1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 */
6
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/spinlock.h>
11 #include <linux/bitops.h>
12
13 #include "core.h"
14 #include "debug.h"
15 #include "coredump.h"
16
17 #include "targaddrs.h"
18 #include "bmi.h"
19
20 #include "hif.h"
21 #include "htc.h"
22
23 #include "ce.h"
24 #include "pci.h"
25
26 enum ath10k_pci_reset_mode {
27 ATH10K_PCI_RESET_AUTO = 0,
28 ATH10K_PCI_RESET_WARM_ONLY = 1,
29 };
30
31 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
32 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
33
34 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
35 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
36
37 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
38 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
39
40 /* how long wait to wait for target to initialise, in ms */
41 #define ATH10K_PCI_TARGET_WAIT 3000
42 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
43
44 /* Maximum number of bytes that can be handled atomically by
45 * diag read and write.
46 */
47 #define ATH10K_DIAG_TRANSFER_LIMIT 0x5000
48
49 #define QCA99X0_PCIE_BAR0_START_REG 0x81030
50 #define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c
51 #define QCA99X0_CPU_MEM_DATA_REG 0x4d010
52
53 static const struct pci_device_id ath10k_pci_id_table[] = {
54 /* PCI-E QCA988X V2 (Ubiquiti branded) */
55 { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
56
57 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
58 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
59 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
60 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
61 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
62 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
63 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
64 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
65 {0}
66 };
67
68 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
69 /* QCA988X pre 2.0 chips are not supported because they need some nasty
70 * hacks. ath10k doesn't have them and these devices crash horribly
71 * because of that.
72 */
73 { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
74 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75
76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81
82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87
88 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89
90 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
91
92 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
93
94 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
95 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
96
97 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
98 };
99
100 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
101 static int ath10k_pci_cold_reset(struct ath10k *ar);
102 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
103 static int ath10k_pci_init_irq(struct ath10k *ar);
104 static int ath10k_pci_deinit_irq(struct ath10k *ar);
105 static int ath10k_pci_request_irq(struct ath10k *ar);
106 static void ath10k_pci_free_irq(struct ath10k *ar);
107 static int ath10k_pci_bmi_wait(struct ath10k *ar,
108 struct ath10k_ce_pipe *tx_pipe,
109 struct ath10k_ce_pipe *rx_pipe,
110 struct bmi_xfer *xfer);
111 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
112 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
115 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
116 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
117 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
118
119 static const struct ce_attr pci_host_ce_config_wlan[] = {
120 /* CE0: host->target HTC control and raw streams */
121 {
122 .flags = CE_ATTR_FLAGS,
123 .src_nentries = 16,
124 .src_sz_max = 256,
125 .dest_nentries = 0,
126 .send_cb = ath10k_pci_htc_tx_cb,
127 },
128
129 /* CE1: target->host HTT + HTC control */
130 {
131 .flags = CE_ATTR_FLAGS,
132 .src_nentries = 0,
133 .src_sz_max = 2048,
134 .dest_nentries = 512,
135 .recv_cb = ath10k_pci_htt_htc_rx_cb,
136 },
137
138 /* CE2: target->host WMI */
139 {
140 .flags = CE_ATTR_FLAGS,
141 .src_nentries = 0,
142 .src_sz_max = 2048,
143 .dest_nentries = 128,
144 .recv_cb = ath10k_pci_htc_rx_cb,
145 },
146
147 /* CE3: host->target WMI */
148 {
149 .flags = CE_ATTR_FLAGS,
150 .src_nentries = 32,
151 .src_sz_max = 2048,
152 .dest_nentries = 0,
153 .send_cb = ath10k_pci_htc_tx_cb,
154 },
155
156 /* CE4: host->target HTT */
157 {
158 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
159 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
160 .src_sz_max = 256,
161 .dest_nentries = 0,
162 .send_cb = ath10k_pci_htt_tx_cb,
163 },
164
165 /* CE5: target->host HTT (HIF->HTT) */
166 {
167 .flags = CE_ATTR_FLAGS,
168 .src_nentries = 0,
169 .src_sz_max = 512,
170 .dest_nentries = 512,
171 .recv_cb = ath10k_pci_htt_rx_cb,
172 },
173
174 /* CE6: target autonomous hif_memcpy */
175 {
176 .flags = CE_ATTR_FLAGS,
177 .src_nentries = 0,
178 .src_sz_max = 0,
179 .dest_nentries = 0,
180 },
181
182 /* CE7: ce_diag, the Diagnostic Window */
183 {
184 .flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
185 .src_nentries = 2,
186 .src_sz_max = DIAG_TRANSFER_LIMIT,
187 .dest_nentries = 2,
188 },
189
190 /* CE8: target->host pktlog */
191 {
192 .flags = CE_ATTR_FLAGS,
193 .src_nentries = 0,
194 .src_sz_max = 2048,
195 .dest_nentries = 128,
196 .recv_cb = ath10k_pci_pktlog_rx_cb,
197 },
198
199 /* CE9 target autonomous qcache memcpy */
200 {
201 .flags = CE_ATTR_FLAGS,
202 .src_nentries = 0,
203 .src_sz_max = 0,
204 .dest_nentries = 0,
205 },
206
207 /* CE10: target autonomous hif memcpy */
208 {
209 .flags = CE_ATTR_FLAGS,
210 .src_nentries = 0,
211 .src_sz_max = 0,
212 .dest_nentries = 0,
213 },
214
215 /* CE11: target autonomous hif memcpy */
216 {
217 .flags = CE_ATTR_FLAGS,
218 .src_nentries = 0,
219 .src_sz_max = 0,
220 .dest_nentries = 0,
221 },
222 };
223
224 /* Target firmware's Copy Engine configuration. */
225 static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
226 /* CE0: host->target HTC control and raw streams */
227 {
228 .pipenum = __cpu_to_le32(0),
229 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
230 .nentries = __cpu_to_le32(32),
231 .nbytes_max = __cpu_to_le32(256),
232 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
233 .reserved = __cpu_to_le32(0),
234 },
235
236 /* CE1: target->host HTT + HTC control */
237 {
238 .pipenum = __cpu_to_le32(1),
239 .pipedir = __cpu_to_le32(PIPEDIR_IN),
240 .nentries = __cpu_to_le32(32),
241 .nbytes_max = __cpu_to_le32(2048),
242 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
243 .reserved = __cpu_to_le32(0),
244 },
245
246 /* CE2: target->host WMI */
247 {
248 .pipenum = __cpu_to_le32(2),
249 .pipedir = __cpu_to_le32(PIPEDIR_IN),
250 .nentries = __cpu_to_le32(64),
251 .nbytes_max = __cpu_to_le32(2048),
252 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
253 .reserved = __cpu_to_le32(0),
254 },
255
256 /* CE3: host->target WMI */
257 {
258 .pipenum = __cpu_to_le32(3),
259 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
260 .nentries = __cpu_to_le32(32),
261 .nbytes_max = __cpu_to_le32(2048),
262 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
263 .reserved = __cpu_to_le32(0),
264 },
265
266 /* CE4: host->target HTT */
267 {
268 .pipenum = __cpu_to_le32(4),
269 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
270 .nentries = __cpu_to_le32(256),
271 .nbytes_max = __cpu_to_le32(256),
272 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
273 .reserved = __cpu_to_le32(0),
274 },
275
276 /* NB: 50% of src nentries, since tx has 2 frags */
277
278 /* CE5: target->host HTT (HIF->HTT) */
279 {
280 .pipenum = __cpu_to_le32(5),
281 .pipedir = __cpu_to_le32(PIPEDIR_IN),
282 .nentries = __cpu_to_le32(32),
283 .nbytes_max = __cpu_to_le32(512),
284 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
285 .reserved = __cpu_to_le32(0),
286 },
287
288 /* CE6: Reserved for target autonomous hif_memcpy */
289 {
290 .pipenum = __cpu_to_le32(6),
291 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
292 .nentries = __cpu_to_le32(32),
293 .nbytes_max = __cpu_to_le32(4096),
294 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
295 .reserved = __cpu_to_le32(0),
296 },
297
298 /* CE7 used only by Host */
299 {
300 .pipenum = __cpu_to_le32(7),
301 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
302 .nentries = __cpu_to_le32(0),
303 .nbytes_max = __cpu_to_le32(0),
304 .flags = __cpu_to_le32(0),
305 .reserved = __cpu_to_le32(0),
306 },
307
308 /* CE8 target->host packtlog */
309 {
310 .pipenum = __cpu_to_le32(8),
311 .pipedir = __cpu_to_le32(PIPEDIR_IN),
312 .nentries = __cpu_to_le32(64),
313 .nbytes_max = __cpu_to_le32(2048),
314 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
315 .reserved = __cpu_to_le32(0),
316 },
317
318 /* CE9 target autonomous qcache memcpy */
319 {
320 .pipenum = __cpu_to_le32(9),
321 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
322 .nentries = __cpu_to_le32(32),
323 .nbytes_max = __cpu_to_le32(2048),
324 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
325 .reserved = __cpu_to_le32(0),
326 },
327
328 /* It not necessary to send target wlan configuration for CE10 & CE11
329 * as these CEs are not actively used in target.
330 */
331 };
332
333 /*
334 * Map from service/endpoint to Copy Engine.
335 * This table is derived from the CE_PCI TABLE, above.
336 * It is passed to the Target at startup for use by firmware.
337 */
338 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
339 {
340 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
341 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
342 __cpu_to_le32(3),
343 },
344 {
345 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
346 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
347 __cpu_to_le32(2),
348 },
349 {
350 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
351 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
352 __cpu_to_le32(3),
353 },
354 {
355 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
356 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
357 __cpu_to_le32(2),
358 },
359 {
360 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
361 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
362 __cpu_to_le32(3),
363 },
364 {
365 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
366 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
367 __cpu_to_le32(2),
368 },
369 {
370 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
371 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
372 __cpu_to_le32(3),
373 },
374 {
375 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
376 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
377 __cpu_to_le32(2),
378 },
379 {
380 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
381 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
382 __cpu_to_le32(3),
383 },
384 {
385 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
386 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
387 __cpu_to_le32(2),
388 },
389 {
390 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
391 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
392 __cpu_to_le32(0),
393 },
394 {
395 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
396 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
397 __cpu_to_le32(1),
398 },
399 { /* not used */
400 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
401 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
402 __cpu_to_le32(0),
403 },
404 { /* not used */
405 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
406 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
407 __cpu_to_le32(1),
408 },
409 {
410 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
411 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
412 __cpu_to_le32(4),
413 },
414 {
415 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
416 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
417 __cpu_to_le32(5),
418 },
419
420 /* (Additions here) */
421
422 { /* must be last */
423 __cpu_to_le32(0),
424 __cpu_to_le32(0),
425 __cpu_to_le32(0),
426 },
427 };
428
ath10k_pci_is_awake(struct ath10k * ar)429 static bool ath10k_pci_is_awake(struct ath10k *ar)
430 {
431 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
433 RTC_STATE_ADDRESS);
434
435 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
436 }
437
__ath10k_pci_wake(struct ath10k * ar)438 static void __ath10k_pci_wake(struct ath10k *ar)
439 {
440 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
441
442 lockdep_assert_held(&ar_pci->ps_lock);
443
444 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
445 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
446
447 iowrite32(PCIE_SOC_WAKE_V_MASK,
448 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
449 PCIE_SOC_WAKE_ADDRESS);
450 }
451
__ath10k_pci_sleep(struct ath10k * ar)452 static void __ath10k_pci_sleep(struct ath10k *ar)
453 {
454 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
455
456 lockdep_assert_held(&ar_pci->ps_lock);
457
458 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
459 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
460
461 iowrite32(PCIE_SOC_WAKE_RESET,
462 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
463 PCIE_SOC_WAKE_ADDRESS);
464 ar_pci->ps_awake = false;
465 }
466
ath10k_pci_wake_wait(struct ath10k * ar)467 static int ath10k_pci_wake_wait(struct ath10k *ar)
468 {
469 int tot_delay = 0;
470 int curr_delay = 5;
471
472 while (tot_delay < PCIE_WAKE_TIMEOUT) {
473 if (ath10k_pci_is_awake(ar)) {
474 if (tot_delay > PCIE_WAKE_LATE_US)
475 ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
476 tot_delay / 1000);
477 return 0;
478 }
479
480 udelay(curr_delay);
481 tot_delay += curr_delay;
482
483 if (curr_delay < 50)
484 curr_delay += 5;
485 }
486
487 return -ETIMEDOUT;
488 }
489
ath10k_pci_force_wake(struct ath10k * ar)490 static int ath10k_pci_force_wake(struct ath10k *ar)
491 {
492 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
493 unsigned long flags;
494 int ret = 0;
495
496 if (ar_pci->pci_ps)
497 return ret;
498
499 spin_lock_irqsave(&ar_pci->ps_lock, flags);
500
501 if (!ar_pci->ps_awake) {
502 iowrite32(PCIE_SOC_WAKE_V_MASK,
503 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
504 PCIE_SOC_WAKE_ADDRESS);
505
506 ret = ath10k_pci_wake_wait(ar);
507 if (ret == 0)
508 ar_pci->ps_awake = true;
509 }
510
511 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
512
513 return ret;
514 }
515
ath10k_pci_force_sleep(struct ath10k * ar)516 static void ath10k_pci_force_sleep(struct ath10k *ar)
517 {
518 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
519 unsigned long flags;
520
521 spin_lock_irqsave(&ar_pci->ps_lock, flags);
522
523 iowrite32(PCIE_SOC_WAKE_RESET,
524 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
525 PCIE_SOC_WAKE_ADDRESS);
526 ar_pci->ps_awake = false;
527
528 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
529 }
530
ath10k_pci_wake(struct ath10k * ar)531 static int ath10k_pci_wake(struct ath10k *ar)
532 {
533 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
534 unsigned long flags;
535 int ret = 0;
536
537 if (ar_pci->pci_ps == 0)
538 return ret;
539
540 spin_lock_irqsave(&ar_pci->ps_lock, flags);
541
542 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
543 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
544
545 /* This function can be called very frequently. To avoid excessive
546 * CPU stalls for MMIO reads use a cache var to hold the device state.
547 */
548 if (!ar_pci->ps_awake) {
549 __ath10k_pci_wake(ar);
550
551 ret = ath10k_pci_wake_wait(ar);
552 if (ret == 0)
553 ar_pci->ps_awake = true;
554 }
555
556 if (ret == 0) {
557 ar_pci->ps_wake_refcount++;
558 WARN_ON(ar_pci->ps_wake_refcount == 0);
559 }
560
561 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
562
563 return ret;
564 }
565
ath10k_pci_sleep(struct ath10k * ar)566 static void ath10k_pci_sleep(struct ath10k *ar)
567 {
568 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
569 unsigned long flags;
570
571 if (ar_pci->pci_ps == 0)
572 return;
573
574 spin_lock_irqsave(&ar_pci->ps_lock, flags);
575
576 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
577 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
578
579 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
580 goto skip;
581
582 ar_pci->ps_wake_refcount--;
583
584 mod_timer(&ar_pci->ps_timer, jiffies +
585 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
586
587 skip:
588 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
589 }
590
ath10k_pci_ps_timer(struct timer_list * t)591 static void ath10k_pci_ps_timer(struct timer_list *t)
592 {
593 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
594 struct ath10k *ar = ar_pci->ar;
595 unsigned long flags;
596
597 spin_lock_irqsave(&ar_pci->ps_lock, flags);
598
599 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
600 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
601
602 if (ar_pci->ps_wake_refcount > 0)
603 goto skip;
604
605 __ath10k_pci_sleep(ar);
606
607 skip:
608 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
609 }
610
ath10k_pci_sleep_sync(struct ath10k * ar)611 static void ath10k_pci_sleep_sync(struct ath10k *ar)
612 {
613 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
614 unsigned long flags;
615
616 if (ar_pci->pci_ps == 0) {
617 ath10k_pci_force_sleep(ar);
618 return;
619 }
620
621 del_timer_sync(&ar_pci->ps_timer);
622
623 spin_lock_irqsave(&ar_pci->ps_lock, flags);
624 WARN_ON(ar_pci->ps_wake_refcount > 0);
625 __ath10k_pci_sleep(ar);
626 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
627 }
628
ath10k_bus_pci_write32(struct ath10k * ar,u32 offset,u32 value)629 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
630 {
631 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
632 int ret;
633
634 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
635 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
636 offset, offset + sizeof(value), ar_pci->mem_len);
637 return;
638 }
639
640 ret = ath10k_pci_wake(ar);
641 if (ret) {
642 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
643 value, offset, ret);
644 return;
645 }
646
647 iowrite32(value, ar_pci->mem + offset);
648 ath10k_pci_sleep(ar);
649 }
650
ath10k_bus_pci_read32(struct ath10k * ar,u32 offset)651 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
652 {
653 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
654 u32 val;
655 int ret;
656
657 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
658 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
659 offset, offset + sizeof(val), ar_pci->mem_len);
660 return 0;
661 }
662
663 ret = ath10k_pci_wake(ar);
664 if (ret) {
665 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
666 offset, ret);
667 return 0xffffffff;
668 }
669
670 val = ioread32(ar_pci->mem + offset);
671 ath10k_pci_sleep(ar);
672
673 return val;
674 }
675
ath10k_pci_write32(struct ath10k * ar,u32 offset,u32 value)676 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
677 {
678 struct ath10k_ce *ce = ath10k_ce_priv(ar);
679
680 ce->bus_ops->write32(ar, offset, value);
681 }
682
ath10k_pci_read32(struct ath10k * ar,u32 offset)683 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
684 {
685 struct ath10k_ce *ce = ath10k_ce_priv(ar);
686
687 return ce->bus_ops->read32(ar, offset);
688 }
689
ath10k_pci_soc_read32(struct ath10k * ar,u32 addr)690 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
691 {
692 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
693 }
694
ath10k_pci_soc_write32(struct ath10k * ar,u32 addr,u32 val)695 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
696 {
697 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
698 }
699
ath10k_pci_reg_read32(struct ath10k * ar,u32 addr)700 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
701 {
702 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
703 }
704
ath10k_pci_reg_write32(struct ath10k * ar,u32 addr,u32 val)705 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
706 {
707 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
708 }
709
ath10k_pci_irq_pending(struct ath10k * ar)710 bool ath10k_pci_irq_pending(struct ath10k *ar)
711 {
712 u32 cause;
713
714 /* Check if the shared legacy irq is for us */
715 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
716 PCIE_INTR_CAUSE_ADDRESS);
717 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
718 return true;
719
720 return false;
721 }
722
ath10k_pci_disable_and_clear_legacy_irq(struct ath10k * ar)723 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
724 {
725 /* IMPORTANT: INTR_CLR register has to be set after
726 * INTR_ENABLE is set to 0, otherwise interrupt can not be
727 * really cleared.
728 */
729 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
730 0);
731 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
732 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
733
734 /* IMPORTANT: this extra read transaction is required to
735 * flush the posted write buffer.
736 */
737 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
738 PCIE_INTR_ENABLE_ADDRESS);
739 }
740
ath10k_pci_enable_legacy_irq(struct ath10k * ar)741 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
742 {
743 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
744 PCIE_INTR_ENABLE_ADDRESS,
745 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
746
747 /* IMPORTANT: this extra read transaction is required to
748 * flush the posted write buffer.
749 */
750 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
751 PCIE_INTR_ENABLE_ADDRESS);
752 }
753
ath10k_pci_get_irq_method(struct ath10k * ar)754 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
755 {
756 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
757
758 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
759 return "msi";
760
761 return "legacy";
762 }
763
__ath10k_pci_rx_post_buf(struct ath10k_pci_pipe * pipe)764 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
765 {
766 struct ath10k *ar = pipe->hif_ce_state;
767 struct ath10k_ce *ce = ath10k_ce_priv(ar);
768 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
769 struct sk_buff *skb;
770 dma_addr_t paddr;
771 int ret;
772
773 skb = dev_alloc_skb(pipe->buf_sz);
774 if (!skb)
775 return -ENOMEM;
776
777 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
778
779 paddr = dma_map_single(ar->dev, skb->data,
780 skb->len + skb_tailroom(skb),
781 DMA_FROM_DEVICE);
782 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
783 ath10k_warn(ar, "failed to dma map pci rx buf\n");
784 dev_kfree_skb_any(skb);
785 return -EIO;
786 }
787
788 ATH10K_SKB_RXCB(skb)->paddr = paddr;
789
790 spin_lock_bh(&ce->ce_lock);
791 ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
792 spin_unlock_bh(&ce->ce_lock);
793 if (ret) {
794 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
795 DMA_FROM_DEVICE);
796 dev_kfree_skb_any(skb);
797 return ret;
798 }
799
800 return 0;
801 }
802
ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe * pipe)803 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
804 {
805 struct ath10k *ar = pipe->hif_ce_state;
806 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
807 struct ath10k_ce *ce = ath10k_ce_priv(ar);
808 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
809 int ret, num;
810
811 if (pipe->buf_sz == 0)
812 return;
813
814 if (!ce_pipe->dest_ring)
815 return;
816
817 spin_lock_bh(&ce->ce_lock);
818 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
819 spin_unlock_bh(&ce->ce_lock);
820
821 while (num >= 0) {
822 ret = __ath10k_pci_rx_post_buf(pipe);
823 if (ret) {
824 if (ret == -ENOSPC)
825 break;
826 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
827 mod_timer(&ar_pci->rx_post_retry, jiffies +
828 ATH10K_PCI_RX_POST_RETRY_MS);
829 break;
830 }
831 num--;
832 }
833 }
834
ath10k_pci_rx_post(struct ath10k * ar)835 void ath10k_pci_rx_post(struct ath10k *ar)
836 {
837 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
838 int i;
839
840 for (i = 0; i < CE_COUNT; i++)
841 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
842 }
843
ath10k_pci_rx_replenish_retry(struct timer_list * t)844 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
845 {
846 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
847 struct ath10k *ar = ar_pci->ar;
848
849 ath10k_pci_rx_post(ar);
850 }
851
ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)852 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
853 {
854 u32 val = 0, region = addr & 0xfffff;
855
856 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
857 & 0x7ff) << 21;
858 val |= 0x100000 | region;
859 return val;
860 }
861
862 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
863 * Support to access target space below 1M for qca6174 and qca9377.
864 * If target space is below 1M, the bit[20] of converted CE addr is 0.
865 * Otherwise bit[20] of converted CE addr is 1.
866 */
ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)867 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
868 {
869 u32 val = 0, region = addr & 0xfffff;
870
871 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
872 & 0x7ff) << 21;
873 val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
874 return val;
875 }
876
ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)877 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
878 {
879 u32 val = 0, region = addr & 0xfffff;
880
881 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
882 val |= 0x100000 | region;
883 return val;
884 }
885
ath10k_pci_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)886 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
887 {
888 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
889
890 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
891 return -ENOTSUPP;
892
893 return ar_pci->targ_cpu_to_ce_addr(ar, addr);
894 }
895
896 /*
897 * Diagnostic read/write access is provided for startup/config/debug usage.
898 * Caller must guarantee proper alignment, when applicable, and single user
899 * at any moment.
900 */
ath10k_pci_diag_read_mem(struct ath10k * ar,u32 address,void * data,int nbytes)901 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
902 int nbytes)
903 {
904 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
905 int ret = 0;
906 u32 *buf;
907 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
908 struct ath10k_ce_pipe *ce_diag;
909 /* Host buffer address in CE space */
910 u32 ce_data;
911 dma_addr_t ce_data_base = 0;
912 void *data_buf;
913 int i;
914
915 mutex_lock(&ar_pci->ce_diag_mutex);
916 ce_diag = ar_pci->ce_diag;
917
918 /*
919 * Allocate a temporary bounce buffer to hold caller's data
920 * to be DMA'ed from Target. This guarantees
921 * 1) 4-byte alignment
922 * 2) Buffer in DMA-able space
923 */
924 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
925
926 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
927 GFP_ATOMIC);
928 if (!data_buf) {
929 ret = -ENOMEM;
930 goto done;
931 }
932
933 /* The address supplied by the caller is in the
934 * Target CPU virtual address space.
935 *
936 * In order to use this address with the diagnostic CE,
937 * convert it from Target CPU virtual address space
938 * to CE address space
939 */
940 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
941
942 remaining_bytes = nbytes;
943 ce_data = ce_data_base;
944 while (remaining_bytes) {
945 nbytes = min_t(unsigned int, remaining_bytes,
946 DIAG_TRANSFER_LIMIT);
947
948 ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
949 if (ret != 0)
950 goto done;
951
952 /* Request CE to send from Target(!) address to Host buffer */
953 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
954 if (ret)
955 goto done;
956
957 i = 0;
958 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
959 udelay(DIAG_ACCESS_CE_WAIT_US);
960 i += DIAG_ACCESS_CE_WAIT_US;
961
962 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
963 ret = -EBUSY;
964 goto done;
965 }
966 }
967
968 i = 0;
969 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
970 &completed_nbytes) != 0) {
971 udelay(DIAG_ACCESS_CE_WAIT_US);
972 i += DIAG_ACCESS_CE_WAIT_US;
973
974 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
975 ret = -EBUSY;
976 goto done;
977 }
978 }
979
980 if (nbytes != completed_nbytes) {
981 ret = -EIO;
982 goto done;
983 }
984
985 if (*buf != ce_data) {
986 ret = -EIO;
987 goto done;
988 }
989
990 remaining_bytes -= nbytes;
991 memcpy(data, data_buf, nbytes);
992
993 address += nbytes;
994 data += nbytes;
995 }
996
997 done:
998
999 if (data_buf)
1000 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1001 ce_data_base);
1002
1003 mutex_unlock(&ar_pci->ce_diag_mutex);
1004
1005 return ret;
1006 }
1007
ath10k_pci_diag_read32(struct ath10k * ar,u32 address,u32 * value)1008 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1009 {
1010 __le32 val = 0;
1011 int ret;
1012
1013 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014 *value = __le32_to_cpu(val);
1015
1016 return ret;
1017 }
1018
__ath10k_pci_diag_read_hi(struct ath10k * ar,void * dest,u32 src,u32 len)1019 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1020 u32 src, u32 len)
1021 {
1022 u32 host_addr, addr;
1023 int ret;
1024
1025 host_addr = host_interest_item_address(src);
1026
1027 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1028 if (ret != 0) {
1029 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1030 src, ret);
1031 return ret;
1032 }
1033
1034 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1035 if (ret != 0) {
1036 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1037 addr, len, ret);
1038 return ret;
1039 }
1040
1041 return 0;
1042 }
1043
1044 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1045 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1046
ath10k_pci_diag_write_mem(struct ath10k * ar,u32 address,const void * data,int nbytes)1047 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048 const void *data, int nbytes)
1049 {
1050 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051 int ret = 0;
1052 u32 *buf;
1053 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1054 struct ath10k_ce_pipe *ce_diag;
1055 void *data_buf;
1056 dma_addr_t ce_data_base = 0;
1057 int i;
1058
1059 mutex_lock(&ar_pci->ce_diag_mutex);
1060 ce_diag = ar_pci->ce_diag;
1061
1062 /*
1063 * Allocate a temporary bounce buffer to hold caller's data
1064 * to be DMA'ed to Target. This guarantees
1065 * 1) 4-byte alignment
1066 * 2) Buffer in DMA-able space
1067 */
1068 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1069
1070 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1071 GFP_ATOMIC);
1072 if (!data_buf) {
1073 ret = -ENOMEM;
1074 goto done;
1075 }
1076
1077 /*
1078 * The address supplied by the caller is in the
1079 * Target CPU virtual address space.
1080 *
1081 * In order to use this address with the diagnostic CE,
1082 * convert it from
1083 * Target CPU virtual address space
1084 * to
1085 * CE address space
1086 */
1087 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1088
1089 remaining_bytes = nbytes;
1090 while (remaining_bytes) {
1091 /* FIXME: check cast */
1092 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1093
1094 /* Copy caller's data to allocated DMA buf */
1095 memcpy(data_buf, data, nbytes);
1096
1097 /* Set up to receive directly into Target(!) address */
1098 ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1099 if (ret != 0)
1100 goto done;
1101
1102 /*
1103 * Request CE to send caller-supplied data that
1104 * was copied to bounce buffer to Target(!) address.
1105 */
1106 ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1107 if (ret != 0)
1108 goto done;
1109
1110 i = 0;
1111 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112 udelay(DIAG_ACCESS_CE_WAIT_US);
1113 i += DIAG_ACCESS_CE_WAIT_US;
1114
1115 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1116 ret = -EBUSY;
1117 goto done;
1118 }
1119 }
1120
1121 i = 0;
1122 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123 &completed_nbytes) != 0) {
1124 udelay(DIAG_ACCESS_CE_WAIT_US);
1125 i += DIAG_ACCESS_CE_WAIT_US;
1126
1127 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1128 ret = -EBUSY;
1129 goto done;
1130 }
1131 }
1132
1133 if (nbytes != completed_nbytes) {
1134 ret = -EIO;
1135 goto done;
1136 }
1137
1138 if (*buf != address) {
1139 ret = -EIO;
1140 goto done;
1141 }
1142
1143 remaining_bytes -= nbytes;
1144 address += nbytes;
1145 data += nbytes;
1146 }
1147
1148 done:
1149 if (data_buf) {
1150 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1151 ce_data_base);
1152 }
1153
1154 if (ret != 0)
1155 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1156 address, ret);
1157
1158 mutex_unlock(&ar_pci->ce_diag_mutex);
1159
1160 return ret;
1161 }
1162
ath10k_pci_diag_write32(struct ath10k * ar,u32 address,u32 value)1163 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1164 {
1165 __le32 val = __cpu_to_le32(value);
1166
1167 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1168 }
1169
1170 /* Called by lower (CE) layer when a send to Target completes. */
ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe * ce_state)1171 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1172 {
1173 struct ath10k *ar = ce_state->ar;
1174 struct sk_buff_head list;
1175 struct sk_buff *skb;
1176
1177 __skb_queue_head_init(&list);
1178 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179 /* no need to call tx completion for NULL pointers */
1180 if (skb == NULL)
1181 continue;
1182
1183 __skb_queue_tail(&list, skb);
1184 }
1185
1186 while ((skb = __skb_dequeue(&list)))
1187 ath10k_htc_tx_completion_handler(ar, skb);
1188 }
1189
ath10k_pci_process_rx_cb(struct ath10k_ce_pipe * ce_state,void (* callback)(struct ath10k * ar,struct sk_buff * skb))1190 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191 void (*callback)(struct ath10k *ar,
1192 struct sk_buff *skb))
1193 {
1194 struct ath10k *ar = ce_state->ar;
1195 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1197 struct sk_buff *skb;
1198 struct sk_buff_head list;
1199 void *transfer_context;
1200 unsigned int nbytes, max_nbytes;
1201
1202 __skb_queue_head_init(&list);
1203 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1204 &nbytes) == 0) {
1205 skb = transfer_context;
1206 max_nbytes = skb->len + skb_tailroom(skb);
1207 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208 max_nbytes, DMA_FROM_DEVICE);
1209
1210 if (unlikely(max_nbytes < nbytes)) {
1211 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212 nbytes, max_nbytes);
1213 dev_kfree_skb_any(skb);
1214 continue;
1215 }
1216
1217 skb_put(skb, nbytes);
1218 __skb_queue_tail(&list, skb);
1219 }
1220
1221 while ((skb = __skb_dequeue(&list))) {
1222 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223 ce_state->id, skb->len);
1224 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225 skb->data, skb->len);
1226
1227 callback(ar, skb);
1228 }
1229
1230 ath10k_pci_rx_post_pipe(pipe_info);
1231 }
1232
ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe * ce_state,void (* callback)(struct ath10k * ar,struct sk_buff * skb))1233 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234 void (*callback)(struct ath10k *ar,
1235 struct sk_buff *skb))
1236 {
1237 struct ath10k *ar = ce_state->ar;
1238 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1240 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241 struct sk_buff *skb;
1242 struct sk_buff_head list;
1243 void *transfer_context;
1244 unsigned int nbytes, max_nbytes, nentries;
1245 int orig_len;
1246
1247 /* No need to acquire ce_lock for CE5, since this is the only place CE5
1248 * is processed other than init and deinit. Before releasing CE5
1249 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1250 */
1251 __skb_queue_head_init(&list);
1252 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1253 &nbytes) == 0) {
1254 skb = transfer_context;
1255 max_nbytes = skb->len + skb_tailroom(skb);
1256
1257 if (unlikely(max_nbytes < nbytes)) {
1258 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259 nbytes, max_nbytes);
1260 continue;
1261 }
1262
1263 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264 max_nbytes, DMA_FROM_DEVICE);
1265 skb_put(skb, nbytes);
1266 __skb_queue_tail(&list, skb);
1267 }
1268
1269 nentries = skb_queue_len(&list);
1270 while ((skb = __skb_dequeue(&list))) {
1271 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272 ce_state->id, skb->len);
1273 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274 skb->data, skb->len);
1275
1276 orig_len = skb->len;
1277 callback(ar, skb);
1278 skb_push(skb, orig_len - skb->len);
1279 skb_reset_tail_pointer(skb);
1280 skb_trim(skb, 0);
1281
1282 /*let device gain the buffer again*/
1283 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284 skb->len + skb_tailroom(skb),
1285 DMA_FROM_DEVICE);
1286 }
1287 ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1288 }
1289
1290 /* Called by lower (CE) layer when data is received from the Target. */
ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe * ce_state)1291 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292 {
1293 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1294 }
1295
ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe * ce_state)1296 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1297 {
1298 /* CE4 polling needs to be done whenever CE pipe which transports
1299 * HTT Rx (target->host) is processed.
1300 */
1301 ath10k_ce_per_engine_service(ce_state->ar, 4);
1302
1303 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304 }
1305
1306 /* Called by lower (CE) layer when data is received from the Target.
1307 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1308 */
ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe * ce_state)1309 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1310 {
1311 ath10k_pci_process_rx_cb(ce_state,
1312 ath10k_htt_rx_pktlog_completion_handler);
1313 }
1314
1315 /* Called by lower (CE) layer when a send to HTT Target completes. */
ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe * ce_state)1316 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1317 {
1318 struct ath10k *ar = ce_state->ar;
1319 struct sk_buff *skb;
1320
1321 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322 /* no need to call tx completion for NULL pointers */
1323 if (!skb)
1324 continue;
1325
1326 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327 skb->len, DMA_TO_DEVICE);
1328 ath10k_htt_hif_tx_complete(ar, skb);
1329 }
1330 }
1331
ath10k_pci_htt_rx_deliver(struct ath10k * ar,struct sk_buff * skb)1332 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1333 {
1334 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335 ath10k_htt_t2h_msg_handler(ar, skb);
1336 }
1337
1338 /* Called by lower (CE) layer when HTT data is received from the Target. */
ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe * ce_state)1339 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1340 {
1341 /* CE4 polling needs to be done whenever CE pipe which transports
1342 * HTT Rx (target->host) is processed.
1343 */
1344 ath10k_ce_per_engine_service(ce_state->ar, 4);
1345
1346 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1347 }
1348
ath10k_pci_hif_tx_sg(struct ath10k * ar,u8 pipe_id,struct ath10k_hif_sg_item * items,int n_items)1349 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350 struct ath10k_hif_sg_item *items, int n_items)
1351 {
1352 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357 unsigned int nentries_mask;
1358 unsigned int sw_index;
1359 unsigned int write_index;
1360 int err, i = 0;
1361
1362 spin_lock_bh(&ce->ce_lock);
1363
1364 nentries_mask = src_ring->nentries_mask;
1365 sw_index = src_ring->sw_index;
1366 write_index = src_ring->write_index;
1367
1368 if (unlikely(CE_RING_DELTA(nentries_mask,
1369 write_index, sw_index - 1) < n_items)) {
1370 err = -ENOBUFS;
1371 goto err;
1372 }
1373
1374 for (i = 0; i < n_items - 1; i++) {
1375 ath10k_dbg(ar, ATH10K_DBG_PCI,
1376 "pci tx item %d paddr %pad len %d n_items %d\n",
1377 i, &items[i].paddr, items[i].len, n_items);
1378 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379 items[i].vaddr, items[i].len);
1380
1381 err = ath10k_ce_send_nolock(ce_pipe,
1382 items[i].transfer_context,
1383 items[i].paddr,
1384 items[i].len,
1385 items[i].transfer_id,
1386 CE_SEND_FLAG_GATHER);
1387 if (err)
1388 goto err;
1389 }
1390
1391 /* `i` is equal to `n_items -1` after for() */
1392
1393 ath10k_dbg(ar, ATH10K_DBG_PCI,
1394 "pci tx item %d paddr %pad len %d n_items %d\n",
1395 i, &items[i].paddr, items[i].len, n_items);
1396 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397 items[i].vaddr, items[i].len);
1398
1399 err = ath10k_ce_send_nolock(ce_pipe,
1400 items[i].transfer_context,
1401 items[i].paddr,
1402 items[i].len,
1403 items[i].transfer_id,
1404 0);
1405 if (err)
1406 goto err;
1407
1408 spin_unlock_bh(&ce->ce_lock);
1409 return 0;
1410
1411 err:
1412 for (; i > 0; i--)
1413 __ath10k_ce_send_revert(ce_pipe);
1414
1415 spin_unlock_bh(&ce->ce_lock);
1416 return err;
1417 }
1418
ath10k_pci_hif_diag_read(struct ath10k * ar,u32 address,void * buf,size_t buf_len)1419 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1420 size_t buf_len)
1421 {
1422 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1423 }
1424
ath10k_pci_hif_get_free_queue_number(struct ath10k * ar,u8 pipe)1425 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1426 {
1427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1428
1429 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1430
1431 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1432 }
1433
ath10k_pci_dump_registers(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data)1434 static void ath10k_pci_dump_registers(struct ath10k *ar,
1435 struct ath10k_fw_crash_data *crash_data)
1436 {
1437 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1438 int i, ret;
1439
1440 lockdep_assert_held(&ar->dump_mutex);
1441
1442 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0],
1443 hi_failure_state,
1444 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1445 if (ret) {
1446 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1447 return;
1448 }
1449
1450 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1451
1452 ath10k_err(ar, "firmware register dump:\n");
1453 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1455 i,
1456 __le32_to_cpu(reg_dump_values[i]),
1457 __le32_to_cpu(reg_dump_values[i + 1]),
1458 __le32_to_cpu(reg_dump_values[i + 2]),
1459 __le32_to_cpu(reg_dump_values[i + 3]));
1460
1461 if (!crash_data)
1462 return;
1463
1464 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465 crash_data->registers[i] = reg_dump_values[i];
1466 }
1467
ath10k_pci_dump_memory_section(struct ath10k * ar,const struct ath10k_mem_region * mem_region,u8 * buf,size_t buf_len)1468 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469 const struct ath10k_mem_region *mem_region,
1470 u8 *buf, size_t buf_len)
1471 {
1472 const struct ath10k_mem_section *cur_section, *next_section;
1473 unsigned int count, section_size, skip_size;
1474 int ret, i, j;
1475
1476 if (!mem_region || !buf)
1477 return 0;
1478
1479 cur_section = &mem_region->section_table.sections[0];
1480
1481 if (mem_region->start > cur_section->start) {
1482 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483 mem_region->start, cur_section->start);
1484 return 0;
1485 }
1486
1487 skip_size = cur_section->start - mem_region->start;
1488
1489 /* fill the gap between the first register section and register
1490 * start address
1491 */
1492 for (i = 0; i < skip_size; i++) {
1493 *buf = ATH10K_MAGIC_NOT_COPIED;
1494 buf++;
1495 }
1496
1497 count = 0;
1498
1499 for (i = 0; cur_section != NULL; i++) {
1500 section_size = cur_section->end - cur_section->start;
1501
1502 if (section_size <= 0) {
1503 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1504 cur_section->start,
1505 cur_section->end);
1506 break;
1507 }
1508
1509 if ((i + 1) == mem_region->section_table.size) {
1510 /* last section */
1511 next_section = NULL;
1512 skip_size = 0;
1513 } else {
1514 next_section = cur_section + 1;
1515
1516 if (cur_section->end > next_section->start) {
1517 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518 next_section->start,
1519 cur_section->end);
1520 break;
1521 }
1522
1523 skip_size = next_section->start - cur_section->end;
1524 }
1525
1526 if (buf_len < (skip_size + section_size)) {
1527 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1528 break;
1529 }
1530
1531 buf_len -= skip_size + section_size;
1532
1533 /* read section to dest memory */
1534 ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1535 buf, section_size);
1536 if (ret) {
1537 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538 cur_section->start, ret);
1539 break;
1540 }
1541
1542 buf += section_size;
1543 count += section_size;
1544
1545 /* fill in the gap between this section and the next */
1546 for (j = 0; j < skip_size; j++) {
1547 *buf = ATH10K_MAGIC_NOT_COPIED;
1548 buf++;
1549 }
1550
1551 count += skip_size;
1552
1553 if (!next_section)
1554 /* this was the last section */
1555 break;
1556
1557 cur_section = next_section;
1558 }
1559
1560 return count;
1561 }
1562
ath10k_pci_set_ram_config(struct ath10k * ar,u32 config)1563 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1564 {
1565 u32 val;
1566
1567 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568 FW_RAM_CONFIG_ADDRESS, config);
1569
1570 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571 FW_RAM_CONFIG_ADDRESS);
1572 if (val != config) {
1573 ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1574 val, config);
1575 return -EIO;
1576 }
1577
1578 return 0;
1579 }
1580
1581 /* Always returns the length */
ath10k_pci_dump_memory_sram(struct ath10k * ar,const struct ath10k_mem_region * region,u8 * buf)1582 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583 const struct ath10k_mem_region *region,
1584 u8 *buf)
1585 {
1586 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1587 u32 base_addr, i;
1588
1589 base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590 base_addr += region->start;
1591
1592 for (i = 0; i < region->len; i += 4) {
1593 iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594 *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1595 }
1596
1597 return region->len;
1598 }
1599
1600 /* if an error happened returns < 0, otherwise the length */
ath10k_pci_dump_memory_reg(struct ath10k * ar,const struct ath10k_mem_region * region,u8 * buf)1601 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602 const struct ath10k_mem_region *region,
1603 u8 *buf)
1604 {
1605 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1606 u32 i;
1607 int ret;
1608
1609 mutex_lock(&ar->conf_mutex);
1610 if (ar->state != ATH10K_STATE_ON) {
1611 ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1612 ret = -EIO;
1613 goto done;
1614 }
1615
1616 for (i = 0; i < region->len; i += 4)
1617 *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1618
1619 ret = region->len;
1620 done:
1621 mutex_unlock(&ar->conf_mutex);
1622 return ret;
1623 }
1624
1625 /* if an error happened returns < 0, otherwise the length */
ath10k_pci_dump_memory_generic(struct ath10k * ar,const struct ath10k_mem_region * current_region,u8 * buf)1626 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1627 const struct ath10k_mem_region *current_region,
1628 u8 *buf)
1629 {
1630 int ret;
1631
1632 if (current_region->section_table.size > 0)
1633 /* Copy each section individually. */
1634 return ath10k_pci_dump_memory_section(ar,
1635 current_region,
1636 buf,
1637 current_region->len);
1638
1639 /* No individual memory sections defined so we can
1640 * copy the entire memory region.
1641 */
1642 ret = ath10k_pci_diag_read_mem(ar,
1643 current_region->start,
1644 buf,
1645 current_region->len);
1646 if (ret) {
1647 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1648 current_region->name, ret);
1649 return ret;
1650 }
1651
1652 return current_region->len;
1653 }
1654
ath10k_pci_dump_memory(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data)1655 static void ath10k_pci_dump_memory(struct ath10k *ar,
1656 struct ath10k_fw_crash_data *crash_data)
1657 {
1658 const struct ath10k_hw_mem_layout *mem_layout;
1659 const struct ath10k_mem_region *current_region;
1660 struct ath10k_dump_ram_data_hdr *hdr;
1661 u32 count, shift;
1662 size_t buf_len;
1663 int ret, i;
1664 u8 *buf;
1665
1666 lockdep_assert_held(&ar->dump_mutex);
1667
1668 if (!crash_data)
1669 return;
1670
1671 mem_layout = ath10k_coredump_get_mem_layout(ar);
1672 if (!mem_layout)
1673 return;
1674
1675 current_region = &mem_layout->region_table.regions[0];
1676
1677 buf = crash_data->ramdump_buf;
1678 buf_len = crash_data->ramdump_buf_len;
1679
1680 memset(buf, 0, buf_len);
1681
1682 for (i = 0; i < mem_layout->region_table.size; i++) {
1683 count = 0;
1684
1685 if (current_region->len > buf_len) {
1686 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1687 current_region->name,
1688 current_region->len,
1689 buf_len);
1690 break;
1691 }
1692
1693 /* To get IRAM dump, the host driver needs to switch target
1694 * ram config from DRAM to IRAM.
1695 */
1696 if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1697 current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1698 shift = current_region->start >> 20;
1699
1700 ret = ath10k_pci_set_ram_config(ar, shift);
1701 if (ret) {
1702 ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1703 current_region->name, ret);
1704 break;
1705 }
1706 }
1707
1708 /* Reserve space for the header. */
1709 hdr = (void *)buf;
1710 buf += sizeof(*hdr);
1711 buf_len -= sizeof(*hdr);
1712
1713 switch (current_region->type) {
1714 case ATH10K_MEM_REGION_TYPE_IOSRAM:
1715 count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1716 break;
1717 case ATH10K_MEM_REGION_TYPE_IOREG:
1718 ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1719 if (ret < 0)
1720 break;
1721
1722 count = ret;
1723 break;
1724 default:
1725 ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1726 if (ret < 0)
1727 break;
1728
1729 count = ret;
1730 break;
1731 }
1732
1733 hdr->region_type = cpu_to_le32(current_region->type);
1734 hdr->start = cpu_to_le32(current_region->start);
1735 hdr->length = cpu_to_le32(count);
1736
1737 if (count == 0)
1738 /* Note: the header remains, just with zero length. */
1739 break;
1740
1741 buf += count;
1742 buf_len -= count;
1743
1744 current_region++;
1745 }
1746 }
1747
ath10k_pci_fw_dump_work(struct work_struct * work)1748 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1749 {
1750 struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1751 dump_work);
1752 struct ath10k_fw_crash_data *crash_data;
1753 struct ath10k *ar = ar_pci->ar;
1754 char guid[UUID_STRING_LEN + 1];
1755
1756 mutex_lock(&ar->dump_mutex);
1757
1758 spin_lock_bh(&ar->data_lock);
1759 ar->stats.fw_crash_counter++;
1760 spin_unlock_bh(&ar->data_lock);
1761
1762 crash_data = ath10k_coredump_new(ar);
1763
1764 if (crash_data)
1765 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1766 else
1767 scnprintf(guid, sizeof(guid), "n/a");
1768
1769 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1770 ath10k_print_driver_info(ar);
1771 ath10k_pci_dump_registers(ar, crash_data);
1772 ath10k_ce_dump_registers(ar, crash_data);
1773 ath10k_pci_dump_memory(ar, crash_data);
1774
1775 mutex_unlock(&ar->dump_mutex);
1776
1777 ath10k_core_start_recovery(ar);
1778 }
1779
ath10k_pci_fw_crashed_dump(struct ath10k * ar)1780 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1781 {
1782 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1783
1784 queue_work(ar->workqueue, &ar_pci->dump_work);
1785 }
1786
ath10k_pci_hif_send_complete_check(struct ath10k * ar,u8 pipe,int force)1787 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1788 int force)
1789 {
1790 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1791
1792 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1793
1794 if (!force) {
1795 int resources;
1796 /*
1797 * Decide whether to actually poll for completions, or just
1798 * wait for a later chance.
1799 * If there seem to be plenty of resources left, then just wait
1800 * since checking involves reading a CE register, which is a
1801 * relatively expensive operation.
1802 */
1803 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1804
1805 /*
1806 * If at least 50% of the total resources are still available,
1807 * don't bother checking again yet.
1808 */
1809 if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1810 return;
1811 }
1812 ath10k_ce_per_engine_service(ar, pipe);
1813 }
1814
ath10k_pci_rx_retry_sync(struct ath10k * ar)1815 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1816 {
1817 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1818
1819 del_timer_sync(&ar_pci->rx_post_retry);
1820 }
1821
ath10k_pci_hif_map_service_to_pipe(struct ath10k * ar,u16 service_id,u8 * ul_pipe,u8 * dl_pipe)1822 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1823 u8 *ul_pipe, u8 *dl_pipe)
1824 {
1825 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1826 const struct ce_service_to_pipe *entry;
1827 bool ul_set = false, dl_set = false;
1828 int i;
1829
1830 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1831
1832 for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1833 entry = &ar_pci->serv_to_pipe[i];
1834
1835 if (__le32_to_cpu(entry->service_id) != service_id)
1836 continue;
1837
1838 switch (__le32_to_cpu(entry->pipedir)) {
1839 case PIPEDIR_NONE:
1840 break;
1841 case PIPEDIR_IN:
1842 WARN_ON(dl_set);
1843 *dl_pipe = __le32_to_cpu(entry->pipenum);
1844 dl_set = true;
1845 break;
1846 case PIPEDIR_OUT:
1847 WARN_ON(ul_set);
1848 *ul_pipe = __le32_to_cpu(entry->pipenum);
1849 ul_set = true;
1850 break;
1851 case PIPEDIR_INOUT:
1852 WARN_ON(dl_set);
1853 WARN_ON(ul_set);
1854 *dl_pipe = __le32_to_cpu(entry->pipenum);
1855 *ul_pipe = __le32_to_cpu(entry->pipenum);
1856 dl_set = true;
1857 ul_set = true;
1858 break;
1859 }
1860 }
1861
1862 if (!ul_set || !dl_set)
1863 return -ENOENT;
1864
1865 return 0;
1866 }
1867
ath10k_pci_hif_get_default_pipe(struct ath10k * ar,u8 * ul_pipe,u8 * dl_pipe)1868 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1869 u8 *ul_pipe, u8 *dl_pipe)
1870 {
1871 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1872
1873 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1874 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1875 ul_pipe, dl_pipe);
1876 }
1877
ath10k_pci_irq_msi_fw_mask(struct ath10k * ar)1878 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1879 {
1880 u32 val;
1881
1882 switch (ar->hw_rev) {
1883 case ATH10K_HW_QCA988X:
1884 case ATH10K_HW_QCA9887:
1885 case ATH10K_HW_QCA6174:
1886 case ATH10K_HW_QCA9377:
1887 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1888 CORE_CTRL_ADDRESS);
1889 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1890 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1891 CORE_CTRL_ADDRESS, val);
1892 break;
1893 case ATH10K_HW_QCA99X0:
1894 case ATH10K_HW_QCA9984:
1895 case ATH10K_HW_QCA9888:
1896 case ATH10K_HW_QCA4019:
1897 /* TODO: Find appropriate register configuration for QCA99X0
1898 * to mask irq/MSI.
1899 */
1900 break;
1901 case ATH10K_HW_WCN3990:
1902 break;
1903 }
1904 }
1905
ath10k_pci_irq_msi_fw_unmask(struct ath10k * ar)1906 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1907 {
1908 u32 val;
1909
1910 switch (ar->hw_rev) {
1911 case ATH10K_HW_QCA988X:
1912 case ATH10K_HW_QCA9887:
1913 case ATH10K_HW_QCA6174:
1914 case ATH10K_HW_QCA9377:
1915 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1916 CORE_CTRL_ADDRESS);
1917 val |= CORE_CTRL_PCIE_REG_31_MASK;
1918 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1919 CORE_CTRL_ADDRESS, val);
1920 break;
1921 case ATH10K_HW_QCA99X0:
1922 case ATH10K_HW_QCA9984:
1923 case ATH10K_HW_QCA9888:
1924 case ATH10K_HW_QCA4019:
1925 /* TODO: Find appropriate register configuration for QCA99X0
1926 * to unmask irq/MSI.
1927 */
1928 break;
1929 case ATH10K_HW_WCN3990:
1930 break;
1931 }
1932 }
1933
ath10k_pci_irq_disable(struct ath10k * ar)1934 static void ath10k_pci_irq_disable(struct ath10k *ar)
1935 {
1936 ath10k_ce_disable_interrupts(ar);
1937 ath10k_pci_disable_and_clear_legacy_irq(ar);
1938 ath10k_pci_irq_msi_fw_mask(ar);
1939 }
1940
ath10k_pci_irq_sync(struct ath10k * ar)1941 static void ath10k_pci_irq_sync(struct ath10k *ar)
1942 {
1943 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1944
1945 synchronize_irq(ar_pci->pdev->irq);
1946 }
1947
ath10k_pci_irq_enable(struct ath10k * ar)1948 static void ath10k_pci_irq_enable(struct ath10k *ar)
1949 {
1950 ath10k_ce_enable_interrupts(ar);
1951 ath10k_pci_enable_legacy_irq(ar);
1952 ath10k_pci_irq_msi_fw_unmask(ar);
1953 }
1954
ath10k_pci_hif_start(struct ath10k * ar)1955 static int ath10k_pci_hif_start(struct ath10k *ar)
1956 {
1957 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1958
1959 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1960
1961 ath10k_core_napi_enable(ar);
1962
1963 ath10k_pci_irq_enable(ar);
1964 ath10k_pci_rx_post(ar);
1965
1966 pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1967 PCI_EXP_LNKCTL_ASPMC,
1968 ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1969
1970 return 0;
1971 }
1972
ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)1973 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1974 {
1975 struct ath10k *ar;
1976 struct ath10k_ce_pipe *ce_pipe;
1977 struct ath10k_ce_ring *ce_ring;
1978 struct sk_buff *skb;
1979 int i;
1980
1981 ar = pci_pipe->hif_ce_state;
1982 ce_pipe = pci_pipe->ce_hdl;
1983 ce_ring = ce_pipe->dest_ring;
1984
1985 if (!ce_ring)
1986 return;
1987
1988 if (!pci_pipe->buf_sz)
1989 return;
1990
1991 for (i = 0; i < ce_ring->nentries; i++) {
1992 skb = ce_ring->per_transfer_context[i];
1993 if (!skb)
1994 continue;
1995
1996 ce_ring->per_transfer_context[i] = NULL;
1997
1998 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1999 skb->len + skb_tailroom(skb),
2000 DMA_FROM_DEVICE);
2001 dev_kfree_skb_any(skb);
2002 }
2003 }
2004
ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)2005 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2006 {
2007 struct ath10k *ar;
2008 struct ath10k_ce_pipe *ce_pipe;
2009 struct ath10k_ce_ring *ce_ring;
2010 struct sk_buff *skb;
2011 int i;
2012
2013 ar = pci_pipe->hif_ce_state;
2014 ce_pipe = pci_pipe->ce_hdl;
2015 ce_ring = ce_pipe->src_ring;
2016
2017 if (!ce_ring)
2018 return;
2019
2020 if (!pci_pipe->buf_sz)
2021 return;
2022
2023 for (i = 0; i < ce_ring->nentries; i++) {
2024 skb = ce_ring->per_transfer_context[i];
2025 if (!skb)
2026 continue;
2027
2028 ce_ring->per_transfer_context[i] = NULL;
2029
2030 ath10k_htc_tx_completion_handler(ar, skb);
2031 }
2032 }
2033
2034 /*
2035 * Cleanup residual buffers for device shutdown:
2036 * buffers that were enqueued for receive
2037 * buffers that were to be sent
2038 * Note: Buffers that had completed but which were
2039 * not yet processed are on a completion queue. They
2040 * are handled when the completion thread shuts down.
2041 */
ath10k_pci_buffer_cleanup(struct ath10k * ar)2042 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2043 {
2044 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2045 int pipe_num;
2046
2047 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2048 struct ath10k_pci_pipe *pipe_info;
2049
2050 pipe_info = &ar_pci->pipe_info[pipe_num];
2051 ath10k_pci_rx_pipe_cleanup(pipe_info);
2052 ath10k_pci_tx_pipe_cleanup(pipe_info);
2053 }
2054 }
2055
ath10k_pci_ce_deinit(struct ath10k * ar)2056 void ath10k_pci_ce_deinit(struct ath10k *ar)
2057 {
2058 int i;
2059
2060 for (i = 0; i < CE_COUNT; i++)
2061 ath10k_ce_deinit_pipe(ar, i);
2062 }
2063
ath10k_pci_flush(struct ath10k * ar)2064 void ath10k_pci_flush(struct ath10k *ar)
2065 {
2066 ath10k_pci_rx_retry_sync(ar);
2067 ath10k_pci_buffer_cleanup(ar);
2068 }
2069
ath10k_pci_hif_stop(struct ath10k * ar)2070 static void ath10k_pci_hif_stop(struct ath10k *ar)
2071 {
2072 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2073 unsigned long flags;
2074
2075 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2076
2077 ath10k_pci_irq_disable(ar);
2078 ath10k_pci_irq_sync(ar);
2079
2080 ath10k_core_napi_sync_disable(ar);
2081
2082 cancel_work_sync(&ar_pci->dump_work);
2083
2084 /* Most likely the device has HTT Rx ring configured. The only way to
2085 * prevent the device from accessing (and possible corrupting) host
2086 * memory is to reset the chip now.
2087 *
2088 * There's also no known way of masking MSI interrupts on the device.
2089 * For ranged MSI the CE-related interrupts can be masked. However
2090 * regardless how many MSI interrupts are assigned the first one
2091 * is always used for firmware indications (crashes) and cannot be
2092 * masked. To prevent the device from asserting the interrupt reset it
2093 * before proceeding with cleanup.
2094 */
2095 ath10k_pci_safe_chip_reset(ar);
2096
2097 ath10k_pci_flush(ar);
2098
2099 spin_lock_irqsave(&ar_pci->ps_lock, flags);
2100 WARN_ON(ar_pci->ps_wake_refcount > 0);
2101 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2102 }
2103
ath10k_pci_hif_exchange_bmi_msg(struct ath10k * ar,void * req,u32 req_len,void * resp,u32 * resp_len)2104 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2105 void *req, u32 req_len,
2106 void *resp, u32 *resp_len)
2107 {
2108 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2109 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2110 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2111 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2112 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2113 dma_addr_t req_paddr = 0;
2114 dma_addr_t resp_paddr = 0;
2115 struct bmi_xfer xfer = {};
2116 void *treq, *tresp = NULL;
2117 int ret = 0;
2118
2119 might_sleep();
2120
2121 if (resp && !resp_len)
2122 return -EINVAL;
2123
2124 if (resp && resp_len && *resp_len == 0)
2125 return -EINVAL;
2126
2127 treq = kmemdup(req, req_len, GFP_KERNEL);
2128 if (!treq)
2129 return -ENOMEM;
2130
2131 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2132 ret = dma_mapping_error(ar->dev, req_paddr);
2133 if (ret) {
2134 ret = -EIO;
2135 goto err_dma;
2136 }
2137
2138 if (resp && resp_len) {
2139 tresp = kzalloc(*resp_len, GFP_KERNEL);
2140 if (!tresp) {
2141 ret = -ENOMEM;
2142 goto err_req;
2143 }
2144
2145 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2146 DMA_FROM_DEVICE);
2147 ret = dma_mapping_error(ar->dev, resp_paddr);
2148 if (ret) {
2149 ret = -EIO;
2150 goto err_req;
2151 }
2152
2153 xfer.wait_for_resp = true;
2154 xfer.resp_len = 0;
2155
2156 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2157 }
2158
2159 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2160 if (ret)
2161 goto err_resp;
2162
2163 ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2164 if (ret) {
2165 dma_addr_t unused_buffer;
2166 unsigned int unused_nbytes;
2167 unsigned int unused_id;
2168
2169 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2170 &unused_nbytes, &unused_id);
2171 } else {
2172 /* non-zero means we did not time out */
2173 ret = 0;
2174 }
2175
2176 err_resp:
2177 if (resp) {
2178 dma_addr_t unused_buffer;
2179
2180 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2181 dma_unmap_single(ar->dev, resp_paddr,
2182 *resp_len, DMA_FROM_DEVICE);
2183 }
2184 err_req:
2185 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2186
2187 if (ret == 0 && resp_len) {
2188 *resp_len = min(*resp_len, xfer.resp_len);
2189 memcpy(resp, tresp, *resp_len);
2190 }
2191 err_dma:
2192 kfree(treq);
2193 kfree(tresp);
2194
2195 return ret;
2196 }
2197
ath10k_pci_bmi_send_done(struct ath10k_ce_pipe * ce_state)2198 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2199 {
2200 struct bmi_xfer *xfer;
2201
2202 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2203 return;
2204
2205 xfer->tx_done = true;
2206 }
2207
ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe * ce_state)2208 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2209 {
2210 struct ath10k *ar = ce_state->ar;
2211 struct bmi_xfer *xfer;
2212 unsigned int nbytes;
2213
2214 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2215 &nbytes))
2216 return;
2217
2218 if (WARN_ON_ONCE(!xfer))
2219 return;
2220
2221 if (!xfer->wait_for_resp) {
2222 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2223 return;
2224 }
2225
2226 xfer->resp_len = nbytes;
2227 xfer->rx_done = true;
2228 }
2229
ath10k_pci_bmi_wait(struct ath10k * ar,struct ath10k_ce_pipe * tx_pipe,struct ath10k_ce_pipe * rx_pipe,struct bmi_xfer * xfer)2230 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2231 struct ath10k_ce_pipe *tx_pipe,
2232 struct ath10k_ce_pipe *rx_pipe,
2233 struct bmi_xfer *xfer)
2234 {
2235 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2236 unsigned long started = jiffies;
2237 unsigned long dur;
2238 int ret;
2239
2240 while (time_before_eq(jiffies, timeout)) {
2241 ath10k_pci_bmi_send_done(tx_pipe);
2242 ath10k_pci_bmi_recv_data(rx_pipe);
2243
2244 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2245 ret = 0;
2246 goto out;
2247 }
2248
2249 schedule();
2250 }
2251
2252 ret = -ETIMEDOUT;
2253
2254 out:
2255 dur = jiffies - started;
2256 if (dur > HZ)
2257 ath10k_dbg(ar, ATH10K_DBG_BMI,
2258 "bmi cmd took %lu jiffies hz %d ret %d\n",
2259 dur, HZ, ret);
2260 return ret;
2261 }
2262
2263 /*
2264 * Send an interrupt to the device to wake up the Target CPU
2265 * so it has an opportunity to notice any changed state.
2266 */
ath10k_pci_wake_target_cpu(struct ath10k * ar)2267 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2268 {
2269 u32 addr, val;
2270
2271 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2272 val = ath10k_pci_read32(ar, addr);
2273 val |= CORE_CTRL_CPU_INTR_MASK;
2274 ath10k_pci_write32(ar, addr, val);
2275
2276 return 0;
2277 }
2278
ath10k_pci_get_num_banks(struct ath10k * ar)2279 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2280 {
2281 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2282
2283 switch (ar_pci->pdev->device) {
2284 case QCA988X_2_0_DEVICE_ID_UBNT:
2285 case QCA988X_2_0_DEVICE_ID:
2286 case QCA99X0_2_0_DEVICE_ID:
2287 case QCA9888_2_0_DEVICE_ID:
2288 case QCA9984_1_0_DEVICE_ID:
2289 case QCA9887_1_0_DEVICE_ID:
2290 return 1;
2291 case QCA6164_2_1_DEVICE_ID:
2292 case QCA6174_2_1_DEVICE_ID:
2293 switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2294 case QCA6174_HW_1_0_CHIP_ID_REV:
2295 case QCA6174_HW_1_1_CHIP_ID_REV:
2296 case QCA6174_HW_2_1_CHIP_ID_REV:
2297 case QCA6174_HW_2_2_CHIP_ID_REV:
2298 return 3;
2299 case QCA6174_HW_1_3_CHIP_ID_REV:
2300 return 2;
2301 case QCA6174_HW_3_0_CHIP_ID_REV:
2302 case QCA6174_HW_3_1_CHIP_ID_REV:
2303 case QCA6174_HW_3_2_CHIP_ID_REV:
2304 return 9;
2305 }
2306 break;
2307 case QCA9377_1_0_DEVICE_ID:
2308 return 9;
2309 }
2310
2311 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2312 return 1;
2313 }
2314
ath10k_bus_get_num_banks(struct ath10k * ar)2315 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2316 {
2317 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2318
2319 return ce->bus_ops->get_num_banks(ar);
2320 }
2321
ath10k_pci_init_config(struct ath10k * ar)2322 int ath10k_pci_init_config(struct ath10k *ar)
2323 {
2324 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2325 u32 interconnect_targ_addr;
2326 u32 pcie_state_targ_addr = 0;
2327 u32 pipe_cfg_targ_addr = 0;
2328 u32 svc_to_pipe_map = 0;
2329 u32 pcie_config_flags = 0;
2330 u32 ealloc_value;
2331 u32 ealloc_targ_addr;
2332 u32 flag2_value;
2333 u32 flag2_targ_addr;
2334 int ret = 0;
2335
2336 /* Download to Target the CE Config and the service-to-CE map */
2337 interconnect_targ_addr =
2338 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2339
2340 /* Supply Target-side CE configuration */
2341 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2342 &pcie_state_targ_addr);
2343 if (ret != 0) {
2344 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2345 return ret;
2346 }
2347
2348 if (pcie_state_targ_addr == 0) {
2349 ret = -EIO;
2350 ath10k_err(ar, "Invalid pcie state addr\n");
2351 return ret;
2352 }
2353
2354 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2355 offsetof(struct pcie_state,
2356 pipe_cfg_addr)),
2357 &pipe_cfg_targ_addr);
2358 if (ret != 0) {
2359 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2360 return ret;
2361 }
2362
2363 if (pipe_cfg_targ_addr == 0) {
2364 ret = -EIO;
2365 ath10k_err(ar, "Invalid pipe cfg addr\n");
2366 return ret;
2367 }
2368
2369 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2370 ar_pci->pipe_config,
2371 sizeof(struct ce_pipe_config) *
2372 NUM_TARGET_CE_CONFIG_WLAN);
2373
2374 if (ret != 0) {
2375 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2376 return ret;
2377 }
2378
2379 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2380 offsetof(struct pcie_state,
2381 svc_to_pipe_map)),
2382 &svc_to_pipe_map);
2383 if (ret != 0) {
2384 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2385 return ret;
2386 }
2387
2388 if (svc_to_pipe_map == 0) {
2389 ret = -EIO;
2390 ath10k_err(ar, "Invalid svc_to_pipe map\n");
2391 return ret;
2392 }
2393
2394 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2395 ar_pci->serv_to_pipe,
2396 sizeof(pci_target_service_to_ce_map_wlan));
2397 if (ret != 0) {
2398 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2399 return ret;
2400 }
2401
2402 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2403 offsetof(struct pcie_state,
2404 config_flags)),
2405 &pcie_config_flags);
2406 if (ret != 0) {
2407 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2408 return ret;
2409 }
2410
2411 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2412
2413 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2414 offsetof(struct pcie_state,
2415 config_flags)),
2416 pcie_config_flags);
2417 if (ret != 0) {
2418 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2419 return ret;
2420 }
2421
2422 /* configure early allocation */
2423 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2424
2425 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2426 if (ret != 0) {
2427 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2428 return ret;
2429 }
2430
2431 /* first bank is switched to IRAM */
2432 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2433 HI_EARLY_ALLOC_MAGIC_MASK);
2434 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2435 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2436 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2437
2438 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2439 if (ret != 0) {
2440 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2441 return ret;
2442 }
2443
2444 /* Tell Target to proceed with initialization */
2445 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2446
2447 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2448 if (ret != 0) {
2449 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2450 return ret;
2451 }
2452
2453 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2454
2455 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2456 if (ret != 0) {
2457 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2458 return ret;
2459 }
2460
2461 return 0;
2462 }
2463
ath10k_pci_override_ce_config(struct ath10k * ar)2464 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2465 {
2466 struct ce_attr *attr;
2467 struct ce_pipe_config *config;
2468 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2469
2470 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2471 * since it is currently used for other feature.
2472 */
2473
2474 /* Override Host's Copy Engine 5 configuration */
2475 attr = &ar_pci->attr[5];
2476 attr->src_sz_max = 0;
2477 attr->dest_nentries = 0;
2478
2479 /* Override Target firmware's Copy Engine configuration */
2480 config = &ar_pci->pipe_config[5];
2481 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2482 config->nbytes_max = __cpu_to_le32(2048);
2483
2484 /* Map from service/endpoint to Copy Engine */
2485 ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2486 }
2487
ath10k_pci_alloc_pipes(struct ath10k * ar)2488 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2489 {
2490 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2491 struct ath10k_pci_pipe *pipe;
2492 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2493 int i, ret;
2494
2495 for (i = 0; i < CE_COUNT; i++) {
2496 pipe = &ar_pci->pipe_info[i];
2497 pipe->ce_hdl = &ce->ce_states[i];
2498 pipe->pipe_num = i;
2499 pipe->hif_ce_state = ar;
2500
2501 ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2502 if (ret) {
2503 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2504 i, ret);
2505 return ret;
2506 }
2507
2508 /* Last CE is Diagnostic Window */
2509 if (i == CE_DIAG_PIPE) {
2510 ar_pci->ce_diag = pipe->ce_hdl;
2511 continue;
2512 }
2513
2514 pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2515 }
2516
2517 return 0;
2518 }
2519
ath10k_pci_free_pipes(struct ath10k * ar)2520 void ath10k_pci_free_pipes(struct ath10k *ar)
2521 {
2522 int i;
2523
2524 for (i = 0; i < CE_COUNT; i++)
2525 ath10k_ce_free_pipe(ar, i);
2526 }
2527
ath10k_pci_init_pipes(struct ath10k * ar)2528 int ath10k_pci_init_pipes(struct ath10k *ar)
2529 {
2530 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2531 int i, ret;
2532
2533 for (i = 0; i < CE_COUNT; i++) {
2534 ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2535 if (ret) {
2536 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2537 i, ret);
2538 return ret;
2539 }
2540 }
2541
2542 return 0;
2543 }
2544
ath10k_pci_has_fw_crashed(struct ath10k * ar)2545 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2546 {
2547 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2548 FW_IND_EVENT_PENDING;
2549 }
2550
ath10k_pci_fw_crashed_clear(struct ath10k * ar)2551 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2552 {
2553 u32 val;
2554
2555 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2556 val &= ~FW_IND_EVENT_PENDING;
2557 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2558 }
2559
ath10k_pci_has_device_gone(struct ath10k * ar)2560 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2561 {
2562 u32 val;
2563
2564 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2565 return (val == 0xffffffff);
2566 }
2567
2568 /* this function effectively clears target memory controller assert line */
ath10k_pci_warm_reset_si0(struct ath10k * ar)2569 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2570 {
2571 u32 val;
2572
2573 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2574 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2575 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2576 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2577
2578 msleep(10);
2579
2580 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2581 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2582 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2583 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2584
2585 msleep(10);
2586 }
2587
ath10k_pci_warm_reset_cpu(struct ath10k * ar)2588 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2589 {
2590 u32 val;
2591
2592 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2593
2594 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2595 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2596 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2597 }
2598
ath10k_pci_warm_reset_ce(struct ath10k * ar)2599 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2600 {
2601 u32 val;
2602
2603 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2604
2605 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2606 val | SOC_RESET_CONTROL_CE_RST_MASK);
2607 msleep(10);
2608 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2609 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2610 }
2611
ath10k_pci_warm_reset_clear_lf(struct ath10k * ar)2612 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2613 {
2614 u32 val;
2615
2616 val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2617 ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2618 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2619 }
2620
ath10k_pci_warm_reset(struct ath10k * ar)2621 static int ath10k_pci_warm_reset(struct ath10k *ar)
2622 {
2623 int ret;
2624
2625 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2626
2627 spin_lock_bh(&ar->data_lock);
2628 ar->stats.fw_warm_reset_counter++;
2629 spin_unlock_bh(&ar->data_lock);
2630
2631 ath10k_pci_irq_disable(ar);
2632
2633 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2634 * were to access copy engine while host performs copy engine reset
2635 * then it is possible for the device to confuse pci-e controller to
2636 * the point of bringing host system to a complete stop (i.e. hang).
2637 */
2638 ath10k_pci_warm_reset_si0(ar);
2639 ath10k_pci_warm_reset_cpu(ar);
2640 ath10k_pci_init_pipes(ar);
2641 ath10k_pci_wait_for_target_init(ar);
2642
2643 ath10k_pci_warm_reset_clear_lf(ar);
2644 ath10k_pci_warm_reset_ce(ar);
2645 ath10k_pci_warm_reset_cpu(ar);
2646 ath10k_pci_init_pipes(ar);
2647
2648 ret = ath10k_pci_wait_for_target_init(ar);
2649 if (ret) {
2650 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2651 return ret;
2652 }
2653
2654 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2655
2656 return 0;
2657 }
2658
ath10k_pci_qca99x0_soft_chip_reset(struct ath10k * ar)2659 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2660 {
2661 ath10k_pci_irq_disable(ar);
2662 return ath10k_pci_qca99x0_chip_reset(ar);
2663 }
2664
ath10k_pci_safe_chip_reset(struct ath10k * ar)2665 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2666 {
2667 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2668
2669 if (!ar_pci->pci_soft_reset)
2670 return -ENOTSUPP;
2671
2672 return ar_pci->pci_soft_reset(ar);
2673 }
2674
ath10k_pci_qca988x_chip_reset(struct ath10k * ar)2675 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2676 {
2677 int i, ret;
2678 u32 val;
2679
2680 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2681
2682 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2683 * It is thus preferred to use warm reset which is safer but may not be
2684 * able to recover the device from all possible fail scenarios.
2685 *
2686 * Warm reset doesn't always work on first try so attempt it a few
2687 * times before giving up.
2688 */
2689 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2690 ret = ath10k_pci_warm_reset(ar);
2691 if (ret) {
2692 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2693 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2694 ret);
2695 continue;
2696 }
2697
2698 /* FIXME: Sometimes copy engine doesn't recover after warm
2699 * reset. In most cases this needs cold reset. In some of these
2700 * cases the device is in such a state that a cold reset may
2701 * lock up the host.
2702 *
2703 * Reading any host interest register via copy engine is
2704 * sufficient to verify if device is capable of booting
2705 * firmware blob.
2706 */
2707 ret = ath10k_pci_init_pipes(ar);
2708 if (ret) {
2709 ath10k_warn(ar, "failed to init copy engine: %d\n",
2710 ret);
2711 continue;
2712 }
2713
2714 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2715 &val);
2716 if (ret) {
2717 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2718 ret);
2719 continue;
2720 }
2721
2722 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2723 return 0;
2724 }
2725
2726 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2727 ath10k_warn(ar, "refusing cold reset as requested\n");
2728 return -EPERM;
2729 }
2730
2731 ret = ath10k_pci_cold_reset(ar);
2732 if (ret) {
2733 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2734 return ret;
2735 }
2736
2737 ret = ath10k_pci_wait_for_target_init(ar);
2738 if (ret) {
2739 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2740 ret);
2741 return ret;
2742 }
2743
2744 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2745
2746 return 0;
2747 }
2748
ath10k_pci_qca6174_chip_reset(struct ath10k * ar)2749 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2750 {
2751 int ret;
2752
2753 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2754
2755 /* FIXME: QCA6174 requires cold + warm reset to work. */
2756
2757 ret = ath10k_pci_cold_reset(ar);
2758 if (ret) {
2759 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2760 return ret;
2761 }
2762
2763 ret = ath10k_pci_wait_for_target_init(ar);
2764 if (ret) {
2765 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2766 ret);
2767 return ret;
2768 }
2769
2770 ret = ath10k_pci_warm_reset(ar);
2771 if (ret) {
2772 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2773 return ret;
2774 }
2775
2776 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2777
2778 return 0;
2779 }
2780
ath10k_pci_qca99x0_chip_reset(struct ath10k * ar)2781 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2782 {
2783 int ret;
2784
2785 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2786
2787 ret = ath10k_pci_cold_reset(ar);
2788 if (ret) {
2789 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2790 return ret;
2791 }
2792
2793 ret = ath10k_pci_wait_for_target_init(ar);
2794 if (ret) {
2795 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2796 ret);
2797 return ret;
2798 }
2799
2800 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2801
2802 return 0;
2803 }
2804
ath10k_pci_chip_reset(struct ath10k * ar)2805 static int ath10k_pci_chip_reset(struct ath10k *ar)
2806 {
2807 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2808
2809 if (WARN_ON(!ar_pci->pci_hard_reset))
2810 return -ENOTSUPP;
2811
2812 return ar_pci->pci_hard_reset(ar);
2813 }
2814
ath10k_pci_hif_power_up(struct ath10k * ar,enum ath10k_firmware_mode fw_mode)2815 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2816 enum ath10k_firmware_mode fw_mode)
2817 {
2818 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2819 int ret;
2820
2821 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2822
2823 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2824 &ar_pci->link_ctl);
2825 pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2826 PCI_EXP_LNKCTL_ASPMC);
2827
2828 /*
2829 * Bring the target up cleanly.
2830 *
2831 * The target may be in an undefined state with an AUX-powered Target
2832 * and a Host in WoW mode. If the Host crashes, loses power, or is
2833 * restarted (without unloading the driver) then the Target is left
2834 * (aux) powered and running. On a subsequent driver load, the Target
2835 * is in an unexpected state. We try to catch that here in order to
2836 * reset the Target and retry the probe.
2837 */
2838 ret = ath10k_pci_chip_reset(ar);
2839 if (ret) {
2840 if (ath10k_pci_has_fw_crashed(ar)) {
2841 ath10k_warn(ar, "firmware crashed during chip reset\n");
2842 ath10k_pci_fw_crashed_clear(ar);
2843 ath10k_pci_fw_crashed_dump(ar);
2844 }
2845
2846 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2847 goto err_sleep;
2848 }
2849
2850 ret = ath10k_pci_init_pipes(ar);
2851 if (ret) {
2852 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2853 goto err_sleep;
2854 }
2855
2856 ret = ath10k_pci_init_config(ar);
2857 if (ret) {
2858 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2859 goto err_ce;
2860 }
2861
2862 ret = ath10k_pci_wake_target_cpu(ar);
2863 if (ret) {
2864 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2865 goto err_ce;
2866 }
2867
2868 return 0;
2869
2870 err_ce:
2871 ath10k_pci_ce_deinit(ar);
2872
2873 err_sleep:
2874 return ret;
2875 }
2876
ath10k_pci_hif_power_down(struct ath10k * ar)2877 void ath10k_pci_hif_power_down(struct ath10k *ar)
2878 {
2879 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2880
2881 /* Currently hif_power_up performs effectively a reset and hif_stop
2882 * resets the chip as well so there's no point in resetting here.
2883 */
2884 }
2885
ath10k_pci_hif_suspend(struct ath10k * ar)2886 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2887 {
2888 /* Nothing to do; the important stuff is in the driver suspend. */
2889 return 0;
2890 }
2891
ath10k_pci_suspend(struct ath10k * ar)2892 static int ath10k_pci_suspend(struct ath10k *ar)
2893 {
2894 /* The grace timer can still be counting down and ar->ps_awake be true.
2895 * It is known that the device may be asleep after resuming regardless
2896 * of the SoC powersave state before suspending. Hence make sure the
2897 * device is asleep before proceeding.
2898 */
2899 ath10k_pci_sleep_sync(ar);
2900
2901 return 0;
2902 }
2903
ath10k_pci_hif_resume(struct ath10k * ar)2904 static int ath10k_pci_hif_resume(struct ath10k *ar)
2905 {
2906 /* Nothing to do; the important stuff is in the driver resume. */
2907 return 0;
2908 }
2909
ath10k_pci_resume(struct ath10k * ar)2910 static int ath10k_pci_resume(struct ath10k *ar)
2911 {
2912 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2913 struct pci_dev *pdev = ar_pci->pdev;
2914 u32 val;
2915 int ret = 0;
2916
2917 ret = ath10k_pci_force_wake(ar);
2918 if (ret) {
2919 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2920 return ret;
2921 }
2922
2923 /* Suspend/Resume resets the PCI configuration space, so we have to
2924 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2925 * from interfering with C3 CPU state. pci_restore_state won't help
2926 * here since it only restores the first 64 bytes pci config header.
2927 */
2928 pci_read_config_dword(pdev, 0x40, &val);
2929 if ((val & 0x0000ff00) != 0)
2930 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2931
2932 return ret;
2933 }
2934
ath10k_pci_validate_cal(void * data,size_t size)2935 static bool ath10k_pci_validate_cal(void *data, size_t size)
2936 {
2937 __le16 *cal_words = data;
2938 u16 checksum = 0;
2939 size_t i;
2940
2941 if (size % 2 != 0)
2942 return false;
2943
2944 for (i = 0; i < size / 2; i++)
2945 checksum ^= le16_to_cpu(cal_words[i]);
2946
2947 return checksum == 0xffff;
2948 }
2949
ath10k_pci_enable_eeprom(struct ath10k * ar)2950 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2951 {
2952 /* Enable SI clock */
2953 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2954
2955 /* Configure GPIOs for I2C operation */
2956 ath10k_pci_write32(ar,
2957 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2958 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2959 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2960 GPIO_PIN0_CONFIG) |
2961 SM(1, GPIO_PIN0_PAD_PULL));
2962
2963 ath10k_pci_write32(ar,
2964 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2965 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2966 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2967 SM(1, GPIO_PIN0_PAD_PULL));
2968
2969 ath10k_pci_write32(ar,
2970 GPIO_BASE_ADDRESS +
2971 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2972 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2973
2974 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2975 ath10k_pci_write32(ar,
2976 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2977 SM(1, SI_CONFIG_ERR_INT) |
2978 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2979 SM(1, SI_CONFIG_I2C) |
2980 SM(1, SI_CONFIG_POS_SAMPLE) |
2981 SM(1, SI_CONFIG_INACTIVE_DATA) |
2982 SM(1, SI_CONFIG_INACTIVE_CLK) |
2983 SM(8, SI_CONFIG_DIVIDER));
2984 }
2985
ath10k_pci_read_eeprom(struct ath10k * ar,u16 addr,u8 * out)2986 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2987 {
2988 u32 reg;
2989 int wait_limit;
2990
2991 /* set device select byte and for the read operation */
2992 reg = QCA9887_EEPROM_SELECT_READ |
2993 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2994 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2995 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2996
2997 /* write transmit data, transfer length, and START bit */
2998 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2999 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3000 SM(4, SI_CS_TX_CNT));
3001
3002 /* wait max 1 sec */
3003 wait_limit = 100000;
3004
3005 /* wait for SI_CS_DONE_INT */
3006 do {
3007 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3008 if (MS(reg, SI_CS_DONE_INT))
3009 break;
3010
3011 wait_limit--;
3012 udelay(10);
3013 } while (wait_limit > 0);
3014
3015 if (!MS(reg, SI_CS_DONE_INT)) {
3016 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3017 addr);
3018 return -ETIMEDOUT;
3019 }
3020
3021 /* clear SI_CS_DONE_INT */
3022 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3023
3024 if (MS(reg, SI_CS_DONE_ERR)) {
3025 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3026 return -EIO;
3027 }
3028
3029 /* extract receive data */
3030 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3031 *out = reg;
3032
3033 return 0;
3034 }
3035
ath10k_pci_hif_fetch_cal_eeprom(struct ath10k * ar,void ** data,size_t * data_len)3036 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3037 size_t *data_len)
3038 {
3039 u8 *caldata = NULL;
3040 size_t calsize, i;
3041 int ret;
3042
3043 if (!QCA_REV_9887(ar))
3044 return -EOPNOTSUPP;
3045
3046 calsize = ar->hw_params.cal_data_len;
3047 caldata = kmalloc(calsize, GFP_KERNEL);
3048 if (!caldata)
3049 return -ENOMEM;
3050
3051 ath10k_pci_enable_eeprom(ar);
3052
3053 for (i = 0; i < calsize; i++) {
3054 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3055 if (ret)
3056 goto err_free;
3057 }
3058
3059 if (!ath10k_pci_validate_cal(caldata, calsize))
3060 goto err_free;
3061
3062 *data = caldata;
3063 *data_len = calsize;
3064
3065 return 0;
3066
3067 err_free:
3068 kfree(caldata);
3069
3070 return -EINVAL;
3071 }
3072
3073 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3074 .tx_sg = ath10k_pci_hif_tx_sg,
3075 .diag_read = ath10k_pci_hif_diag_read,
3076 .diag_write = ath10k_pci_diag_write_mem,
3077 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
3078 .start = ath10k_pci_hif_start,
3079 .stop = ath10k_pci_hif_stop,
3080 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
3081 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
3082 .send_complete_check = ath10k_pci_hif_send_complete_check,
3083 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
3084 .power_up = ath10k_pci_hif_power_up,
3085 .power_down = ath10k_pci_hif_power_down,
3086 .read32 = ath10k_pci_read32,
3087 .write32 = ath10k_pci_write32,
3088 .suspend = ath10k_pci_hif_suspend,
3089 .resume = ath10k_pci_hif_resume,
3090 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
3091 };
3092
3093 /*
3094 * Top-level interrupt handler for all PCI interrupts from a Target.
3095 * When a block of MSI interrupts is allocated, this top-level handler
3096 * is not used; instead, we directly call the correct sub-handler.
3097 */
ath10k_pci_interrupt_handler(int irq,void * arg)3098 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3099 {
3100 struct ath10k *ar = arg;
3101 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3102 int ret;
3103
3104 if (ath10k_pci_has_device_gone(ar))
3105 return IRQ_NONE;
3106
3107 ret = ath10k_pci_force_wake(ar);
3108 if (ret) {
3109 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3110 return IRQ_NONE;
3111 }
3112
3113 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3114 !ath10k_pci_irq_pending(ar))
3115 return IRQ_NONE;
3116
3117 ath10k_pci_disable_and_clear_legacy_irq(ar);
3118 ath10k_pci_irq_msi_fw_mask(ar);
3119 napi_schedule(&ar->napi);
3120
3121 return IRQ_HANDLED;
3122 }
3123
ath10k_pci_napi_poll(struct napi_struct * ctx,int budget)3124 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3125 {
3126 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3127 int done = 0;
3128
3129 if (ath10k_pci_has_fw_crashed(ar)) {
3130 ath10k_pci_fw_crashed_clear(ar);
3131 ath10k_pci_fw_crashed_dump(ar);
3132 napi_complete(ctx);
3133 return done;
3134 }
3135
3136 ath10k_ce_per_engine_service_any(ar);
3137
3138 done = ath10k_htt_txrx_compl_task(ar, budget);
3139
3140 if (done < budget) {
3141 napi_complete_done(ctx, done);
3142 /* In case of MSI, it is possible that interrupts are received
3143 * while NAPI poll is inprogress. So pending interrupts that are
3144 * received after processing all copy engine pipes by NAPI poll
3145 * will not be handled again. This is causing failure to
3146 * complete boot sequence in x86 platform. So before enabling
3147 * interrupts safer to check for pending interrupts for
3148 * immediate servicing.
3149 */
3150 if (ath10k_ce_interrupt_summary(ar)) {
3151 napi_reschedule(ctx);
3152 goto out;
3153 }
3154 ath10k_pci_enable_legacy_irq(ar);
3155 ath10k_pci_irq_msi_fw_unmask(ar);
3156 }
3157
3158 out:
3159 return done;
3160 }
3161
ath10k_pci_request_irq_msi(struct ath10k * ar)3162 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3163 {
3164 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3165 int ret;
3166
3167 ret = request_irq(ar_pci->pdev->irq,
3168 ath10k_pci_interrupt_handler,
3169 IRQF_SHARED, "ath10k_pci", ar);
3170 if (ret) {
3171 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3172 ar_pci->pdev->irq, ret);
3173 return ret;
3174 }
3175
3176 return 0;
3177 }
3178
ath10k_pci_request_irq_legacy(struct ath10k * ar)3179 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3180 {
3181 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3182 int ret;
3183
3184 ret = request_irq(ar_pci->pdev->irq,
3185 ath10k_pci_interrupt_handler,
3186 IRQF_SHARED, "ath10k_pci", ar);
3187 if (ret) {
3188 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3189 ar_pci->pdev->irq, ret);
3190 return ret;
3191 }
3192
3193 return 0;
3194 }
3195
ath10k_pci_request_irq(struct ath10k * ar)3196 static int ath10k_pci_request_irq(struct ath10k *ar)
3197 {
3198 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3199
3200 switch (ar_pci->oper_irq_mode) {
3201 case ATH10K_PCI_IRQ_LEGACY:
3202 return ath10k_pci_request_irq_legacy(ar);
3203 case ATH10K_PCI_IRQ_MSI:
3204 return ath10k_pci_request_irq_msi(ar);
3205 default:
3206 return -EINVAL;
3207 }
3208 }
3209
ath10k_pci_free_irq(struct ath10k * ar)3210 static void ath10k_pci_free_irq(struct ath10k *ar)
3211 {
3212 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3213
3214 free_irq(ar_pci->pdev->irq, ar);
3215 }
3216
ath10k_pci_init_napi(struct ath10k * ar)3217 void ath10k_pci_init_napi(struct ath10k *ar)
3218 {
3219 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3220 }
3221
ath10k_pci_init_irq(struct ath10k * ar)3222 static int ath10k_pci_init_irq(struct ath10k *ar)
3223 {
3224 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3225 int ret;
3226
3227 ath10k_pci_init_napi(ar);
3228
3229 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3230 ath10k_info(ar, "limiting irq mode to: %d\n",
3231 ath10k_pci_irq_mode);
3232
3233 /* Try MSI */
3234 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3235 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3236 ret = pci_enable_msi(ar_pci->pdev);
3237 if (ret == 0)
3238 return 0;
3239
3240 /* MHI failed, try legacy irq next */
3241 }
3242
3243 /* Try legacy irq
3244 *
3245 * A potential race occurs here: The CORE_BASE write
3246 * depends on target correctly decoding AXI address but
3247 * host won't know when target writes BAR to CORE_CTRL.
3248 * This write might get lost if target has NOT written BAR.
3249 * For now, fix the race by repeating the write in below
3250 * synchronization checking.
3251 */
3252 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3253
3254 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3255 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3256
3257 return 0;
3258 }
3259
ath10k_pci_deinit_irq_legacy(struct ath10k * ar)3260 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3261 {
3262 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3263 0);
3264 }
3265
ath10k_pci_deinit_irq(struct ath10k * ar)3266 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3267 {
3268 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3269
3270 switch (ar_pci->oper_irq_mode) {
3271 case ATH10K_PCI_IRQ_LEGACY:
3272 ath10k_pci_deinit_irq_legacy(ar);
3273 break;
3274 default:
3275 pci_disable_msi(ar_pci->pdev);
3276 break;
3277 }
3278
3279 return 0;
3280 }
3281
ath10k_pci_wait_for_target_init(struct ath10k * ar)3282 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3283 {
3284 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3285 unsigned long timeout;
3286 u32 val;
3287
3288 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3289
3290 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3291
3292 do {
3293 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3294
3295 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3296 val);
3297
3298 /* target should never return this */
3299 if (val == 0xffffffff)
3300 continue;
3301
3302 /* the device has crashed so don't bother trying anymore */
3303 if (val & FW_IND_EVENT_PENDING)
3304 break;
3305
3306 if (val & FW_IND_INITIALIZED)
3307 break;
3308
3309 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3310 /* Fix potential race by repeating CORE_BASE writes */
3311 ath10k_pci_enable_legacy_irq(ar);
3312
3313 mdelay(10);
3314 } while (time_before(jiffies, timeout));
3315
3316 ath10k_pci_disable_and_clear_legacy_irq(ar);
3317 ath10k_pci_irq_msi_fw_mask(ar);
3318
3319 if (val == 0xffffffff) {
3320 ath10k_err(ar, "failed to read device register, device is gone\n");
3321 return -EIO;
3322 }
3323
3324 if (val & FW_IND_EVENT_PENDING) {
3325 ath10k_warn(ar, "device has crashed during init\n");
3326 return -ECOMM;
3327 }
3328
3329 if (!(val & FW_IND_INITIALIZED)) {
3330 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3331 val);
3332 return -ETIMEDOUT;
3333 }
3334
3335 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3336 return 0;
3337 }
3338
ath10k_pci_cold_reset(struct ath10k * ar)3339 static int ath10k_pci_cold_reset(struct ath10k *ar)
3340 {
3341 u32 val;
3342
3343 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3344
3345 spin_lock_bh(&ar->data_lock);
3346
3347 ar->stats.fw_cold_reset_counter++;
3348
3349 spin_unlock_bh(&ar->data_lock);
3350
3351 /* Put Target, including PCIe, into RESET. */
3352 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3353 val |= 1;
3354 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3355
3356 /* After writing into SOC_GLOBAL_RESET to put device into
3357 * reset and pulling out of reset pcie may not be stable
3358 * for any immediate pcie register access and cause bus error,
3359 * add delay before any pcie access request to fix this issue.
3360 */
3361 msleep(20);
3362
3363 /* Pull Target, including PCIe, out of RESET. */
3364 val &= ~1;
3365 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3366
3367 msleep(20);
3368
3369 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3370
3371 return 0;
3372 }
3373
ath10k_pci_claim(struct ath10k * ar)3374 static int ath10k_pci_claim(struct ath10k *ar)
3375 {
3376 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3377 struct pci_dev *pdev = ar_pci->pdev;
3378 int ret;
3379
3380 pci_set_drvdata(pdev, ar);
3381
3382 ret = pci_enable_device(pdev);
3383 if (ret) {
3384 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3385 return ret;
3386 }
3387
3388 ret = pci_request_region(pdev, BAR_NUM, "ath");
3389 if (ret) {
3390 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3391 ret);
3392 goto err_device;
3393 }
3394
3395 /* Target expects 32 bit DMA. Enforce it. */
3396 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3397 if (ret) {
3398 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3399 goto err_region;
3400 }
3401
3402 pci_set_master(pdev);
3403
3404 /* Arrange for access to Target SoC registers. */
3405 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3406 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3407 if (!ar_pci->mem) {
3408 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3409 ret = -EIO;
3410 goto err_region;
3411 }
3412
3413 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3414 return 0;
3415
3416 err_region:
3417 pci_release_region(pdev, BAR_NUM);
3418
3419 err_device:
3420 pci_disable_device(pdev);
3421
3422 return ret;
3423 }
3424
ath10k_pci_release(struct ath10k * ar)3425 static void ath10k_pci_release(struct ath10k *ar)
3426 {
3427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3428 struct pci_dev *pdev = ar_pci->pdev;
3429
3430 pci_iounmap(pdev, ar_pci->mem);
3431 pci_release_region(pdev, BAR_NUM);
3432 pci_disable_device(pdev);
3433 }
3434
ath10k_pci_chip_is_supported(u32 dev_id,u32 chip_id)3435 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3436 {
3437 const struct ath10k_pci_supp_chip *supp_chip;
3438 int i;
3439 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3440
3441 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3442 supp_chip = &ath10k_pci_supp_chips[i];
3443
3444 if (supp_chip->dev_id == dev_id &&
3445 supp_chip->rev_id == rev_id)
3446 return true;
3447 }
3448
3449 return false;
3450 }
3451
ath10k_pci_setup_resource(struct ath10k * ar)3452 int ath10k_pci_setup_resource(struct ath10k *ar)
3453 {
3454 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3455 struct ath10k_ce *ce = ath10k_ce_priv(ar);
3456 int ret;
3457
3458 spin_lock_init(&ce->ce_lock);
3459 spin_lock_init(&ar_pci->ps_lock);
3460 mutex_init(&ar_pci->ce_diag_mutex);
3461
3462 INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3463
3464 timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3465
3466 ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3467 sizeof(pci_host_ce_config_wlan),
3468 GFP_KERNEL);
3469 if (!ar_pci->attr)
3470 return -ENOMEM;
3471
3472 ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3473 sizeof(pci_target_ce_config_wlan),
3474 GFP_KERNEL);
3475 if (!ar_pci->pipe_config) {
3476 ret = -ENOMEM;
3477 goto err_free_attr;
3478 }
3479
3480 ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3481 sizeof(pci_target_service_to_ce_map_wlan),
3482 GFP_KERNEL);
3483 if (!ar_pci->serv_to_pipe) {
3484 ret = -ENOMEM;
3485 goto err_free_pipe_config;
3486 }
3487
3488 if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3489 ath10k_pci_override_ce_config(ar);
3490
3491 ret = ath10k_pci_alloc_pipes(ar);
3492 if (ret) {
3493 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3494 ret);
3495 goto err_free_serv_to_pipe;
3496 }
3497
3498 return 0;
3499
3500 err_free_serv_to_pipe:
3501 kfree(ar_pci->serv_to_pipe);
3502 err_free_pipe_config:
3503 kfree(ar_pci->pipe_config);
3504 err_free_attr:
3505 kfree(ar_pci->attr);
3506 return ret;
3507 }
3508
ath10k_pci_release_resource(struct ath10k * ar)3509 void ath10k_pci_release_resource(struct ath10k *ar)
3510 {
3511 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3512
3513 ath10k_pci_rx_retry_sync(ar);
3514 netif_napi_del(&ar->napi);
3515 ath10k_pci_ce_deinit(ar);
3516 ath10k_pci_free_pipes(ar);
3517 kfree(ar_pci->attr);
3518 kfree(ar_pci->pipe_config);
3519 kfree(ar_pci->serv_to_pipe);
3520 }
3521
3522 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3523 .read32 = ath10k_bus_pci_read32,
3524 .write32 = ath10k_bus_pci_write32,
3525 .get_num_banks = ath10k_pci_get_num_banks,
3526 };
3527
ath10k_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pci_dev)3528 static int ath10k_pci_probe(struct pci_dev *pdev,
3529 const struct pci_device_id *pci_dev)
3530 {
3531 int ret = 0;
3532 struct ath10k *ar;
3533 struct ath10k_pci *ar_pci;
3534 enum ath10k_hw_rev hw_rev;
3535 struct ath10k_bus_params bus_params = {};
3536 bool pci_ps, is_qca988x = false;
3537 int (*pci_soft_reset)(struct ath10k *ar);
3538 int (*pci_hard_reset)(struct ath10k *ar);
3539 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3540
3541 switch (pci_dev->device) {
3542 case QCA988X_2_0_DEVICE_ID_UBNT:
3543 case QCA988X_2_0_DEVICE_ID:
3544 hw_rev = ATH10K_HW_QCA988X;
3545 pci_ps = false;
3546 is_qca988x = true;
3547 pci_soft_reset = ath10k_pci_warm_reset;
3548 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3549 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3550 break;
3551 case QCA9887_1_0_DEVICE_ID:
3552 hw_rev = ATH10K_HW_QCA9887;
3553 pci_ps = false;
3554 pci_soft_reset = ath10k_pci_warm_reset;
3555 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3556 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3557 break;
3558 case QCA6164_2_1_DEVICE_ID:
3559 case QCA6174_2_1_DEVICE_ID:
3560 hw_rev = ATH10K_HW_QCA6174;
3561 pci_ps = true;
3562 pci_soft_reset = ath10k_pci_warm_reset;
3563 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3564 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3565 break;
3566 case QCA99X0_2_0_DEVICE_ID:
3567 hw_rev = ATH10K_HW_QCA99X0;
3568 pci_ps = false;
3569 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3570 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3571 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3572 break;
3573 case QCA9984_1_0_DEVICE_ID:
3574 hw_rev = ATH10K_HW_QCA9984;
3575 pci_ps = false;
3576 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3577 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3578 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3579 break;
3580 case QCA9888_2_0_DEVICE_ID:
3581 hw_rev = ATH10K_HW_QCA9888;
3582 pci_ps = false;
3583 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3584 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3585 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3586 break;
3587 case QCA9377_1_0_DEVICE_ID:
3588 hw_rev = ATH10K_HW_QCA9377;
3589 pci_ps = true;
3590 pci_soft_reset = ath10k_pci_warm_reset;
3591 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3592 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3593 break;
3594 default:
3595 WARN_ON(1);
3596 return -ENOTSUPP;
3597 }
3598
3599 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3600 hw_rev, &ath10k_pci_hif_ops);
3601 if (!ar) {
3602 dev_err(&pdev->dev, "failed to allocate core\n");
3603 return -ENOMEM;
3604 }
3605
3606 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3607 pdev->vendor, pdev->device,
3608 pdev->subsystem_vendor, pdev->subsystem_device);
3609
3610 ar_pci = ath10k_pci_priv(ar);
3611 ar_pci->pdev = pdev;
3612 ar_pci->dev = &pdev->dev;
3613 ar_pci->ar = ar;
3614 ar->dev_id = pci_dev->device;
3615 ar_pci->pci_ps = pci_ps;
3616 ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3617 ar_pci->pci_soft_reset = pci_soft_reset;
3618 ar_pci->pci_hard_reset = pci_hard_reset;
3619 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3620 ar->ce_priv = &ar_pci->ce;
3621
3622 ar->id.vendor = pdev->vendor;
3623 ar->id.device = pdev->device;
3624 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3625 ar->id.subsystem_device = pdev->subsystem_device;
3626
3627 timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3628
3629 ret = ath10k_pci_setup_resource(ar);
3630 if (ret) {
3631 ath10k_err(ar, "failed to setup resource: %d\n", ret);
3632 goto err_core_destroy;
3633 }
3634
3635 ret = ath10k_pci_claim(ar);
3636 if (ret) {
3637 ath10k_err(ar, "failed to claim device: %d\n", ret);
3638 goto err_free_pipes;
3639 }
3640
3641 ret = ath10k_pci_force_wake(ar);
3642 if (ret) {
3643 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3644 goto err_sleep;
3645 }
3646
3647 ath10k_pci_ce_deinit(ar);
3648 ath10k_pci_irq_disable(ar);
3649
3650 ret = ath10k_pci_init_irq(ar);
3651 if (ret) {
3652 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3653 goto err_sleep;
3654 }
3655
3656 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3657 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3658 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3659
3660 ret = ath10k_pci_request_irq(ar);
3661 if (ret) {
3662 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3663 goto err_deinit_irq;
3664 }
3665
3666 bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3667 bus_params.link_can_suspend = true;
3668 /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3669 * fall off the bus during chip_reset. These chips have the same pci
3670 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3671 */
3672 if (is_qca988x) {
3673 bus_params.chip_id =
3674 ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3675 if (bus_params.chip_id != 0xffffffff) {
3676 if (!ath10k_pci_chip_is_supported(pdev->device,
3677 bus_params.chip_id)) {
3678 ret = -ENODEV;
3679 goto err_unsupported;
3680 }
3681 }
3682 }
3683
3684 ret = ath10k_pci_chip_reset(ar);
3685 if (ret) {
3686 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3687 goto err_free_irq;
3688 }
3689
3690 bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3691 if (bus_params.chip_id == 0xffffffff) {
3692 ret = -ENODEV;
3693 goto err_unsupported;
3694 }
3695
3696 if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3697 ret = -ENODEV;
3698 goto err_unsupported;
3699 }
3700
3701 ret = ath10k_core_register(ar, &bus_params);
3702 if (ret) {
3703 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3704 goto err_free_irq;
3705 }
3706
3707 return 0;
3708
3709 err_unsupported:
3710 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3711 pdev->device, bus_params.chip_id);
3712
3713 err_free_irq:
3714 ath10k_pci_free_irq(ar);
3715
3716 err_deinit_irq:
3717 ath10k_pci_release_resource(ar);
3718
3719 err_sleep:
3720 ath10k_pci_sleep_sync(ar);
3721 ath10k_pci_release(ar);
3722
3723 err_free_pipes:
3724 ath10k_pci_free_pipes(ar);
3725
3726 err_core_destroy:
3727 ath10k_core_destroy(ar);
3728
3729 return ret;
3730 }
3731
ath10k_pci_remove(struct pci_dev * pdev)3732 static void ath10k_pci_remove(struct pci_dev *pdev)
3733 {
3734 struct ath10k *ar = pci_get_drvdata(pdev);
3735
3736 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3737
3738 if (!ar)
3739 return;
3740
3741 ath10k_core_unregister(ar);
3742 ath10k_pci_free_irq(ar);
3743 ath10k_pci_deinit_irq(ar);
3744 ath10k_pci_release_resource(ar);
3745 ath10k_pci_sleep_sync(ar);
3746 ath10k_pci_release(ar);
3747 ath10k_core_destroy(ar);
3748 }
3749
3750 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3751
ath10k_pci_pm_suspend(struct device * dev)3752 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3753 {
3754 struct ath10k *ar = dev_get_drvdata(dev);
3755 int ret;
3756
3757 ret = ath10k_pci_suspend(ar);
3758 if (ret)
3759 ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3760
3761 return ret;
3762 }
3763
ath10k_pci_pm_resume(struct device * dev)3764 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3765 {
3766 struct ath10k *ar = dev_get_drvdata(dev);
3767 int ret;
3768
3769 ret = ath10k_pci_resume(ar);
3770 if (ret)
3771 ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3772
3773 return ret;
3774 }
3775
3776 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3777 ath10k_pci_pm_suspend,
3778 ath10k_pci_pm_resume);
3779
3780 static struct pci_driver ath10k_pci_driver = {
3781 .name = "ath10k_pci",
3782 .id_table = ath10k_pci_id_table,
3783 .probe = ath10k_pci_probe,
3784 .remove = ath10k_pci_remove,
3785 #ifdef CONFIG_PM
3786 .driver.pm = &ath10k_pci_pm_ops,
3787 #endif
3788 };
3789
ath10k_pci_init(void)3790 static int __init ath10k_pci_init(void)
3791 {
3792 int ret1, ret2;
3793
3794 ret1 = pci_register_driver(&ath10k_pci_driver);
3795 if (ret1)
3796 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3797 ret1);
3798
3799 ret2 = ath10k_ahb_init();
3800 if (ret2)
3801 printk(KERN_ERR "ahb init failed: %d\n", ret2);
3802
3803 if (ret1 && ret2)
3804 return ret1;
3805
3806 /* registered to at least one bus */
3807 return 0;
3808 }
3809 module_init(ath10k_pci_init);
3810
ath10k_pci_exit(void)3811 static void __exit ath10k_pci_exit(void)
3812 {
3813 pci_unregister_driver(&ath10k_pci_driver);
3814 ath10k_ahb_exit();
3815 }
3816
3817 module_exit(ath10k_pci_exit);
3818
3819 MODULE_AUTHOR("Qualcomm Atheros");
3820 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3821 MODULE_LICENSE("Dual BSD/GPL");
3822
3823 /* QCA988x 2.0 firmware files */
3824 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3825 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3826 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3827 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3828 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3829 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3830
3831 /* QCA9887 1.0 firmware files */
3832 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3833 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3834 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3835
3836 /* QCA6174 2.1 firmware files */
3837 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3838 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3839 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3840 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3841
3842 /* QCA6174 3.1 firmware files */
3843 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3844 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3845 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3846 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3847 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3848
3849 /* QCA9377 1.0 firmware files */
3850 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3851 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3852 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3853