1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/gro.h>
29 #include <net/ipv6.h>
30 #include <net/ip6_checksum.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40
bnx2x_add_all_napi_cnic(struct bnx2x * bp)41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 int i;
44
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp, i) {
47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll);
48 }
49 }
50
bnx2x_add_all_napi(struct bnx2x * bp)51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 int i;
54
55 /* Add NAPI objects */
56 for_each_eth_queue(bp, i) {
57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll);
58 }
59 }
60
bnx2x_calc_num_queues(struct bnx2x * bp)61 static int bnx2x_calc_num_queues(struct bnx2x *bp)
62 {
63 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
64
65 /* Reduce memory usage in kdump environment by using only one queue */
66 if (is_kdump_kernel())
67 nq = 1;
68
69 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
70 return nq;
71 }
72
73 /**
74 * bnx2x_move_fp - move content of the fastpath structure.
75 *
76 * @bp: driver handle
77 * @from: source FP index
78 * @to: destination FP index
79 *
80 * Makes sure the contents of the bp->fp[to].napi is kept
81 * intact. This is done by first copying the napi struct from
82 * the target to the source, and then mem copying the entire
83 * source onto the target. Update txdata pointers and related
84 * content.
85 */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)86 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
87 {
88 struct bnx2x_fastpath *from_fp = &bp->fp[from];
89 struct bnx2x_fastpath *to_fp = &bp->fp[to];
90 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
91 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
92 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
93 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
94 int old_max_eth_txqs, new_max_eth_txqs;
95 int old_txdata_index = 0, new_txdata_index = 0;
96 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
97
98 /* Copy the NAPI object as it has been already initialized */
99 from_fp->napi = to_fp->napi;
100
101 /* Move bnx2x_fastpath contents */
102 memcpy(to_fp, from_fp, sizeof(*to_fp));
103 to_fp->index = to;
104
105 /* Retain the tpa_info of the original `to' version as we don't want
106 * 2 FPs to contain the same tpa_info pointer.
107 */
108 to_fp->tpa_info = old_tpa_info;
109
110 /* move sp_objs contents as well, as their indices match fp ones */
111 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
112
113 /* move fp_stats contents as well, as their indices match fp ones */
114 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
115
116 /* Update txdata pointers in fp and move txdata content accordingly:
117 * Each fp consumes 'max_cos' txdata structures, so the index should be
118 * decremented by max_cos x delta.
119 */
120
121 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
122 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
123 (bp)->max_cos;
124 if (from == FCOE_IDX(bp)) {
125 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
126 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 }
128
129 memcpy(&bp->bnx2x_txq[new_txdata_index],
130 &bp->bnx2x_txq[old_txdata_index],
131 sizeof(struct bnx2x_fp_txdata));
132 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
133 }
134
135 /**
136 * bnx2x_fill_fw_str - Fill buffer with FW version string.
137 *
138 * @bp: driver handle
139 * @buf: character buffer to fill with the fw name
140 * @buf_len: length of the above buffer
141 *
142 */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)143 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
144 {
145 if (IS_PF(bp)) {
146 u8 phy_fw_ver[PHY_FW_VER_LEN];
147
148 phy_fw_ver[0] = '\0';
149 bnx2x_get_ext_phy_fw_version(&bp->link_params,
150 phy_fw_ver, sizeof(phy_fw_ver));
151 /* This may become truncated. */
152 scnprintf(buf, buf_len,
153 "%sbc %d.%d.%d%s%s",
154 bp->fw_ver,
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 /* Skip second parse bd... */
232 --nbd;
233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 }
235
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 --nbd;
241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 }
243
244 /* unmap first bd */
245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 DMA_TO_DEVICE);
248
249 /* now free frags */
250 while (nbd > 0) {
251
252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 if (--nbd)
256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 }
258
259 /* release skb */
260 WARN_ON(!skb);
261 if (likely(skb)) {
262 (*pkts_compl)++;
263 (*bytes_compl) += skb->len;
264 dev_kfree_skb_any(skb);
265 }
266
267 tx_buf->first_bd = 0;
268 tx_buf->skb = NULL;
269
270 return new_cons;
271 }
272
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 struct netdev_queue *txq;
276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 unsigned int pkts_compl = 0, bytes_compl = 0;
278
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp->panic))
281 return -1;
282 #endif
283
284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 sw_cons = txdata->tx_pkt_cons;
287
288 /* Ensure subsequent loads occur after hw_cons */
289 smp_rmb();
290
291 while (sw_cons != hw_cons) {
292 u16 pkt_cons;
293
294 pkt_cons = TX_BD(sw_cons);
295
296 DP(NETIF_MSG_TX_DONE,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299
300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 &pkts_compl, &bytes_compl);
302
303 sw_cons++;
304 }
305
306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307
308 txdata->tx_pkt_cons = sw_cons;
309 txdata->tx_bd_cons = bd_cons;
310
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
315 * forever.
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
319 */
320 smp_mb();
321
322 if (unlikely(netif_tx_queue_stopped(txq))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 *
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
330 * stops the queue
331 */
332
333 __netif_tx_lock(txq, smp_processor_id());
334
335 if ((netif_tx_queue_stopped(txq)) &&
336 (bp->state == BNX2X_STATE_OPEN) &&
337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 netif_tx_wake_queue(txq);
339
340 __netif_tx_unlock(txq);
341 }
342 return 0;
343 }
344
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 u16 idx)
347 {
348 u16 last_max = fp->last_max_sge;
349
350 if (SUB_S16(idx, last_max) > 0)
351 fp->last_max_sge = idx;
352 }
353
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 u16 sge_len,
356 struct eth_end_agg_rx_cqe *cqe)
357 {
358 struct bnx2x *bp = fp->bp;
359 u16 last_max, last_elem, first_elem;
360 u16 delta = 0;
361 u16 i;
362
363 if (!sge_len)
364 return;
365
366 /* First mark all used pages */
367 for (i = 0; i < sge_len; i++)
368 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370
371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp->sge_mask));
376 bnx2x_update_last_max_sge(fp,
377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378
379 last_max = RX_SGE(fp->last_max_sge);
380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382
383 /* If ring is not full */
384 if (last_elem + 1 != first_elem)
385 last_elem++;
386
387 /* Now update the prod */
388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 if (likely(fp->sge_mask[i]))
390 break;
391
392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 delta += BIT_VEC64_ELEM_SZ;
394 }
395
396 if (delta > 0) {
397 fp->rx_sge_prod += delta;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp);
400 }
401
402 DP(NETIF_MSG_RX_STATUS,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp->last_max_sge, fp->rx_sge_prod);
405 }
406
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
409 */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 const struct eth_fast_path_rx_cqe *cqe,
412 enum pkt_hash_types *rxhash_type)
413 {
414 /* Get Toeplitz hash from CQE */
415 if ((bp->dev->features & NETIF_F_RXHASH) &&
416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 enum eth_rss_hash_type htype;
418
419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 (htype == TCP_IPV6_HASH_TYPE)) ?
422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423
424 return le32_to_cpu(cqe->rss_hash_result);
425 }
426 *rxhash_type = PKT_HASH_TYPE_NONE;
427 return 0;
428 }
429
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 u16 cons, u16 prod,
432 struct eth_fast_path_rx_cqe *cqe)
433 {
434 struct bnx2x *bp = fp->bp;
435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 dma_addr_t mapping;
439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441
442 /* print error if current state != stop */
443 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping = dma_map_single(&bp->pdev->dev,
448 first_buf->data + NET_SKB_PAD,
449 fp->rx_buf_size, DMA_FROM_DEVICE);
450 /*
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
454 */
455
456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp, cons, prod);
459 tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 return;
461 }
462
463 /* move empty data from pool to prod */
464 prod_rx_buf->data = first_buf->data;
465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 /* point prod_bd to new data */
467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf = *cons_rx_buf;
472
473 /* mark bin state as START */
474 tpa_info->parsing_flags =
475 le16_to_cpu(cqe->pars_flags.flags);
476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 tpa_info->tpa_state = BNX2X_TPA_START;
478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 tpa_info->placement_offset = cqe->placement_offset;
480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 if (fp->mode == TPA_MODE_GRO) {
482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 tpa_info->gro_size = gro_size;
485 }
486
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp->tpa_queue_used |= (1 << queue);
489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 fp->tpa_queue_used);
491 #endif
492 }
493
494 /* Timestamp option length allowed for TPA aggregation:
495 *
496 * nop nop kind length echo val
497 */
498 #define TPA_TSTAMP_OPT_LEN 12
499 /**
500 * bnx2x_set_gro_params - compute GRO values
501 *
502 * @skb: packet skb
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
505 * aggregation.
506 * @pkt_len: length of all segments
507 * @num_of_coalesced_segs: count of segments
508 *
509 * Approximate value of the MSS for this aggregation calculated using
510 * the first packet of it.
511 * Compute number of aggregated segments, and gso_type.
512 */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
514 u16 len_on_bd, unsigned int pkt_len,
515 u16 num_of_coalesced_segs)
516 {
517 /* TPA aggregation won't have either IP options or TCP options
518 * other than timestamp or IPv6 extension headers.
519 */
520 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
521
522 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
523 PRS_FLAG_OVERETH_IPV6) {
524 hdrs_len += sizeof(struct ipv6hdr);
525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
526 } else {
527 hdrs_len += sizeof(struct iphdr);
528 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
529 }
530
531 /* Check if there was a TCP timestamp, if there is it's will
532 * always be 12 bytes length: nop nop kind length echo val.
533 *
534 * Otherwise FW would close the aggregation.
535 */
536 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
537 hdrs_len += TPA_TSTAMP_OPT_LEN;
538
539 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
540
541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 * to skb_shinfo(skb)->gso_segs
543 */
544 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
545 }
546
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
548 u16 index, gfp_t gfp_mask)
549 {
550 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
551 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
552 struct bnx2x_alloc_pool *pool = &fp->page_pool;
553 dma_addr_t mapping;
554
555 if (!pool->page) {
556 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
557 if (unlikely(!pool->page))
558 return -ENOMEM;
559
560 pool->offset = 0;
561 }
562
563 mapping = dma_map_page(&bp->pdev->dev, pool->page,
564 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
565 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
566 BNX2X_ERR("Can't map sge\n");
567 return -ENOMEM;
568 }
569
570 sw_buf->page = pool->page;
571 sw_buf->offset = pool->offset;
572
573 dma_unmap_addr_set(sw_buf, mapping, mapping);
574
575 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
576 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
577
578 pool->offset += SGE_PAGE_SIZE;
579 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
580 get_page(pool->page);
581 else
582 pool->page = NULL;
583 return 0;
584 }
585
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)586 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
587 struct bnx2x_agg_info *tpa_info,
588 u16 pages,
589 struct sk_buff *skb,
590 struct eth_end_agg_rx_cqe *cqe,
591 u16 cqe_idx)
592 {
593 struct sw_rx_page *rx_pg, old_rx_pg;
594 u32 i, frag_len, frag_size;
595 int err, j, frag_id = 0;
596 u16 len_on_bd = tpa_info->len_on_bd;
597 u16 full_page = 0, gro_size = 0;
598
599 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
600
601 if (fp->mode == TPA_MODE_GRO) {
602 gro_size = tpa_info->gro_size;
603 full_page = tpa_info->full_page;
604 }
605
606 /* This is needed in order to enable forwarding support */
607 if (frag_size)
608 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
609 le16_to_cpu(cqe->pkt_len),
610 le16_to_cpu(cqe->num_of_coalesced_segs));
611
612 #ifdef BNX2X_STOP_ON_ERROR
613 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
614 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 pages, cqe_idx);
616 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
617 bnx2x_panic();
618 return -EINVAL;
619 }
620 #endif
621
622 /* Run through the SGL and compose the fragmented skb */
623 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
624 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
625
626 /* FW gives the indices of the SGE as if the ring is an array
627 (meaning that "next" element will consume 2 indices) */
628 if (fp->mode == TPA_MODE_GRO)
629 frag_len = min_t(u32, frag_size, (u32)full_page);
630 else /* LRO */
631 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
632
633 rx_pg = &fp->rx_page_ring[sge_idx];
634 old_rx_pg = *rx_pg;
635
636 /* If we fail to allocate a substitute page, we simply stop
637 where we are and drop the whole packet */
638 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
639 if (unlikely(err)) {
640 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
641 return err;
642 }
643
644 dma_unmap_page(&bp->pdev->dev,
645 dma_unmap_addr(&old_rx_pg, mapping),
646 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
647 /* Add one frag and update the appropriate fields in the skb */
648 if (fp->mode == TPA_MODE_LRO)
649 skb_fill_page_desc(skb, j, old_rx_pg.page,
650 old_rx_pg.offset, frag_len);
651 else { /* GRO */
652 int rem;
653 int offset = 0;
654 for (rem = frag_len; rem > 0; rem -= gro_size) {
655 int len = rem > gro_size ? gro_size : rem;
656 skb_fill_page_desc(skb, frag_id++,
657 old_rx_pg.page,
658 old_rx_pg.offset + offset,
659 len);
660 if (offset)
661 get_page(old_rx_pg.page);
662 offset += len;
663 }
664 }
665
666 skb->data_len += frag_len;
667 skb->truesize += SGE_PAGES;
668 skb->len += frag_len;
669
670 frag_size -= frag_len;
671 }
672
673 return 0;
674 }
675
676 static struct sk_buff *
bnx2x_build_skb(const struct bnx2x_fastpath * fp,void * data)677 bnx2x_build_skb(const struct bnx2x_fastpath *fp, void *data)
678 {
679 struct sk_buff *skb;
680
681 if (fp->rx_frag_size)
682 skb = build_skb(data, fp->rx_frag_size);
683 else
684 skb = slab_build_skb(data);
685 return skb;
686 }
687
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)688 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
689 {
690 if (fp->rx_frag_size)
691 skb_free_frag(data);
692 else
693 kfree(data);
694 }
695
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)696 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
697 {
698 if (fp->rx_frag_size) {
699 /* GFP_KERNEL allocations are used only during initialization */
700 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
701 return (void *)__get_free_page(gfp_mask);
702
703 return napi_alloc_frag(fp->rx_frag_size);
704 }
705
706 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
707 }
708
709 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)710 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
711 {
712 const struct iphdr *iph = ip_hdr(skb);
713 struct tcphdr *th;
714
715 skb_set_transport_header(skb, sizeof(struct iphdr));
716 th = tcp_hdr(skb);
717
718 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
719 iph->saddr, iph->daddr, 0);
720 }
721
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)722 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
723 {
724 struct ipv6hdr *iph = ipv6_hdr(skb);
725 struct tcphdr *th;
726
727 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
728 th = tcp_hdr(skb);
729
730 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
731 &iph->saddr, &iph->daddr, 0);
732 }
733
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))734 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
735 void (*gro_func)(struct bnx2x*, struct sk_buff*))
736 {
737 skb_reset_network_header(skb);
738 gro_func(bp, skb);
739 tcp_gro_complete(skb);
740 }
741 #endif
742
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)743 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
744 struct sk_buff *skb)
745 {
746 #ifdef CONFIG_INET
747 if (skb_shinfo(skb)->gso_size) {
748 switch (be16_to_cpu(skb->protocol)) {
749 case ETH_P_IP:
750 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
751 break;
752 case ETH_P_IPV6:
753 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
754 break;
755 default:
756 netdev_WARN_ONCE(bp->dev,
757 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
758 be16_to_cpu(skb->protocol));
759 }
760 }
761 #endif
762 skb_record_rx_queue(skb, fp->rx_queue);
763 napi_gro_receive(&fp->napi, skb);
764 }
765
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)766 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
767 struct bnx2x_agg_info *tpa_info,
768 u16 pages,
769 struct eth_end_agg_rx_cqe *cqe,
770 u16 cqe_idx)
771 {
772 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
773 u8 pad = tpa_info->placement_offset;
774 u16 len = tpa_info->len_on_bd;
775 struct sk_buff *skb = NULL;
776 u8 *new_data, *data = rx_buf->data;
777 u8 old_tpa_state = tpa_info->tpa_state;
778
779 tpa_info->tpa_state = BNX2X_TPA_STOP;
780
781 /* If we there was an error during the handling of the TPA_START -
782 * drop this aggregation.
783 */
784 if (old_tpa_state == BNX2X_TPA_ERROR)
785 goto drop;
786
787 /* Try to allocate the new data */
788 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
789 /* Unmap skb in the pool anyway, as we are going to change
790 pool entry status to BNX2X_TPA_STOP even if new skb allocation
791 fails. */
792 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
793 fp->rx_buf_size, DMA_FROM_DEVICE);
794 if (likely(new_data))
795 skb = bnx2x_build_skb(fp, data);
796
797 if (likely(skb)) {
798 #ifdef BNX2X_STOP_ON_ERROR
799 if (pad + len > fp->rx_buf_size) {
800 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
801 pad, len, fp->rx_buf_size);
802 bnx2x_panic();
803 bnx2x_frag_free(fp, new_data);
804 return;
805 }
806 #endif
807
808 skb_reserve(skb, pad + NET_SKB_PAD);
809 skb_put(skb, len);
810 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
811
812 skb->protocol = eth_type_trans(skb, bp->dev);
813 skb->ip_summed = CHECKSUM_UNNECESSARY;
814
815 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
816 skb, cqe, cqe_idx)) {
817 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
818 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
819 bnx2x_gro_receive(bp, fp, skb);
820 } else {
821 DP(NETIF_MSG_RX_STATUS,
822 "Failed to allocate new pages - dropping packet!\n");
823 dev_kfree_skb_any(skb);
824 }
825
826 /* put new data in bin */
827 rx_buf->data = new_data;
828
829 return;
830 }
831 if (new_data)
832 bnx2x_frag_free(fp, new_data);
833 drop:
834 /* drop the packet and keep the buffer in the bin */
835 DP(NETIF_MSG_RX_STATUS,
836 "Failed to allocate or map a new skb - dropping packet!\n");
837 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
838 }
839
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)840 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
841 u16 index, gfp_t gfp_mask)
842 {
843 u8 *data;
844 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
845 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
846 dma_addr_t mapping;
847
848 data = bnx2x_frag_alloc(fp, gfp_mask);
849 if (unlikely(data == NULL))
850 return -ENOMEM;
851
852 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
853 fp->rx_buf_size,
854 DMA_FROM_DEVICE);
855 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
856 bnx2x_frag_free(fp, data);
857 BNX2X_ERR("Can't map rx data\n");
858 return -ENOMEM;
859 }
860
861 rx_buf->data = data;
862 dma_unmap_addr_set(rx_buf, mapping, mapping);
863
864 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
865 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
866
867 return 0;
868 }
869
870 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)871 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
872 struct bnx2x_fastpath *fp,
873 struct bnx2x_eth_q_stats *qstats)
874 {
875 /* Do nothing if no L4 csum validation was done.
876 * We do not check whether IP csum was validated. For IPv4 we assume
877 * that if the card got as far as validating the L4 csum, it also
878 * validated the IP csum. IPv6 has no IP csum.
879 */
880 if (cqe->fast_path_cqe.status_flags &
881 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
882 return;
883
884 /* If L4 validation was done, check if an error was found. */
885
886 if (cqe->fast_path_cqe.type_error_flags &
887 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
888 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
889 qstats->hw_csum_err++;
890 else
891 skb->ip_summed = CHECKSUM_UNNECESSARY;
892 }
893
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)894 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
895 {
896 struct bnx2x *bp = fp->bp;
897 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
898 u16 sw_comp_cons, sw_comp_prod;
899 int rx_pkt = 0;
900 union eth_rx_cqe *cqe;
901 struct eth_fast_path_rx_cqe *cqe_fp;
902
903 #ifdef BNX2X_STOP_ON_ERROR
904 if (unlikely(bp->panic))
905 return 0;
906 #endif
907 if (budget <= 0)
908 return rx_pkt;
909
910 bd_cons = fp->rx_bd_cons;
911 bd_prod = fp->rx_bd_prod;
912 bd_prod_fw = bd_prod;
913 sw_comp_cons = fp->rx_comp_cons;
914 sw_comp_prod = fp->rx_comp_prod;
915
916 comp_ring_cons = RCQ_BD(sw_comp_cons);
917 cqe = &fp->rx_comp_ring[comp_ring_cons];
918 cqe_fp = &cqe->fast_path_cqe;
919
920 DP(NETIF_MSG_RX_STATUS,
921 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
922
923 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
924 struct sw_rx_bd *rx_buf = NULL;
925 struct sk_buff *skb;
926 u8 cqe_fp_flags;
927 enum eth_rx_cqe_type cqe_fp_type;
928 u16 len, pad, queue;
929 u8 *data;
930 u32 rxhash;
931 enum pkt_hash_types rxhash_type;
932
933 #ifdef BNX2X_STOP_ON_ERROR
934 if (unlikely(bp->panic))
935 return 0;
936 #endif
937
938 bd_prod = RX_BD(bd_prod);
939 bd_cons = RX_BD(bd_cons);
940
941 /* A rmb() is required to ensure that the CQE is not read
942 * before it is written by the adapter DMA. PCI ordering
943 * rules will make sure the other fields are written before
944 * the marker at the end of struct eth_fast_path_rx_cqe
945 * but without rmb() a weakly ordered processor can process
946 * stale data. Without the barrier TPA state-machine might
947 * enter inconsistent state and kernel stack might be
948 * provided with incorrect packet description - these lead
949 * to various kernel crashed.
950 */
951 rmb();
952
953 cqe_fp_flags = cqe_fp->type_error_flags;
954 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
955
956 DP(NETIF_MSG_RX_STATUS,
957 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
958 CQE_TYPE(cqe_fp_flags),
959 cqe_fp_flags, cqe_fp->status_flags,
960 le32_to_cpu(cqe_fp->rss_hash_result),
961 le16_to_cpu(cqe_fp->vlan_tag),
962 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
963
964 /* is this a slowpath msg? */
965 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
966 bnx2x_sp_event(fp, cqe);
967 goto next_cqe;
968 }
969
970 rx_buf = &fp->rx_buf_ring[bd_cons];
971 data = rx_buf->data;
972
973 if (!CQE_TYPE_FAST(cqe_fp_type)) {
974 struct bnx2x_agg_info *tpa_info;
975 u16 frag_size, pages;
976 #ifdef BNX2X_STOP_ON_ERROR
977 /* sanity check */
978 if (fp->mode == TPA_MODE_DISABLED &&
979 (CQE_TYPE_START(cqe_fp_type) ||
980 CQE_TYPE_STOP(cqe_fp_type)))
981 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
982 CQE_TYPE(cqe_fp_type));
983 #endif
984
985 if (CQE_TYPE_START(cqe_fp_type)) {
986 u16 queue = cqe_fp->queue_index;
987 DP(NETIF_MSG_RX_STATUS,
988 "calling tpa_start on queue %d\n",
989 queue);
990
991 bnx2x_tpa_start(fp, queue,
992 bd_cons, bd_prod,
993 cqe_fp);
994
995 goto next_rx;
996 }
997 queue = cqe->end_agg_cqe.queue_index;
998 tpa_info = &fp->tpa_info[queue];
999 DP(NETIF_MSG_RX_STATUS,
1000 "calling tpa_stop on queue %d\n",
1001 queue);
1002
1003 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
1004 tpa_info->len_on_bd;
1005
1006 if (fp->mode == TPA_MODE_GRO)
1007 pages = (frag_size + tpa_info->full_page - 1) /
1008 tpa_info->full_page;
1009 else
1010 pages = SGE_PAGE_ALIGN(frag_size) >>
1011 SGE_PAGE_SHIFT;
1012
1013 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1014 &cqe->end_agg_cqe, comp_ring_cons);
1015 #ifdef BNX2X_STOP_ON_ERROR
1016 if (bp->panic)
1017 return 0;
1018 #endif
1019
1020 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1021 goto next_cqe;
1022 }
1023 /* non TPA */
1024 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1025 pad = cqe_fp->placement_offset;
1026 dma_sync_single_for_cpu(&bp->pdev->dev,
1027 dma_unmap_addr(rx_buf, mapping),
1028 pad + RX_COPY_THRESH,
1029 DMA_FROM_DEVICE);
1030 pad += NET_SKB_PAD;
1031 prefetch(data + pad); /* speedup eth_type_trans() */
1032 /* is this an error packet? */
1033 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1034 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1035 "ERROR flags %x rx packet %u\n",
1036 cqe_fp_flags, sw_comp_cons);
1037 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1038 goto reuse_rx;
1039 }
1040
1041 /* Since we don't have a jumbo ring
1042 * copy small packets if mtu > 1500
1043 */
1044 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1045 (len <= RX_COPY_THRESH)) {
1046 skb = napi_alloc_skb(&fp->napi, len);
1047 if (skb == NULL) {
1048 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1049 "ERROR packet dropped because of alloc failure\n");
1050 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1051 goto reuse_rx;
1052 }
1053 memcpy(skb->data, data + pad, len);
1054 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1055 } else {
1056 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1057 GFP_ATOMIC) == 0)) {
1058 dma_unmap_single(&bp->pdev->dev,
1059 dma_unmap_addr(rx_buf, mapping),
1060 fp->rx_buf_size,
1061 DMA_FROM_DEVICE);
1062 skb = bnx2x_build_skb(fp, data);
1063 if (unlikely(!skb)) {
1064 bnx2x_frag_free(fp, data);
1065 bnx2x_fp_qstats(bp, fp)->
1066 rx_skb_alloc_failed++;
1067 goto next_rx;
1068 }
1069 skb_reserve(skb, pad);
1070 } else {
1071 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1072 "ERROR packet dropped because of alloc failure\n");
1073 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1074 reuse_rx:
1075 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1076 goto next_rx;
1077 }
1078 }
1079
1080 skb_put(skb, len);
1081 skb->protocol = eth_type_trans(skb, bp->dev);
1082
1083 /* Set Toeplitz hash for a none-LRO skb */
1084 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1085 skb_set_hash(skb, rxhash, rxhash_type);
1086
1087 skb_checksum_none_assert(skb);
1088
1089 if (bp->dev->features & NETIF_F_RXCSUM)
1090 bnx2x_csum_validate(skb, cqe, fp,
1091 bnx2x_fp_qstats(bp, fp));
1092
1093 skb_record_rx_queue(skb, fp->rx_queue);
1094
1095 /* Check if this packet was timestamped */
1096 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1097 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1098 bnx2x_set_rx_ts(bp, skb);
1099
1100 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1101 PARSING_FLAGS_VLAN)
1102 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1103 le16_to_cpu(cqe_fp->vlan_tag));
1104
1105 napi_gro_receive(&fp->napi, skb);
1106 next_rx:
1107 rx_buf->data = NULL;
1108
1109 bd_cons = NEXT_RX_IDX(bd_cons);
1110 bd_prod = NEXT_RX_IDX(bd_prod);
1111 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1112 rx_pkt++;
1113 next_cqe:
1114 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1115 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1116
1117 /* mark CQE as free */
1118 BNX2X_SEED_CQE(cqe_fp);
1119
1120 if (rx_pkt == budget)
1121 break;
1122
1123 comp_ring_cons = RCQ_BD(sw_comp_cons);
1124 cqe = &fp->rx_comp_ring[comp_ring_cons];
1125 cqe_fp = &cqe->fast_path_cqe;
1126 } /* while */
1127
1128 fp->rx_bd_cons = bd_cons;
1129 fp->rx_bd_prod = bd_prod_fw;
1130 fp->rx_comp_cons = sw_comp_cons;
1131 fp->rx_comp_prod = sw_comp_prod;
1132
1133 /* Update producers */
1134 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1135 fp->rx_sge_prod);
1136
1137 return rx_pkt;
1138 }
1139
bnx2x_msix_fp_int(int irq,void * fp_cookie)1140 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1141 {
1142 struct bnx2x_fastpath *fp = fp_cookie;
1143 struct bnx2x *bp = fp->bp;
1144 u8 cos;
1145
1146 DP(NETIF_MSG_INTR,
1147 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1148 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1149
1150 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1151
1152 #ifdef BNX2X_STOP_ON_ERROR
1153 if (unlikely(bp->panic))
1154 return IRQ_HANDLED;
1155 #endif
1156
1157 /* Handle Rx and Tx according to MSI-X vector */
1158 for_each_cos_in_tx_queue(fp, cos)
1159 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1160
1161 prefetch(&fp->sb_running_index[SM_RX_ID]);
1162 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1163
1164 return IRQ_HANDLED;
1165 }
1166
1167 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1168 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1169 {
1170 mutex_lock(&bp->port.phy_mutex);
1171
1172 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1173 }
1174
bnx2x_release_phy_lock(struct bnx2x * bp)1175 void bnx2x_release_phy_lock(struct bnx2x *bp)
1176 {
1177 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1178
1179 mutex_unlock(&bp->port.phy_mutex);
1180 }
1181
1182 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1183 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1184 {
1185 u16 line_speed = bp->link_vars.line_speed;
1186 if (IS_MF(bp)) {
1187 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1188 bp->mf_config[BP_VN(bp)]);
1189
1190 /* Calculate the current MAX line speed limit for the MF
1191 * devices
1192 */
1193 if (IS_MF_PERCENT_BW(bp))
1194 line_speed = (line_speed * maxCfg) / 100;
1195 else { /* SD mode */
1196 u16 vn_max_rate = maxCfg * 100;
1197
1198 if (vn_max_rate < line_speed)
1199 line_speed = vn_max_rate;
1200 }
1201 }
1202
1203 return line_speed;
1204 }
1205
1206 /**
1207 * bnx2x_fill_report_data - fill link report data to report
1208 *
1209 * @bp: driver handle
1210 * @data: link state to update
1211 *
1212 * It uses a none-atomic bit operations because is called under the mutex.
1213 */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1214 static void bnx2x_fill_report_data(struct bnx2x *bp,
1215 struct bnx2x_link_report_data *data)
1216 {
1217 memset(data, 0, sizeof(*data));
1218
1219 if (IS_PF(bp)) {
1220 /* Fill the report data: effective line speed */
1221 data->line_speed = bnx2x_get_mf_speed(bp);
1222
1223 /* Link is down */
1224 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1225 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1226 &data->link_report_flags);
1227
1228 if (!BNX2X_NUM_ETH_QUEUES(bp))
1229 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1230 &data->link_report_flags);
1231
1232 /* Full DUPLEX */
1233 if (bp->link_vars.duplex == DUPLEX_FULL)
1234 __set_bit(BNX2X_LINK_REPORT_FD,
1235 &data->link_report_flags);
1236
1237 /* Rx Flow Control is ON */
1238 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1239 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1240 &data->link_report_flags);
1241
1242 /* Tx Flow Control is ON */
1243 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1244 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1245 &data->link_report_flags);
1246 } else { /* VF */
1247 *data = bp->vf_link_vars;
1248 }
1249 }
1250
1251 /**
1252 * bnx2x_link_report - report link status to OS.
1253 *
1254 * @bp: driver handle
1255 *
1256 * Calls the __bnx2x_link_report() under the same locking scheme
1257 * as a link/PHY state managing code to ensure a consistent link
1258 * reporting.
1259 */
1260
bnx2x_link_report(struct bnx2x * bp)1261 void bnx2x_link_report(struct bnx2x *bp)
1262 {
1263 bnx2x_acquire_phy_lock(bp);
1264 __bnx2x_link_report(bp);
1265 bnx2x_release_phy_lock(bp);
1266 }
1267
1268 /**
1269 * __bnx2x_link_report - report link status to OS.
1270 *
1271 * @bp: driver handle
1272 *
1273 * None atomic implementation.
1274 * Should be called under the phy_lock.
1275 */
__bnx2x_link_report(struct bnx2x * bp)1276 void __bnx2x_link_report(struct bnx2x *bp)
1277 {
1278 struct bnx2x_link_report_data cur_data;
1279
1280 if (bp->force_link_down) {
1281 bp->link_vars.link_up = 0;
1282 return;
1283 }
1284
1285 /* reread mf_cfg */
1286 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1287 bnx2x_read_mf_cfg(bp);
1288
1289 /* Read the current link report info */
1290 bnx2x_fill_report_data(bp, &cur_data);
1291
1292 /* Don't report link down or exactly the same link status twice */
1293 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1294 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1295 &bp->last_reported_link.link_report_flags) &&
1296 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1297 &cur_data.link_report_flags)))
1298 return;
1299
1300 bp->link_cnt++;
1301
1302 /* We are going to report a new link parameters now -
1303 * remember the current data for the next time.
1304 */
1305 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1306
1307 /* propagate status to VFs */
1308 if (IS_PF(bp))
1309 bnx2x_iov_link_update(bp);
1310
1311 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1312 &cur_data.link_report_flags)) {
1313 netif_carrier_off(bp->dev);
1314 netdev_err(bp->dev, "NIC Link is Down\n");
1315 return;
1316 } else {
1317 const char *duplex;
1318 const char *flow;
1319
1320 netif_carrier_on(bp->dev);
1321
1322 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1323 &cur_data.link_report_flags))
1324 duplex = "full";
1325 else
1326 duplex = "half";
1327
1328 /* Handle the FC at the end so that only these flags would be
1329 * possibly set. This way we may easily check if there is no FC
1330 * enabled.
1331 */
1332 if (cur_data.link_report_flags) {
1333 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1334 &cur_data.link_report_flags)) {
1335 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1336 &cur_data.link_report_flags))
1337 flow = "ON - receive & transmit";
1338 else
1339 flow = "ON - receive";
1340 } else {
1341 flow = "ON - transmit";
1342 }
1343 } else {
1344 flow = "none";
1345 }
1346 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1347 cur_data.line_speed, duplex, flow);
1348 }
1349 }
1350
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1351 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1352 {
1353 int i;
1354
1355 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1356 struct eth_rx_sge *sge;
1357
1358 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1359 sge->addr_hi =
1360 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1361 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1362
1363 sge->addr_lo =
1364 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1365 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1366 }
1367 }
1368
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1369 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1370 struct bnx2x_fastpath *fp, int last)
1371 {
1372 int i;
1373
1374 for (i = 0; i < last; i++) {
1375 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1376 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1377 u8 *data = first_buf->data;
1378
1379 if (data == NULL) {
1380 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1381 continue;
1382 }
1383 if (tpa_info->tpa_state == BNX2X_TPA_START)
1384 dma_unmap_single(&bp->pdev->dev,
1385 dma_unmap_addr(first_buf, mapping),
1386 fp->rx_buf_size, DMA_FROM_DEVICE);
1387 bnx2x_frag_free(fp, data);
1388 first_buf->data = NULL;
1389 }
1390 }
1391
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1392 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1393 {
1394 int j;
1395
1396 for_each_rx_queue_cnic(bp, j) {
1397 struct bnx2x_fastpath *fp = &bp->fp[j];
1398
1399 fp->rx_bd_cons = 0;
1400
1401 /* Activate BD ring */
1402 /* Warning!
1403 * this will generate an interrupt (to the TSTORM)
1404 * must only be done after chip is initialized
1405 */
1406 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1407 fp->rx_sge_prod);
1408 }
1409 }
1410
bnx2x_init_rx_rings(struct bnx2x * bp)1411 void bnx2x_init_rx_rings(struct bnx2x *bp)
1412 {
1413 int func = BP_FUNC(bp);
1414 u16 ring_prod;
1415 int i, j;
1416
1417 /* Allocate TPA resources */
1418 for_each_eth_queue(bp, j) {
1419 struct bnx2x_fastpath *fp = &bp->fp[j];
1420
1421 DP(NETIF_MSG_IFUP,
1422 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1423
1424 if (fp->mode != TPA_MODE_DISABLED) {
1425 /* Fill the per-aggregation pool */
1426 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1427 struct bnx2x_agg_info *tpa_info =
1428 &fp->tpa_info[i];
1429 struct sw_rx_bd *first_buf =
1430 &tpa_info->first_buf;
1431
1432 first_buf->data =
1433 bnx2x_frag_alloc(fp, GFP_KERNEL);
1434 if (!first_buf->data) {
1435 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1436 j);
1437 bnx2x_free_tpa_pool(bp, fp, i);
1438 fp->mode = TPA_MODE_DISABLED;
1439 break;
1440 }
1441 dma_unmap_addr_set(first_buf, mapping, 0);
1442 tpa_info->tpa_state = BNX2X_TPA_STOP;
1443 }
1444
1445 /* "next page" elements initialization */
1446 bnx2x_set_next_page_sgl(fp);
1447
1448 /* set SGEs bit mask */
1449 bnx2x_init_sge_ring_bit_mask(fp);
1450
1451 /* Allocate SGEs and initialize the ring elements */
1452 for (i = 0, ring_prod = 0;
1453 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1454
1455 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1456 GFP_KERNEL) < 0) {
1457 BNX2X_ERR("was only able to allocate %d rx sges\n",
1458 i);
1459 BNX2X_ERR("disabling TPA for queue[%d]\n",
1460 j);
1461 /* Cleanup already allocated elements */
1462 bnx2x_free_rx_sge_range(bp, fp,
1463 ring_prod);
1464 bnx2x_free_tpa_pool(bp, fp,
1465 MAX_AGG_QS(bp));
1466 fp->mode = TPA_MODE_DISABLED;
1467 ring_prod = 0;
1468 break;
1469 }
1470 ring_prod = NEXT_SGE_IDX(ring_prod);
1471 }
1472
1473 fp->rx_sge_prod = ring_prod;
1474 }
1475 }
1476
1477 for_each_eth_queue(bp, j) {
1478 struct bnx2x_fastpath *fp = &bp->fp[j];
1479
1480 fp->rx_bd_cons = 0;
1481
1482 /* Activate BD ring */
1483 /* Warning!
1484 * this will generate an interrupt (to the TSTORM)
1485 * must only be done after chip is initialized
1486 */
1487 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1488 fp->rx_sge_prod);
1489
1490 if (j != 0)
1491 continue;
1492
1493 if (CHIP_IS_E1(bp)) {
1494 REG_WR(bp, BAR_USTRORM_INTMEM +
1495 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1496 U64_LO(fp->rx_comp_mapping));
1497 REG_WR(bp, BAR_USTRORM_INTMEM +
1498 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1499 U64_HI(fp->rx_comp_mapping));
1500 }
1501 }
1502 }
1503
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1504 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1505 {
1506 u8 cos;
1507 struct bnx2x *bp = fp->bp;
1508
1509 for_each_cos_in_tx_queue(fp, cos) {
1510 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1511 unsigned pkts_compl = 0, bytes_compl = 0;
1512
1513 u16 sw_prod = txdata->tx_pkt_prod;
1514 u16 sw_cons = txdata->tx_pkt_cons;
1515
1516 while (sw_cons != sw_prod) {
1517 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1518 &pkts_compl, &bytes_compl);
1519 sw_cons++;
1520 }
1521
1522 netdev_tx_reset_queue(
1523 netdev_get_tx_queue(bp->dev,
1524 txdata->txq_index));
1525 }
1526 }
1527
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1528 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1529 {
1530 int i;
1531
1532 for_each_tx_queue_cnic(bp, i) {
1533 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1534 }
1535 }
1536
bnx2x_free_tx_skbs(struct bnx2x * bp)1537 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1538 {
1539 int i;
1540
1541 for_each_eth_queue(bp, i) {
1542 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1543 }
1544 }
1545
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1546 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1547 {
1548 struct bnx2x *bp = fp->bp;
1549 int i;
1550
1551 /* ring wasn't allocated */
1552 if (fp->rx_buf_ring == NULL)
1553 return;
1554
1555 for (i = 0; i < NUM_RX_BD; i++) {
1556 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1557 u8 *data = rx_buf->data;
1558
1559 if (data == NULL)
1560 continue;
1561 dma_unmap_single(&bp->pdev->dev,
1562 dma_unmap_addr(rx_buf, mapping),
1563 fp->rx_buf_size, DMA_FROM_DEVICE);
1564
1565 rx_buf->data = NULL;
1566 bnx2x_frag_free(fp, data);
1567 }
1568 }
1569
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1570 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1571 {
1572 int j;
1573
1574 for_each_rx_queue_cnic(bp, j) {
1575 bnx2x_free_rx_bds(&bp->fp[j]);
1576 }
1577 }
1578
bnx2x_free_rx_skbs(struct bnx2x * bp)1579 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1580 {
1581 int j;
1582
1583 for_each_eth_queue(bp, j) {
1584 struct bnx2x_fastpath *fp = &bp->fp[j];
1585
1586 bnx2x_free_rx_bds(fp);
1587
1588 if (fp->mode != TPA_MODE_DISABLED)
1589 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1590 }
1591 }
1592
bnx2x_free_skbs_cnic(struct bnx2x * bp)1593 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1594 {
1595 bnx2x_free_tx_skbs_cnic(bp);
1596 bnx2x_free_rx_skbs_cnic(bp);
1597 }
1598
bnx2x_free_skbs(struct bnx2x * bp)1599 void bnx2x_free_skbs(struct bnx2x *bp)
1600 {
1601 bnx2x_free_tx_skbs(bp);
1602 bnx2x_free_rx_skbs(bp);
1603 }
1604
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1605 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1606 {
1607 /* load old values */
1608 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1609
1610 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1611 /* leave all but MAX value */
1612 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1613
1614 /* set new MAX value */
1615 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1616 & FUNC_MF_CFG_MAX_BW_MASK;
1617
1618 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1619 }
1620 }
1621
1622 /**
1623 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1624 *
1625 * @bp: driver handle
1626 * @nvecs: number of vectors to be released
1627 */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1628 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1629 {
1630 int i, offset = 0;
1631
1632 if (nvecs == offset)
1633 return;
1634
1635 /* VFs don't have a default SB */
1636 if (IS_PF(bp)) {
1637 free_irq(bp->msix_table[offset].vector, bp->dev);
1638 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1639 bp->msix_table[offset].vector);
1640 offset++;
1641 }
1642
1643 if (CNIC_SUPPORT(bp)) {
1644 if (nvecs == offset)
1645 return;
1646 offset++;
1647 }
1648
1649 for_each_eth_queue(bp, i) {
1650 if (nvecs == offset)
1651 return;
1652 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1653 i, bp->msix_table[offset].vector);
1654
1655 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1656 }
1657 }
1658
bnx2x_free_irq(struct bnx2x * bp)1659 void bnx2x_free_irq(struct bnx2x *bp)
1660 {
1661 if (bp->flags & USING_MSIX_FLAG &&
1662 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1663 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1664
1665 /* vfs don't have a default status block */
1666 if (IS_PF(bp))
1667 nvecs++;
1668
1669 bnx2x_free_msix_irqs(bp, nvecs);
1670 } else {
1671 free_irq(bp->dev->irq, bp->dev);
1672 }
1673 }
1674
bnx2x_enable_msix(struct bnx2x * bp)1675 int bnx2x_enable_msix(struct bnx2x *bp)
1676 {
1677 int msix_vec = 0, i, rc;
1678
1679 /* VFs don't have a default status block */
1680 if (IS_PF(bp)) {
1681 bp->msix_table[msix_vec].entry = msix_vec;
1682 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1683 bp->msix_table[0].entry);
1684 msix_vec++;
1685 }
1686
1687 /* Cnic requires an msix vector for itself */
1688 if (CNIC_SUPPORT(bp)) {
1689 bp->msix_table[msix_vec].entry = msix_vec;
1690 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1691 msix_vec, bp->msix_table[msix_vec].entry);
1692 msix_vec++;
1693 }
1694
1695 /* We need separate vectors for ETH queues only (not FCoE) */
1696 for_each_eth_queue(bp, i) {
1697 bp->msix_table[msix_vec].entry = msix_vec;
1698 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1699 msix_vec, msix_vec, i);
1700 msix_vec++;
1701 }
1702
1703 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1704 msix_vec);
1705
1706 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1707 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1708 /*
1709 * reconfigure number of tx/rx queues according to available
1710 * MSI-X vectors
1711 */
1712 if (rc == -ENOSPC) {
1713 /* Get by with single vector */
1714 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1715 if (rc < 0) {
1716 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1717 rc);
1718 goto no_msix;
1719 }
1720
1721 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1722 bp->flags |= USING_SINGLE_MSIX_FLAG;
1723
1724 BNX2X_DEV_INFO("set number of queues to 1\n");
1725 bp->num_ethernet_queues = 1;
1726 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1727 } else if (rc < 0) {
1728 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1729 goto no_msix;
1730 } else if (rc < msix_vec) {
1731 /* how less vectors we will have? */
1732 int diff = msix_vec - rc;
1733
1734 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1735
1736 /*
1737 * decrease number of queues by number of unallocated entries
1738 */
1739 bp->num_ethernet_queues -= diff;
1740 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1741
1742 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1743 bp->num_queues);
1744 }
1745
1746 bp->flags |= USING_MSIX_FLAG;
1747
1748 return 0;
1749
1750 no_msix:
1751 /* fall to INTx if not enough memory */
1752 if (rc == -ENOMEM)
1753 bp->flags |= DISABLE_MSI_FLAG;
1754
1755 return rc;
1756 }
1757
bnx2x_req_msix_irqs(struct bnx2x * bp)1758 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1759 {
1760 int i, rc, offset = 0;
1761
1762 /* no default status block for vf */
1763 if (IS_PF(bp)) {
1764 rc = request_irq(bp->msix_table[offset++].vector,
1765 bnx2x_msix_sp_int, 0,
1766 bp->dev->name, bp->dev);
1767 if (rc) {
1768 BNX2X_ERR("request sp irq failed\n");
1769 return -EBUSY;
1770 }
1771 }
1772
1773 if (CNIC_SUPPORT(bp))
1774 offset++;
1775
1776 for_each_eth_queue(bp, i) {
1777 struct bnx2x_fastpath *fp = &bp->fp[i];
1778 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1779 bp->dev->name, i);
1780
1781 rc = request_irq(bp->msix_table[offset].vector,
1782 bnx2x_msix_fp_int, 0, fp->name, fp);
1783 if (rc) {
1784 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1785 bp->msix_table[offset].vector, rc);
1786 bnx2x_free_msix_irqs(bp, offset);
1787 return -EBUSY;
1788 }
1789
1790 offset++;
1791 }
1792
1793 i = BNX2X_NUM_ETH_QUEUES(bp);
1794 if (IS_PF(bp)) {
1795 offset = 1 + CNIC_SUPPORT(bp);
1796 netdev_info(bp->dev,
1797 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1798 bp->msix_table[0].vector,
1799 0, bp->msix_table[offset].vector,
1800 i - 1, bp->msix_table[offset + i - 1].vector);
1801 } else {
1802 offset = CNIC_SUPPORT(bp);
1803 netdev_info(bp->dev,
1804 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1805 0, bp->msix_table[offset].vector,
1806 i - 1, bp->msix_table[offset + i - 1].vector);
1807 }
1808 return 0;
1809 }
1810
bnx2x_enable_msi(struct bnx2x * bp)1811 int bnx2x_enable_msi(struct bnx2x *bp)
1812 {
1813 int rc;
1814
1815 rc = pci_enable_msi(bp->pdev);
1816 if (rc) {
1817 BNX2X_DEV_INFO("MSI is not attainable\n");
1818 return -1;
1819 }
1820 bp->flags |= USING_MSI_FLAG;
1821
1822 return 0;
1823 }
1824
bnx2x_req_irq(struct bnx2x * bp)1825 static int bnx2x_req_irq(struct bnx2x *bp)
1826 {
1827 unsigned long flags;
1828 unsigned int irq;
1829
1830 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1831 flags = 0;
1832 else
1833 flags = IRQF_SHARED;
1834
1835 if (bp->flags & USING_MSIX_FLAG)
1836 irq = bp->msix_table[0].vector;
1837 else
1838 irq = bp->pdev->irq;
1839
1840 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1841 }
1842
bnx2x_setup_irqs(struct bnx2x * bp)1843 static int bnx2x_setup_irqs(struct bnx2x *bp)
1844 {
1845 int rc = 0;
1846 if (bp->flags & USING_MSIX_FLAG &&
1847 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1848 rc = bnx2x_req_msix_irqs(bp);
1849 if (rc)
1850 return rc;
1851 } else {
1852 rc = bnx2x_req_irq(bp);
1853 if (rc) {
1854 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1855 return rc;
1856 }
1857 if (bp->flags & USING_MSI_FLAG) {
1858 bp->dev->irq = bp->pdev->irq;
1859 netdev_info(bp->dev, "using MSI IRQ %d\n",
1860 bp->dev->irq);
1861 }
1862 if (bp->flags & USING_MSIX_FLAG) {
1863 bp->dev->irq = bp->msix_table[0].vector;
1864 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1865 bp->dev->irq);
1866 }
1867 }
1868
1869 return 0;
1870 }
1871
bnx2x_napi_enable_cnic(struct bnx2x * bp)1872 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1873 {
1874 int i;
1875
1876 for_each_rx_queue_cnic(bp, i) {
1877 napi_enable(&bnx2x_fp(bp, i, napi));
1878 }
1879 }
1880
bnx2x_napi_enable(struct bnx2x * bp)1881 static void bnx2x_napi_enable(struct bnx2x *bp)
1882 {
1883 int i;
1884
1885 for_each_eth_queue(bp, i) {
1886 napi_enable(&bnx2x_fp(bp, i, napi));
1887 }
1888 }
1889
bnx2x_napi_disable_cnic(struct bnx2x * bp)1890 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1891 {
1892 int i;
1893
1894 for_each_rx_queue_cnic(bp, i) {
1895 napi_disable(&bnx2x_fp(bp, i, napi));
1896 }
1897 }
1898
bnx2x_napi_disable(struct bnx2x * bp)1899 static void bnx2x_napi_disable(struct bnx2x *bp)
1900 {
1901 int i;
1902
1903 for_each_eth_queue(bp, i) {
1904 napi_disable(&bnx2x_fp(bp, i, napi));
1905 }
1906 }
1907
bnx2x_netif_start(struct bnx2x * bp)1908 void bnx2x_netif_start(struct bnx2x *bp)
1909 {
1910 if (netif_running(bp->dev)) {
1911 bnx2x_napi_enable(bp);
1912 if (CNIC_LOADED(bp))
1913 bnx2x_napi_enable_cnic(bp);
1914 bnx2x_int_enable(bp);
1915 if (bp->state == BNX2X_STATE_OPEN)
1916 netif_tx_wake_all_queues(bp->dev);
1917 }
1918 }
1919
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1920 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1921 {
1922 bnx2x_int_disable_sync(bp, disable_hw);
1923 bnx2x_napi_disable(bp);
1924 if (CNIC_LOADED(bp))
1925 bnx2x_napi_disable_cnic(bp);
1926 }
1927
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1928 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1929 struct net_device *sb_dev)
1930 {
1931 struct bnx2x *bp = netdev_priv(dev);
1932
1933 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1934 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1935 u16 ether_type = ntohs(hdr->h_proto);
1936
1937 /* Skip VLAN tag if present */
1938 if (ether_type == ETH_P_8021Q) {
1939 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
1940
1941 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1942 }
1943
1944 /* If ethertype is FCoE or FIP - use FCoE ring */
1945 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1946 return bnx2x_fcoe_tx(bp, txq_index);
1947 }
1948
1949 /* select a non-FCoE queue */
1950 return netdev_pick_tx(dev, skb, NULL) %
1951 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1952 }
1953
bnx2x_set_num_queues(struct bnx2x * bp)1954 void bnx2x_set_num_queues(struct bnx2x *bp)
1955 {
1956 /* RSS queues */
1957 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1958
1959 /* override in STORAGE SD modes */
1960 if (IS_MF_STORAGE_ONLY(bp))
1961 bp->num_ethernet_queues = 1;
1962
1963 /* Add special queues */
1964 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1965 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1966
1967 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1968 }
1969
1970 /**
1971 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1972 *
1973 * @bp: Driver handle
1974 * @include_cnic: handle cnic case
1975 *
1976 * We currently support for at most 16 Tx queues for each CoS thus we will
1977 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1978 * bp->max_cos.
1979 *
1980 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1981 * index after all ETH L2 indices.
1982 *
1983 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1984 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1985 * 16..31,...) with indices that are not coupled with any real Tx queue.
1986 *
1987 * The proper configuration of skb->queue_mapping is handled by
1988 * bnx2x_select_queue() and __skb_tx_hash().
1989 *
1990 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1991 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1992 */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1993 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1994 {
1995 int rc, tx, rx;
1996
1997 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1998 rx = BNX2X_NUM_ETH_QUEUES(bp);
1999
2000 /* account for fcoe queue */
2001 if (include_cnic && !NO_FCOE(bp)) {
2002 rx++;
2003 tx++;
2004 }
2005
2006 rc = netif_set_real_num_tx_queues(bp->dev, tx);
2007 if (rc) {
2008 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
2009 return rc;
2010 }
2011 rc = netif_set_real_num_rx_queues(bp->dev, rx);
2012 if (rc) {
2013 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2014 return rc;
2015 }
2016
2017 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2018 tx, rx);
2019
2020 return rc;
2021 }
2022
bnx2x_set_rx_buf_size(struct bnx2x * bp)2023 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2024 {
2025 int i;
2026
2027 for_each_queue(bp, i) {
2028 struct bnx2x_fastpath *fp = &bp->fp[i];
2029 u32 mtu;
2030
2031 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2032 if (IS_FCOE_IDX(i))
2033 /*
2034 * Although there are no IP frames expected to arrive to
2035 * this ring we still want to add an
2036 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2037 * overrun attack.
2038 */
2039 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2040 else
2041 mtu = bp->dev->mtu;
2042 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2043 IP_HEADER_ALIGNMENT_PADDING +
2044 ETH_OVERHEAD +
2045 mtu +
2046 BNX2X_FW_RX_ALIGN_END;
2047 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2048 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2049 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2050 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2051 else
2052 fp->rx_frag_size = 0;
2053 }
2054 }
2055
bnx2x_init_rss(struct bnx2x * bp)2056 static int bnx2x_init_rss(struct bnx2x *bp)
2057 {
2058 int i;
2059 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2060
2061 /* Prepare the initial contents for the indirection table if RSS is
2062 * enabled
2063 */
2064 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2065 bp->rss_conf_obj.ind_table[i] =
2066 bp->fp->cl_id +
2067 ethtool_rxfh_indir_default(i, num_eth_queues);
2068
2069 /*
2070 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2071 * per-port, so if explicit configuration is needed , do it only
2072 * for a PMF.
2073 *
2074 * For 57712 and newer on the other hand it's a per-function
2075 * configuration.
2076 */
2077 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2078 }
2079
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2080 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2081 bool config_hash, bool enable)
2082 {
2083 struct bnx2x_config_rss_params params = {NULL};
2084
2085 /* Although RSS is meaningless when there is a single HW queue we
2086 * still need it enabled in order to have HW Rx hash generated.
2087 *
2088 * if (!is_eth_multi(bp))
2089 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2090 */
2091
2092 params.rss_obj = rss_obj;
2093
2094 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
2095
2096 if (enable) {
2097 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
2098
2099 /* RSS configuration */
2100 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
2101 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
2102 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
2103 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
2104 if (rss_obj->udp_rss_v4)
2105 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
2106 if (rss_obj->udp_rss_v6)
2107 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
2108
2109 if (!CHIP_IS_E1x(bp)) {
2110 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2111 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags);
2112 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags);
2113
2114 /* valid only for TUNN_MODE_GRE tunnel mode */
2115 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags);
2116 }
2117 } else {
2118 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags);
2119 }
2120
2121 /* Hash bits */
2122 params.rss_result_mask = MULTI_MASK;
2123
2124 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2125
2126 if (config_hash) {
2127 /* RSS keys */
2128 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2129 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
2130 }
2131
2132 if (IS_PF(bp))
2133 return bnx2x_config_rss(bp, ¶ms);
2134 else
2135 return bnx2x_vfpf_config_rss(bp, ¶ms);
2136 }
2137
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2138 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2139 {
2140 struct bnx2x_func_state_params func_params = {NULL};
2141
2142 /* Prepare parameters for function state transitions */
2143 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2144
2145 func_params.f_obj = &bp->func_obj;
2146 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2147
2148 func_params.params.hw_init.load_phase = load_code;
2149
2150 return bnx2x_func_state_change(bp, &func_params);
2151 }
2152
2153 /*
2154 * Cleans the object that have internal lists without sending
2155 * ramrods. Should be run when interrupts are disabled.
2156 */
bnx2x_squeeze_objects(struct bnx2x * bp)2157 void bnx2x_squeeze_objects(struct bnx2x *bp)
2158 {
2159 int rc;
2160 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2161 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2162 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2163
2164 /***************** Cleanup MACs' object first *************************/
2165
2166 /* Wait for completion of requested */
2167 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2168 /* Perform a dry cleanup */
2169 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2170
2171 /* Clean ETH primary MAC */
2172 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2173 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2174 &ramrod_flags);
2175 if (rc != 0)
2176 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2177
2178 /* Cleanup UC list */
2179 vlan_mac_flags = 0;
2180 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2181 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2182 &ramrod_flags);
2183 if (rc != 0)
2184 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2185
2186 /***************** Now clean mcast object *****************************/
2187 rparam.mcast_obj = &bp->mcast_obj;
2188 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2189
2190 /* Add a DEL command... - Since we're doing a driver cleanup only,
2191 * we take a lock surrounding both the initial send and the CONTs,
2192 * as we don't want a true completion to disrupt us in the middle.
2193 */
2194 netif_addr_lock_bh(bp->dev);
2195 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2196 if (rc < 0)
2197 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2198 rc);
2199
2200 /* ...and wait until all pending commands are cleared */
2201 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2202 while (rc != 0) {
2203 if (rc < 0) {
2204 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2205 rc);
2206 netif_addr_unlock_bh(bp->dev);
2207 return;
2208 }
2209
2210 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2211 }
2212 netif_addr_unlock_bh(bp->dev);
2213 }
2214
2215 #ifndef BNX2X_STOP_ON_ERROR
2216 #define LOAD_ERROR_EXIT(bp, label) \
2217 do { \
2218 (bp)->state = BNX2X_STATE_ERROR; \
2219 goto label; \
2220 } while (0)
2221
2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2223 do { \
2224 bp->cnic_loaded = false; \
2225 goto label; \
2226 } while (0)
2227 #else /*BNX2X_STOP_ON_ERROR*/
2228 #define LOAD_ERROR_EXIT(bp, label) \
2229 do { \
2230 (bp)->state = BNX2X_STATE_ERROR; \
2231 (bp)->panic = 1; \
2232 return -EBUSY; \
2233 } while (0)
2234 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2235 do { \
2236 bp->cnic_loaded = false; \
2237 (bp)->panic = 1; \
2238 return -EBUSY; \
2239 } while (0)
2240 #endif /*BNX2X_STOP_ON_ERROR*/
2241
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2242 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2243 {
2244 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2245 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2246 return;
2247 }
2248
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2249 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2250 {
2251 int num_groups, vf_headroom = 0;
2252 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2253
2254 /* number of queues for statistics is number of eth queues + FCoE */
2255 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2256
2257 /* Total number of FW statistics requests =
2258 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2259 * and fcoe l2 queue) stats + num of queues (which includes another 1
2260 * for fcoe l2 queue if applicable)
2261 */
2262 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2263
2264 /* vf stats appear in the request list, but their data is allocated by
2265 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2266 * it is used to determine where to place the vf stats queries in the
2267 * request struct
2268 */
2269 if (IS_SRIOV(bp))
2270 vf_headroom = bnx2x_vf_headroom(bp);
2271
2272 /* Request is built from stats_query_header and an array of
2273 * stats_query_cmd_group each of which contains
2274 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2275 * configured in the stats_query_header.
2276 */
2277 num_groups =
2278 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2279 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2280 1 : 0));
2281
2282 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2283 bp->fw_stats_num, vf_headroom, num_groups);
2284 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2285 num_groups * sizeof(struct stats_query_cmd_group);
2286
2287 /* Data for statistics requests + stats_counter
2288 * stats_counter holds per-STORM counters that are incremented
2289 * when STORM has finished with the current request.
2290 * memory for FCoE offloaded statistics are counted anyway,
2291 * even if they will not be sent.
2292 * VF stats are not accounted for here as the data of VF stats is stored
2293 * in memory allocated by the VF, not here.
2294 */
2295 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2296 sizeof(struct per_pf_stats) +
2297 sizeof(struct fcoe_statistics_params) +
2298 sizeof(struct per_queue_stats) * num_queue_stats +
2299 sizeof(struct stats_counter);
2300
2301 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2302 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2303 if (!bp->fw_stats)
2304 goto alloc_mem_err;
2305
2306 /* Set shortcuts */
2307 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2308 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2309 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2310 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2311 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2312 bp->fw_stats_req_sz;
2313
2314 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2315 U64_HI(bp->fw_stats_req_mapping),
2316 U64_LO(bp->fw_stats_req_mapping));
2317 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2318 U64_HI(bp->fw_stats_data_mapping),
2319 U64_LO(bp->fw_stats_data_mapping));
2320 return 0;
2321
2322 alloc_mem_err:
2323 bnx2x_free_fw_stats_mem(bp);
2324 BNX2X_ERR("Can't allocate FW stats memory\n");
2325 return -ENOMEM;
2326 }
2327
2328 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2329 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2330 {
2331 u32 param;
2332
2333 /* init fw_seq */
2334 bp->fw_seq =
2335 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2336 DRV_MSG_SEQ_NUMBER_MASK);
2337 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2338
2339 /* Get current FW pulse sequence */
2340 bp->fw_drv_pulse_wr_seq =
2341 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2342 DRV_PULSE_SEQ_MASK);
2343 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2344
2345 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2346
2347 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2348 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2349
2350 /* load request */
2351 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2352
2353 /* if mcp fails to respond we must abort */
2354 if (!(*load_code)) {
2355 BNX2X_ERR("MCP response failure, aborting\n");
2356 return -EBUSY;
2357 }
2358
2359 /* If mcp refused (e.g. other port is in diagnostic mode) we
2360 * must abort
2361 */
2362 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2363 BNX2X_ERR("MCP refused load request, aborting\n");
2364 return -EBUSY;
2365 }
2366 return 0;
2367 }
2368
2369 /* check whether another PF has already loaded FW to chip. In
2370 * virtualized environments a pf from another VM may have already
2371 * initialized the device including loading FW
2372 */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2373 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2374 {
2375 /* is another pf loaded on this engine? */
2376 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2377 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2378 u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng;
2379 u32 loaded_fw;
2380
2381 /* read loaded FW from chip */
2382 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2383
2384 loaded_fw_major = loaded_fw & 0xff;
2385 loaded_fw_minor = (loaded_fw >> 8) & 0xff;
2386 loaded_fw_rev = (loaded_fw >> 16) & 0xff;
2387 loaded_fw_eng = (loaded_fw >> 24) & 0xff;
2388
2389 DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n",
2390 loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng);
2391
2392 /* abort nic load if version mismatch */
2393 if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION ||
2394 loaded_fw_minor != BCM_5710_FW_MINOR_VERSION ||
2395 loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION ||
2396 loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) {
2397 if (print_err)
2398 BNX2X_ERR("loaded FW incompatible. Aborting\n");
2399 else
2400 BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n");
2401
2402 return -EBUSY;
2403 }
2404 }
2405 return 0;
2406 }
2407
2408 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2409 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2410 {
2411 int path = BP_PATH(bp);
2412
2413 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2414 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2415 bnx2x_load_count[path][2]);
2416 bnx2x_load_count[path][0]++;
2417 bnx2x_load_count[path][1 + port]++;
2418 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2419 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2420 bnx2x_load_count[path][2]);
2421 if (bnx2x_load_count[path][0] == 1)
2422 return FW_MSG_CODE_DRV_LOAD_COMMON;
2423 else if (bnx2x_load_count[path][1 + port] == 1)
2424 return FW_MSG_CODE_DRV_LOAD_PORT;
2425 else
2426 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2427 }
2428
2429 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2430 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2431 {
2432 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2433 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2434 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2435 bp->port.pmf = 1;
2436 /* We need the barrier to ensure the ordering between the
2437 * writing to bp->port.pmf here and reading it from the
2438 * bnx2x_periodic_task().
2439 */
2440 smp_mb();
2441 } else {
2442 bp->port.pmf = 0;
2443 }
2444
2445 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2446 }
2447
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2448 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2449 {
2450 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2451 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2452 (bp->common.shmem2_base)) {
2453 if (SHMEM2_HAS(bp, dcc_support))
2454 SHMEM2_WR(bp, dcc_support,
2455 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2456 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2457 if (SHMEM2_HAS(bp, afex_driver_support))
2458 SHMEM2_WR(bp, afex_driver_support,
2459 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2460 }
2461
2462 /* Set AFEX default VLAN tag to an invalid value */
2463 bp->afex_def_vlan_tag = -1;
2464 }
2465
2466 /**
2467 * bnx2x_bz_fp - zero content of the fastpath structure.
2468 *
2469 * @bp: driver handle
2470 * @index: fastpath index to be zeroed
2471 *
2472 * Makes sure the contents of the bp->fp[index].napi is kept
2473 * intact.
2474 */
bnx2x_bz_fp(struct bnx2x * bp,int index)2475 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2476 {
2477 struct bnx2x_fastpath *fp = &bp->fp[index];
2478 int cos;
2479 struct napi_struct orig_napi = fp->napi;
2480 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2481
2482 /* bzero bnx2x_fastpath contents */
2483 if (fp->tpa_info)
2484 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2485 sizeof(struct bnx2x_agg_info));
2486 memset(fp, 0, sizeof(*fp));
2487
2488 /* Restore the NAPI object as it has been already initialized */
2489 fp->napi = orig_napi;
2490 fp->tpa_info = orig_tpa_info;
2491 fp->bp = bp;
2492 fp->index = index;
2493 if (IS_ETH_FP(fp))
2494 fp->max_cos = bp->max_cos;
2495 else
2496 /* Special queues support only one CoS */
2497 fp->max_cos = 1;
2498
2499 /* Init txdata pointers */
2500 if (IS_FCOE_FP(fp))
2501 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2502 if (IS_ETH_FP(fp))
2503 for_each_cos_in_tx_queue(fp, cos)
2504 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2505 BNX2X_NUM_ETH_QUEUES(bp) + index];
2506
2507 /* set the tpa flag for each queue. The tpa flag determines the queue
2508 * minimal size so it must be set prior to queue memory allocation
2509 */
2510 if (bp->dev->features & NETIF_F_LRO)
2511 fp->mode = TPA_MODE_LRO;
2512 else if (bp->dev->features & NETIF_F_GRO_HW)
2513 fp->mode = TPA_MODE_GRO;
2514 else
2515 fp->mode = TPA_MODE_DISABLED;
2516
2517 /* We don't want TPA if it's disabled in bp
2518 * or if this is an FCoE L2 ring.
2519 */
2520 if (bp->disable_tpa || IS_FCOE_FP(fp))
2521 fp->mode = TPA_MODE_DISABLED;
2522 }
2523
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2524 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2525 {
2526 u32 cur;
2527
2528 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2529 return;
2530
2531 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2532 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2533 cur, state);
2534
2535 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2536 }
2537
bnx2x_load_cnic(struct bnx2x * bp)2538 int bnx2x_load_cnic(struct bnx2x *bp)
2539 {
2540 int i, rc, port = BP_PORT(bp);
2541
2542 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2543
2544 mutex_init(&bp->cnic_mutex);
2545
2546 if (IS_PF(bp)) {
2547 rc = bnx2x_alloc_mem_cnic(bp);
2548 if (rc) {
2549 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2550 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2551 }
2552 }
2553
2554 rc = bnx2x_alloc_fp_mem_cnic(bp);
2555 if (rc) {
2556 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2557 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2558 }
2559
2560 /* Update the number of queues with the cnic queues */
2561 rc = bnx2x_set_real_num_queues(bp, 1);
2562 if (rc) {
2563 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2564 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2565 }
2566
2567 /* Add all CNIC NAPI objects */
2568 bnx2x_add_all_napi_cnic(bp);
2569 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2570 bnx2x_napi_enable_cnic(bp);
2571
2572 rc = bnx2x_init_hw_func_cnic(bp);
2573 if (rc)
2574 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2575
2576 bnx2x_nic_init_cnic(bp);
2577
2578 if (IS_PF(bp)) {
2579 /* Enable Timer scan */
2580 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2581
2582 /* setup cnic queues */
2583 for_each_cnic_queue(bp, i) {
2584 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2585 if (rc) {
2586 BNX2X_ERR("Queue setup failed\n");
2587 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2588 }
2589 }
2590 }
2591
2592 /* Initialize Rx filter. */
2593 bnx2x_set_rx_mode_inner(bp);
2594
2595 /* re-read iscsi info */
2596 bnx2x_get_iscsi_info(bp);
2597 bnx2x_setup_cnic_irq_info(bp);
2598 bnx2x_setup_cnic_info(bp);
2599 bp->cnic_loaded = true;
2600 if (bp->state == BNX2X_STATE_OPEN)
2601 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2602
2603 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2604
2605 return 0;
2606
2607 #ifndef BNX2X_STOP_ON_ERROR
2608 load_error_cnic2:
2609 /* Disable Timer scan */
2610 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2611
2612 load_error_cnic1:
2613 bnx2x_napi_disable_cnic(bp);
2614 /* Update the number of queues without the cnic queues */
2615 if (bnx2x_set_real_num_queues(bp, 0))
2616 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2617 load_error_cnic0:
2618 BNX2X_ERR("CNIC-related load failed\n");
2619 bnx2x_free_fp_mem_cnic(bp);
2620 bnx2x_free_mem_cnic(bp);
2621 return rc;
2622 #endif /* ! BNX2X_STOP_ON_ERROR */
2623 }
2624
2625 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2626 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2627 {
2628 int port = BP_PORT(bp);
2629 int i, rc = 0, load_code = 0;
2630
2631 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2632 DP(NETIF_MSG_IFUP,
2633 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2634
2635 #ifdef BNX2X_STOP_ON_ERROR
2636 if (unlikely(bp->panic)) {
2637 BNX2X_ERR("Can't load NIC when there is panic\n");
2638 return -EPERM;
2639 }
2640 #endif
2641
2642 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2643
2644 /* zero the structure w/o any lock, before SP handler is initialized */
2645 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2646 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2647 &bp->last_reported_link.link_report_flags);
2648
2649 if (IS_PF(bp))
2650 /* must be called before memory allocation and HW init */
2651 bnx2x_ilt_set_info(bp);
2652
2653 /*
2654 * Zero fastpath structures preserving invariants like napi, which are
2655 * allocated only once, fp index, max_cos, bp pointer.
2656 * Also set fp->mode and txdata_ptr.
2657 */
2658 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2659 for_each_queue(bp, i)
2660 bnx2x_bz_fp(bp, i);
2661 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2662 bp->num_cnic_queues) *
2663 sizeof(struct bnx2x_fp_txdata));
2664
2665 bp->fcoe_init = false;
2666
2667 /* Set the receive queues buffer size */
2668 bnx2x_set_rx_buf_size(bp);
2669
2670 if (IS_PF(bp)) {
2671 rc = bnx2x_alloc_mem(bp);
2672 if (rc) {
2673 BNX2X_ERR("Unable to allocate bp memory\n");
2674 return rc;
2675 }
2676 }
2677
2678 /* need to be done after alloc mem, since it's self adjusting to amount
2679 * of memory available for RSS queues
2680 */
2681 rc = bnx2x_alloc_fp_mem(bp);
2682 if (rc) {
2683 BNX2X_ERR("Unable to allocate memory for fps\n");
2684 LOAD_ERROR_EXIT(bp, load_error0);
2685 }
2686
2687 /* Allocated memory for FW statistics */
2688 rc = bnx2x_alloc_fw_stats_mem(bp);
2689 if (rc)
2690 LOAD_ERROR_EXIT(bp, load_error0);
2691
2692 /* request pf to initialize status blocks */
2693 if (IS_VF(bp)) {
2694 rc = bnx2x_vfpf_init(bp);
2695 if (rc)
2696 LOAD_ERROR_EXIT(bp, load_error0);
2697 }
2698
2699 /* As long as bnx2x_alloc_mem() may possibly update
2700 * bp->num_queues, bnx2x_set_real_num_queues() should always
2701 * come after it. At this stage cnic queues are not counted.
2702 */
2703 rc = bnx2x_set_real_num_queues(bp, 0);
2704 if (rc) {
2705 BNX2X_ERR("Unable to set real_num_queues\n");
2706 LOAD_ERROR_EXIT(bp, load_error0);
2707 }
2708
2709 /* configure multi cos mappings in kernel.
2710 * this configuration may be overridden by a multi class queue
2711 * discipline or by a dcbx negotiation result.
2712 */
2713 bnx2x_setup_tc(bp->dev, bp->max_cos);
2714
2715 /* Add all NAPI objects */
2716 bnx2x_add_all_napi(bp);
2717 DP(NETIF_MSG_IFUP, "napi added\n");
2718 bnx2x_napi_enable(bp);
2719 bp->nic_stopped = false;
2720
2721 if (IS_PF(bp)) {
2722 /* set pf load just before approaching the MCP */
2723 bnx2x_set_pf_load(bp);
2724
2725 /* if mcp exists send load request and analyze response */
2726 if (!BP_NOMCP(bp)) {
2727 /* attempt to load pf */
2728 rc = bnx2x_nic_load_request(bp, &load_code);
2729 if (rc)
2730 LOAD_ERROR_EXIT(bp, load_error1);
2731
2732 /* what did mcp say? */
2733 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2734 if (rc) {
2735 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2736 LOAD_ERROR_EXIT(bp, load_error2);
2737 }
2738 } else {
2739 load_code = bnx2x_nic_load_no_mcp(bp, port);
2740 }
2741
2742 /* mark pmf if applicable */
2743 bnx2x_nic_load_pmf(bp, load_code);
2744
2745 /* Init Function state controlling object */
2746 bnx2x__init_func_obj(bp);
2747
2748 /* Initialize HW */
2749 rc = bnx2x_init_hw(bp, load_code);
2750 if (rc) {
2751 BNX2X_ERR("HW init failed, aborting\n");
2752 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2753 LOAD_ERROR_EXIT(bp, load_error2);
2754 }
2755 }
2756
2757 bnx2x_pre_irq_nic_init(bp);
2758
2759 /* Connect to IRQs */
2760 rc = bnx2x_setup_irqs(bp);
2761 if (rc) {
2762 BNX2X_ERR("setup irqs failed\n");
2763 if (IS_PF(bp))
2764 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2765 LOAD_ERROR_EXIT(bp, load_error2);
2766 }
2767
2768 /* Init per-function objects */
2769 if (IS_PF(bp)) {
2770 /* Setup NIC internals and enable interrupts */
2771 bnx2x_post_irq_nic_init(bp, load_code);
2772
2773 bnx2x_init_bp_objs(bp);
2774 bnx2x_iov_nic_init(bp);
2775
2776 /* Set AFEX default VLAN tag to an invalid value */
2777 bp->afex_def_vlan_tag = -1;
2778 bnx2x_nic_load_afex_dcc(bp, load_code);
2779 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2780 rc = bnx2x_func_start(bp);
2781 if (rc) {
2782 BNX2X_ERR("Function start failed!\n");
2783 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2784
2785 LOAD_ERROR_EXIT(bp, load_error3);
2786 }
2787
2788 /* Send LOAD_DONE command to MCP */
2789 if (!BP_NOMCP(bp)) {
2790 load_code = bnx2x_fw_command(bp,
2791 DRV_MSG_CODE_LOAD_DONE, 0);
2792 if (!load_code) {
2793 BNX2X_ERR("MCP response failure, aborting\n");
2794 rc = -EBUSY;
2795 LOAD_ERROR_EXIT(bp, load_error3);
2796 }
2797 }
2798
2799 /* initialize FW coalescing state machines in RAM */
2800 bnx2x_update_coalesce(bp);
2801 }
2802
2803 /* setup the leading queue */
2804 rc = bnx2x_setup_leading(bp);
2805 if (rc) {
2806 BNX2X_ERR("Setup leading failed!\n");
2807 LOAD_ERROR_EXIT(bp, load_error3);
2808 }
2809
2810 /* set up the rest of the queues */
2811 for_each_nondefault_eth_queue(bp, i) {
2812 if (IS_PF(bp))
2813 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2814 else /* VF */
2815 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2816 if (rc) {
2817 BNX2X_ERR("Queue %d setup failed\n", i);
2818 LOAD_ERROR_EXIT(bp, load_error3);
2819 }
2820 }
2821
2822 /* setup rss */
2823 rc = bnx2x_init_rss(bp);
2824 if (rc) {
2825 BNX2X_ERR("PF RSS init failed\n");
2826 LOAD_ERROR_EXIT(bp, load_error3);
2827 }
2828
2829 /* Now when Clients are configured we are ready to work */
2830 bp->state = BNX2X_STATE_OPEN;
2831
2832 /* Configure a ucast MAC */
2833 if (IS_PF(bp))
2834 rc = bnx2x_set_eth_mac(bp, true);
2835 else /* vf */
2836 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2837 true);
2838 if (rc) {
2839 BNX2X_ERR("Setting Ethernet MAC failed\n");
2840 LOAD_ERROR_EXIT(bp, load_error3);
2841 }
2842
2843 if (IS_PF(bp) && bp->pending_max) {
2844 bnx2x_update_max_mf_config(bp, bp->pending_max);
2845 bp->pending_max = 0;
2846 }
2847
2848 bp->force_link_down = false;
2849 if (bp->port.pmf) {
2850 rc = bnx2x_initial_phy_init(bp, load_mode);
2851 if (rc)
2852 LOAD_ERROR_EXIT(bp, load_error3);
2853 }
2854 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2855
2856 /* Start fast path */
2857
2858 /* Re-configure vlan filters */
2859 rc = bnx2x_vlan_reconfigure_vid(bp);
2860 if (rc)
2861 LOAD_ERROR_EXIT(bp, load_error3);
2862
2863 /* Initialize Rx filter. */
2864 bnx2x_set_rx_mode_inner(bp);
2865
2866 if (bp->flags & PTP_SUPPORTED) {
2867 bnx2x_register_phc(bp);
2868 bnx2x_init_ptp(bp);
2869 bnx2x_configure_ptp_filters(bp);
2870 }
2871 /* Start Tx */
2872 switch (load_mode) {
2873 case LOAD_NORMAL:
2874 /* Tx queue should be only re-enabled */
2875 netif_tx_wake_all_queues(bp->dev);
2876 break;
2877
2878 case LOAD_OPEN:
2879 netif_tx_start_all_queues(bp->dev);
2880 smp_mb__after_atomic();
2881 break;
2882
2883 case LOAD_DIAG:
2884 case LOAD_LOOPBACK_EXT:
2885 bp->state = BNX2X_STATE_DIAG;
2886 break;
2887
2888 default:
2889 break;
2890 }
2891
2892 if (bp->port.pmf)
2893 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2894 else
2895 bnx2x__link_status_update(bp);
2896
2897 /* start the timer */
2898 mod_timer(&bp->timer, jiffies + bp->current_interval);
2899
2900 if (CNIC_ENABLED(bp))
2901 bnx2x_load_cnic(bp);
2902
2903 if (IS_PF(bp))
2904 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2905
2906 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2907 /* mark driver is loaded in shmem2 */
2908 u32 val;
2909 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2910 val &= ~DRV_FLAGS_MTU_MASK;
2911 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2912 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2913 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2914 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2915 }
2916
2917 /* Wait for all pending SP commands to complete */
2918 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2919 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2920 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2921 return -EBUSY;
2922 }
2923
2924 /* Update driver data for On-Chip MFW dump. */
2925 if (IS_PF(bp))
2926 bnx2x_update_mfw_dump(bp);
2927
2928 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2929 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2930 bnx2x_dcbx_init(bp, false);
2931
2932 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2933 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2934
2935 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2936
2937 return 0;
2938
2939 #ifndef BNX2X_STOP_ON_ERROR
2940 load_error3:
2941 if (IS_PF(bp)) {
2942 bnx2x_int_disable_sync(bp, 1);
2943
2944 /* Clean queueable objects */
2945 bnx2x_squeeze_objects(bp);
2946 }
2947
2948 /* Free SKBs, SGEs, TPA pool and driver internals */
2949 bnx2x_free_skbs(bp);
2950 for_each_rx_queue(bp, i)
2951 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2952
2953 /* Release IRQs */
2954 bnx2x_free_irq(bp);
2955 load_error2:
2956 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2957 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2958 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2959 }
2960
2961 bp->port.pmf = 0;
2962 load_error1:
2963 bnx2x_napi_disable(bp);
2964 bnx2x_del_all_napi(bp);
2965 bp->nic_stopped = true;
2966
2967 /* clear pf_load status, as it was already set */
2968 if (IS_PF(bp))
2969 bnx2x_clear_pf_load(bp);
2970 load_error0:
2971 bnx2x_free_fw_stats_mem(bp);
2972 bnx2x_free_fp_mem(bp);
2973 bnx2x_free_mem(bp);
2974
2975 return rc;
2976 #endif /* ! BNX2X_STOP_ON_ERROR */
2977 }
2978
bnx2x_drain_tx_queues(struct bnx2x * bp)2979 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2980 {
2981 u8 rc = 0, cos, i;
2982
2983 /* Wait until tx fastpath tasks complete */
2984 for_each_tx_queue(bp, i) {
2985 struct bnx2x_fastpath *fp = &bp->fp[i];
2986
2987 for_each_cos_in_tx_queue(fp, cos)
2988 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2989 if (rc)
2990 return rc;
2991 }
2992 return 0;
2993 }
2994
2995 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2996 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2997 {
2998 int i;
2999 bool global = false;
3000
3001 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
3002
3003 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
3004 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
3005
3006 /* mark driver is unloaded in shmem2 */
3007 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
3008 u32 val;
3009 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
3010 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
3011 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
3012 }
3013
3014 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
3015 (bp->state == BNX2X_STATE_CLOSED ||
3016 bp->state == BNX2X_STATE_ERROR)) {
3017 /* We can get here if the driver has been unloaded
3018 * during parity error recovery and is either waiting for a
3019 * leader to complete or for other functions to unload and
3020 * then ifdown has been issued. In this case we want to
3021 * unload and let other functions to complete a recovery
3022 * process.
3023 */
3024 bp->recovery_state = BNX2X_RECOVERY_DONE;
3025 bp->is_leader = 0;
3026 bnx2x_release_leader_lock(bp);
3027 smp_mb();
3028
3029 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3030 BNX2X_ERR("Can't unload in closed or error state\n");
3031 return -EINVAL;
3032 }
3033
3034 /* Nothing to do during unload if previous bnx2x_nic_load()
3035 * have not completed successfully - all resources are released.
3036 *
3037 * we can get here only after unsuccessful ndo_* callback, during which
3038 * dev->IFF_UP flag is still on.
3039 */
3040 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3041 return 0;
3042
3043 /* It's important to set the bp->state to the value different from
3044 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3045 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3046 */
3047 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3048 smp_mb();
3049
3050 /* indicate to VFs that the PF is going down */
3051 bnx2x_iov_channel_down(bp);
3052
3053 if (CNIC_LOADED(bp))
3054 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3055
3056 /* Stop Tx */
3057 bnx2x_tx_disable(bp);
3058 netdev_reset_tc(bp->dev);
3059
3060 bp->rx_mode = BNX2X_RX_MODE_NONE;
3061
3062 del_timer_sync(&bp->timer);
3063
3064 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3065 /* Set ALWAYS_ALIVE bit in shmem */
3066 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3067 bnx2x_drv_pulse(bp);
3068 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3069 bnx2x_save_statistics(bp);
3070 }
3071
3072 /* wait till consumers catch up with producers in all queues.
3073 * If we're recovering, FW can't write to host so no reason
3074 * to wait for the queues to complete all Tx.
3075 */
3076 if (unload_mode != UNLOAD_RECOVERY)
3077 bnx2x_drain_tx_queues(bp);
3078
3079 /* if VF indicate to PF this function is going down (PF will delete sp
3080 * elements and clear initializations
3081 */
3082 if (IS_VF(bp)) {
3083 bnx2x_clear_vlan_info(bp);
3084 bnx2x_vfpf_close_vf(bp);
3085 } else if (unload_mode != UNLOAD_RECOVERY) {
3086 /* if this is a normal/close unload need to clean up chip*/
3087 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3088 } else {
3089 /* Send the UNLOAD_REQUEST to the MCP */
3090 bnx2x_send_unload_req(bp, unload_mode);
3091
3092 /* Prevent transactions to host from the functions on the
3093 * engine that doesn't reset global blocks in case of global
3094 * attention once global blocks are reset and gates are opened
3095 * (the engine which leader will perform the recovery
3096 * last).
3097 */
3098 if (!CHIP_IS_E1x(bp))
3099 bnx2x_pf_disable(bp);
3100
3101 if (!bp->nic_stopped) {
3102 /* Disable HW interrupts, NAPI */
3103 bnx2x_netif_stop(bp, 1);
3104 /* Delete all NAPI objects */
3105 bnx2x_del_all_napi(bp);
3106 if (CNIC_LOADED(bp))
3107 bnx2x_del_all_napi_cnic(bp);
3108 /* Release IRQs */
3109 bnx2x_free_irq(bp);
3110 bp->nic_stopped = true;
3111 }
3112
3113 /* Report UNLOAD_DONE to MCP */
3114 bnx2x_send_unload_done(bp, false);
3115 }
3116
3117 /*
3118 * At this stage no more interrupts will arrive so we may safely clean
3119 * the queueable objects here in case they failed to get cleaned so far.
3120 */
3121 if (IS_PF(bp))
3122 bnx2x_squeeze_objects(bp);
3123
3124 /* There should be no more pending SP commands at this stage */
3125 bp->sp_state = 0;
3126
3127 bp->port.pmf = 0;
3128
3129 /* clear pending work in rtnl task */
3130 bp->sp_rtnl_state = 0;
3131 smp_mb();
3132
3133 /* Free SKBs, SGEs, TPA pool and driver internals */
3134 bnx2x_free_skbs(bp);
3135 if (CNIC_LOADED(bp))
3136 bnx2x_free_skbs_cnic(bp);
3137 for_each_rx_queue(bp, i)
3138 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3139
3140 bnx2x_free_fp_mem(bp);
3141 if (CNIC_LOADED(bp))
3142 bnx2x_free_fp_mem_cnic(bp);
3143
3144 if (IS_PF(bp)) {
3145 if (CNIC_LOADED(bp))
3146 bnx2x_free_mem_cnic(bp);
3147 }
3148 bnx2x_free_mem(bp);
3149
3150 bp->state = BNX2X_STATE_CLOSED;
3151 bp->cnic_loaded = false;
3152
3153 /* Clear driver version indication in shmem */
3154 if (IS_PF(bp) && !BP_NOMCP(bp))
3155 bnx2x_update_mng_version(bp);
3156
3157 /* Check if there are pending parity attentions. If there are - set
3158 * RECOVERY_IN_PROGRESS.
3159 */
3160 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3161 bnx2x_set_reset_in_progress(bp);
3162
3163 /* Set RESET_IS_GLOBAL if needed */
3164 if (global)
3165 bnx2x_set_reset_global(bp);
3166 }
3167
3168 /* The last driver must disable a "close the gate" if there is no
3169 * parity attention or "process kill" pending.
3170 */
3171 if (IS_PF(bp) &&
3172 !bnx2x_clear_pf_load(bp) &&
3173 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3174 bnx2x_disable_close_the_gate(bp);
3175
3176 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3177
3178 return 0;
3179 }
3180
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3181 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3182 {
3183 u16 pmcsr;
3184
3185 /* If there is no power capability, silently succeed */
3186 if (!bp->pdev->pm_cap) {
3187 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3188 return 0;
3189 }
3190
3191 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3192
3193 switch (state) {
3194 case PCI_D0:
3195 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3196 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3197 PCI_PM_CTRL_PME_STATUS));
3198
3199 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3200 /* delay required during transition out of D3hot */
3201 msleep(20);
3202 break;
3203
3204 case PCI_D3hot:
3205 /* If there are other clients above don't
3206 shut down the power */
3207 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3208 return 0;
3209 /* Don't shut down the power for emulation and FPGA */
3210 if (CHIP_REV_IS_SLOW(bp))
3211 return 0;
3212
3213 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3214 pmcsr |= 3;
3215
3216 if (bp->wol)
3217 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3218
3219 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3220 pmcsr);
3221
3222 /* No more memory access after this point until
3223 * device is brought back to D0.
3224 */
3225 break;
3226
3227 default:
3228 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3229 return -EINVAL;
3230 }
3231 return 0;
3232 }
3233
3234 /*
3235 * net_device service functions
3236 */
bnx2x_poll(struct napi_struct * napi,int budget)3237 static int bnx2x_poll(struct napi_struct *napi, int budget)
3238 {
3239 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3240 napi);
3241 struct bnx2x *bp = fp->bp;
3242 int rx_work_done;
3243 u8 cos;
3244
3245 #ifdef BNX2X_STOP_ON_ERROR
3246 if (unlikely(bp->panic)) {
3247 napi_complete(napi);
3248 return 0;
3249 }
3250 #endif
3251 for_each_cos_in_tx_queue(fp, cos)
3252 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3253 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3254
3255 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3256
3257 if (rx_work_done < budget) {
3258 /* No need to update SB for FCoE L2 ring as long as
3259 * it's connected to the default SB and the SB
3260 * has been updated when NAPI was scheduled.
3261 */
3262 if (IS_FCOE_FP(fp)) {
3263 napi_complete_done(napi, rx_work_done);
3264 } else {
3265 bnx2x_update_fpsb_idx(fp);
3266 /* bnx2x_has_rx_work() reads the status block,
3267 * thus we need to ensure that status block indices
3268 * have been actually read (bnx2x_update_fpsb_idx)
3269 * prior to this check (bnx2x_has_rx_work) so that
3270 * we won't write the "newer" value of the status block
3271 * to IGU (if there was a DMA right after
3272 * bnx2x_has_rx_work and if there is no rmb, the memory
3273 * reading (bnx2x_update_fpsb_idx) may be postponed
3274 * to right before bnx2x_ack_sb). In this case there
3275 * will never be another interrupt until there is
3276 * another update of the status block, while there
3277 * is still unhandled work.
3278 */
3279 rmb();
3280
3281 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3282 if (napi_complete_done(napi, rx_work_done)) {
3283 /* Re-enable interrupts */
3284 DP(NETIF_MSG_RX_STATUS,
3285 "Update index to %d\n", fp->fp_hc_idx);
3286 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3287 le16_to_cpu(fp->fp_hc_idx),
3288 IGU_INT_ENABLE, 1);
3289 }
3290 } else {
3291 rx_work_done = budget;
3292 }
3293 }
3294 }
3295
3296 return rx_work_done;
3297 }
3298
3299 /* we split the first BD into headers and data BDs
3300 * to ease the pain of our fellow microcode engineers
3301 * we use one mapping for both BDs
3302 */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3303 static u16 bnx2x_tx_split(struct bnx2x *bp,
3304 struct bnx2x_fp_txdata *txdata,
3305 struct sw_tx_bd *tx_buf,
3306 struct eth_tx_start_bd **tx_bd, u16 hlen,
3307 u16 bd_prod)
3308 {
3309 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3310 struct eth_tx_bd *d_tx_bd;
3311 dma_addr_t mapping;
3312 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3313
3314 /* first fix first BD */
3315 h_tx_bd->nbytes = cpu_to_le16(hlen);
3316
3317 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3318 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3319
3320 /* now get a new data BD
3321 * (after the pbd) and fill it */
3322 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3323 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3324
3325 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3326 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3327
3328 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3329 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3330 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3331
3332 /* this marks the BD as one that has no individual mapping */
3333 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3334
3335 DP(NETIF_MSG_TX_QUEUED,
3336 "TSO split data size is %d (%x:%x)\n",
3337 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3338
3339 /* update tx_bd */
3340 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3341
3342 return bd_prod;
3343 }
3344
3345 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3346 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3347 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3348 {
3349 __sum16 tsum = (__force __sum16) csum;
3350
3351 if (fix > 0)
3352 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3353 csum_partial(t_header - fix, fix, 0)));
3354
3355 else if (fix < 0)
3356 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3357 csum_partial(t_header, -fix, 0)));
3358
3359 return bswab16(tsum);
3360 }
3361
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3362 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3363 {
3364 u32 rc;
3365 __u8 prot = 0;
3366 __be16 protocol;
3367
3368 if (skb->ip_summed != CHECKSUM_PARTIAL)
3369 return XMIT_PLAIN;
3370
3371 protocol = vlan_get_protocol(skb);
3372 if (protocol == htons(ETH_P_IPV6)) {
3373 rc = XMIT_CSUM_V6;
3374 prot = ipv6_hdr(skb)->nexthdr;
3375 } else {
3376 rc = XMIT_CSUM_V4;
3377 prot = ip_hdr(skb)->protocol;
3378 }
3379
3380 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3381 if (inner_ip_hdr(skb)->version == 6) {
3382 rc |= XMIT_CSUM_ENC_V6;
3383 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3384 rc |= XMIT_CSUM_TCP;
3385 } else {
3386 rc |= XMIT_CSUM_ENC_V4;
3387 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3388 rc |= XMIT_CSUM_TCP;
3389 }
3390 }
3391 if (prot == IPPROTO_TCP)
3392 rc |= XMIT_CSUM_TCP;
3393
3394 if (skb_is_gso(skb)) {
3395 if (skb_is_gso_v6(skb)) {
3396 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3397 if (rc & XMIT_CSUM_ENC)
3398 rc |= XMIT_GSO_ENC_V6;
3399 } else {
3400 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3401 if (rc & XMIT_CSUM_ENC)
3402 rc |= XMIT_GSO_ENC_V4;
3403 }
3404 }
3405
3406 return rc;
3407 }
3408
3409 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3410 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3411
3412 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3413 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3414
3415 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3416 /* check if packet requires linearization (packet is too fragmented)
3417 no need to check fragmentation if page size > 8K (there will be no
3418 violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3419 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3420 u32 xmit_type)
3421 {
3422 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3423 int to_copy = 0, hlen = 0;
3424
3425 if (xmit_type & XMIT_GSO_ENC)
3426 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3427
3428 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3429 if (xmit_type & XMIT_GSO) {
3430 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3431 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3432 /* Number of windows to check */
3433 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3434 int wnd_idx = 0;
3435 int frag_idx = 0;
3436 u32 wnd_sum = 0;
3437
3438 /* Headers length */
3439 if (xmit_type & XMIT_GSO_ENC)
3440 hlen = skb_inner_tcp_all_headers(skb);
3441 else
3442 hlen = skb_tcp_all_headers(skb);
3443
3444 /* Amount of data (w/o headers) on linear part of SKB*/
3445 first_bd_sz = skb_headlen(skb) - hlen;
3446
3447 wnd_sum = first_bd_sz;
3448
3449 /* Calculate the first sum - it's special */
3450 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3451 wnd_sum +=
3452 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3453
3454 /* If there was data on linear skb data - check it */
3455 if (first_bd_sz > 0) {
3456 if (unlikely(wnd_sum < lso_mss)) {
3457 to_copy = 1;
3458 goto exit_lbl;
3459 }
3460
3461 wnd_sum -= first_bd_sz;
3462 }
3463
3464 /* Others are easier: run through the frag list and
3465 check all windows */
3466 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3467 wnd_sum +=
3468 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3469
3470 if (unlikely(wnd_sum < lso_mss)) {
3471 to_copy = 1;
3472 break;
3473 }
3474 wnd_sum -=
3475 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3476 }
3477 } else {
3478 /* in non-LSO too fragmented packet should always
3479 be linearized */
3480 to_copy = 1;
3481 }
3482 }
3483
3484 exit_lbl:
3485 if (unlikely(to_copy))
3486 DP(NETIF_MSG_TX_QUEUED,
3487 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3488 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3489 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3490
3491 return to_copy;
3492 }
3493 #endif
3494
3495 /**
3496 * bnx2x_set_pbd_gso - update PBD in GSO case.
3497 *
3498 * @skb: packet skb
3499 * @pbd: parse BD
3500 * @xmit_type: xmit flags
3501 */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3502 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3503 struct eth_tx_parse_bd_e1x *pbd,
3504 u32 xmit_type)
3505 {
3506 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3507 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3508 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3509
3510 if (xmit_type & XMIT_GSO_V4) {
3511 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3512 pbd->tcp_pseudo_csum =
3513 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3514 ip_hdr(skb)->daddr,
3515 0, IPPROTO_TCP, 0));
3516 } else {
3517 pbd->tcp_pseudo_csum =
3518 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3519 &ipv6_hdr(skb)->daddr,
3520 0, IPPROTO_TCP, 0));
3521 }
3522
3523 pbd->global_data |=
3524 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3525 }
3526
3527 /**
3528 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3529 *
3530 * @bp: driver handle
3531 * @skb: packet skb
3532 * @parsing_data: data to be updated
3533 * @xmit_type: xmit flags
3534 *
3535 * 57712/578xx related, when skb has encapsulation
3536 */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3537 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3538 u32 *parsing_data, u32 xmit_type)
3539 {
3540 *parsing_data |=
3541 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3542 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3543 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3544
3545 if (xmit_type & XMIT_CSUM_TCP) {
3546 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3547 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3548 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3549
3550 return skb_inner_tcp_all_headers(skb);
3551 }
3552
3553 /* We support checksum offload for TCP and UDP only.
3554 * No need to pass the UDP header length - it's a constant.
3555 */
3556 return skb_inner_transport_offset(skb) + sizeof(struct udphdr);
3557 }
3558
3559 /**
3560 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3561 *
3562 * @bp: driver handle
3563 * @skb: packet skb
3564 * @parsing_data: data to be updated
3565 * @xmit_type: xmit flags
3566 *
3567 * 57712/578xx related
3568 */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3569 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3570 u32 *parsing_data, u32 xmit_type)
3571 {
3572 *parsing_data |=
3573 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3574 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3575 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3576
3577 if (xmit_type & XMIT_CSUM_TCP) {
3578 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3579 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3580 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3581
3582 return skb_tcp_all_headers(skb);
3583 }
3584 /* We support checksum offload for TCP and UDP only.
3585 * No need to pass the UDP header length - it's a constant.
3586 */
3587 return skb_transport_offset(skb) + sizeof(struct udphdr);
3588 }
3589
3590 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3591 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3592 struct eth_tx_start_bd *tx_start_bd,
3593 u32 xmit_type)
3594 {
3595 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3596
3597 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3598 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3599
3600 if (!(xmit_type & XMIT_CSUM_TCP))
3601 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3602 }
3603
3604 /**
3605 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3606 *
3607 * @bp: driver handle
3608 * @skb: packet skb
3609 * @pbd: parse BD to be updated
3610 * @xmit_type: xmit flags
3611 */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3612 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3613 struct eth_tx_parse_bd_e1x *pbd,
3614 u32 xmit_type)
3615 {
3616 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3617
3618 /* for now NS flag is not used in Linux */
3619 pbd->global_data =
3620 cpu_to_le16(hlen |
3621 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3622 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3623
3624 pbd->ip_hlen_w = (skb_transport_header(skb) -
3625 skb_network_header(skb)) >> 1;
3626
3627 hlen += pbd->ip_hlen_w;
3628
3629 /* We support checksum offload for TCP and UDP only */
3630 if (xmit_type & XMIT_CSUM_TCP)
3631 hlen += tcp_hdrlen(skb) / 2;
3632 else
3633 hlen += sizeof(struct udphdr) / 2;
3634
3635 pbd->total_hlen_w = cpu_to_le16(hlen);
3636 hlen = hlen*2;
3637
3638 if (xmit_type & XMIT_CSUM_TCP) {
3639 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3640
3641 } else {
3642 s8 fix = SKB_CS_OFF(skb); /* signed! */
3643
3644 DP(NETIF_MSG_TX_QUEUED,
3645 "hlen %d fix %d csum before fix %x\n",
3646 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3647
3648 /* HW bug: fixup the CSUM */
3649 pbd->tcp_pseudo_csum =
3650 bnx2x_csum_fix(skb_transport_header(skb),
3651 SKB_CS(skb), fix);
3652
3653 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3654 pbd->tcp_pseudo_csum);
3655 }
3656
3657 return hlen;
3658 }
3659
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3660 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3661 struct eth_tx_parse_bd_e2 *pbd_e2,
3662 struct eth_tx_parse_2nd_bd *pbd2,
3663 u16 *global_data,
3664 u32 xmit_type)
3665 {
3666 u16 hlen_w = 0;
3667 u8 outerip_off, outerip_len = 0;
3668
3669 /* from outer IP to transport */
3670 hlen_w = (skb_inner_transport_header(skb) -
3671 skb_network_header(skb)) >> 1;
3672
3673 /* transport len */
3674 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3675
3676 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3677
3678 /* outer IP header info */
3679 if (xmit_type & XMIT_CSUM_V4) {
3680 struct iphdr *iph = ip_hdr(skb);
3681 u32 csum = (__force u32)(~iph->check) -
3682 (__force u32)iph->tot_len -
3683 (__force u32)iph->frag_off;
3684
3685 outerip_len = iph->ihl << 1;
3686
3687 pbd2->fw_ip_csum_wo_len_flags_frag =
3688 bswab16(csum_fold((__force __wsum)csum));
3689 } else {
3690 pbd2->fw_ip_hdr_to_payload_w =
3691 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3692 pbd_e2->data.tunnel_data.flags |=
3693 ETH_TUNNEL_DATA_IPV6_OUTER;
3694 }
3695
3696 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3697
3698 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3699
3700 /* inner IP header info */
3701 if (xmit_type & XMIT_CSUM_ENC_V4) {
3702 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3703
3704 pbd_e2->data.tunnel_data.pseudo_csum =
3705 bswab16(~csum_tcpudp_magic(
3706 inner_ip_hdr(skb)->saddr,
3707 inner_ip_hdr(skb)->daddr,
3708 0, IPPROTO_TCP, 0));
3709 } else {
3710 pbd_e2->data.tunnel_data.pseudo_csum =
3711 bswab16(~csum_ipv6_magic(
3712 &inner_ipv6_hdr(skb)->saddr,
3713 &inner_ipv6_hdr(skb)->daddr,
3714 0, IPPROTO_TCP, 0));
3715 }
3716
3717 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3718
3719 *global_data |=
3720 outerip_off |
3721 (outerip_len <<
3722 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3723 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3724 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3725
3726 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3727 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3728 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3729 }
3730 }
3731
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3732 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3733 u32 xmit_type)
3734 {
3735 struct ipv6hdr *ipv6;
3736
3737 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3738 return;
3739
3740 if (xmit_type & XMIT_GSO_ENC_V6)
3741 ipv6 = inner_ipv6_hdr(skb);
3742 else /* XMIT_GSO_V6 */
3743 ipv6 = ipv6_hdr(skb);
3744
3745 if (ipv6->nexthdr == NEXTHDR_IPV6)
3746 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3747 }
3748
3749 /* called with netif_tx_lock
3750 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3751 * netif_wake_queue()
3752 */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3753 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3754 {
3755 struct bnx2x *bp = netdev_priv(dev);
3756
3757 struct netdev_queue *txq;
3758 struct bnx2x_fp_txdata *txdata;
3759 struct sw_tx_bd *tx_buf;
3760 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3761 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3762 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3763 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3764 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3765 u32 pbd_e2_parsing_data = 0;
3766 u16 pkt_prod, bd_prod;
3767 int nbd, txq_index;
3768 dma_addr_t mapping;
3769 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3770 int i;
3771 u8 hlen = 0;
3772 __le16 pkt_size = 0;
3773 struct ethhdr *eth;
3774 u8 mac_type = UNICAST_ADDRESS;
3775
3776 #ifdef BNX2X_STOP_ON_ERROR
3777 if (unlikely(bp->panic))
3778 return NETDEV_TX_BUSY;
3779 #endif
3780
3781 txq_index = skb_get_queue_mapping(skb);
3782 txq = netdev_get_tx_queue(dev, txq_index);
3783
3784 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3785
3786 txdata = &bp->bnx2x_txq[txq_index];
3787
3788 /* enable this debug print to view the transmission queue being used
3789 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3790 txq_index, fp_index, txdata_index); */
3791
3792 /* enable this debug print to view the transmission details
3793 DP(NETIF_MSG_TX_QUEUED,
3794 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3795 txdata->cid, fp_index, txdata_index, txdata, fp); */
3796
3797 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3798 skb_shinfo(skb)->nr_frags +
3799 BDS_PER_TX_PKT +
3800 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3801 /* Handle special storage cases separately */
3802 if (txdata->tx_ring_size == 0) {
3803 struct bnx2x_eth_q_stats *q_stats =
3804 bnx2x_fp_qstats(bp, txdata->parent_fp);
3805 q_stats->driver_filtered_tx_pkt++;
3806 dev_kfree_skb(skb);
3807 return NETDEV_TX_OK;
3808 }
3809 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3810 netif_tx_stop_queue(txq);
3811 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3812
3813 return NETDEV_TX_BUSY;
3814 }
3815
3816 DP(NETIF_MSG_TX_QUEUED,
3817 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3818 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3819 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3820 skb->len);
3821
3822 eth = (struct ethhdr *)skb->data;
3823
3824 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3825 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3826 if (is_broadcast_ether_addr(eth->h_dest))
3827 mac_type = BROADCAST_ADDRESS;
3828 else
3829 mac_type = MULTICAST_ADDRESS;
3830 }
3831
3832 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3833 /* First, check if we need to linearize the skb (due to FW
3834 restrictions). No need to check fragmentation if page size > 8K
3835 (there will be no violation to FW restrictions) */
3836 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3837 /* Statistics of linearization */
3838 bp->lin_cnt++;
3839 if (skb_linearize(skb) != 0) {
3840 DP(NETIF_MSG_TX_QUEUED,
3841 "SKB linearization failed - silently dropping this SKB\n");
3842 dev_kfree_skb_any(skb);
3843 return NETDEV_TX_OK;
3844 }
3845 }
3846 #endif
3847 /* Map skb linear data for DMA */
3848 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3849 skb_headlen(skb), DMA_TO_DEVICE);
3850 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3851 DP(NETIF_MSG_TX_QUEUED,
3852 "SKB mapping failed - silently dropping this SKB\n");
3853 dev_kfree_skb_any(skb);
3854 return NETDEV_TX_OK;
3855 }
3856 /*
3857 Please read carefully. First we use one BD which we mark as start,
3858 then we have a parsing info BD (used for TSO or xsum),
3859 and only then we have the rest of the TSO BDs.
3860 (don't forget to mark the last one as last,
3861 and to unmap only AFTER you write to the BD ...)
3862 And above all, all pdb sizes are in words - NOT DWORDS!
3863 */
3864
3865 /* get current pkt produced now - advance it just before sending packet
3866 * since mapping of pages may fail and cause packet to be dropped
3867 */
3868 pkt_prod = txdata->tx_pkt_prod;
3869 bd_prod = TX_BD(txdata->tx_bd_prod);
3870
3871 /* get a tx_buf and first BD
3872 * tx_start_bd may be changed during SPLIT,
3873 * but first_bd will always stay first
3874 */
3875 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3876 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3877 first_bd = tx_start_bd;
3878
3879 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3880
3881 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3882 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3883 bp->eth_stats.ptp_skip_tx_ts++;
3884 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3885 } else if (bp->ptp_tx_skb) {
3886 bp->eth_stats.ptp_skip_tx_ts++;
3887 netdev_err_once(bp->dev,
3888 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3889 } else {
3890 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3891 /* schedule check for Tx timestamp */
3892 bp->ptp_tx_skb = skb_get(skb);
3893 bp->ptp_tx_start = jiffies;
3894 schedule_work(&bp->ptp_task);
3895 }
3896 }
3897
3898 /* header nbd: indirectly zero other flags! */
3899 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3900
3901 /* remember the first BD of the packet */
3902 tx_buf->first_bd = txdata->tx_bd_prod;
3903 tx_buf->skb = skb;
3904 tx_buf->flags = 0;
3905
3906 DP(NETIF_MSG_TX_QUEUED,
3907 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3908 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3909
3910 if (skb_vlan_tag_present(skb)) {
3911 tx_start_bd->vlan_or_ethertype =
3912 cpu_to_le16(skb_vlan_tag_get(skb));
3913 tx_start_bd->bd_flags.as_bitfield |=
3914 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3915 } else {
3916 /* when transmitting in a vf, start bd must hold the ethertype
3917 * for fw to enforce it
3918 */
3919 u16 vlan_tci = 0;
3920 #ifndef BNX2X_STOP_ON_ERROR
3921 if (IS_VF(bp)) {
3922 #endif
3923 /* Still need to consider inband vlan for enforced */
3924 if (__vlan_get_tag(skb, &vlan_tci)) {
3925 tx_start_bd->vlan_or_ethertype =
3926 cpu_to_le16(ntohs(eth->h_proto));
3927 } else {
3928 tx_start_bd->bd_flags.as_bitfield |=
3929 (X_ETH_INBAND_VLAN <<
3930 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3931 tx_start_bd->vlan_or_ethertype =
3932 cpu_to_le16(vlan_tci);
3933 }
3934 #ifndef BNX2X_STOP_ON_ERROR
3935 } else {
3936 /* used by FW for packet accounting */
3937 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3938 }
3939 #endif
3940 }
3941
3942 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3943
3944 /* turn on parsing and get a BD */
3945 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3946
3947 if (xmit_type & XMIT_CSUM)
3948 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3949
3950 if (!CHIP_IS_E1x(bp)) {
3951 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3952 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3953
3954 if (xmit_type & XMIT_CSUM_ENC) {
3955 u16 global_data = 0;
3956
3957 /* Set PBD in enc checksum offload case */
3958 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3959 &pbd_e2_parsing_data,
3960 xmit_type);
3961
3962 /* turn on 2nd parsing and get a BD */
3963 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3964
3965 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3966
3967 memset(pbd2, 0, sizeof(*pbd2));
3968
3969 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3970 (skb_inner_network_header(skb) -
3971 skb->data) >> 1;
3972
3973 if (xmit_type & XMIT_GSO_ENC)
3974 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3975 &global_data,
3976 xmit_type);
3977
3978 pbd2->global_data = cpu_to_le16(global_data);
3979
3980 /* add addition parse BD indication to start BD */
3981 SET_FLAG(tx_start_bd->general_data,
3982 ETH_TX_START_BD_PARSE_NBDS, 1);
3983 /* set encapsulation flag in start BD */
3984 SET_FLAG(tx_start_bd->general_data,
3985 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3986
3987 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3988
3989 nbd++;
3990 } else if (xmit_type & XMIT_CSUM) {
3991 /* Set PBD in checksum offload case w/o encapsulation */
3992 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3993 &pbd_e2_parsing_data,
3994 xmit_type);
3995 }
3996
3997 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3998 /* Add the macs to the parsing BD if this is a vf or if
3999 * Tx Switching is enabled.
4000 */
4001 if (IS_VF(bp)) {
4002 /* override GRE parameters in BD */
4003 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4004 &pbd_e2->data.mac_addr.src_mid,
4005 &pbd_e2->data.mac_addr.src_lo,
4006 eth->h_source);
4007
4008 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
4009 &pbd_e2->data.mac_addr.dst_mid,
4010 &pbd_e2->data.mac_addr.dst_lo,
4011 eth->h_dest);
4012 } else {
4013 if (bp->flags & TX_SWITCHING)
4014 bnx2x_set_fw_mac_addr(
4015 &pbd_e2->data.mac_addr.dst_hi,
4016 &pbd_e2->data.mac_addr.dst_mid,
4017 &pbd_e2->data.mac_addr.dst_lo,
4018 eth->h_dest);
4019 #ifdef BNX2X_STOP_ON_ERROR
4020 /* Enforce security is always set in Stop on Error -
4021 * source mac should be present in the parsing BD
4022 */
4023 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4024 &pbd_e2->data.mac_addr.src_mid,
4025 &pbd_e2->data.mac_addr.src_lo,
4026 eth->h_source);
4027 #endif
4028 }
4029
4030 SET_FLAG(pbd_e2_parsing_data,
4031 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4032 } else {
4033 u16 global_data = 0;
4034 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4035 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4036 /* Set PBD in checksum offload case */
4037 if (xmit_type & XMIT_CSUM)
4038 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4039
4040 SET_FLAG(global_data,
4041 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4042 pbd_e1x->global_data |= cpu_to_le16(global_data);
4043 }
4044
4045 /* Setup the data pointer of the first BD of the packet */
4046 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4047 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4048 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4049 pkt_size = tx_start_bd->nbytes;
4050
4051 DP(NETIF_MSG_TX_QUEUED,
4052 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4053 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4054 le16_to_cpu(tx_start_bd->nbytes),
4055 tx_start_bd->bd_flags.as_bitfield,
4056 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4057
4058 if (xmit_type & XMIT_GSO) {
4059
4060 DP(NETIF_MSG_TX_QUEUED,
4061 "TSO packet len %d hlen %d total len %d tso size %d\n",
4062 skb->len, hlen, skb_headlen(skb),
4063 skb_shinfo(skb)->gso_size);
4064
4065 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4066
4067 if (unlikely(skb_headlen(skb) > hlen)) {
4068 nbd++;
4069 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4070 &tx_start_bd, hlen,
4071 bd_prod);
4072 }
4073 if (!CHIP_IS_E1x(bp))
4074 pbd_e2_parsing_data |=
4075 (skb_shinfo(skb)->gso_size <<
4076 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4077 ETH_TX_PARSE_BD_E2_LSO_MSS;
4078 else
4079 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4080 }
4081
4082 /* Set the PBD's parsing_data field if not zero
4083 * (for the chips newer than 57711).
4084 */
4085 if (pbd_e2_parsing_data)
4086 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4087
4088 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4089
4090 /* Handle fragmented skb */
4091 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4092 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4093
4094 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4095 skb_frag_size(frag), DMA_TO_DEVICE);
4096 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4097 unsigned int pkts_compl = 0, bytes_compl = 0;
4098
4099 DP(NETIF_MSG_TX_QUEUED,
4100 "Unable to map page - dropping packet...\n");
4101
4102 /* we need unmap all buffers already mapped
4103 * for this SKB;
4104 * first_bd->nbd need to be properly updated
4105 * before call to bnx2x_free_tx_pkt
4106 */
4107 first_bd->nbd = cpu_to_le16(nbd);
4108 bnx2x_free_tx_pkt(bp, txdata,
4109 TX_BD(txdata->tx_pkt_prod),
4110 &pkts_compl, &bytes_compl);
4111 return NETDEV_TX_OK;
4112 }
4113
4114 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4115 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4116 if (total_pkt_bd == NULL)
4117 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4118
4119 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4120 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4121 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4122 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4123 nbd++;
4124
4125 DP(NETIF_MSG_TX_QUEUED,
4126 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4127 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4128 le16_to_cpu(tx_data_bd->nbytes));
4129 }
4130
4131 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4132
4133 /* update with actual num BDs */
4134 first_bd->nbd = cpu_to_le16(nbd);
4135
4136 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4137
4138 /* now send a tx doorbell, counting the next BD
4139 * if the packet contains or ends with it
4140 */
4141 if (TX_BD_POFF(bd_prod) < nbd)
4142 nbd++;
4143
4144 /* total_pkt_bytes should be set on the first data BD if
4145 * it's not an LSO packet and there is more than one
4146 * data BD. In this case pkt_size is limited by an MTU value.
4147 * However we prefer to set it for an LSO packet (while we don't
4148 * have to) in order to save some CPU cycles in a none-LSO
4149 * case, when we much more care about them.
4150 */
4151 if (total_pkt_bd != NULL)
4152 total_pkt_bd->total_pkt_bytes = pkt_size;
4153
4154 if (pbd_e1x)
4155 DP(NETIF_MSG_TX_QUEUED,
4156 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4157 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4158 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4159 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4160 le16_to_cpu(pbd_e1x->total_hlen_w));
4161 if (pbd_e2)
4162 DP(NETIF_MSG_TX_QUEUED,
4163 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4164 pbd_e2,
4165 pbd_e2->data.mac_addr.dst_hi,
4166 pbd_e2->data.mac_addr.dst_mid,
4167 pbd_e2->data.mac_addr.dst_lo,
4168 pbd_e2->data.mac_addr.src_hi,
4169 pbd_e2->data.mac_addr.src_mid,
4170 pbd_e2->data.mac_addr.src_lo,
4171 pbd_e2->parsing_data);
4172 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4173
4174 netdev_tx_sent_queue(txq, skb->len);
4175
4176 skb_tx_timestamp(skb);
4177
4178 txdata->tx_pkt_prod++;
4179 /*
4180 * Make sure that the BD data is updated before updating the producer
4181 * since FW might read the BD right after the producer is updated.
4182 * This is only applicable for weak-ordered memory model archs such
4183 * as IA-64. The following barrier is also mandatory since FW will
4184 * assumes packets must have BDs.
4185 */
4186 wmb();
4187
4188 txdata->tx_db.data.prod += nbd;
4189 /* make sure descriptor update is observed by HW */
4190 wmb();
4191
4192 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4193
4194 txdata->tx_bd_prod += nbd;
4195
4196 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4197 netif_tx_stop_queue(txq);
4198
4199 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4200 * ordering of set_bit() in netif_tx_stop_queue() and read of
4201 * fp->bd_tx_cons */
4202 smp_mb();
4203
4204 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4205 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4206 netif_tx_wake_queue(txq);
4207 }
4208 txdata->tx_pkt++;
4209
4210 return NETDEV_TX_OK;
4211 }
4212
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4213 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4214 {
4215 int mfw_vn = BP_FW_MB_IDX(bp);
4216 u32 tmp;
4217
4218 /* If the shmem shouldn't affect configuration, reflect */
4219 if (!IS_MF_BD(bp)) {
4220 int i;
4221
4222 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4223 c2s_map[i] = i;
4224 *c2s_default = 0;
4225
4226 return;
4227 }
4228
4229 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4230 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4231 c2s_map[0] = tmp & 0xff;
4232 c2s_map[1] = (tmp >> 8) & 0xff;
4233 c2s_map[2] = (tmp >> 16) & 0xff;
4234 c2s_map[3] = (tmp >> 24) & 0xff;
4235
4236 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4237 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4238 c2s_map[4] = tmp & 0xff;
4239 c2s_map[5] = (tmp >> 8) & 0xff;
4240 c2s_map[6] = (tmp >> 16) & 0xff;
4241 c2s_map[7] = (tmp >> 24) & 0xff;
4242
4243 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4244 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4245 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4246 }
4247
4248 /**
4249 * bnx2x_setup_tc - routine to configure net_device for multi tc
4250 *
4251 * @dev: net device to configure
4252 * @num_tc: number of traffic classes to enable
4253 *
4254 * callback connected to the ndo_setup_tc function pointer
4255 */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4256 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4257 {
4258 struct bnx2x *bp = netdev_priv(dev);
4259 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4260 int cos, prio, count, offset;
4261
4262 /* setup tc must be called under rtnl lock */
4263 ASSERT_RTNL();
4264
4265 /* no traffic classes requested. Aborting */
4266 if (!num_tc) {
4267 netdev_reset_tc(dev);
4268 return 0;
4269 }
4270
4271 /* requested to support too many traffic classes */
4272 if (num_tc > bp->max_cos) {
4273 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4274 num_tc, bp->max_cos);
4275 return -EINVAL;
4276 }
4277
4278 /* declare amount of supported traffic classes */
4279 if (netdev_set_num_tc(dev, num_tc)) {
4280 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4281 return -EINVAL;
4282 }
4283
4284 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4285
4286 /* configure priority to traffic class mapping */
4287 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4288 int outer_prio = c2s_map[prio];
4289
4290 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4291 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4292 "mapping priority %d to tc %d\n",
4293 outer_prio, bp->prio_to_cos[outer_prio]);
4294 }
4295
4296 /* Use this configuration to differentiate tc0 from other COSes
4297 This can be used for ets or pfc, and save the effort of setting
4298 up a multio class queue disc or negotiating DCBX with a switch
4299 netdev_set_prio_tc_map(dev, 0, 0);
4300 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4301 for (prio = 1; prio < 16; prio++) {
4302 netdev_set_prio_tc_map(dev, prio, 1);
4303 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4304 } */
4305
4306 /* configure traffic class to transmission queue mapping */
4307 for (cos = 0; cos < bp->max_cos; cos++) {
4308 count = BNX2X_NUM_ETH_QUEUES(bp);
4309 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4310 netdev_set_tc_queue(dev, cos, count, offset);
4311 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4312 "mapping tc %d to offset %d count %d\n",
4313 cos, offset, count);
4314 }
4315
4316 return 0;
4317 }
4318
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4319 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4320 void *type_data)
4321 {
4322 struct tc_mqprio_qopt *mqprio = type_data;
4323
4324 if (type != TC_SETUP_QDISC_MQPRIO)
4325 return -EOPNOTSUPP;
4326
4327 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4328
4329 return bnx2x_setup_tc(dev, mqprio->num_tc);
4330 }
4331
4332 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4333 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4334 {
4335 struct sockaddr *addr = p;
4336 struct bnx2x *bp = netdev_priv(dev);
4337 int rc = 0;
4338
4339 if (!is_valid_ether_addr(addr->sa_data)) {
4340 BNX2X_ERR("Requested MAC address is not valid\n");
4341 return -EINVAL;
4342 }
4343
4344 if (IS_MF_STORAGE_ONLY(bp)) {
4345 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4346 return -EINVAL;
4347 }
4348
4349 if (netif_running(dev)) {
4350 rc = bnx2x_set_eth_mac(bp, false);
4351 if (rc)
4352 return rc;
4353 }
4354
4355 eth_hw_addr_set(dev, addr->sa_data);
4356
4357 if (netif_running(dev))
4358 rc = bnx2x_set_eth_mac(bp, true);
4359
4360 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4361 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4362
4363 return rc;
4364 }
4365
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4366 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4367 {
4368 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4369 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4370 u8 cos;
4371
4372 /* Common */
4373
4374 if (IS_FCOE_IDX(fp_index)) {
4375 memset(sb, 0, sizeof(union host_hc_status_block));
4376 fp->status_blk_mapping = 0;
4377 } else {
4378 /* status blocks */
4379 if (!CHIP_IS_E1x(bp))
4380 BNX2X_PCI_FREE(sb->e2_sb,
4381 bnx2x_fp(bp, fp_index,
4382 status_blk_mapping),
4383 sizeof(struct host_hc_status_block_e2));
4384 else
4385 BNX2X_PCI_FREE(sb->e1x_sb,
4386 bnx2x_fp(bp, fp_index,
4387 status_blk_mapping),
4388 sizeof(struct host_hc_status_block_e1x));
4389 }
4390
4391 /* Rx */
4392 if (!skip_rx_queue(bp, fp_index)) {
4393 bnx2x_free_rx_bds(fp);
4394
4395 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4396 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4397 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4398 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4399 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4400
4401 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4402 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4403 sizeof(struct eth_fast_path_rx_cqe) *
4404 NUM_RCQ_BD);
4405
4406 /* SGE ring */
4407 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4408 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4409 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4410 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4411 }
4412
4413 /* Tx */
4414 if (!skip_tx_queue(bp, fp_index)) {
4415 /* fastpath tx rings: tx_buf tx_desc */
4416 for_each_cos_in_tx_queue(fp, cos) {
4417 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4418
4419 DP(NETIF_MSG_IFDOWN,
4420 "freeing tx memory of fp %d cos %d cid %d\n",
4421 fp_index, cos, txdata->cid);
4422
4423 BNX2X_FREE(txdata->tx_buf_ring);
4424 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4425 txdata->tx_desc_mapping,
4426 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4427 }
4428 }
4429 /* end of fastpath */
4430 }
4431
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4432 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4433 {
4434 int i;
4435 for_each_cnic_queue(bp, i)
4436 bnx2x_free_fp_mem_at(bp, i);
4437 }
4438
bnx2x_free_fp_mem(struct bnx2x * bp)4439 void bnx2x_free_fp_mem(struct bnx2x *bp)
4440 {
4441 int i;
4442 for_each_eth_queue(bp, i)
4443 bnx2x_free_fp_mem_at(bp, i);
4444 }
4445
set_sb_shortcuts(struct bnx2x * bp,int index)4446 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4447 {
4448 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4449 if (!CHIP_IS_E1x(bp)) {
4450 bnx2x_fp(bp, index, sb_index_values) =
4451 (__le16 *)status_blk.e2_sb->sb.index_values;
4452 bnx2x_fp(bp, index, sb_running_index) =
4453 (__le16 *)status_blk.e2_sb->sb.running_index;
4454 } else {
4455 bnx2x_fp(bp, index, sb_index_values) =
4456 (__le16 *)status_blk.e1x_sb->sb.index_values;
4457 bnx2x_fp(bp, index, sb_running_index) =
4458 (__le16 *)status_blk.e1x_sb->sb.running_index;
4459 }
4460 }
4461
4462 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4463 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4464 int rx_ring_size)
4465 {
4466 struct bnx2x *bp = fp->bp;
4467 u16 ring_prod, cqe_ring_prod;
4468 int i, failure_cnt = 0;
4469
4470 fp->rx_comp_cons = 0;
4471 cqe_ring_prod = ring_prod = 0;
4472
4473 /* This routine is called only during fo init so
4474 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4475 */
4476 for (i = 0; i < rx_ring_size; i++) {
4477 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4478 failure_cnt++;
4479 continue;
4480 }
4481 ring_prod = NEXT_RX_IDX(ring_prod);
4482 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4483 WARN_ON(ring_prod <= (i - failure_cnt));
4484 }
4485
4486 if (failure_cnt)
4487 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4488 i - failure_cnt, fp->index);
4489
4490 fp->rx_bd_prod = ring_prod;
4491 /* Limit the CQE producer by the CQE ring size */
4492 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4493 cqe_ring_prod);
4494
4495 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4496
4497 return i - failure_cnt;
4498 }
4499
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4500 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4501 {
4502 int i;
4503
4504 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4505 struct eth_rx_cqe_next_page *nextpg;
4506
4507 nextpg = (struct eth_rx_cqe_next_page *)
4508 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4509 nextpg->addr_hi =
4510 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4511 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4512 nextpg->addr_lo =
4513 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4514 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4515 }
4516 }
4517
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4518 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4519 {
4520 union host_hc_status_block *sb;
4521 struct bnx2x_fastpath *fp = &bp->fp[index];
4522 int ring_size = 0;
4523 u8 cos;
4524 int rx_ring_size = 0;
4525
4526 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4527 rx_ring_size = MIN_RX_SIZE_NONTPA;
4528 bp->rx_ring_size = rx_ring_size;
4529 } else if (!bp->rx_ring_size) {
4530 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4531
4532 if (CHIP_IS_E3(bp)) {
4533 u32 cfg = SHMEM_RD(bp,
4534 dev_info.port_hw_config[BP_PORT(bp)].
4535 default_cfg);
4536
4537 /* Decrease ring size for 1G functions */
4538 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4539 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4540 rx_ring_size /= 10;
4541 }
4542
4543 /* allocate at least number of buffers required by FW */
4544 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4545 MIN_RX_SIZE_TPA, rx_ring_size);
4546
4547 bp->rx_ring_size = rx_ring_size;
4548 } else /* if rx_ring_size specified - use it */
4549 rx_ring_size = bp->rx_ring_size;
4550
4551 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4552
4553 /* Common */
4554 sb = &bnx2x_fp(bp, index, status_blk);
4555
4556 if (!IS_FCOE_IDX(index)) {
4557 /* status blocks */
4558 if (!CHIP_IS_E1x(bp)) {
4559 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4560 sizeof(struct host_hc_status_block_e2));
4561 if (!sb->e2_sb)
4562 goto alloc_mem_err;
4563 } else {
4564 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4565 sizeof(struct host_hc_status_block_e1x));
4566 if (!sb->e1x_sb)
4567 goto alloc_mem_err;
4568 }
4569 }
4570
4571 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4572 * set shortcuts for it.
4573 */
4574 if (!IS_FCOE_IDX(index))
4575 set_sb_shortcuts(bp, index);
4576
4577 /* Tx */
4578 if (!skip_tx_queue(bp, index)) {
4579 /* fastpath tx rings: tx_buf tx_desc */
4580 for_each_cos_in_tx_queue(fp, cos) {
4581 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4582
4583 DP(NETIF_MSG_IFUP,
4584 "allocating tx memory of fp %d cos %d\n",
4585 index, cos);
4586
4587 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4588 sizeof(struct sw_tx_bd),
4589 GFP_KERNEL);
4590 if (!txdata->tx_buf_ring)
4591 goto alloc_mem_err;
4592 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4593 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4594 if (!txdata->tx_desc_ring)
4595 goto alloc_mem_err;
4596 }
4597 }
4598
4599 /* Rx */
4600 if (!skip_rx_queue(bp, index)) {
4601 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4602 bnx2x_fp(bp, index, rx_buf_ring) =
4603 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4604 if (!bnx2x_fp(bp, index, rx_buf_ring))
4605 goto alloc_mem_err;
4606 bnx2x_fp(bp, index, rx_desc_ring) =
4607 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4608 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4609 if (!bnx2x_fp(bp, index, rx_desc_ring))
4610 goto alloc_mem_err;
4611
4612 /* Seed all CQEs by 1s */
4613 bnx2x_fp(bp, index, rx_comp_ring) =
4614 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4615 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4616 if (!bnx2x_fp(bp, index, rx_comp_ring))
4617 goto alloc_mem_err;
4618
4619 /* SGE ring */
4620 bnx2x_fp(bp, index, rx_page_ring) =
4621 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4622 GFP_KERNEL);
4623 if (!bnx2x_fp(bp, index, rx_page_ring))
4624 goto alloc_mem_err;
4625 bnx2x_fp(bp, index, rx_sge_ring) =
4626 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4627 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4628 if (!bnx2x_fp(bp, index, rx_sge_ring))
4629 goto alloc_mem_err;
4630 /* RX BD ring */
4631 bnx2x_set_next_page_rx_bd(fp);
4632
4633 /* CQ ring */
4634 bnx2x_set_next_page_rx_cq(fp);
4635
4636 /* BDs */
4637 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4638 if (ring_size < rx_ring_size)
4639 goto alloc_mem_err;
4640 }
4641
4642 return 0;
4643
4644 /* handles low memory cases */
4645 alloc_mem_err:
4646 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4647 index, ring_size);
4648 /* FW will drop all packets if queue is not big enough,
4649 * In these cases we disable the queue
4650 * Min size is different for OOO, TPA and non-TPA queues
4651 */
4652 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4653 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4654 /* release memory allocated for this queue */
4655 bnx2x_free_fp_mem_at(bp, index);
4656 return -ENOMEM;
4657 }
4658 return 0;
4659 }
4660
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4661 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4662 {
4663 if (!NO_FCOE(bp))
4664 /* FCoE */
4665 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4666 /* we will fail load process instead of mark
4667 * NO_FCOE_FLAG
4668 */
4669 return -ENOMEM;
4670
4671 return 0;
4672 }
4673
bnx2x_alloc_fp_mem(struct bnx2x * bp)4674 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4675 {
4676 int i;
4677
4678 /* 1. Allocate FP for leading - fatal if error
4679 * 2. Allocate RSS - fix number of queues if error
4680 */
4681
4682 /* leading */
4683 if (bnx2x_alloc_fp_mem_at(bp, 0))
4684 return -ENOMEM;
4685
4686 /* RSS */
4687 for_each_nondefault_eth_queue(bp, i)
4688 if (bnx2x_alloc_fp_mem_at(bp, i))
4689 break;
4690
4691 /* handle memory failures */
4692 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4693 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4694
4695 WARN_ON(delta < 0);
4696 bnx2x_shrink_eth_fp(bp, delta);
4697 if (CNIC_SUPPORT(bp))
4698 /* move non eth FPs next to last eth FP
4699 * must be done in that order
4700 * FCOE_IDX < FWD_IDX < OOO_IDX
4701 */
4702
4703 /* move FCoE fp even NO_FCOE_FLAG is on */
4704 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4705 bp->num_ethernet_queues -= delta;
4706 bp->num_queues = bp->num_ethernet_queues +
4707 bp->num_cnic_queues;
4708 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4709 bp->num_queues + delta, bp->num_queues);
4710 }
4711
4712 return 0;
4713 }
4714
bnx2x_free_mem_bp(struct bnx2x * bp)4715 void bnx2x_free_mem_bp(struct bnx2x *bp)
4716 {
4717 int i;
4718
4719 for (i = 0; i < bp->fp_array_size; i++)
4720 kfree(bp->fp[i].tpa_info);
4721 kfree(bp->fp);
4722 kfree(bp->sp_objs);
4723 kfree(bp->fp_stats);
4724 kfree(bp->bnx2x_txq);
4725 kfree(bp->msix_table);
4726 kfree(bp->ilt);
4727 }
4728
bnx2x_alloc_mem_bp(struct bnx2x * bp)4729 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4730 {
4731 struct bnx2x_fastpath *fp;
4732 struct msix_entry *tbl;
4733 struct bnx2x_ilt *ilt;
4734 int msix_table_size = 0;
4735 int fp_array_size, txq_array_size;
4736 int i;
4737
4738 /*
4739 * The biggest MSI-X table we might need is as a maximum number of fast
4740 * path IGU SBs plus default SB (for PF only).
4741 */
4742 msix_table_size = bp->igu_sb_cnt;
4743 if (IS_PF(bp))
4744 msix_table_size++;
4745 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4746
4747 /* fp array: RSS plus CNIC related L2 queues */
4748 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4749 bp->fp_array_size = fp_array_size;
4750 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4751
4752 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4753 if (!fp)
4754 goto alloc_err;
4755 for (i = 0; i < bp->fp_array_size; i++) {
4756 fp[i].tpa_info =
4757 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4758 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4759 if (!(fp[i].tpa_info))
4760 goto alloc_err;
4761 }
4762
4763 bp->fp = fp;
4764
4765 /* allocate sp objs */
4766 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4767 GFP_KERNEL);
4768 if (!bp->sp_objs)
4769 goto alloc_err;
4770
4771 /* allocate fp_stats */
4772 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4773 GFP_KERNEL);
4774 if (!bp->fp_stats)
4775 goto alloc_err;
4776
4777 /* Allocate memory for the transmission queues array */
4778 txq_array_size =
4779 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4780 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4781
4782 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4783 GFP_KERNEL);
4784 if (!bp->bnx2x_txq)
4785 goto alloc_err;
4786
4787 /* msix table */
4788 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4789 if (!tbl)
4790 goto alloc_err;
4791 bp->msix_table = tbl;
4792
4793 /* ilt */
4794 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4795 if (!ilt)
4796 goto alloc_err;
4797 bp->ilt = ilt;
4798
4799 return 0;
4800 alloc_err:
4801 bnx2x_free_mem_bp(bp);
4802 return -ENOMEM;
4803 }
4804
bnx2x_reload_if_running(struct net_device * dev)4805 int bnx2x_reload_if_running(struct net_device *dev)
4806 {
4807 struct bnx2x *bp = netdev_priv(dev);
4808
4809 if (unlikely(!netif_running(dev)))
4810 return 0;
4811
4812 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4813 return bnx2x_nic_load(bp, LOAD_NORMAL);
4814 }
4815
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4816 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4817 {
4818 u32 sel_phy_idx = 0;
4819 if (bp->link_params.num_phys <= 1)
4820 return INT_PHY;
4821
4822 if (bp->link_vars.link_up) {
4823 sel_phy_idx = EXT_PHY1;
4824 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4825 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4826 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4827 sel_phy_idx = EXT_PHY2;
4828 } else {
4829
4830 switch (bnx2x_phy_selection(&bp->link_params)) {
4831 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4832 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4833 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4834 sel_phy_idx = EXT_PHY1;
4835 break;
4836 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4837 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4838 sel_phy_idx = EXT_PHY2;
4839 break;
4840 }
4841 }
4842
4843 return sel_phy_idx;
4844 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4845 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4846 {
4847 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4848 /*
4849 * The selected activated PHY is always after swapping (in case PHY
4850 * swapping is enabled). So when swapping is enabled, we need to reverse
4851 * the configuration
4852 */
4853
4854 if (bp->link_params.multi_phy_config &
4855 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4856 if (sel_phy_idx == EXT_PHY1)
4857 sel_phy_idx = EXT_PHY2;
4858 else if (sel_phy_idx == EXT_PHY2)
4859 sel_phy_idx = EXT_PHY1;
4860 }
4861 return LINK_CONFIG_IDX(sel_phy_idx);
4862 }
4863
4864 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4865 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4866 {
4867 struct bnx2x *bp = netdev_priv(dev);
4868 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4869
4870 switch (type) {
4871 case NETDEV_FCOE_WWNN:
4872 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4873 cp->fcoe_wwn_node_name_lo);
4874 break;
4875 case NETDEV_FCOE_WWPN:
4876 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4877 cp->fcoe_wwn_port_name_lo);
4878 break;
4879 default:
4880 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4881 return -EINVAL;
4882 }
4883
4884 return 0;
4885 }
4886 #endif
4887
4888 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4889 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4890 {
4891 struct bnx2x *bp = netdev_priv(dev);
4892
4893 if (pci_num_vf(bp->pdev)) {
4894 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4895 return -EPERM;
4896 }
4897
4898 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4899 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4900 return -EAGAIN;
4901 }
4902
4903 /* This does not race with packet allocation
4904 * because the actual alloc size is
4905 * only updated as part of load
4906 */
4907 dev->mtu = new_mtu;
4908
4909 if (!bnx2x_mtu_allows_gro(new_mtu))
4910 dev->features &= ~NETIF_F_GRO_HW;
4911
4912 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4913 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4914
4915 return bnx2x_reload_if_running(dev);
4916 }
4917
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4918 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4919 netdev_features_t features)
4920 {
4921 struct bnx2x *bp = netdev_priv(dev);
4922
4923 if (pci_num_vf(bp->pdev)) {
4924 netdev_features_t changed = dev->features ^ features;
4925
4926 /* Revert the requested changes in features if they
4927 * would require internal reload of PF in bnx2x_set_features().
4928 */
4929 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4930 features &= ~NETIF_F_RXCSUM;
4931 features |= dev->features & NETIF_F_RXCSUM;
4932 }
4933
4934 if (changed & NETIF_F_LOOPBACK) {
4935 features &= ~NETIF_F_LOOPBACK;
4936 features |= dev->features & NETIF_F_LOOPBACK;
4937 }
4938 }
4939
4940 /* TPA requires Rx CSUM offloading */
4941 if (!(features & NETIF_F_RXCSUM))
4942 features &= ~NETIF_F_LRO;
4943
4944 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4945 features &= ~NETIF_F_GRO_HW;
4946 if (features & NETIF_F_GRO_HW)
4947 features &= ~NETIF_F_LRO;
4948
4949 return features;
4950 }
4951
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4952 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4953 {
4954 struct bnx2x *bp = netdev_priv(dev);
4955 netdev_features_t changes = features ^ dev->features;
4956 bool bnx2x_reload = false;
4957 int rc;
4958
4959 /* VFs or non SRIOV PFs should be able to change loopback feature */
4960 if (!pci_num_vf(bp->pdev)) {
4961 if (features & NETIF_F_LOOPBACK) {
4962 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4963 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4964 bnx2x_reload = true;
4965 }
4966 } else {
4967 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4968 bp->link_params.loopback_mode = LOOPBACK_NONE;
4969 bnx2x_reload = true;
4970 }
4971 }
4972 }
4973
4974 /* Don't care about GRO changes */
4975 changes &= ~NETIF_F_GRO;
4976
4977 if (changes)
4978 bnx2x_reload = true;
4979
4980 if (bnx2x_reload) {
4981 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4982 dev->features = features;
4983 rc = bnx2x_reload_if_running(dev);
4984 return rc ? rc : 1;
4985 }
4986 /* else: bnx2x_nic_load() will be called at end of recovery */
4987 }
4988
4989 return 0;
4990 }
4991
bnx2x_tx_timeout(struct net_device * dev,unsigned int txqueue)4992 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4993 {
4994 struct bnx2x *bp = netdev_priv(dev);
4995
4996 /* We want the information of the dump logged,
4997 * but calling bnx2x_panic() would kill all chances of recovery.
4998 */
4999 if (!bp->panic)
5000 #ifndef BNX2X_STOP_ON_ERROR
5001 bnx2x_panic_dump(bp, false);
5002 #else
5003 bnx2x_panic();
5004 #endif
5005
5006 /* This allows the netif to be shutdown gracefully before resetting */
5007 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
5008 }
5009
bnx2x_suspend(struct device * dev_d)5010 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
5011 {
5012 struct pci_dev *pdev = to_pci_dev(dev_d);
5013 struct net_device *dev = pci_get_drvdata(pdev);
5014 struct bnx2x *bp;
5015
5016 if (!dev) {
5017 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5018 return -ENODEV;
5019 }
5020 bp = netdev_priv(dev);
5021
5022 rtnl_lock();
5023
5024 if (!netif_running(dev)) {
5025 rtnl_unlock();
5026 return 0;
5027 }
5028
5029 netif_device_detach(dev);
5030
5031 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5032
5033 rtnl_unlock();
5034
5035 return 0;
5036 }
5037
bnx2x_resume(struct device * dev_d)5038 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5039 {
5040 struct pci_dev *pdev = to_pci_dev(dev_d);
5041 struct net_device *dev = pci_get_drvdata(pdev);
5042 struct bnx2x *bp;
5043 int rc;
5044
5045 if (!dev) {
5046 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5047 return -ENODEV;
5048 }
5049 bp = netdev_priv(dev);
5050
5051 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5052 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5053 return -EAGAIN;
5054 }
5055
5056 rtnl_lock();
5057
5058 if (!netif_running(dev)) {
5059 rtnl_unlock();
5060 return 0;
5061 }
5062
5063 netif_device_attach(dev);
5064
5065 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5066
5067 rtnl_unlock();
5068
5069 return rc;
5070 }
5071
5072 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5073
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5074 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5075 u32 cid)
5076 {
5077 if (!cxt) {
5078 BNX2X_ERR("bad context pointer %p\n", cxt);
5079 return;
5080 }
5081
5082 /* ustorm cxt validation */
5083 cxt->ustorm_ag_context.cdu_usage =
5084 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5085 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5086 /* xcontext validation */
5087 cxt->xstorm_ag_context.cdu_reserved =
5088 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5089 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5090 }
5091
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5092 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5093 u8 fw_sb_id, u8 sb_index,
5094 u8 ticks)
5095 {
5096 u32 addr = BAR_CSTRORM_INTMEM +
5097 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5098 REG_WR8(bp, addr, ticks);
5099 DP(NETIF_MSG_IFUP,
5100 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5101 port, fw_sb_id, sb_index, ticks);
5102 }
5103
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5104 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5105 u16 fw_sb_id, u8 sb_index,
5106 u8 disable)
5107 {
5108 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5109 u32 addr = BAR_CSTRORM_INTMEM +
5110 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5111 u8 flags = REG_RD8(bp, addr);
5112 /* clear and set */
5113 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5114 flags |= enable_flag;
5115 REG_WR8(bp, addr, flags);
5116 DP(NETIF_MSG_IFUP,
5117 "port %x fw_sb_id %d sb_index %d disable %d\n",
5118 port, fw_sb_id, sb_index, disable);
5119 }
5120
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5121 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5122 u8 sb_index, u8 disable, u16 usec)
5123 {
5124 int port = BP_PORT(bp);
5125 u8 ticks = usec / BNX2X_BTR;
5126
5127 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5128
5129 disable = disable ? 1 : (usec ? 0 : 1);
5130 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5131 }
5132
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5133 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5134 u32 verbose)
5135 {
5136 smp_mb__before_atomic();
5137 set_bit(flag, &bp->sp_rtnl_state);
5138 smp_mb__after_atomic();
5139 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5140 flag);
5141 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5142 }
5143