of a page. On parisc we don't have highmem. */
367
368 #define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT)
369
370 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
371
pmd_page_vaddr(pmd_t pmd)372 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
373 {
374 return ((unsigned long) __va(pmd_address(pmd)));
375 }
376
377 #define pmd_pfn(pmd) (pmd_address(pmd) >> PAGE_SHIFT)
378 #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
379 #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
380
381 /* Find an entry in the second-level page table.. */
382
383 extern void paging_init (void);
384
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)385 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep, pte_t pte, unsigned int nr)
387 {
388 if (pte_present(pte) && pte_user(pte))
389 __update_cache(pte);
390 for (;;) {
391 *ptep = pte;
392 purge_tlb_entries(mm, addr);
393 if (--nr == 0)
394 break;
395 ptep++;
396 pte_val(pte) += 1 << PFN_PTE_SHIFT;
397 addr += PAGE_SIZE;
398 }
399 }
400 #define set_ptes set_ptes
401
402 /* Used for deferring calls to flush_dcache_page() */
403
404 #define PG_dcache_dirty PG_arch_1
405
406 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) __update_cache(*ptep)
407 #define update_mmu_cache(vma, addr, ptep) __update_cache(*ptep)
408
409 /*
410 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
411 * are !pte_none() && !pte_present().
412 *
413 * Format of swap PTEs (32bit):
414 *
415 * 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
416 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
417 * <---------------- offset -----------------> P E <ofs> < type ->
418 *
419 * E is the exclusive marker that is not stored in swap entries.
420 * _PAGE_PRESENT (P) must be 0.
421 *
422 * For the 64bit version, the offset is extended by 32bit.
423 */
424 #define __swp_type(x) ((x).val & 0x1f)
425 #define __swp_offset(x) ( (((x).val >> 5) & 0x7) | \
426 (((x).val >> 10) << 3) )
427 #define __swp_entry(type, offset) ((swp_entry_t) { \
428 ((type) & 0x1f) | \
429 ((offset & 0x7) << 5) | \
430 ((offset >> 3) << 10) })
431 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
432 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
433
pte_swp_exclusive(pte_t pte)434 static inline int pte_swp_exclusive(pte_t pte)
435 {
436 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
437 }
438
pte_swp_mkexclusive(pte_t pte)439 static inline pte_t pte_swp_mkexclusive(pte_t pte)
440 {
441 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
442 return pte;
443 }
444
pte_swp_clear_exclusive(pte_t pte)445 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
446 {
447 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
448 return pte;
449 }
450
ptep_get(pte_t * ptep)451 static inline pte_t ptep_get(pte_t *ptep)
452 {
453 return READ_ONCE(*ptep);
454 }
455 #define ptep_get ptep_get
456
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)457 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
458 {
459 pte_t pte;
460
461 pte = ptep_get(ptep);
462 if (!pte_young(pte)) {
463 return 0;
464 }
465 set_pte(ptep, pte_mkold(pte));
466 return 1;
467 }
468
469 int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep);
470 pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep);
471
472 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)473 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
474 {
475 set_pte(ptep, pte_wrprotect(*ptep));
476 }
477
478 #define pte_same(A,B) (pte_val(A) == pte_val(B))
479
480 #endif /* !__ASSEMBLY__ */
481
482
483 /* TLB page size encoding - see table 3-1 in parisc20.pdf */
484 #define _PAGE_SIZE_ENCODING_4K 0
485 #define _PAGE_SIZE_ENCODING_16K 1
486 #define _PAGE_SIZE_ENCODING_64K 2
487 #define _PAGE_SIZE_ENCODING_256K 3
488 #define _PAGE_SIZE_ENCODING_1M 4
489 #define _PAGE_SIZE_ENCODING_4M 5
490 #define _PAGE_SIZE_ENCODING_16M 6
491 #define _PAGE_SIZE_ENCODING_64M 7
492
493 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
494 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
495 #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
496 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
497 #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
498 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
499 #endif
500
501
502 #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
503
504 /* We provide our own get_unmapped_area to provide cache coherency */
505
506 #define HAVE_ARCH_UNMAPPED_AREA
507 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
508
509 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
510 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
511 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
512 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
513 #define __HAVE_ARCH_PTE_SAME
514
515 #endif /* _PARISC_PGTABLE_H */
516