1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4 *
5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 *
8 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9 *
10 * Basic principles:
11 *
12 * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13 * the kernel to set one of a handful of 'caching type' attributes for physical
14 * memory ranges: uncached, write-combining, write-through, write-protected,
15 * and the most commonly used and default attribute: write-back caching.
16 *
17 * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
18 * a hardware interface to enumerate a limited number of physical memory ranges
19 * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20 * Even modern CPUs have MTRRs enabled - but these are typically not touched
21 * by the kernel or by user-space (such as the X server), we rely on PAT for any
22 * additional cache attribute logic.
23 *
24 * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25 * cache attribute information to the mapped memory range: there's 3 bits used,
26 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27 * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28 *
29 * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30 * that only support 4 types of PAT entries, and interaction with MTRRs, see
31 * below for details. )
32 */
33
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/fs.h>
43 #include <linux/rbtree.h>
44
45 #include <asm/cacheflush.h>
46 #include <asm/cacheinfo.h>
47 #include <asm/processor.h>
48 #include <asm/tlbflush.h>
49 #include <asm/x86_init.h>
50 #include <asm/fcntl.h>
51 #include <asm/e820/api.h>
52 #include <asm/mtrr.h>
53 #include <asm/page.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/io.h>
57
58 #include "memtype.h"
59 #include "../mm_internal.h"
60
61 #undef pr_fmt
62 #define pr_fmt(fmt) "" fmt
63
64 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
65 static u64 __ro_after_init pat_msr_val;
66
67 /*
68 * PAT support is enabled by default, but can be disabled for
69 * various user-requested or hardware-forced reasons:
70 */
pat_disable(const char * msg_reason)71 static void __init pat_disable(const char *msg_reason)
72 {
73 if (pat_disabled)
74 return;
75
76 pat_disabled = true;
77 pr_info("x86/PAT: %s\n", msg_reason);
78
79 memory_caching_control &= ~CACHE_PAT;
80 }
81
nopat(char * str)82 static int __init nopat(char *str)
83 {
84 pat_disable("PAT support disabled via boot option.");
85 return 0;
86 }
87 early_param("nopat", nopat);
88
pat_enabled(void)89 bool pat_enabled(void)
90 {
91 return !pat_disabled;
92 }
93 EXPORT_SYMBOL_GPL(pat_enabled);
94
95 int pat_debug_enable;
96
pat_debug_setup(char * str)97 static int __init pat_debug_setup(char *str)
98 {
99 pat_debug_enable = 1;
100 return 1;
101 }
102 __setup("debugpat", pat_debug_setup);
103
104 #ifdef CONFIG_X86_PAT
105 /*
106 * X86 PAT uses page flags arch_1 and uncached together to keep track of
107 * memory type of pages that have backing page struct.
108 *
109 * X86 PAT supports 4 different memory types:
110 * - _PAGE_CACHE_MODE_WB
111 * - _PAGE_CACHE_MODE_WC
112 * - _PAGE_CACHE_MODE_UC_MINUS
113 * - _PAGE_CACHE_MODE_WT
114 *
115 * _PAGE_CACHE_MODE_WB is the default type.
116 */
117
118 #define _PGMT_WB 0
119 #define _PGMT_WC (1UL << PG_arch_1)
120 #define _PGMT_UC_MINUS (1UL << PG_uncached)
121 #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
122 #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
123 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
124
get_page_memtype(struct page * pg)125 static inline enum page_cache_mode get_page_memtype(struct page *pg)
126 {
127 unsigned long pg_flags = pg->flags & _PGMT_MASK;
128
129 if (pg_flags == _PGMT_WB)
130 return _PAGE_CACHE_MODE_WB;
131 else if (pg_flags == _PGMT_WC)
132 return _PAGE_CACHE_MODE_WC;
133 else if (pg_flags == _PGMT_UC_MINUS)
134 return _PAGE_CACHE_MODE_UC_MINUS;
135 else
136 return _PAGE_CACHE_MODE_WT;
137 }
138
set_page_memtype(struct page * pg,enum page_cache_mode memtype)139 static inline void set_page_memtype(struct page *pg,
140 enum page_cache_mode memtype)
141 {
142 unsigned long memtype_flags;
143 unsigned long old_flags;
144 unsigned long new_flags;
145
146 switch (memtype) {
147 case _PAGE_CACHE_MODE_WC:
148 memtype_flags = _PGMT_WC;
149 break;
150 case _PAGE_CACHE_MODE_UC_MINUS:
151 memtype_flags = _PGMT_UC_MINUS;
152 break;
153 case _PAGE_CACHE_MODE_WT:
154 memtype_flags = _PGMT_WT;
155 break;
156 case _PAGE_CACHE_MODE_WB:
157 default:
158 memtype_flags = _PGMT_WB;
159 break;
160 }
161
162 old_flags = READ_ONCE(pg->flags);
163 do {
164 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
165 } while (!try_cmpxchg(&pg->flags, &old_flags, new_flags));
166 }
167 #else
get_page_memtype(struct page * pg)168 static inline enum page_cache_mode get_page_memtype(struct page *pg)
169 {
170 return -1;
171 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)172 static inline void set_page_memtype(struct page *pg,
173 enum page_cache_mode memtype)
174 {
175 }
176 #endif
177
178 enum {
179 PAT_UC = 0, /* uncached */
180 PAT_WC = 1, /* Write combining */
181 PAT_WT = 4, /* Write Through */
182 PAT_WP = 5, /* Write Protected */
183 PAT_WB = 6, /* Write Back (default) */
184 PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */
185 };
186
187 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
188
pat_get_cache_mode(unsigned int pat_val,char * msg)189 static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val,
190 char *msg)
191 {
192 enum page_cache_mode cache;
193 char *cache_mode;
194
195 switch (pat_val) {
196 case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
197 case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
198 case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
199 case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
200 case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
201 case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
202 default: cache = CM(WB); cache_mode = "WB "; break;
203 }
204
205 memcpy(msg, cache_mode, 4);
206
207 return cache;
208 }
209
210 #undef CM
211
212 /*
213 * Update the cache mode to pgprot translation tables according to PAT
214 * configuration.
215 * Using lower indices is preferred, so we start with highest index.
216 */
init_cache_modes(u64 pat)217 static void __init init_cache_modes(u64 pat)
218 {
219 enum page_cache_mode cache;
220 char pat_msg[33];
221 int i;
222
223 pat_msg[32] = 0;
224 for (i = 7; i >= 0; i--) {
225 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
226 pat_msg + 4 * i);
227 update_cache_mode_entry(i, cache);
228 }
229 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
230 }
231
pat_cpu_init(void)232 void pat_cpu_init(void)
233 {
234 if (!boot_cpu_has(X86_FEATURE_PAT)) {
235 /*
236 * If this happens we are on a secondary CPU, but switched to
237 * PAT on the boot CPU. We have no way to undo PAT.
238 */
239 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
240 }
241
242 wrmsrl(MSR_IA32_CR_PAT, pat_msr_val);
243 }
244
245 /**
246 * pat_bp_init - Initialize the PAT MSR value and PAT table
247 *
248 * This function initializes PAT MSR value and PAT table with an OS-defined
249 * value to enable additional cache attributes, WC, WT and WP.
250 *
251 * This function prepares the calls of pat_cpu_init() via cache_cpu_init()
252 * on all CPUs.
253 */
pat_bp_init(void)254 void __init pat_bp_init(void)
255 {
256 struct cpuinfo_x86 *c = &boot_cpu_data;
257 #define PAT(p0, p1, p2, p3, p4, p5, p6, p7) \
258 (((u64)PAT_ ## p0) | ((u64)PAT_ ## p1 << 8) | \
259 ((u64)PAT_ ## p2 << 16) | ((u64)PAT_ ## p3 << 24) | \
260 ((u64)PAT_ ## p4 << 32) | ((u64)PAT_ ## p5 << 40) | \
261 ((u64)PAT_ ## p6 << 48) | ((u64)PAT_ ## p7 << 56))
262
263
264 if (!IS_ENABLED(CONFIG_X86_PAT))
265 pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
266
267 if (!cpu_feature_enabled(X86_FEATURE_PAT))
268 pat_disable("PAT not supported by the CPU.");
269 else
270 rdmsrl(MSR_IA32_CR_PAT, pat_msr_val);
271
272 if (!pat_msr_val) {
273 pat_disable("PAT support disabled by the firmware.");
274
275 /*
276 * No PAT. Emulate the PAT table that corresponds to the two
277 * cache bits, PWT (Write Through) and PCD (Cache Disable).
278 * This setup is also the same as the BIOS default setup.
279 *
280 * PTE encoding:
281 *
282 * PCD
283 * |PWT PAT
284 * || slot
285 * 00 0 WB : _PAGE_CACHE_MODE_WB
286 * 01 1 WT : _PAGE_CACHE_MODE_WT
287 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
288 * 11 3 UC : _PAGE_CACHE_MODE_UC
289 *
290 * NOTE: When WC or WP is used, it is redirected to UC- per
291 * the default setup in __cachemode2pte_tbl[].
292 */
293 pat_msr_val = PAT(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC);
294 }
295
296 /*
297 * Xen PV doesn't allow to set PAT MSR, but all cache modes are
298 * supported.
299 * When running as TDX guest setting the PAT MSR won't work either
300 * due to the requirement to set CR0.CD when doing so. Rely on
301 * firmware to have set the PAT MSR correctly.
302 */
303 if (pat_disabled ||
304 cpu_feature_enabled(X86_FEATURE_XENPV) ||
305 cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
306 init_cache_modes(pat_msr_val);
307 return;
308 }
309
310 if ((c->x86_vendor == X86_VENDOR_INTEL) &&
311 (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
312 ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
313 /*
314 * PAT support with the lower four entries. Intel Pentium 2,
315 * 3, M, and 4 are affected by PAT errata, which makes the
316 * upper four entries unusable. To be on the safe side, we don't
317 * use those.
318 *
319 * PTE encoding:
320 * PAT
321 * |PCD
322 * ||PWT PAT
323 * ||| slot
324 * 000 0 WB : _PAGE_CACHE_MODE_WB
325 * 001 1 WC : _PAGE_CACHE_MODE_WC
326 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
327 * 011 3 UC : _PAGE_CACHE_MODE_UC
328 * PAT bit unused
329 *
330 * NOTE: When WT or WP is used, it is redirected to UC- per
331 * the default setup in __cachemode2pte_tbl[].
332 */
333 pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC);
334 } else {
335 /*
336 * Full PAT support. We put WT in slot 7 to improve
337 * robustness in the presence of errata that might cause
338 * the high PAT bit to be ignored. This way, a buggy slot 7
339 * access will hit slot 3, and slot 3 is UC, so at worst
340 * we lose performance without causing a correctness issue.
341 * Pentium 4 erratum N46 is an example for such an erratum,
342 * although we try not to use PAT at all on affected CPUs.
343 *
344 * PTE encoding:
345 * PAT
346 * |PCD
347 * ||PWT PAT
348 * ||| slot
349 * 000 0 WB : _PAGE_CACHE_MODE_WB
350 * 001 1 WC : _PAGE_CACHE_MODE_WC
351 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
352 * 011 3 UC : _PAGE_CACHE_MODE_UC
353 * 100 4 WB : Reserved
354 * 101 5 WP : _PAGE_CACHE_MODE_WP
355 * 110 6 UC-: Reserved
356 * 111 7 WT : _PAGE_CACHE_MODE_WT
357 *
358 * The reserved slots are unused, but mapped to their
359 * corresponding types in the presence of PAT errata.
360 */
361 pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT);
362 }
363
364 memory_caching_control |= CACHE_PAT;
365
366 init_cache_modes(pat_msr_val);
367 #undef PAT
368 }
369
370 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
371
372 /*
373 * Does intersection of PAT memory type and MTRR memory type and returns
374 * the resulting memory type as PAT understands it.
375 * (Type in pat and mtrr will not have same value)
376 * The intersection is based on "Effective Memory Type" tables in IA-32
377 * SDM vol 3a
378 */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)379 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
380 enum page_cache_mode req_type)
381 {
382 /*
383 * Look for MTRR hint to get the effective type in case where PAT
384 * request is for WB.
385 */
386 if (req_type == _PAGE_CACHE_MODE_WB) {
387 u8 mtrr_type, uniform;
388
389 mtrr_type = mtrr_type_lookup(start, end, &uniform);
390 if (mtrr_type != MTRR_TYPE_WRBACK)
391 return _PAGE_CACHE_MODE_UC_MINUS;
392
393 return _PAGE_CACHE_MODE_WB;
394 }
395
396 return req_type;
397 }
398
399 struct pagerange_state {
400 unsigned long cur_pfn;
401 int ram;
402 int not_ram;
403 };
404
405 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)406 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
407 {
408 struct pagerange_state *state = arg;
409
410 state->not_ram |= initial_pfn > state->cur_pfn;
411 state->ram |= total_nr_pages > 0;
412 state->cur_pfn = initial_pfn + total_nr_pages;
413
414 return state->ram && state->not_ram;
415 }
416
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)417 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
418 {
419 int ret = 0;
420 unsigned long start_pfn = start >> PAGE_SHIFT;
421 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
422 struct pagerange_state state = {start_pfn, 0, 0};
423
424 /*
425 * For legacy reasons, physical address range in the legacy ISA
426 * region is tracked as non-RAM. This will allow users of
427 * /dev/mem to map portions of legacy ISA region, even when
428 * some of those portions are listed(or not even listed) with
429 * different e820 types(RAM/reserved/..)
430 */
431 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
432 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
433
434 if (start_pfn < end_pfn) {
435 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
436 &state, pagerange_is_ram_callback);
437 }
438
439 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
440 }
441
442 /*
443 * For RAM pages, we use page flags to mark the pages with appropriate type.
444 * The page flags are limited to four types, WB (default), WC, WT and UC-.
445 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
446 * a new memory type is only allowed for a page mapped with the default WB
447 * type.
448 *
449 * Here we do two passes:
450 * - Find the memtype of all the pages in the range, look for any conflicts.
451 * - In case of no conflicts, set the new memtype for pages in the range.
452 */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)453 static int reserve_ram_pages_type(u64 start, u64 end,
454 enum page_cache_mode req_type,
455 enum page_cache_mode *new_type)
456 {
457 struct page *page;
458 u64 pfn;
459
460 if (req_type == _PAGE_CACHE_MODE_WP) {
461 if (new_type)
462 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
463 return -EINVAL;
464 }
465
466 if (req_type == _PAGE_CACHE_MODE_UC) {
467 /* We do not support strong UC */
468 WARN_ON_ONCE(1);
469 req_type = _PAGE_CACHE_MODE_UC_MINUS;
470 }
471
472 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
473 enum page_cache_mode type;
474
475 page = pfn_to_page(pfn);
476 type = get_page_memtype(page);
477 if (type != _PAGE_CACHE_MODE_WB) {
478 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
479 start, end - 1, type, req_type);
480 if (new_type)
481 *new_type = type;
482
483 return -EBUSY;
484 }
485 }
486
487 if (new_type)
488 *new_type = req_type;
489
490 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
491 page = pfn_to_page(pfn);
492 set_page_memtype(page, req_type);
493 }
494 return 0;
495 }
496
free_ram_pages_type(u64 start,u64 end)497 static int free_ram_pages_type(u64 start, u64 end)
498 {
499 struct page *page;
500 u64 pfn;
501
502 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
503 page = pfn_to_page(pfn);
504 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
505 }
506 return 0;
507 }
508
sanitize_phys(u64 address)509 static u64 sanitize_phys(u64 address)
510 {
511 /*
512 * When changing the memtype for pages containing poison allow
513 * for a "decoy" virtual address (bit 63 clear) passed to
514 * set_memory_X(). __pa() on a "decoy" address results in a
515 * physical address with bit 63 set.
516 *
517 * Decoy addresses are not present for 32-bit builds, see
518 * set_mce_nospec().
519 */
520 if (IS_ENABLED(CONFIG_X86_64))
521 return address & __PHYSICAL_MASK;
522 return address;
523 }
524
525 /*
526 * req_type typically has one of the:
527 * - _PAGE_CACHE_MODE_WB
528 * - _PAGE_CACHE_MODE_WC
529 * - _PAGE_CACHE_MODE_UC_MINUS
530 * - _PAGE_CACHE_MODE_UC
531 * - _PAGE_CACHE_MODE_WT
532 *
533 * If new_type is NULL, function will return an error if it cannot reserve the
534 * region with req_type. If new_type is non-NULL, function will return
535 * available type in new_type in case of no error. In case of any error
536 * it will return a negative return value.
537 */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)538 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
539 enum page_cache_mode *new_type)
540 {
541 struct memtype *entry_new;
542 enum page_cache_mode actual_type;
543 int is_range_ram;
544 int err = 0;
545
546 start = sanitize_phys(start);
547
548 /*
549 * The end address passed into this function is exclusive, but
550 * sanitize_phys() expects an inclusive address.
551 */
552 end = sanitize_phys(end - 1) + 1;
553 if (start >= end) {
554 WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
555 start, end - 1, cattr_name(req_type));
556 return -EINVAL;
557 }
558
559 if (!pat_enabled()) {
560 /* This is identical to page table setting without PAT */
561 if (new_type)
562 *new_type = req_type;
563 return 0;
564 }
565
566 /* Low ISA region is always mapped WB in page table. No need to track */
567 if (x86_platform.is_untracked_pat_range(start, end)) {
568 if (new_type)
569 *new_type = _PAGE_CACHE_MODE_WB;
570 return 0;
571 }
572
573 /*
574 * Call mtrr_lookup to get the type hint. This is an
575 * optimization for /dev/mem mmap'ers into WB memory (BIOS
576 * tools and ACPI tools). Use WB request for WB memory and use
577 * UC_MINUS otherwise.
578 */
579 actual_type = pat_x_mtrr_type(start, end, req_type);
580
581 if (new_type)
582 *new_type = actual_type;
583
584 is_range_ram = pat_pagerange_is_ram(start, end);
585 if (is_range_ram == 1) {
586
587 err = reserve_ram_pages_type(start, end, req_type, new_type);
588
589 return err;
590 } else if (is_range_ram < 0) {
591 return -EINVAL;
592 }
593
594 entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
595 if (!entry_new)
596 return -ENOMEM;
597
598 entry_new->start = start;
599 entry_new->end = end;
600 entry_new->type = actual_type;
601
602 spin_lock(&memtype_lock);
603
604 err = memtype_check_insert(entry_new, new_type);
605 if (err) {
606 pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
607 start, end - 1,
608 cattr_name(entry_new->type), cattr_name(req_type));
609 kfree(entry_new);
610 spin_unlock(&memtype_lock);
611
612 return err;
613 }
614
615 spin_unlock(&memtype_lock);
616
617 dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
618 start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
619 new_type ? cattr_name(*new_type) : "-");
620
621 return err;
622 }
623
memtype_free(u64 start,u64 end)624 int memtype_free(u64 start, u64 end)
625 {
626 int is_range_ram;
627 struct memtype *entry_old;
628
629 if (!pat_enabled())
630 return 0;
631
632 start = sanitize_phys(start);
633 end = sanitize_phys(end);
634
635 /* Low ISA region is always mapped WB. No need to track */
636 if (x86_platform.is_untracked_pat_range(start, end))
637 return 0;
638
639 is_range_ram = pat_pagerange_is_ram(start, end);
640 if (is_range_ram == 1)
641 return free_ram_pages_type(start, end);
642 if (is_range_ram < 0)
643 return -EINVAL;
644
645 spin_lock(&memtype_lock);
646 entry_old = memtype_erase(start, end);
647 spin_unlock(&memtype_lock);
648
649 if (IS_ERR(entry_old)) {
650 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
651 current->comm, current->pid, start, end - 1);
652 return -EINVAL;
653 }
654
655 kfree(entry_old);
656
657 dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
658
659 return 0;
660 }
661
662
663 /**
664 * lookup_memtype - Looks up the memory type for a physical address
665 * @paddr: physical address of which memory type needs to be looked up
666 *
667 * Only to be called when PAT is enabled
668 *
669 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
670 * or _PAGE_CACHE_MODE_WT.
671 */
lookup_memtype(u64 paddr)672 static enum page_cache_mode lookup_memtype(u64 paddr)
673 {
674 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
675 struct memtype *entry;
676
677 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
678 return rettype;
679
680 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
681 struct page *page;
682
683 page = pfn_to_page(paddr >> PAGE_SHIFT);
684 return get_page_memtype(page);
685 }
686
687 spin_lock(&memtype_lock);
688
689 entry = memtype_lookup(paddr);
690 if (entry != NULL)
691 rettype = entry->type;
692 else
693 rettype = _PAGE_CACHE_MODE_UC_MINUS;
694
695 spin_unlock(&memtype_lock);
696
697 return rettype;
698 }
699
700 /**
701 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
702 * of @pfn cannot be overridden by UC MTRR memory type.
703 *
704 * Only to be called when PAT is enabled.
705 *
706 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
707 * Returns false in other cases.
708 */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)709 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
710 {
711 enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
712
713 return cm == _PAGE_CACHE_MODE_UC ||
714 cm == _PAGE_CACHE_MODE_UC_MINUS ||
715 cm == _PAGE_CACHE_MODE_WC;
716 }
717 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
718
719 /**
720 * memtype_reserve_io - Request a memory type mapping for a region of memory
721 * @start: start (physical address) of the region
722 * @end: end (physical address) of the region
723 * @type: A pointer to memtype, with requested type. On success, requested
724 * or any other compatible type that was available for the region is returned
725 *
726 * On success, returns 0
727 * On failure, returns non-zero
728 */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)729 int memtype_reserve_io(resource_size_t start, resource_size_t end,
730 enum page_cache_mode *type)
731 {
732 resource_size_t size = end - start;
733 enum page_cache_mode req_type = *type;
734 enum page_cache_mode new_type;
735 int ret;
736
737 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
738
739 ret = memtype_reserve(start, end, req_type, &new_type);
740 if (ret)
741 goto out_err;
742
743 if (!is_new_memtype_allowed(start, size, req_type, new_type))
744 goto out_free;
745
746 if (memtype_kernel_map_sync(start, size, new_type) < 0)
747 goto out_free;
748
749 *type = new_type;
750 return 0;
751
752 out_free:
753 memtype_free(start, end);
754 ret = -EBUSY;
755 out_err:
756 return ret;
757 }
758
759 /**
760 * memtype_free_io - Release a memory type mapping for a region of memory
761 * @start: start (physical address) of the region
762 * @end: end (physical address) of the region
763 */
memtype_free_io(resource_size_t start,resource_size_t end)764 void memtype_free_io(resource_size_t start, resource_size_t end)
765 {
766 memtype_free(start, end);
767 }
768
769 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)770 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
771 {
772 enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
773
774 return memtype_reserve_io(start, start + size, &type);
775 }
776 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
777
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)778 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
779 {
780 memtype_free_io(start, start + size);
781 }
782 EXPORT_SYMBOL(arch_io_free_memtype_wc);
783 #endif
784
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)785 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
786 unsigned long size, pgprot_t vma_prot)
787 {
788 if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
789 vma_prot = pgprot_decrypted(vma_prot);
790
791 return vma_prot;
792 }
793
794 #ifdef CONFIG_STRICT_DEVMEM
795 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)796 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
797 {
798 return 1;
799 }
800 #else
801 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)802 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
803 {
804 u64 from = ((u64)pfn) << PAGE_SHIFT;
805 u64 to = from + size;
806 u64 cursor = from;
807
808 if (!pat_enabled())
809 return 1;
810
811 while (cursor < to) {
812 if (!devmem_is_allowed(pfn))
813 return 0;
814 cursor += PAGE_SIZE;
815 pfn++;
816 }
817 return 1;
818 }
819 #endif /* CONFIG_STRICT_DEVMEM */
820
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)821 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
822 unsigned long size, pgprot_t *vma_prot)
823 {
824 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
825
826 if (!range_is_allowed(pfn, size))
827 return 0;
828
829 if (file->f_flags & O_DSYNC)
830 pcm = _PAGE_CACHE_MODE_UC_MINUS;
831
832 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
833 cachemode2protval(pcm));
834 return 1;
835 }
836
837 /*
838 * Change the memory type for the physical address range in kernel identity
839 * mapping space if that range is a part of identity map.
840 */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)841 int memtype_kernel_map_sync(u64 base, unsigned long size,
842 enum page_cache_mode pcm)
843 {
844 unsigned long id_sz;
845
846 if (base > __pa(high_memory-1))
847 return 0;
848
849 /*
850 * Some areas in the middle of the kernel identity range
851 * are not mapped, for example the PCI space.
852 */
853 if (!page_is_ram(base >> PAGE_SHIFT))
854 return 0;
855
856 id_sz = (__pa(high_memory-1) <= base + size) ?
857 __pa(high_memory) - base : size;
858
859 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
860 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
861 current->comm, current->pid,
862 cattr_name(pcm),
863 base, (unsigned long long)(base + size-1));
864 return -EINVAL;
865 }
866 return 0;
867 }
868
869 /*
870 * Internal interface to reserve a range of physical memory with prot.
871 * Reserved non RAM regions only and after successful memtype_reserve,
872 * this func also keeps identity mapping (if any) in sync with this new prot.
873 */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)874 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
875 int strict_prot)
876 {
877 int is_ram = 0;
878 int ret;
879 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
880 enum page_cache_mode pcm = want_pcm;
881
882 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
883
884 /*
885 * reserve_pfn_range() for RAM pages. We do not refcount to keep
886 * track of number of mappings of RAM pages. We can assert that
887 * the type requested matches the type of first page in the range.
888 */
889 if (is_ram) {
890 if (!pat_enabled())
891 return 0;
892
893 pcm = lookup_memtype(paddr);
894 if (want_pcm != pcm) {
895 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
896 current->comm, current->pid,
897 cattr_name(want_pcm),
898 (unsigned long long)paddr,
899 (unsigned long long)(paddr + size - 1),
900 cattr_name(pcm));
901 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
902 (~_PAGE_CACHE_MASK)) |
903 cachemode2protval(pcm));
904 }
905 return 0;
906 }
907
908 ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
909 if (ret)
910 return ret;
911
912 if (pcm != want_pcm) {
913 if (strict_prot ||
914 !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
915 memtype_free(paddr, paddr + size);
916 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
917 current->comm, current->pid,
918 cattr_name(want_pcm),
919 (unsigned long long)paddr,
920 (unsigned long long)(paddr + size - 1),
921 cattr_name(pcm));
922 return -EINVAL;
923 }
924 /*
925 * We allow returning different type than the one requested in
926 * non strict case.
927 */
928 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
929 (~_PAGE_CACHE_MASK)) |
930 cachemode2protval(pcm));
931 }
932
933 if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
934 memtype_free(paddr, paddr + size);
935 return -EINVAL;
936 }
937 return 0;
938 }
939
940 /*
941 * Internal interface to free a range of physical memory.
942 * Frees non RAM regions only.
943 */
free_pfn_range(u64 paddr,unsigned long size)944 static void free_pfn_range(u64 paddr, unsigned long size)
945 {
946 int is_ram;
947
948 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
949 if (is_ram == 0)
950 memtype_free(paddr, paddr + size);
951 }
952
get_pat_info(struct vm_area_struct * vma,resource_size_t * paddr,pgprot_t * pgprot)953 static int get_pat_info(struct vm_area_struct *vma, resource_size_t *paddr,
954 pgprot_t *pgprot)
955 {
956 unsigned long prot;
957
958 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_PAT));
959
960 /*
961 * We need the starting PFN and cachemode used for track_pfn_remap()
962 * that covered the whole VMA. For most mappings, we can obtain that
963 * information from the page tables. For COW mappings, we might now
964 * suddenly have anon folios mapped and follow_phys() will fail.
965 *
966 * Fallback to using vma->vm_pgoff, see remap_pfn_range_notrack(), to
967 * detect the PFN. If we need the cachemode as well, we're out of luck
968 * for now and have to fail fork().
969 */
970 if (!follow_phys(vma, vma->vm_start, 0, &prot, paddr)) {
971 if (pgprot)
972 *pgprot = __pgprot(prot);
973 return 0;
974 }
975 if (is_cow_mapping(vma->vm_flags)) {
976 if (pgprot)
977 return -EINVAL;
978 *paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
979 return 0;
980 }
981 WARN_ON_ONCE(1);
982 return -EINVAL;
983 }
984
985 /*
986 * track_pfn_copy is called when vma that is covering the pfnmap gets
987 * copied through copy_page_range().
988 *
989 * If the vma has a linear pfn mapping for the entire range, we get the prot
990 * from pte and reserve the entire vma range with single reserve_pfn_range call.
991 */
track_pfn_copy(struct vm_area_struct * vma)992 int track_pfn_copy(struct vm_area_struct *vma)
993 {
994 resource_size_t paddr;
995 unsigned long vma_size = vma->vm_end - vma->vm_start;
996 pgprot_t pgprot;
997
998 if (vma->vm_flags & VM_PAT) {
999 if (get_pat_info(vma, &paddr, &pgprot))
1000 return -EINVAL;
1001 /* reserve the whole chunk covered by vma. */
1002 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1003 }
1004
1005 return 0;
1006 }
1007
1008 /*
1009 * prot is passed in as a parameter for the new mapping. If the vma has
1010 * a linear pfn mapping for the entire range, or no vma is provided,
1011 * reserve the entire pfn + size range with single reserve_pfn_range
1012 * call.
1013 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1014 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1015 unsigned long pfn, unsigned long addr, unsigned long size)
1016 {
1017 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1018 enum page_cache_mode pcm;
1019
1020 /* reserve the whole chunk starting from paddr */
1021 if (!vma || (addr == vma->vm_start
1022 && size == (vma->vm_end - vma->vm_start))) {
1023 int ret;
1024
1025 ret = reserve_pfn_range(paddr, size, prot, 0);
1026 if (ret == 0 && vma)
1027 vm_flags_set(vma, VM_PAT);
1028 return ret;
1029 }
1030
1031 if (!pat_enabled())
1032 return 0;
1033
1034 /*
1035 * For anything smaller than the vma size we set prot based on the
1036 * lookup.
1037 */
1038 pcm = lookup_memtype(paddr);
1039
1040 /* Check memtype for the remaining pages */
1041 while (size > PAGE_SIZE) {
1042 size -= PAGE_SIZE;
1043 paddr += PAGE_SIZE;
1044 if (pcm != lookup_memtype(paddr))
1045 return -EINVAL;
1046 }
1047
1048 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1049 cachemode2protval(pcm));
1050
1051 return 0;
1052 }
1053
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1054 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1055 {
1056 enum page_cache_mode pcm;
1057
1058 if (!pat_enabled())
1059 return;
1060
1061 /* Set prot based on lookup */
1062 pcm = lookup_memtype(pfn_t_to_phys(pfn));
1063 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1064 cachemode2protval(pcm));
1065 }
1066
1067 /*
1068 * untrack_pfn is called while unmapping a pfnmap for a region.
1069 * untrack can be called for a specific region indicated by pfn and size or
1070 * can be for the entire vma (in which case pfn, size are zero).
1071 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1072 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1073 unsigned long size, bool mm_wr_locked)
1074 {
1075 resource_size_t paddr;
1076
1077 if (vma && !(vma->vm_flags & VM_PAT))
1078 return;
1079
1080 /* free the chunk starting from pfn or the whole chunk */
1081 paddr = (resource_size_t)pfn << PAGE_SHIFT;
1082 if (!paddr && !size) {
1083 if (get_pat_info(vma, &paddr, NULL))
1084 return;
1085 size = vma->vm_end - vma->vm_start;
1086 }
1087 free_pfn_range(paddr, size);
1088 if (vma) {
1089 if (mm_wr_locked)
1090 vm_flags_clear(vma, VM_PAT);
1091 else
1092 __vm_flags_mod(vma, 0, VM_PAT);
1093 }
1094 }
1095
1096 /*
1097 * untrack_pfn_clear is called if the following situation fits:
1098 *
1099 * 1) while mremapping a pfnmap for a new region, with the old vma after
1100 * its pfnmap page table has been removed. The new vma has a new pfnmap
1101 * to the same pfn & cache type with VM_PAT set.
1102 * 2) while duplicating vm area, the new vma fails to copy the pgtable from
1103 * old vma.
1104 */
untrack_pfn_clear(struct vm_area_struct * vma)1105 void untrack_pfn_clear(struct vm_area_struct *vma)
1106 {
1107 vm_flags_clear(vma, VM_PAT);
1108 }
1109
pgprot_writecombine(pgprot_t prot)1110 pgprot_t pgprot_writecombine(pgprot_t prot)
1111 {
1112 return __pgprot(pgprot_val(prot) |
1113 cachemode2protval(_PAGE_CACHE_MODE_WC));
1114 }
1115 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1116
pgprot_writethrough(pgprot_t prot)1117 pgprot_t pgprot_writethrough(pgprot_t prot)
1118 {
1119 return __pgprot(pgprot_val(prot) |
1120 cachemode2protval(_PAGE_CACHE_MODE_WT));
1121 }
1122 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1123
1124 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1125
1126 /*
1127 * We are allocating a temporary printout-entry to be passed
1128 * between seq_start()/next() and seq_show():
1129 */
memtype_get_idx(loff_t pos)1130 static struct memtype *memtype_get_idx(loff_t pos)
1131 {
1132 struct memtype *entry_print;
1133 int ret;
1134
1135 entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1136 if (!entry_print)
1137 return NULL;
1138
1139 spin_lock(&memtype_lock);
1140 ret = memtype_copy_nth_element(entry_print, pos);
1141 spin_unlock(&memtype_lock);
1142
1143 /* Free it on error: */
1144 if (ret) {
1145 kfree(entry_print);
1146 return NULL;
1147 }
1148
1149 return entry_print;
1150 }
1151
memtype_seq_start(struct seq_file * seq,loff_t * pos)1152 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1153 {
1154 if (*pos == 0) {
1155 ++*pos;
1156 seq_puts(seq, "PAT memtype list:\n");
1157 }
1158
1159 return memtype_get_idx(*pos);
1160 }
1161
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1162 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1163 {
1164 kfree(v);
1165 ++*pos;
1166 return memtype_get_idx(*pos);
1167 }
1168
memtype_seq_stop(struct seq_file * seq,void * v)1169 static void memtype_seq_stop(struct seq_file *seq, void *v)
1170 {
1171 kfree(v);
1172 }
1173
memtype_seq_show(struct seq_file * seq,void * v)1174 static int memtype_seq_show(struct seq_file *seq, void *v)
1175 {
1176 struct memtype *entry_print = (struct memtype *)v;
1177
1178 seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1179 entry_print->start,
1180 entry_print->end,
1181 cattr_name(entry_print->type));
1182
1183 return 0;
1184 }
1185
1186 static const struct seq_operations memtype_seq_ops = {
1187 .start = memtype_seq_start,
1188 .next = memtype_seq_next,
1189 .stop = memtype_seq_stop,
1190 .show = memtype_seq_show,
1191 };
1192
memtype_seq_open(struct inode * inode,struct file * file)1193 static int memtype_seq_open(struct inode *inode, struct file *file)
1194 {
1195 return seq_open(file, &memtype_seq_ops);
1196 }
1197
1198 static const struct file_operations memtype_fops = {
1199 .open = memtype_seq_open,
1200 .read = seq_read,
1201 .llseek = seq_lseek,
1202 .release = seq_release,
1203 };
1204
pat_memtype_list_init(void)1205 static int __init pat_memtype_list_init(void)
1206 {
1207 if (pat_enabled()) {
1208 debugfs_create_file("pat_memtype_list", S_IRUSR,
1209 arch_debugfs_dir, NULL, &memtype_fops);
1210 }
1211 return 0;
1212 }
1213 late_initcall(pat_memtype_list_init);
1214
1215 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1216