xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_nvm.c (revision 6c71a0574249f5e5a45fe055ab5f837023d5eeca)
1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (c) 2018, Intel Corporation. */
3  
4  #include <linux/vmalloc.h>
5  
6  #include "ice_common.h"
7  
8  /**
9   * ice_aq_read_nvm
10   * @hw: pointer to the HW struct
11   * @module_typeid: module pointer location in words from the NVM beginning
12   * @offset: byte offset from the module beginning
13   * @length: length of the section to be read (in bytes from the offset)
14   * @data: command buffer (size [bytes] = length)
15   * @last_command: tells if this is the last command in a series
16   * @read_shadow_ram: tell if this is a shadow RAM read
17   * @cd: pointer to command details structure or NULL
18   *
19   * Read the NVM using the admin queue commands (0x0701)
20   */
21  static int
ice_aq_read_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,bool read_shadow_ram,struct ice_sq_cd * cd)22  ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
23  		void *data, bool last_command, bool read_shadow_ram,
24  		struct ice_sq_cd *cd)
25  {
26  	struct ice_aq_desc desc;
27  	struct ice_aqc_nvm *cmd;
28  
29  	cmd = &desc.params.nvm;
30  
31  	if (offset > ICE_AQC_NVM_MAX_OFFSET)
32  		return -EINVAL;
33  
34  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
35  
36  	if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
37  		cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
38  
39  	/* If this is the last command in a series, set the proper flag. */
40  	if (last_command)
41  		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
42  	cmd->module_typeid = cpu_to_le16(module_typeid);
43  	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
44  	cmd->offset_high = (offset >> 16) & 0xFF;
45  	cmd->length = cpu_to_le16(length);
46  
47  	return ice_aq_send_cmd(hw, &desc, data, length, cd);
48  }
49  
50  /**
51   * ice_read_flat_nvm - Read portion of NVM by flat offset
52   * @hw: pointer to the HW struct
53   * @offset: offset from beginning of NVM
54   * @length: (in) number of bytes to read; (out) number of bytes actually read
55   * @data: buffer to return data in (sized to fit the specified length)
56   * @read_shadow_ram: if true, read from shadow RAM instead of NVM
57   *
58   * Reads a portion of the NVM, as a flat memory space. This function correctly
59   * breaks read requests across Shadow RAM sectors and ensures that no single
60   * read request exceeds the maximum 4KB read for a single AdminQ command.
61   *
62   * Returns a status code on failure. Note that the data pointer may be
63   * partially updated if some reads succeed before a failure.
64   */
65  int
ice_read_flat_nvm(struct ice_hw * hw,u32 offset,u32 * length,u8 * data,bool read_shadow_ram)66  ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
67  		  bool read_shadow_ram)
68  {
69  	u32 inlen = *length;
70  	u32 bytes_read = 0;
71  	bool last_cmd;
72  	int status;
73  
74  	*length = 0;
75  
76  	/* Verify the length of the read if this is for the Shadow RAM */
77  	if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
78  		ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n");
79  		return -EINVAL;
80  	}
81  
82  	do {
83  		u32 read_size, sector_offset;
84  
85  		/* ice_aq_read_nvm cannot read more than 4KB at a time.
86  		 * Additionally, a read from the Shadow RAM may not cross over
87  		 * a sector boundary. Conveniently, the sector size is also
88  		 * 4KB.
89  		 */
90  		sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
91  		read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
92  				  inlen - bytes_read);
93  
94  		last_cmd = !(bytes_read + read_size < inlen);
95  
96  		status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
97  					 offset, read_size,
98  					 data + bytes_read, last_cmd,
99  					 read_shadow_ram, NULL);
100  		if (status)
101  			break;
102  
103  		bytes_read += read_size;
104  		offset += read_size;
105  	} while (!last_cmd);
106  
107  	*length = bytes_read;
108  	return status;
109  }
110  
111  /**
112   * ice_aq_update_nvm
113   * @hw: pointer to the HW struct
114   * @module_typeid: module pointer location in words from the NVM beginning
115   * @offset: byte offset from the module beginning
116   * @length: length of the section to be written (in bytes from the offset)
117   * @data: command buffer (size [bytes] = length)
118   * @last_command: tells if this is the last command in a series
119   * @command_flags: command parameters
120   * @cd: pointer to command details structure or NULL
121   *
122   * Update the NVM using the admin queue commands (0x0703)
123   */
124  int
ice_aq_update_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,u8 command_flags,struct ice_sq_cd * cd)125  ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
126  		  u16 length, void *data, bool last_command, u8 command_flags,
127  		  struct ice_sq_cd *cd)
128  {
129  	struct ice_aq_desc desc;
130  	struct ice_aqc_nvm *cmd;
131  
132  	cmd = &desc.params.nvm;
133  
134  	/* In offset the highest byte must be zeroed. */
135  	if (offset & 0xFF000000)
136  		return -EINVAL;
137  
138  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
139  
140  	cmd->cmd_flags |= command_flags;
141  
142  	/* If this is the last command in a series, set the proper flag. */
143  	if (last_command)
144  		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
145  	cmd->module_typeid = cpu_to_le16(module_typeid);
146  	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
147  	cmd->offset_high = (offset >> 16) & 0xFF;
148  	cmd->length = cpu_to_le16(length);
149  
150  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
151  
152  	return ice_aq_send_cmd(hw, &desc, data, length, cd);
153  }
154  
155  /**
156   * ice_aq_erase_nvm
157   * @hw: pointer to the HW struct
158   * @module_typeid: module pointer location in words from the NVM beginning
159   * @cd: pointer to command details structure or NULL
160   *
161   * Erase the NVM sector using the admin queue commands (0x0702)
162   */
ice_aq_erase_nvm(struct ice_hw * hw,u16 module_typeid,struct ice_sq_cd * cd)163  int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
164  {
165  	struct ice_aq_desc desc;
166  	struct ice_aqc_nvm *cmd;
167  
168  	cmd = &desc.params.nvm;
169  
170  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
171  
172  	cmd->module_typeid = cpu_to_le16(module_typeid);
173  	cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
174  	cmd->offset_low = 0;
175  	cmd->offset_high = 0;
176  
177  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
178  }
179  
180  /**
181   * ice_read_sr_word_aq - Reads Shadow RAM via AQ
182   * @hw: pointer to the HW structure
183   * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
184   * @data: word read from the Shadow RAM
185   *
186   * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
187   */
ice_read_sr_word_aq(struct ice_hw * hw,u16 offset,u16 * data)188  static int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
189  {
190  	u32 bytes = sizeof(u16);
191  	__le16 data_local;
192  	int status;
193  
194  	/* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
195  	 * Shadow RAM sector restrictions necessary when reading from the NVM.
196  	 */
197  	status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
198  				   (__force u8 *)&data_local, true);
199  	if (status)
200  		return status;
201  
202  	*data = le16_to_cpu(data_local);
203  	return 0;
204  }
205  
206  /**
207   * ice_acquire_nvm - Generic request for acquiring the NVM ownership
208   * @hw: pointer to the HW structure
209   * @access: NVM access type (read or write)
210   *
211   * This function will request NVM ownership.
212   */
ice_acquire_nvm(struct ice_hw * hw,enum ice_aq_res_access_type access)213  int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
214  {
215  	if (hw->flash.blank_nvm_mode)
216  		return 0;
217  
218  	return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
219  }
220  
221  /**
222   * ice_release_nvm - Generic request for releasing the NVM ownership
223   * @hw: pointer to the HW structure
224   *
225   * This function will release NVM ownership.
226   */
ice_release_nvm(struct ice_hw * hw)227  void ice_release_nvm(struct ice_hw *hw)
228  {
229  	if (hw->flash.blank_nvm_mode)
230  		return;
231  
232  	ice_release_res(hw, ICE_NVM_RES_ID);
233  }
234  
235  /**
236   * ice_get_flash_bank_offset - Get offset into requested flash bank
237   * @hw: pointer to the HW structure
238   * @bank: whether to read from the active or inactive flash bank
239   * @module: the module to read from
240   *
241   * Based on the module, lookup the module offset from the beginning of the
242   * flash.
243   *
244   * Returns the flash offset. Note that a value of zero is invalid and must be
245   * treated as an error.
246   */
ice_get_flash_bank_offset(struct ice_hw * hw,enum ice_bank_select bank,u16 module)247  static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
248  {
249  	struct ice_bank_info *banks = &hw->flash.banks;
250  	enum ice_flash_bank active_bank;
251  	bool second_bank_active;
252  	u32 offset, size;
253  
254  	switch (module) {
255  	case ICE_SR_1ST_NVM_BANK_PTR:
256  		offset = banks->nvm_ptr;
257  		size = banks->nvm_size;
258  		active_bank = banks->nvm_bank;
259  		break;
260  	case ICE_SR_1ST_OROM_BANK_PTR:
261  		offset = banks->orom_ptr;
262  		size = banks->orom_size;
263  		active_bank = banks->orom_bank;
264  		break;
265  	case ICE_SR_NETLIST_BANK_PTR:
266  		offset = banks->netlist_ptr;
267  		size = banks->netlist_size;
268  		active_bank = banks->netlist_bank;
269  		break;
270  	default:
271  		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
272  		return 0;
273  	}
274  
275  	switch (active_bank) {
276  	case ICE_1ST_FLASH_BANK:
277  		second_bank_active = false;
278  		break;
279  	case ICE_2ND_FLASH_BANK:
280  		second_bank_active = true;
281  		break;
282  	default:
283  		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
284  			  active_bank);
285  		return 0;
286  	}
287  
288  	/* The second flash bank is stored immediately following the first
289  	 * bank. Based on whether the 1st or 2nd bank is active, and whether
290  	 * we want the active or inactive bank, calculate the desired offset.
291  	 */
292  	switch (bank) {
293  	case ICE_ACTIVE_FLASH_BANK:
294  		return offset + (second_bank_active ? size : 0);
295  	case ICE_INACTIVE_FLASH_BANK:
296  		return offset + (second_bank_active ? 0 : size);
297  	}
298  
299  	ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
300  	return 0;
301  }
302  
303  /**
304   * ice_read_flash_module - Read a word from one of the main NVM modules
305   * @hw: pointer to the HW structure
306   * @bank: which bank of the module to read
307   * @module: the module to read
308   * @offset: the offset into the module in bytes
309   * @data: storage for the word read from the flash
310   * @length: bytes of data to read
311   *
312   * Read data from the specified flash module. The bank parameter indicates
313   * whether or not to read from the active bank or the inactive bank of that
314   * module.
315   *
316   * The word will be read using flat NVM access, and relies on the
317   * hw->flash.banks data being setup by ice_determine_active_flash_banks()
318   * during initialization.
319   */
320  static int
ice_read_flash_module(struct ice_hw * hw,enum ice_bank_select bank,u16 module,u32 offset,u8 * data,u32 length)321  ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
322  		      u32 offset, u8 *data, u32 length)
323  {
324  	int status;
325  	u32 start;
326  
327  	start = ice_get_flash_bank_offset(hw, bank, module);
328  	if (!start) {
329  		ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
330  			  module);
331  		return -EINVAL;
332  	}
333  
334  	status = ice_acquire_nvm(hw, ICE_RES_READ);
335  	if (status)
336  		return status;
337  
338  	status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
339  
340  	ice_release_nvm(hw);
341  
342  	return status;
343  }
344  
345  /**
346   * ice_read_nvm_module - Read from the active main NVM module
347   * @hw: pointer to the HW structure
348   * @bank: whether to read from active or inactive NVM module
349   * @offset: offset into the NVM module to read, in words
350   * @data: storage for returned word value
351   *
352   * Read the specified word from the active NVM module. This includes the CSS
353   * header at the start of the NVM module.
354   */
355  static int
ice_read_nvm_module(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)356  ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
357  {
358  	__le16 data_local;
359  	int status;
360  
361  	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
362  				       (__force u8 *)&data_local, sizeof(u16));
363  	if (!status)
364  		*data = le16_to_cpu(data_local);
365  
366  	return status;
367  }
368  
369  /**
370   * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
371   * @hw: pointer to the HW structure
372   * @bank: whether to read from the active or inactive NVM module
373   * @offset: offset into the Shadow RAM copy to read, in words
374   * @data: storage for returned word value
375   *
376   * Read the specified word from the copy of the Shadow RAM found in the
377   * specified NVM module.
378   */
379  static int
ice_read_nvm_sr_copy(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)380  ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
381  {
382  	return ice_read_nvm_module(hw, bank, ICE_NVM_SR_COPY_WORD_OFFSET + offset, data);
383  }
384  
385  /**
386   * ice_read_netlist_module - Read data from the netlist module area
387   * @hw: pointer to the HW structure
388   * @bank: whether to read from the active or inactive module
389   * @offset: offset into the netlist to read from
390   * @data: storage for returned word value
391   *
392   * Read a word from the specified netlist bank.
393   */
394  static int
ice_read_netlist_module(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)395  ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
396  {
397  	__le16 data_local;
398  	int status;
399  
400  	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16),
401  				       (__force u8 *)&data_local, sizeof(u16));
402  	if (!status)
403  		*data = le16_to_cpu(data_local);
404  
405  	return status;
406  }
407  
408  /**
409   * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
410   * @hw: pointer to the HW structure
411   * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
412   * @data: word read from the Shadow RAM
413   *
414   * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
415   */
ice_read_sr_word(struct ice_hw * hw,u16 offset,u16 * data)416  int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
417  {
418  	int status;
419  
420  	status = ice_acquire_nvm(hw, ICE_RES_READ);
421  	if (!status) {
422  		status = ice_read_sr_word_aq(hw, offset, data);
423  		ice_release_nvm(hw);
424  	}
425  
426  	return status;
427  }
428  
429  /**
430   * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
431   * @hw: pointer to hardware structure
432   * @module_tlv: pointer to module TLV to return
433   * @module_tlv_len: pointer to module TLV length to return
434   * @module_type: module type requested
435   *
436   * Finds the requested sub module TLV type from the Preserved Field
437   * Area (PFA) and returns the TLV pointer and length. The caller can
438   * use these to read the variable length TLV value.
439   */
440  int
ice_get_pfa_module_tlv(struct ice_hw * hw,u16 * module_tlv,u16 * module_tlv_len,u16 module_type)441  ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
442  		       u16 module_type)
443  {
444  	u16 pfa_len, pfa_ptr, next_tlv, max_tlv;
445  	int status;
446  
447  	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
448  	if (status) {
449  		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
450  		return status;
451  	}
452  	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
453  	if (status) {
454  		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
455  		return status;
456  	}
457  
458  	/* The Preserved Fields Area contains a sequence of Type-Length-Value
459  	 * structures which define its contents. The PFA length includes all
460  	 * of the TLVs, plus the initial length word itself, *and* one final
461  	 * word at the end after all of the TLVs.
462  	 */
463  	if (check_add_overflow(pfa_ptr, pfa_len - 1, &max_tlv)) {
464  		dev_warn(ice_hw_to_dev(hw), "PFA starts at offset %u. PFA length of %u caused 16-bit arithmetic overflow.\n",
465  			 pfa_ptr, pfa_len);
466  		return -EINVAL;
467  	}
468  
469  	/* Starting with first TLV after PFA length, iterate through the list
470  	 * of TLVs to find the requested one.
471  	 */
472  	next_tlv = pfa_ptr + 1;
473  	while (next_tlv < max_tlv) {
474  		u16 tlv_sub_module_type;
475  		u16 tlv_len;
476  
477  		/* Read TLV type */
478  		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
479  		if (status) {
480  			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
481  			break;
482  		}
483  		/* Read TLV length */
484  		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
485  		if (status) {
486  			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
487  			break;
488  		}
489  		if (tlv_sub_module_type == module_type) {
490  			if (tlv_len) {
491  				*module_tlv = next_tlv;
492  				*module_tlv_len = tlv_len;
493  				return 0;
494  			}
495  			return -EINVAL;
496  		}
497  
498  		if (check_add_overflow(next_tlv, 2, &next_tlv) ||
499  		    check_add_overflow(next_tlv, tlv_len, &next_tlv)) {
500  			dev_warn(ice_hw_to_dev(hw), "TLV of type %u and length 0x%04x caused 16-bit arithmetic overflow. The PFA starts at 0x%04x and has length of 0x%04x\n",
501  				 tlv_sub_module_type, tlv_len, pfa_ptr, pfa_len);
502  			return -EINVAL;
503  		}
504  	}
505  	/* Module does not exist */
506  	return -ENOENT;
507  }
508  
509  /**
510   * ice_read_pba_string - Reads part number string from NVM
511   * @hw: pointer to hardware structure
512   * @pba_num: stores the part number string from the NVM
513   * @pba_num_size: part number string buffer length
514   *
515   * Reads the part number string from the NVM.
516   */
ice_read_pba_string(struct ice_hw * hw,u8 * pba_num,u32 pba_num_size)517  int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
518  {
519  	u16 pba_tlv, pba_tlv_len;
520  	u16 pba_word, pba_size;
521  	int status;
522  	u16 i;
523  
524  	status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
525  					ICE_SR_PBA_BLOCK_PTR);
526  	if (status) {
527  		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
528  		return status;
529  	}
530  
531  	/* pba_size is the next word */
532  	status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
533  	if (status) {
534  		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
535  		return status;
536  	}
537  
538  	if (pba_tlv_len < pba_size) {
539  		ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
540  		return -EINVAL;
541  	}
542  
543  	/* Subtract one to get PBA word count (PBA Size word is included in
544  	 * total size)
545  	 */
546  	pba_size--;
547  	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
548  		ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
549  		return -EINVAL;
550  	}
551  
552  	for (i = 0; i < pba_size; i++) {
553  		status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
554  		if (status) {
555  			ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
556  			return status;
557  		}
558  
559  		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
560  		pba_num[(i * 2) + 1] = pba_word & 0xFF;
561  	}
562  	pba_num[(pba_size * 2)] = '\0';
563  
564  	return status;
565  }
566  
567  /**
568   * ice_get_nvm_ver_info - Read NVM version information
569   * @hw: pointer to the HW struct
570   * @bank: whether to read from the active or inactive flash bank
571   * @nvm: pointer to NVM info structure
572   *
573   * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
574   * in the NVM info structure.
575   */
576  static int
ice_get_nvm_ver_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_nvm_info * nvm)577  ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
578  {
579  	u16 eetrack_lo, eetrack_hi, ver;
580  	int status;
581  
582  	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
583  	if (status) {
584  		ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
585  		return status;
586  	}
587  
588  	nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
589  	nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
590  
591  	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
592  	if (status) {
593  		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
594  		return status;
595  	}
596  	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
597  	if (status) {
598  		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
599  		return status;
600  	}
601  
602  	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
603  
604  	return 0;
605  }
606  
607  /**
608   * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
609   * @hw: pointer to the HW structure
610   * @nvm: storage for Option ROM version information
611   *
612   * Reads the NVM EETRACK ID, Map version, and security revision of the
613   * inactive NVM bank. Used to access version data for a pending update that
614   * has not yet been activated.
615   */
ice_get_inactive_nvm_ver(struct ice_hw * hw,struct ice_nvm_info * nvm)616  int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
617  {
618  	return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
619  }
620  
621  /**
622   * ice_get_orom_civd_data - Get the combo version information from Option ROM
623   * @hw: pointer to the HW struct
624   * @bank: whether to read from the active or inactive flash module
625   * @civd: storage for the Option ROM CIVD data.
626   *
627   * Searches through the Option ROM flash contents to locate the CIVD data for
628   * the image.
629   */
630  static int
ice_get_orom_civd_data(struct ice_hw * hw,enum ice_bank_select bank,struct ice_orom_civd_info * civd)631  ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
632  		       struct ice_orom_civd_info *civd)
633  {
634  	u8 *orom_data;
635  	int status;
636  	u32 offset;
637  
638  	/* The CIVD section is located in the Option ROM aligned to 512 bytes.
639  	 * The first 4 bytes must contain the ASCII characters "$CIV".
640  	 * A simple modulo 256 sum of all of the bytes of the structure must
641  	 * equal 0.
642  	 *
643  	 * The exact location is unknown and varies between images but is
644  	 * usually somewhere in the middle of the bank. We need to scan the
645  	 * Option ROM bank to locate it.
646  	 *
647  	 * It's significantly faster to read the entire Option ROM up front
648  	 * using the maximum page size, than to read each possible location
649  	 * with a separate firmware command.
650  	 */
651  	orom_data = vzalloc(hw->flash.banks.orom_size);
652  	if (!orom_data)
653  		return -ENOMEM;
654  
655  	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
656  				       orom_data, hw->flash.banks.orom_size);
657  	if (status) {
658  		vfree(orom_data);
659  		ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n");
660  		return status;
661  	}
662  
663  	/* Scan the memory buffer to locate the CIVD data section */
664  	for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
665  		struct ice_orom_civd_info *tmp;
666  		u8 sum = 0, i;
667  
668  		tmp = (struct ice_orom_civd_info *)&orom_data[offset];
669  
670  		/* Skip forward until we find a matching signature */
671  		if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
672  			continue;
673  
674  		ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n",
675  			  offset);
676  
677  		/* Verify that the simple checksum is zero */
678  		for (i = 0; i < sizeof(*tmp); i++)
679  			sum += ((u8 *)tmp)[i];
680  
681  		if (sum) {
682  			ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
683  				  sum);
684  			goto err_invalid_checksum;
685  		}
686  
687  		*civd = *tmp;
688  		vfree(orom_data);
689  		return 0;
690  	}
691  
692  	ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n");
693  
694  err_invalid_checksum:
695  	vfree(orom_data);
696  	return -EIO;
697  }
698  
699  /**
700   * ice_get_orom_ver_info - Read Option ROM version information
701   * @hw: pointer to the HW struct
702   * @bank: whether to read from the active or inactive flash module
703   * @orom: pointer to Option ROM info structure
704   *
705   * Read Option ROM version and security revision from the Option ROM flash
706   * section.
707   */
708  static int
ice_get_orom_ver_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_orom_info * orom)709  ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
710  {
711  	struct ice_orom_civd_info civd;
712  	u32 combo_ver;
713  	int status;
714  
715  	status = ice_get_orom_civd_data(hw, bank, &civd);
716  	if (status) {
717  		ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
718  		return status;
719  	}
720  
721  	combo_ver = le32_to_cpu(civd.combo_ver);
722  
723  	orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT);
724  	orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
725  	orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT);
726  
727  	return 0;
728  }
729  
730  /**
731   * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
732   * @hw: pointer to the HW structure
733   * @orom: storage for Option ROM version information
734   *
735   * Reads the Option ROM version and security revision data for the inactive
736   * section of flash. Used to access version data for a pending update that has
737   * not yet been activated.
738   */
ice_get_inactive_orom_ver(struct ice_hw * hw,struct ice_orom_info * orom)739  int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
740  {
741  	return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
742  }
743  
744  /**
745   * ice_get_netlist_info
746   * @hw: pointer to the HW struct
747   * @bank: whether to read from the active or inactive flash bank
748   * @netlist: pointer to netlist version info structure
749   *
750   * Get the netlist version information from the requested bank. Reads the Link
751   * Topology section to find the Netlist ID block and extract the relevant
752   * information into the netlist version structure.
753   */
754  static int
ice_get_netlist_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_netlist_info * netlist)755  ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
756  		     struct ice_netlist_info *netlist)
757  {
758  	u16 module_id, length, node_count, i;
759  	u16 *id_blk;
760  	int status;
761  
762  	status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id);
763  	if (status)
764  		return status;
765  
766  	if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
767  		ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
768  			  ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
769  		return -EIO;
770  	}
771  
772  	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length);
773  	if (status)
774  		return status;
775  
776  	/* sanity check that we have at least enough words to store the netlist ID block */
777  	if (length < ICE_NETLIST_ID_BLK_SIZE) {
778  		ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n",
779  			  ICE_NETLIST_ID_BLK_SIZE, length);
780  		return -EIO;
781  	}
782  
783  	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count);
784  	if (status)
785  		return status;
786  	node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
787  
788  	id_blk = kcalloc(ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
789  	if (!id_blk)
790  		return -ENOMEM;
791  
792  	/* Read out the entire Netlist ID Block at once. */
793  	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
794  				       ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16),
795  				       (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16));
796  	if (status)
797  		goto exit_error;
798  
799  	for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
800  		id_blk[i] = le16_to_cpu(((__force __le16 *)id_blk)[i]);
801  
802  	netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
803  			 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
804  	netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
805  			 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
806  	netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
807  			id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
808  	netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
809  		       id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
810  	netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
811  	/* Read the left most 4 bytes of SHA */
812  	netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
813  			id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
814  
815  exit_error:
816  	kfree(id_blk);
817  
818  	return status;
819  }
820  
821  /**
822   * ice_get_inactive_netlist_ver
823   * @hw: pointer to the HW struct
824   * @netlist: pointer to netlist version info structure
825   *
826   * Read the netlist version data from the inactive netlist bank. Used to
827   * extract version data of a pending flash update in order to display the
828   * version data.
829   */
ice_get_inactive_netlist_ver(struct ice_hw * hw,struct ice_netlist_info * netlist)830  int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist)
831  {
832  	return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist);
833  }
834  
835  /**
836   * ice_discover_flash_size - Discover the available flash size.
837   * @hw: pointer to the HW struct
838   *
839   * The device flash could be up to 16MB in size. However, it is possible that
840   * the actual size is smaller. Use bisection to determine the accessible size
841   * of flash memory.
842   */
ice_discover_flash_size(struct ice_hw * hw)843  static int ice_discover_flash_size(struct ice_hw *hw)
844  {
845  	u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
846  	int status;
847  
848  	status = ice_acquire_nvm(hw, ICE_RES_READ);
849  	if (status)
850  		return status;
851  
852  	while ((max_size - min_size) > 1) {
853  		u32 offset = (max_size + min_size) / 2;
854  		u32 len = 1;
855  		u8 data;
856  
857  		status = ice_read_flat_nvm(hw, offset, &len, &data, false);
858  		if (status == -EIO &&
859  		    hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
860  			ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
861  				  __func__, offset);
862  			status = 0;
863  			max_size = offset;
864  		} else if (!status) {
865  			ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
866  				  __func__, offset);
867  			min_size = offset;
868  		} else {
869  			/* an unexpected error occurred */
870  			goto err_read_flat_nvm;
871  		}
872  	}
873  
874  	ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
875  
876  	hw->flash.flash_size = max_size;
877  
878  err_read_flat_nvm:
879  	ice_release_nvm(hw);
880  
881  	return status;
882  }
883  
884  /**
885   * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
886   * @hw: pointer to the HW structure
887   * @offset: the word offset of the Shadow RAM word to read
888   * @pointer: pointer value read from Shadow RAM
889   *
890   * Read the given Shadow RAM word, and convert it to a pointer value specified
891   * in bytes. This function assumes the specified offset is a valid pointer
892   * word.
893   *
894   * Each pointer word specifies whether it is stored in word size or 4KB
895   * sector size by using the highest bit. The reported pointer value will be in
896   * bytes, intended for flat NVM reads.
897   */
ice_read_sr_pointer(struct ice_hw * hw,u16 offset,u32 * pointer)898  static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
899  {
900  	int status;
901  	u16 value;
902  
903  	status = ice_read_sr_word(hw, offset, &value);
904  	if (status)
905  		return status;
906  
907  	/* Determine if the pointer is in 4KB or word units */
908  	if (value & ICE_SR_NVM_PTR_4KB_UNITS)
909  		*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
910  	else
911  		*pointer = value * 2;
912  
913  	return 0;
914  }
915  
916  /**
917   * ice_read_sr_area_size - Read an area size from a Shadow RAM word
918   * @hw: pointer to the HW structure
919   * @offset: the word offset of the Shadow RAM to read
920   * @size: size value read from the Shadow RAM
921   *
922   * Read the given Shadow RAM word, and convert it to an area size value
923   * specified in bytes. This function assumes the specified offset is a valid
924   * area size word.
925   *
926   * Each area size word is specified in 4KB sector units. This function reports
927   * the size in bytes, intended for flat NVM reads.
928   */
ice_read_sr_area_size(struct ice_hw * hw,u16 offset,u32 * size)929  static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
930  {
931  	int status;
932  	u16 value;
933  
934  	status = ice_read_sr_word(hw, offset, &value);
935  	if (status)
936  		return status;
937  
938  	/* Area sizes are always specified in 4KB units */
939  	*size = value * 4 * 1024;
940  
941  	return 0;
942  }
943  
944  /**
945   * ice_determine_active_flash_banks - Discover active bank for each module
946   * @hw: pointer to the HW struct
947   *
948   * Read the Shadow RAM control word and determine which banks are active for
949   * the NVM, OROM, and Netlist modules. Also read and calculate the associated
950   * pointer and size. These values are then cached into the ice_flash_info
951   * structure for later use in order to calculate the correct offset to read
952   * from the active module.
953   */
ice_determine_active_flash_banks(struct ice_hw * hw)954  static int ice_determine_active_flash_banks(struct ice_hw *hw)
955  {
956  	struct ice_bank_info *banks = &hw->flash.banks;
957  	u16 ctrl_word;
958  	int status;
959  
960  	status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
961  	if (status) {
962  		ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
963  		return status;
964  	}
965  
966  	/* Check that the control word indicates validity */
967  	if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) {
968  		ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
969  		return -EIO;
970  	}
971  
972  	if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
973  		banks->nvm_bank = ICE_1ST_FLASH_BANK;
974  	else
975  		banks->nvm_bank = ICE_2ND_FLASH_BANK;
976  
977  	if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
978  		banks->orom_bank = ICE_1ST_FLASH_BANK;
979  	else
980  		banks->orom_bank = ICE_2ND_FLASH_BANK;
981  
982  	if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
983  		banks->netlist_bank = ICE_1ST_FLASH_BANK;
984  	else
985  		banks->netlist_bank = ICE_2ND_FLASH_BANK;
986  
987  	status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
988  	if (status) {
989  		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
990  		return status;
991  	}
992  
993  	status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
994  	if (status) {
995  		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
996  		return status;
997  	}
998  
999  	status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
1000  	if (status) {
1001  		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
1002  		return status;
1003  	}
1004  
1005  	status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
1006  	if (status) {
1007  		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
1008  		return status;
1009  	}
1010  
1011  	status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
1012  	if (status) {
1013  		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
1014  		return status;
1015  	}
1016  
1017  	status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
1018  	if (status) {
1019  		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
1020  		return status;
1021  	}
1022  
1023  	return 0;
1024  }
1025  
1026  /**
1027   * ice_init_nvm - initializes NVM setting
1028   * @hw: pointer to the HW struct
1029   *
1030   * This function reads and populates NVM settings such as Shadow RAM size,
1031   * max_timeout, and blank_nvm_mode
1032   */
ice_init_nvm(struct ice_hw * hw)1033  int ice_init_nvm(struct ice_hw *hw)
1034  {
1035  	struct ice_flash_info *flash = &hw->flash;
1036  	u32 fla, gens_stat;
1037  	u8 sr_size;
1038  	int status;
1039  
1040  	/* The SR size is stored regardless of the NVM programming mode
1041  	 * as the blank mode may be used in the factory line.
1042  	 */
1043  	gens_stat = rd32(hw, GLNVM_GENS);
1044  	sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
1045  
1046  	/* Switching to words (sr_size contains power of 2) */
1047  	flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
1048  
1049  	/* Check if we are in the normal or blank NVM programming mode */
1050  	fla = rd32(hw, GLNVM_FLA);
1051  	if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
1052  		flash->blank_nvm_mode = false;
1053  	} else {
1054  		/* Blank programming mode */
1055  		flash->blank_nvm_mode = true;
1056  		ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
1057  		return -EIO;
1058  	}
1059  
1060  	status = ice_discover_flash_size(hw);
1061  	if (status) {
1062  		ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
1063  		return status;
1064  	}
1065  
1066  	status = ice_determine_active_flash_banks(hw);
1067  	if (status) {
1068  		ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
1069  		return status;
1070  	}
1071  
1072  	status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
1073  	if (status) {
1074  		ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
1075  		return status;
1076  	}
1077  
1078  	status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
1079  	if (status)
1080  		ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
1081  
1082  	/* read the netlist version information */
1083  	status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist);
1084  	if (status)
1085  		ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
1086  
1087  	return 0;
1088  }
1089  
1090  /**
1091   * ice_nvm_validate_checksum
1092   * @hw: pointer to the HW struct
1093   *
1094   * Verify NVM PFA checksum validity (0x0706)
1095   */
ice_nvm_validate_checksum(struct ice_hw * hw)1096  int ice_nvm_validate_checksum(struct ice_hw *hw)
1097  {
1098  	struct ice_aqc_nvm_checksum *cmd;
1099  	struct ice_aq_desc desc;
1100  	int status;
1101  
1102  	status = ice_acquire_nvm(hw, ICE_RES_READ);
1103  	if (status)
1104  		return status;
1105  
1106  	cmd = &desc.params.nvm_checksum;
1107  
1108  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
1109  	cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
1110  
1111  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1112  	ice_release_nvm(hw);
1113  
1114  	if (!status)
1115  		if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
1116  			status = -EIO;
1117  
1118  	return status;
1119  }
1120  
1121  /**
1122   * ice_nvm_write_activate
1123   * @hw: pointer to the HW struct
1124   * @cmd_flags: flags for write activate command
1125   * @response_flags: response indicators from firmware
1126   *
1127   * Update the control word with the required banks' validity bits
1128   * and dumps the Shadow RAM to flash (0x0707)
1129   *
1130   * cmd_flags controls which banks to activate, the preservation level to use
1131   * when activating the NVM bank, and whether an EMP reset is required for
1132   * activation.
1133   *
1134   * Note that the 16bit cmd_flags value is split between two separate 1 byte
1135   * flag values in the descriptor.
1136   *
1137   * On successful return of the firmware command, the response_flags variable
1138   * is updated with the flags reported by firmware indicating certain status,
1139   * such as whether EMP reset is enabled.
1140   */
ice_nvm_write_activate(struct ice_hw * hw,u16 cmd_flags,u8 * response_flags)1141  int ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags)
1142  {
1143  	struct ice_aqc_nvm *cmd;
1144  	struct ice_aq_desc desc;
1145  	int err;
1146  
1147  	cmd = &desc.params.nvm;
1148  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
1149  
1150  	cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
1151  	cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF);
1152  
1153  	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1154  	if (!err && response_flags)
1155  		*response_flags = cmd->cmd_flags;
1156  
1157  	return err;
1158  }
1159  
1160  /**
1161   * ice_aq_nvm_update_empr
1162   * @hw: pointer to the HW struct
1163   *
1164   * Update empr (0x0709). This command allows SW to
1165   * request an EMPR to activate new FW.
1166   */
ice_aq_nvm_update_empr(struct ice_hw * hw)1167  int ice_aq_nvm_update_empr(struct ice_hw *hw)
1168  {
1169  	struct ice_aq_desc desc;
1170  
1171  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
1172  
1173  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1174  }
1175  
1176  /* ice_nvm_set_pkg_data
1177   * @hw: pointer to the HW struct
1178   * @del_pkg_data_flag: If is set then the current pkg_data store by FW
1179   *		       is deleted.
1180   *		       If bit is set to 1, then buffer should be size 0.
1181   * @data: pointer to buffer
1182   * @length: length of the buffer
1183   * @cd: pointer to command details structure or NULL
1184   *
1185   * Set package data (0x070A). This command is equivalent to the reception
1186   * of a PLDM FW Update GetPackageData cmd. This command should be sent
1187   * as part of the NVM update as the first cmd in the flow.
1188   */
1189  
1190  int
ice_nvm_set_pkg_data(struct ice_hw * hw,bool del_pkg_data_flag,u8 * data,u16 length,struct ice_sq_cd * cd)1191  ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
1192  		     u16 length, struct ice_sq_cd *cd)
1193  {
1194  	struct ice_aqc_nvm_pkg_data *cmd;
1195  	struct ice_aq_desc desc;
1196  
1197  	if (length != 0 && !data)
1198  		return -EINVAL;
1199  
1200  	cmd = &desc.params.pkg_data;
1201  
1202  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
1203  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1204  
1205  	if (del_pkg_data_flag)
1206  		cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
1207  
1208  	return ice_aq_send_cmd(hw, &desc, data, length, cd);
1209  }
1210  
1211  /* ice_nvm_pass_component_tbl
1212   * @hw: pointer to the HW struct
1213   * @data: pointer to buffer
1214   * @length: length of the buffer
1215   * @transfer_flag: parameter for determining stage of the update
1216   * @comp_response: a pointer to the response from the 0x070B AQC.
1217   * @comp_response_code: a pointer to the response code from the 0x070B AQC.
1218   * @cd: pointer to command details structure or NULL
1219   *
1220   * Pass component table (0x070B). This command is equivalent to the reception
1221   * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
1222   * per component. It can be only sent after Set Package Data cmd and before
1223   * actual update. FW will assume these commands are going to be sent until
1224   * the TransferFlag is set to End or StartAndEnd.
1225   */
1226  
1227  int
ice_nvm_pass_component_tbl(struct ice_hw * hw,u8 * data,u16 length,u8 transfer_flag,u8 * comp_response,u8 * comp_response_code,struct ice_sq_cd * cd)1228  ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
1229  			   u8 transfer_flag, u8 *comp_response,
1230  			   u8 *comp_response_code, struct ice_sq_cd *cd)
1231  {
1232  	struct ice_aqc_nvm_pass_comp_tbl *cmd;
1233  	struct ice_aq_desc desc;
1234  	int status;
1235  
1236  	if (!data || !comp_response || !comp_response_code)
1237  		return -EINVAL;
1238  
1239  	cmd = &desc.params.pass_comp_tbl;
1240  
1241  	ice_fill_dflt_direct_cmd_desc(&desc,
1242  				      ice_aqc_opc_nvm_pass_component_tbl);
1243  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1244  
1245  	cmd->transfer_flag = transfer_flag;
1246  	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
1247  
1248  	if (!status) {
1249  		*comp_response = cmd->component_response;
1250  		*comp_response_code = cmd->component_response_code;
1251  	}
1252  	return status;
1253  }
1254