1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Support for hardware virtualization extensions
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Yann Le Du <ledu@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/preempt.h>
16 #include <linux/vmalloc.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/cmpxchg.h>
20 #include <asm/fpu.h>
21 #include <asm/hazards.h>
22 #include <asm/inst.h>
23 #include <asm/mmu_context.h>
24 #include <asm/r4kcache.h>
25 #include <asm/time.h>
26 #include <asm/tlb.h>
27 #include <asm/tlbex.h>
28
29 #include <linux/kvm_host.h>
30
31 #include "interrupt.h"
32 #ifdef CONFIG_CPU_LOONGSON64
33 #include "loongson_regs.h"
34 #endif
35
36 #include "trace.h"
37
38 /* Pointers to last VCPU loaded on each physical CPU */
39 static struct kvm_vcpu *last_vcpu[NR_CPUS];
40 /* Pointers to last VCPU executed on each physical CPU */
41 static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
42
43 /*
44 * Number of guest VTLB entries to use, so we can catch inconsistency between
45 * CPUs.
46 */
47 static unsigned int kvm_vz_guest_vtlb_size;
48
kvm_vz_read_gc0_ebase(void)49 static inline long kvm_vz_read_gc0_ebase(void)
50 {
51 if (sizeof(long) == 8 && cpu_has_ebase_wg)
52 return read_gc0_ebase_64();
53 else
54 return read_gc0_ebase();
55 }
56
kvm_vz_write_gc0_ebase(long v)57 static inline void kvm_vz_write_gc0_ebase(long v)
58 {
59 /*
60 * First write with WG=1 to write upper bits, then write again in case
61 * WG should be left at 0.
62 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
63 */
64 if (sizeof(long) == 8 &&
65 (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
66 write_gc0_ebase_64(v | MIPS_EBASE_WG);
67 write_gc0_ebase_64(v);
68 } else {
69 write_gc0_ebase(v | MIPS_EBASE_WG);
70 write_gc0_ebase(v);
71 }
72 }
73
74 /*
75 * These Config bits may be writable by the guest:
76 * Config: [K23, KU] (!TLB), K0
77 * Config1: (none)
78 * Config2: [TU, SU] (impl)
79 * Config3: ISAOnExc
80 * Config4: FTLBPageSize
81 * Config5: K, CV, MSAEn, UFE, FRE, SBRI, UFR
82 */
83
kvm_vz_config_guest_wrmask(struct kvm_vcpu * vcpu)84 static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
85 {
86 return CONF_CM_CMASK;
87 }
88
kvm_vz_config1_guest_wrmask(struct kvm_vcpu * vcpu)89 static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
90 {
91 return 0;
92 }
93
kvm_vz_config2_guest_wrmask(struct kvm_vcpu * vcpu)94 static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
95 {
96 return 0;
97 }
98
kvm_vz_config3_guest_wrmask(struct kvm_vcpu * vcpu)99 static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
100 {
101 return MIPS_CONF3_ISA_OE;
102 }
103
kvm_vz_config4_guest_wrmask(struct kvm_vcpu * vcpu)104 static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
105 {
106 /* no need to be exact */
107 return MIPS_CONF4_VFTLBPAGESIZE;
108 }
109
kvm_vz_config5_guest_wrmask(struct kvm_vcpu * vcpu)110 static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
111 {
112 unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
113
114 /* Permit MSAEn changes if MSA supported and enabled */
115 if (kvm_mips_guest_has_msa(&vcpu->arch))
116 mask |= MIPS_CONF5_MSAEN;
117
118 /*
119 * Permit guest FPU mode changes if FPU is enabled and the relevant
120 * feature exists according to FIR register.
121 */
122 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
123 if (cpu_has_ufr)
124 mask |= MIPS_CONF5_UFR;
125 if (cpu_has_fre)
126 mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
127 }
128
129 return mask;
130 }
131
kvm_vz_config6_guest_wrmask(struct kvm_vcpu * vcpu)132 static inline unsigned int kvm_vz_config6_guest_wrmask(struct kvm_vcpu *vcpu)
133 {
134 return LOONGSON_CONF6_INTIMER | LOONGSON_CONF6_EXTIMER;
135 }
136
137 /*
138 * VZ optionally allows these additional Config bits to be written by root:
139 * Config: M, [MT]
140 * Config1: M, [MMUSize-1, C2, MD, PC, WR, CA], FP
141 * Config2: M
142 * Config3: M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
143 * VInt, SP, CDMM, MT, SM, TL]
144 * Config4: M, [VTLBSizeExt, MMUSizeExt]
145 * Config5: MRP
146 */
147
kvm_vz_config_user_wrmask(struct kvm_vcpu * vcpu)148 static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
149 {
150 return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
151 }
152
kvm_vz_config1_user_wrmask(struct kvm_vcpu * vcpu)153 static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
154 {
155 unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
156
157 /* Permit FPU to be present if FPU is supported */
158 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
159 mask |= MIPS_CONF1_FP;
160
161 return mask;
162 }
163
kvm_vz_config2_user_wrmask(struct kvm_vcpu * vcpu)164 static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
165 {
166 return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
167 }
168
kvm_vz_config3_user_wrmask(struct kvm_vcpu * vcpu)169 static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
170 {
171 unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
172 MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
173
174 /* Permit MSA to be present if MSA is supported */
175 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
176 mask |= MIPS_CONF3_MSA;
177
178 return mask;
179 }
180
kvm_vz_config4_user_wrmask(struct kvm_vcpu * vcpu)181 static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
182 {
183 return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
184 }
185
kvm_vz_config5_user_wrmask(struct kvm_vcpu * vcpu)186 static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
187 {
188 return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
189 }
190
kvm_vz_config6_user_wrmask(struct kvm_vcpu * vcpu)191 static inline unsigned int kvm_vz_config6_user_wrmask(struct kvm_vcpu *vcpu)
192 {
193 return kvm_vz_config6_guest_wrmask(vcpu) |
194 LOONGSON_CONF6_SFBEN | LOONGSON_CONF6_FTLBDIS;
195 }
196
kvm_vz_gva_to_gpa_cb(gva_t gva)197 static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
198 {
199 /* VZ guest has already converted gva to gpa */
200 return gva;
201 }
202
kvm_vz_queue_irq(struct kvm_vcpu * vcpu,unsigned int priority)203 static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
204 {
205 set_bit(priority, &vcpu->arch.pending_exceptions);
206 clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
207 }
208
kvm_vz_dequeue_irq(struct kvm_vcpu * vcpu,unsigned int priority)209 static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
210 {
211 clear_bit(priority, &vcpu->arch.pending_exceptions);
212 set_bit(priority, &vcpu->arch.pending_exceptions_clr);
213 }
214
kvm_vz_queue_timer_int_cb(struct kvm_vcpu * vcpu)215 static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
216 {
217 /*
218 * timer expiry is asynchronous to vcpu execution therefore defer guest
219 * cp0 accesses
220 */
221 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
222 }
223
kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu * vcpu)224 static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
225 {
226 /*
227 * timer expiry is asynchronous to vcpu execution therefore defer guest
228 * cp0 accesses
229 */
230 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
231 }
232
kvm_vz_queue_io_int_cb(struct kvm_vcpu * vcpu,struct kvm_mips_interrupt * irq)233 static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
234 struct kvm_mips_interrupt *irq)
235 {
236 int intr = (int)irq->irq;
237
238 /*
239 * interrupts are asynchronous to vcpu execution therefore defer guest
240 * cp0 accesses
241 */
242 kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr));
243 }
244
kvm_vz_dequeue_io_int_cb(struct kvm_vcpu * vcpu,struct kvm_mips_interrupt * irq)245 static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
246 struct kvm_mips_interrupt *irq)
247 {
248 int intr = (int)irq->irq;
249
250 /*
251 * interrupts are asynchronous to vcpu execution therefore defer guest
252 * cp0 accesses
253 */
254 kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr));
255 }
256
kvm_vz_irq_deliver_cb(struct kvm_vcpu * vcpu,unsigned int priority,u32 cause)257 static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
258 u32 cause)
259 {
260 u32 irq = (priority < MIPS_EXC_MAX) ?
261 kvm_priority_to_irq[priority] : 0;
262
263 switch (priority) {
264 case MIPS_EXC_INT_TIMER:
265 set_gc0_cause(C_TI);
266 break;
267
268 case MIPS_EXC_INT_IO_1:
269 case MIPS_EXC_INT_IO_2:
270 case MIPS_EXC_INT_IPI_1:
271 case MIPS_EXC_INT_IPI_2:
272 if (cpu_has_guestctl2)
273 set_c0_guestctl2(irq);
274 else
275 set_gc0_cause(irq);
276 break;
277
278 default:
279 break;
280 }
281
282 clear_bit(priority, &vcpu->arch.pending_exceptions);
283 return 1;
284 }
285
kvm_vz_irq_clear_cb(struct kvm_vcpu * vcpu,unsigned int priority,u32 cause)286 static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
287 u32 cause)
288 {
289 u32 irq = (priority < MIPS_EXC_MAX) ?
290 kvm_priority_to_irq[priority] : 0;
291
292 switch (priority) {
293 case MIPS_EXC_INT_TIMER:
294 /*
295 * Explicitly clear irq associated with Cause.IP[IPTI]
296 * if GuestCtl2 virtual interrupt register not
297 * supported or if not using GuestCtl2 Hardware Clear.
298 */
299 if (cpu_has_guestctl2) {
300 if (!(read_c0_guestctl2() & (irq << 14)))
301 clear_c0_guestctl2(irq);
302 } else {
303 clear_gc0_cause(irq);
304 }
305 break;
306
307 case MIPS_EXC_INT_IO_1:
308 case MIPS_EXC_INT_IO_2:
309 case MIPS_EXC_INT_IPI_1:
310 case MIPS_EXC_INT_IPI_2:
311 /* Clear GuestCtl2.VIP irq if not using Hardware Clear */
312 if (cpu_has_guestctl2) {
313 if (!(read_c0_guestctl2() & (irq << 14)))
314 clear_c0_guestctl2(irq);
315 } else {
316 clear_gc0_cause(irq);
317 }
318 break;
319
320 default:
321 break;
322 }
323
324 clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
325 return 1;
326 }
327
328 /*
329 * VZ guest timer handling.
330 */
331
332 /**
333 * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
334 * @vcpu: Virtual CPU.
335 *
336 * Returns: true if the VZ GTOffset & real guest CP0_Count should be used
337 * instead of software emulation of guest timer.
338 * false otherwise.
339 */
kvm_vz_should_use_htimer(struct kvm_vcpu * vcpu)340 static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
341 {
342 if (kvm_mips_count_disabled(vcpu))
343 return false;
344
345 /* Chosen frequency must match real frequency */
346 if (mips_hpt_frequency != vcpu->arch.count_hz)
347 return false;
348
349 /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
350 if (current_cpu_data.gtoffset_mask != 0xffffffff)
351 return false;
352
353 return true;
354 }
355
356 /**
357 * _kvm_vz_restore_stimer() - Restore soft timer state.
358 * @vcpu: Virtual CPU.
359 * @compare: CP0_Compare register value, restored by caller.
360 * @cause: CP0_Cause register to restore.
361 *
362 * Restore VZ state relating to the soft timer. The hard timer can be enabled
363 * later.
364 */
_kvm_vz_restore_stimer(struct kvm_vcpu * vcpu,u32 compare,u32 cause)365 static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
366 u32 cause)
367 {
368 /*
369 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
370 * after Guest CP0_Compare.
371 */
372 write_c0_gtoffset(compare - read_c0_count());
373
374 back_to_back_c0_hazard();
375 write_gc0_cause(cause);
376 }
377
378 /**
379 * _kvm_vz_restore_htimer() - Restore hard timer state.
380 * @vcpu: Virtual CPU.
381 * @compare: CP0_Compare register value, restored by caller.
382 * @cause: CP0_Cause register to restore.
383 *
384 * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
385 * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
386 */
_kvm_vz_restore_htimer(struct kvm_vcpu * vcpu,u32 compare,u32 cause)387 static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
388 u32 compare, u32 cause)
389 {
390 u32 start_count, after_count;
391 unsigned long flags;
392
393 /*
394 * Freeze the soft-timer and sync the guest CP0_Count with it. We do
395 * this with interrupts disabled to avoid latency.
396 */
397 local_irq_save(flags);
398 kvm_mips_freeze_hrtimer(vcpu, &start_count);
399 write_c0_gtoffset(start_count - read_c0_count());
400 local_irq_restore(flags);
401
402 /* restore guest CP0_Cause, as TI may already be set */
403 back_to_back_c0_hazard();
404 write_gc0_cause(cause);
405
406 /*
407 * The above sequence isn't atomic and would result in lost timer
408 * interrupts if we're not careful. Detect if a timer interrupt is due
409 * and assert it.
410 */
411 back_to_back_c0_hazard();
412 after_count = read_gc0_count();
413 if (after_count - start_count > compare - start_count - 1)
414 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
415 }
416
417 /**
418 * kvm_vz_restore_timer() - Restore timer state.
419 * @vcpu: Virtual CPU.
420 *
421 * Restore soft timer state from saved context.
422 */
kvm_vz_restore_timer(struct kvm_vcpu * vcpu)423 static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
424 {
425 struct mips_coproc *cop0 = &vcpu->arch.cop0;
426 u32 cause, compare;
427
428 compare = kvm_read_sw_gc0_compare(cop0);
429 cause = kvm_read_sw_gc0_cause(cop0);
430
431 write_gc0_compare(compare);
432 _kvm_vz_restore_stimer(vcpu, compare, cause);
433 }
434
435 /**
436 * kvm_vz_acquire_htimer() - Switch to hard timer state.
437 * @vcpu: Virtual CPU.
438 *
439 * Restore hard timer state on top of existing soft timer state if possible.
440 *
441 * Since hard timer won't remain active over preemption, preemption should be
442 * disabled by the caller.
443 */
kvm_vz_acquire_htimer(struct kvm_vcpu * vcpu)444 void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
445 {
446 u32 gctl0;
447
448 gctl0 = read_c0_guestctl0();
449 if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
450 /* enable guest access to hard timer */
451 write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
452
453 _kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
454 read_gc0_cause());
455 }
456 }
457
458 /**
459 * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
460 * @vcpu: Virtual CPU.
461 * @out_compare: Pointer to write compare value to.
462 * @out_cause: Pointer to write cause value to.
463 *
464 * Save VZ guest timer state and switch to software emulation of guest CP0
465 * timer. The hard timer must already be in use, so preemption should be
466 * disabled.
467 */
_kvm_vz_save_htimer(struct kvm_vcpu * vcpu,u32 * out_compare,u32 * out_cause)468 static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
469 u32 *out_compare, u32 *out_cause)
470 {
471 u32 cause, compare, before_count, end_count;
472 ktime_t before_time;
473
474 compare = read_gc0_compare();
475 *out_compare = compare;
476
477 before_time = ktime_get();
478
479 /*
480 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
481 * at which no pending timer interrupt is missing.
482 */
483 before_count = read_gc0_count();
484 back_to_back_c0_hazard();
485 cause = read_gc0_cause();
486 *out_cause = cause;
487
488 /*
489 * Record a final CP0_Count which we will transfer to the soft-timer.
490 * This is recorded *after* saving CP0_Cause, so we don't get any timer
491 * interrupts from just after the final CP0_Count point.
492 */
493 back_to_back_c0_hazard();
494 end_count = read_gc0_count();
495
496 /*
497 * The above sequence isn't atomic, so we could miss a timer interrupt
498 * between reading CP0_Cause and end_count. Detect and record any timer
499 * interrupt due between before_count and end_count.
500 */
501 if (end_count - before_count > compare - before_count - 1)
502 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
503
504 /*
505 * Restore soft-timer, ignoring a small amount of negative drift due to
506 * delay between freeze_hrtimer and setting CP0_GTOffset.
507 */
508 kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
509 }
510
511 /**
512 * kvm_vz_save_timer() - Save guest timer state.
513 * @vcpu: Virtual CPU.
514 *
515 * Save VZ guest timer state and switch to soft guest timer if hard timer was in
516 * use.
517 */
kvm_vz_save_timer(struct kvm_vcpu * vcpu)518 static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
519 {
520 struct mips_coproc *cop0 = &vcpu->arch.cop0;
521 u32 gctl0, compare, cause;
522
523 gctl0 = read_c0_guestctl0();
524 if (gctl0 & MIPS_GCTL0_GT) {
525 /* disable guest use of hard timer */
526 write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
527
528 /* save hard timer state */
529 _kvm_vz_save_htimer(vcpu, &compare, &cause);
530 } else {
531 compare = read_gc0_compare();
532 cause = read_gc0_cause();
533 }
534
535 /* save timer-related state to VCPU context */
536 kvm_write_sw_gc0_cause(cop0, cause);
537 kvm_write_sw_gc0_compare(cop0, compare);
538 }
539
540 /**
541 * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
542 * @vcpu: Virtual CPU.
543 *
544 * Transfers the state of the hard guest timer to the soft guest timer, leaving
545 * guest state intact so it can continue to be used with the soft timer.
546 */
kvm_vz_lose_htimer(struct kvm_vcpu * vcpu)547 void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
548 {
549 u32 gctl0, compare, cause;
550
551 preempt_disable();
552 gctl0 = read_c0_guestctl0();
553 if (gctl0 & MIPS_GCTL0_GT) {
554 /* disable guest use of timer */
555 write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
556
557 /* switch to soft timer */
558 _kvm_vz_save_htimer(vcpu, &compare, &cause);
559
560 /* leave soft timer in usable state */
561 _kvm_vz_restore_stimer(vcpu, compare, cause);
562 }
563 preempt_enable();
564 }
565
566 /**
567 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
568 * @inst: 32-bit instruction encoding.
569 *
570 * Finds whether @inst encodes an EVA memory access instruction, which would
571 * indicate that emulation of it should access the user mode address space
572 * instead of the kernel mode address space. This matters for MUSUK segments
573 * which are TLB mapped for user mode but unmapped for kernel mode.
574 *
575 * Returns: Whether @inst encodes an EVA accessor instruction.
576 */
is_eva_access(union mips_instruction inst)577 static bool is_eva_access(union mips_instruction inst)
578 {
579 if (inst.spec3_format.opcode != spec3_op)
580 return false;
581
582 switch (inst.spec3_format.func) {
583 case lwle_op:
584 case lwre_op:
585 case cachee_op:
586 case sbe_op:
587 case she_op:
588 case sce_op:
589 case swe_op:
590 case swle_op:
591 case swre_op:
592 case prefe_op:
593 case lbue_op:
594 case lhue_op:
595 case lbe_op:
596 case lhe_op:
597 case lle_op:
598 case lwe_op:
599 return true;
600 default:
601 return false;
602 }
603 }
604
605 /**
606 * is_eva_am_mapped() - Find whether an access mode is mapped.
607 * @vcpu: KVM VCPU state.
608 * @am: 3-bit encoded access mode.
609 * @eu: Segment becomes unmapped and uncached when Status.ERL=1.
610 *
611 * Decode @am to find whether it encodes a mapped segment for the current VCPU
612 * state. Where necessary @eu and the actual instruction causing the fault are
613 * taken into account to make the decision.
614 *
615 * Returns: Whether the VCPU faulted on a TLB mapped address.
616 */
is_eva_am_mapped(struct kvm_vcpu * vcpu,unsigned int am,bool eu)617 static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
618 {
619 u32 am_lookup;
620 int err;
621
622 /*
623 * Interpret access control mode. We assume address errors will already
624 * have been caught by the guest, leaving us with:
625 * AM UM SM KM 31..24 23..16
626 * UK 0 000 Unm 0 0
627 * MK 1 001 TLB 1
628 * MSK 2 010 TLB TLB 1
629 * MUSK 3 011 TLB TLB TLB 1
630 * MUSUK 4 100 TLB TLB Unm 0 1
631 * USK 5 101 Unm Unm 0 0
632 * - 6 110 0 0
633 * UUSK 7 111 Unm Unm Unm 0 0
634 *
635 * We shift a magic value by AM across the sign bit to find if always
636 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
637 */
638 am_lookup = 0x70080000 << am;
639 if ((s32)am_lookup < 0) {
640 /*
641 * MK, MSK, MUSK
642 * Always TLB mapped, unless SegCtl.EU && ERL
643 */
644 if (!eu || !(read_gc0_status() & ST0_ERL))
645 return true;
646 } else {
647 am_lookup <<= 8;
648 if ((s32)am_lookup < 0) {
649 union mips_instruction inst;
650 unsigned int status;
651 u32 *opc;
652
653 /*
654 * MUSUK
655 * TLB mapped if not in kernel mode
656 */
657 status = read_gc0_status();
658 if (!(status & (ST0_EXL | ST0_ERL)) &&
659 (status & ST0_KSU))
660 return true;
661 /*
662 * EVA access instructions in kernel
663 * mode access user address space.
664 */
665 opc = (u32 *)vcpu->arch.pc;
666 if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
667 opc += 1;
668 err = kvm_get_badinstr(opc, vcpu, &inst.word);
669 if (!err && is_eva_access(inst))
670 return true;
671 }
672 }
673
674 return false;
675 }
676
677 /**
678 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
679 * @vcpu: KVM VCPU state.
680 * @gva: Guest virtual address to convert.
681 * @gpa: Output guest physical address.
682 *
683 * Convert a guest virtual address (GVA) which is valid according to the guest
684 * context, to a guest physical address (GPA).
685 *
686 * Returns: 0 on success.
687 * -errno on failure.
688 */
kvm_vz_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,unsigned long * gpa)689 static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
690 unsigned long *gpa)
691 {
692 u32 gva32 = gva;
693 unsigned long segctl;
694
695 if ((long)gva == (s32)gva32) {
696 /* Handle canonical 32-bit virtual address */
697 if (cpu_guest_has_segments) {
698 unsigned long mask, pa;
699
700 switch (gva32 >> 29) {
701 case 0:
702 case 1: /* CFG5 (1GB) */
703 segctl = read_gc0_segctl2() >> 16;
704 mask = (unsigned long)0xfc0000000ull;
705 break;
706 case 2:
707 case 3: /* CFG4 (1GB) */
708 segctl = read_gc0_segctl2();
709 mask = (unsigned long)0xfc0000000ull;
710 break;
711 case 4: /* CFG3 (512MB) */
712 segctl = read_gc0_segctl1() >> 16;
713 mask = (unsigned long)0xfe0000000ull;
714 break;
715 case 5: /* CFG2 (512MB) */
716 segctl = read_gc0_segctl1();
717 mask = (unsigned long)0xfe0000000ull;
718 break;
719 case 6: /* CFG1 (512MB) */
720 segctl = read_gc0_segctl0() >> 16;
721 mask = (unsigned long)0xfe0000000ull;
722 break;
723 case 7: /* CFG0 (512MB) */
724 segctl = read_gc0_segctl0();
725 mask = (unsigned long)0xfe0000000ull;
726 break;
727 default:
728 /*
729 * GCC 4.9 isn't smart enough to figure out that
730 * segctl and mask are always initialised.
731 */
732 unreachable();
733 }
734
735 if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
736 segctl & 0x0008))
737 goto tlb_mapped;
738
739 /* Unmapped, find guest physical address */
740 pa = (segctl << 20) & mask;
741 pa |= gva32 & ~mask;
742 *gpa = pa;
743 return 0;
744 } else if ((s32)gva32 < (s32)0xc0000000) {
745 /* legacy unmapped KSeg0 or KSeg1 */
746 *gpa = gva32 & 0x1fffffff;
747 return 0;
748 }
749 #ifdef CONFIG_64BIT
750 } else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
751 /* XKPHYS */
752 if (cpu_guest_has_segments) {
753 /*
754 * Each of the 8 regions can be overridden by SegCtl2.XR
755 * to use SegCtl1.XAM.
756 */
757 segctl = read_gc0_segctl2();
758 if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
759 segctl = read_gc0_segctl1();
760 if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
761 0))
762 goto tlb_mapped;
763 }
764
765 }
766 /*
767 * Traditionally fully unmapped.
768 * Bits 61:59 specify the CCA, which we can just mask off here.
769 * Bits 58:PABITS should be zero, but we shouldn't have got here
770 * if it wasn't.
771 */
772 *gpa = gva & 0x07ffffffffffffff;
773 return 0;
774 #endif
775 }
776
777 tlb_mapped:
778 return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
779 }
780
781 /**
782 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
783 * @vcpu: KVM VCPU state.
784 * @badvaddr: Root BadVAddr.
785 * @gpa: Output guest physical address.
786 *
787 * VZ implementations are permitted to report guest virtual addresses (GVA) in
788 * BadVAddr on a root exception during guest execution, instead of the more
789 * convenient guest physical addresses (GPA). When we get a GVA, this function
790 * converts it to a GPA, taking into account guest segmentation and guest TLB
791 * state.
792 *
793 * Returns: 0 on success.
794 * -errno on failure.
795 */
kvm_vz_badvaddr_to_gpa(struct kvm_vcpu * vcpu,unsigned long badvaddr,unsigned long * gpa)796 static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
797 unsigned long *gpa)
798 {
799 unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
800 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
801
802 /* If BadVAddr is GPA, then all is well in the world */
803 if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
804 *gpa = badvaddr;
805 return 0;
806 }
807
808 /* Otherwise we'd expect it to be GVA ... */
809 if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
810 "Unexpected gexccode %#x\n", gexccode))
811 return -EINVAL;
812
813 /* ... and we need to perform the GVA->GPA translation in software */
814 return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
815 }
816
kvm_trap_vz_no_handler(struct kvm_vcpu * vcpu)817 static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
818 {
819 u32 *opc = (u32 *) vcpu->arch.pc;
820 u32 cause = vcpu->arch.host_cp0_cause;
821 u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
822 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
823 u32 inst = 0;
824
825 /*
826 * Fetch the instruction.
827 */
828 if (cause & CAUSEF_BD)
829 opc += 1;
830 kvm_get_badinstr(opc, vcpu, &inst);
831
832 kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
833 exccode, opc, inst, badvaddr,
834 read_gc0_status());
835 kvm_arch_vcpu_dump_regs(vcpu);
836 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
837 return RESUME_HOST;
838 }
839
mips_process_maar(unsigned int op,unsigned long val)840 static unsigned long mips_process_maar(unsigned int op, unsigned long val)
841 {
842 /* Mask off unused bits */
843 unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
844
845 if (read_gc0_pagegrain() & PG_ELPA)
846 mask |= 0x00ffffff00000000ull;
847 if (cpu_guest_has_mvh)
848 mask |= MIPS_MAAR_VH;
849
850 /* Set or clear VH */
851 if (op == mtc_op) {
852 /* clear VH */
853 val &= ~MIPS_MAAR_VH;
854 } else if (op == dmtc_op) {
855 /* set VH to match VL */
856 val &= ~MIPS_MAAR_VH;
857 if (val & MIPS_MAAR_VL)
858 val |= MIPS_MAAR_VH;
859 }
860
861 return val & mask;
862 }
863
kvm_write_maari(struct kvm_vcpu * vcpu,unsigned long val)864 static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
865 {
866 struct mips_coproc *cop0 = &vcpu->arch.cop0;
867
868 val &= MIPS_MAARI_INDEX;
869 if (val == MIPS_MAARI_INDEX)
870 kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
871 else if (val < ARRAY_SIZE(vcpu->arch.maar))
872 kvm_write_sw_gc0_maari(cop0, val);
873 }
874
kvm_vz_gpsi_cop0(union mips_instruction inst,u32 * opc,u32 cause,struct kvm_vcpu * vcpu)875 static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
876 u32 *opc, u32 cause,
877 struct kvm_vcpu *vcpu)
878 {
879 struct mips_coproc *cop0 = &vcpu->arch.cop0;
880 enum emulation_result er = EMULATE_DONE;
881 u32 rt, rd, sel;
882 unsigned long curr_pc;
883 unsigned long val;
884
885 /*
886 * Update PC and hold onto current PC in case there is
887 * an error and we want to rollback the PC
888 */
889 curr_pc = vcpu->arch.pc;
890 er = update_pc(vcpu, cause);
891 if (er == EMULATE_FAIL)
892 return er;
893
894 if (inst.co_format.co) {
895 switch (inst.co_format.func) {
896 case wait_op:
897 er = kvm_mips_emul_wait(vcpu);
898 break;
899 default:
900 er = EMULATE_FAIL;
901 }
902 } else {
903 rt = inst.c0r_format.rt;
904 rd = inst.c0r_format.rd;
905 sel = inst.c0r_format.sel;
906
907 switch (inst.c0r_format.rs) {
908 case dmfc_op:
909 case mfc_op:
910 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
911 cop0->stat[rd][sel]++;
912 #endif
913 if (rd == MIPS_CP0_COUNT &&
914 sel == 0) { /* Count */
915 val = kvm_mips_read_count(vcpu);
916 } else if (rd == MIPS_CP0_COMPARE &&
917 sel == 0) { /* Compare */
918 val = read_gc0_compare();
919 } else if (rd == MIPS_CP0_LLADDR &&
920 sel == 0) { /* LLAddr */
921 if (cpu_guest_has_rw_llb)
922 val = read_gc0_lladdr() &
923 MIPS_LLADDR_LLB;
924 else
925 val = 0;
926 } else if (rd == MIPS_CP0_LLADDR &&
927 sel == 1 && /* MAAR */
928 cpu_guest_has_maar &&
929 !cpu_guest_has_dyn_maar) {
930 /* MAARI must be in range */
931 BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
932 ARRAY_SIZE(vcpu->arch.maar));
933 val = vcpu->arch.maar[
934 kvm_read_sw_gc0_maari(cop0)];
935 } else if ((rd == MIPS_CP0_PRID &&
936 (sel == 0 || /* PRid */
937 sel == 2 || /* CDMMBase */
938 sel == 3)) || /* CMGCRBase */
939 (rd == MIPS_CP0_STATUS &&
940 (sel == 2 || /* SRSCtl */
941 sel == 3)) || /* SRSMap */
942 (rd == MIPS_CP0_CONFIG &&
943 (sel == 6 || /* Config6 */
944 sel == 7)) || /* Config7 */
945 (rd == MIPS_CP0_LLADDR &&
946 (sel == 2) && /* MAARI */
947 cpu_guest_has_maar &&
948 !cpu_guest_has_dyn_maar) ||
949 (rd == MIPS_CP0_ERRCTL &&
950 (sel == 0))) { /* ErrCtl */
951 val = cop0->reg[rd][sel];
952 #ifdef CONFIG_CPU_LOONGSON64
953 } else if (rd == MIPS_CP0_DIAG &&
954 (sel == 0)) { /* Diag */
955 val = cop0->reg[rd][sel];
956 #endif
957 } else {
958 val = 0;
959 er = EMULATE_FAIL;
960 }
961
962 if (er != EMULATE_FAIL) {
963 /* Sign extend */
964 if (inst.c0r_format.rs == mfc_op)
965 val = (int)val;
966 vcpu->arch.gprs[rt] = val;
967 }
968
969 trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
970 KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
971 KVM_TRACE_COP0(rd, sel), val);
972 break;
973
974 case dmtc_op:
975 case mtc_op:
976 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
977 cop0->stat[rd][sel]++;
978 #endif
979 val = vcpu->arch.gprs[rt];
980 trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
981 KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
982 KVM_TRACE_COP0(rd, sel), val);
983
984 if (rd == MIPS_CP0_COUNT &&
985 sel == 0) { /* Count */
986 kvm_vz_lose_htimer(vcpu);
987 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
988 } else if (rd == MIPS_CP0_COMPARE &&
989 sel == 0) { /* Compare */
990 kvm_mips_write_compare(vcpu,
991 vcpu->arch.gprs[rt],
992 true);
993 } else if (rd == MIPS_CP0_LLADDR &&
994 sel == 0) { /* LLAddr */
995 /*
996 * P5600 generates GPSI on guest MTC0 LLAddr.
997 * Only allow the guest to clear LLB.
998 */
999 if (cpu_guest_has_rw_llb &&
1000 !(val & MIPS_LLADDR_LLB))
1001 write_gc0_lladdr(0);
1002 } else if (rd == MIPS_CP0_LLADDR &&
1003 sel == 1 && /* MAAR */
1004 cpu_guest_has_maar &&
1005 !cpu_guest_has_dyn_maar) {
1006 val = mips_process_maar(inst.c0r_format.rs,
1007 val);
1008
1009 /* MAARI must be in range */
1010 BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
1011 ARRAY_SIZE(vcpu->arch.maar));
1012 vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
1013 val;
1014 } else if (rd == MIPS_CP0_LLADDR &&
1015 (sel == 2) && /* MAARI */
1016 cpu_guest_has_maar &&
1017 !cpu_guest_has_dyn_maar) {
1018 kvm_write_maari(vcpu, val);
1019 } else if (rd == MIPS_CP0_CONFIG &&
1020 (sel == 6)) {
1021 cop0->reg[rd][sel] = (int)val;
1022 } else if (rd == MIPS_CP0_ERRCTL &&
1023 (sel == 0)) { /* ErrCtl */
1024 /* ignore the written value */
1025 #ifdef CONFIG_CPU_LOONGSON64
1026 } else if (rd == MIPS_CP0_DIAG &&
1027 (sel == 0)) { /* Diag */
1028 unsigned long flags;
1029
1030 local_irq_save(flags);
1031 if (val & LOONGSON_DIAG_BTB) {
1032 /* Flush BTB */
1033 set_c0_diag(LOONGSON_DIAG_BTB);
1034 }
1035 if (val & LOONGSON_DIAG_ITLB) {
1036 /* Flush ITLB */
1037 set_c0_diag(LOONGSON_DIAG_ITLB);
1038 }
1039 if (val & LOONGSON_DIAG_DTLB) {
1040 /* Flush DTLB */
1041 set_c0_diag(LOONGSON_DIAG_DTLB);
1042 }
1043 if (val & LOONGSON_DIAG_VTLB) {
1044 /* Flush VTLB */
1045 kvm_loongson_clear_guest_vtlb();
1046 }
1047 if (val & LOONGSON_DIAG_FTLB) {
1048 /* Flush FTLB */
1049 kvm_loongson_clear_guest_ftlb();
1050 }
1051 local_irq_restore(flags);
1052 #endif
1053 } else {
1054 er = EMULATE_FAIL;
1055 }
1056 break;
1057
1058 default:
1059 er = EMULATE_FAIL;
1060 break;
1061 }
1062 }
1063 /* Rollback PC only if emulation was unsuccessful */
1064 if (er == EMULATE_FAIL) {
1065 kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
1066 curr_pc, __func__, inst.word);
1067
1068 vcpu->arch.pc = curr_pc;
1069 }
1070
1071 return er;
1072 }
1073
kvm_vz_gpsi_cache(union mips_instruction inst,u32 * opc,u32 cause,struct kvm_vcpu * vcpu)1074 static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
1075 u32 *opc, u32 cause,
1076 struct kvm_vcpu *vcpu)
1077 {
1078 enum emulation_result er = EMULATE_DONE;
1079 u32 cache, op_inst, op, base;
1080 s16 offset;
1081 struct kvm_vcpu_arch *arch = &vcpu->arch;
1082 unsigned long va, curr_pc;
1083
1084 /*
1085 * Update PC and hold onto current PC in case there is
1086 * an error and we want to rollback the PC
1087 */
1088 curr_pc = vcpu->arch.pc;
1089 er = update_pc(vcpu, cause);
1090 if (er == EMULATE_FAIL)
1091 return er;
1092
1093 base = inst.i_format.rs;
1094 op_inst = inst.i_format.rt;
1095 if (cpu_has_mips_r6)
1096 offset = inst.spec3_format.simmediate;
1097 else
1098 offset = inst.i_format.simmediate;
1099 cache = op_inst & CacheOp_Cache;
1100 op = op_inst & CacheOp_Op;
1101
1102 va = arch->gprs[base] + offset;
1103
1104 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1105 cache, op, base, arch->gprs[base], offset);
1106
1107 /* Secondary or tirtiary cache ops ignored */
1108 if (cache != Cache_I && cache != Cache_D)
1109 return EMULATE_DONE;
1110
1111 switch (op_inst) {
1112 case Index_Invalidate_I:
1113 flush_icache_line_indexed(va);
1114 return EMULATE_DONE;
1115 case Index_Writeback_Inv_D:
1116 flush_dcache_line_indexed(va);
1117 return EMULATE_DONE;
1118 case Hit_Invalidate_I:
1119 case Hit_Invalidate_D:
1120 case Hit_Writeback_Inv_D:
1121 if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
1122 /* We can just flush entire icache */
1123 local_flush_icache_range(0, 0);
1124 return EMULATE_DONE;
1125 }
1126
1127 /* So far, other platforms support guest hit cache ops */
1128 break;
1129 default:
1130 break;
1131 }
1132
1133 kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1134 curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
1135 offset);
1136 /* Rollback PC */
1137 vcpu->arch.pc = curr_pc;
1138
1139 return EMULATE_FAIL;
1140 }
1141
1142 #ifdef CONFIG_CPU_LOONGSON64
kvm_vz_gpsi_lwc2(union mips_instruction inst,u32 * opc,u32 cause,struct kvm_vcpu * vcpu)1143 static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst,
1144 u32 *opc, u32 cause,
1145 struct kvm_vcpu *vcpu)
1146 {
1147 unsigned int rs, rd;
1148 unsigned int hostcfg;
1149 unsigned long curr_pc;
1150 enum emulation_result er = EMULATE_DONE;
1151
1152 /*
1153 * Update PC and hold onto current PC in case there is
1154 * an error and we want to rollback the PC
1155 */
1156 curr_pc = vcpu->arch.pc;
1157 er = update_pc(vcpu, cause);
1158 if (er == EMULATE_FAIL)
1159 return er;
1160
1161 rs = inst.loongson3_lscsr_format.rs;
1162 rd = inst.loongson3_lscsr_format.rd;
1163 switch (inst.loongson3_lscsr_format.fr) {
1164 case 0x8: /* Read CPUCFG */
1165 ++vcpu->stat.vz_cpucfg_exits;
1166 hostcfg = read_cpucfg(vcpu->arch.gprs[rs]);
1167
1168 switch (vcpu->arch.gprs[rs]) {
1169 case LOONGSON_CFG0:
1170 vcpu->arch.gprs[rd] = 0x14c000;
1171 break;
1172 case LOONGSON_CFG1:
1173 hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI |
1174 LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 |
1175 LOONGSON_CFG1_SFBP);
1176 vcpu->arch.gprs[rd] = hostcfg;
1177 break;
1178 case LOONGSON_CFG2:
1179 hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 |
1180 LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW);
1181 vcpu->arch.gprs[rd] = hostcfg;
1182 break;
1183 case LOONGSON_CFG3:
1184 vcpu->arch.gprs[rd] = hostcfg;
1185 break;
1186 default:
1187 /* Don't export any other advanced features to guest */
1188 vcpu->arch.gprs[rd] = 0;
1189 break;
1190 }
1191 break;
1192
1193 default:
1194 kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n",
1195 inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc);
1196 er = EMULATE_FAIL;
1197 break;
1198 }
1199
1200 /* Rollback PC only if emulation was unsuccessful */
1201 if (er == EMULATE_FAIL) {
1202 kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n",
1203 curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr);
1204
1205 vcpu->arch.pc = curr_pc;
1206 }
1207
1208 return er;
1209 }
1210 #endif
1211
kvm_trap_vz_handle_gpsi(u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1212 static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
1213 struct kvm_vcpu *vcpu)
1214 {
1215 enum emulation_result er = EMULATE_DONE;
1216 struct kvm_vcpu_arch *arch = &vcpu->arch;
1217 union mips_instruction inst;
1218 int rd, rt, sel;
1219 int err;
1220
1221 /*
1222 * Fetch the instruction.
1223 */
1224 if (cause & CAUSEF_BD)
1225 opc += 1;
1226 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1227 if (err)
1228 return EMULATE_FAIL;
1229
1230 switch (inst.r_format.opcode) {
1231 case cop0_op:
1232 er = kvm_vz_gpsi_cop0(inst, opc, cause, vcpu);
1233 break;
1234 #ifndef CONFIG_CPU_MIPSR6
1235 case cache_op:
1236 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1237 er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
1238 break;
1239 #endif
1240 #ifdef CONFIG_CPU_LOONGSON64
1241 case lwc2_op:
1242 er = kvm_vz_gpsi_lwc2(inst, opc, cause, vcpu);
1243 break;
1244 #endif
1245 case spec3_op:
1246 switch (inst.spec3_format.func) {
1247 #ifdef CONFIG_CPU_MIPSR6
1248 case cache6_op:
1249 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1250 er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
1251 break;
1252 #endif
1253 case rdhwr_op:
1254 if (inst.r_format.rs || (inst.r_format.re >> 3))
1255 goto unknown;
1256
1257 rd = inst.r_format.rd;
1258 rt = inst.r_format.rt;
1259 sel = inst.r_format.re & 0x7;
1260
1261 switch (rd) {
1262 case MIPS_HWR_CC: /* Read count register */
1263 arch->gprs[rt] =
1264 (long)(int)kvm_mips_read_count(vcpu);
1265 break;
1266 default:
1267 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1268 KVM_TRACE_HWR(rd, sel), 0);
1269 goto unknown;
1270 }
1271
1272 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1273 KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
1274
1275 er = update_pc(vcpu, cause);
1276 break;
1277 default:
1278 goto unknown;
1279 }
1280 break;
1281 unknown:
1282
1283 default:
1284 kvm_err("GPSI exception not supported (%p/%#x)\n",
1285 opc, inst.word);
1286 kvm_arch_vcpu_dump_regs(vcpu);
1287 er = EMULATE_FAIL;
1288 break;
1289 }
1290
1291 return er;
1292 }
1293
kvm_trap_vz_handle_gsfc(u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1294 static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
1295 struct kvm_vcpu *vcpu)
1296 {
1297 enum emulation_result er = EMULATE_DONE;
1298 struct kvm_vcpu_arch *arch = &vcpu->arch;
1299 union mips_instruction inst;
1300 int err;
1301
1302 /*
1303 * Fetch the instruction.
1304 */
1305 if (cause & CAUSEF_BD)
1306 opc += 1;
1307 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1308 if (err)
1309 return EMULATE_FAIL;
1310
1311 /* complete MTC0 on behalf of guest and advance EPC */
1312 if (inst.c0r_format.opcode == cop0_op &&
1313 inst.c0r_format.rs == mtc_op &&
1314 inst.c0r_format.z == 0) {
1315 int rt = inst.c0r_format.rt;
1316 int rd = inst.c0r_format.rd;
1317 int sel = inst.c0r_format.sel;
1318 unsigned int val = arch->gprs[rt];
1319 unsigned int old_val, change;
1320
1321 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
1322 val);
1323
1324 if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1325 /* FR bit should read as zero if no FPU */
1326 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1327 val &= ~(ST0_CU1 | ST0_FR);
1328
1329 /*
1330 * Also don't allow FR to be set if host doesn't support
1331 * it.
1332 */
1333 if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
1334 val &= ~ST0_FR;
1335
1336 old_val = read_gc0_status();
1337 change = val ^ old_val;
1338
1339 if (change & ST0_FR) {
1340 /*
1341 * FPU and Vector register state is made
1342 * UNPREDICTABLE by a change of FR, so don't
1343 * even bother saving it.
1344 */
1345 kvm_drop_fpu(vcpu);
1346 }
1347
1348 /*
1349 * If MSA state is already live, it is undefined how it
1350 * interacts with FR=0 FPU state, and we don't want to
1351 * hit reserved instruction exceptions trying to save
1352 * the MSA state later when CU=1 && FR=1, so play it
1353 * safe and save it first.
1354 */
1355 if (change & ST0_CU1 && !(val & ST0_FR) &&
1356 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1357 kvm_lose_fpu(vcpu);
1358
1359 write_gc0_status(val);
1360 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1361 u32 old_cause = read_gc0_cause();
1362 u32 change = old_cause ^ val;
1363
1364 /* DC bit enabling/disabling timer? */
1365 if (change & CAUSEF_DC) {
1366 if (val & CAUSEF_DC) {
1367 kvm_vz_lose_htimer(vcpu);
1368 kvm_mips_count_disable_cause(vcpu);
1369 } else {
1370 kvm_mips_count_enable_cause(vcpu);
1371 }
1372 }
1373
1374 /* Only certain bits are RW to the guest */
1375 change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1376 CAUSEF_IP0 | CAUSEF_IP1);
1377
1378 /* WP can only be cleared */
1379 change &= ~CAUSEF_WP | old_cause;
1380
1381 write_gc0_cause(old_cause ^ change);
1382 } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1383 write_gc0_intctl(val);
1384 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1385 old_val = read_gc0_config5();
1386 change = val ^ old_val;
1387 /* Handle changes in FPU/MSA modes */
1388 preempt_disable();
1389
1390 /*
1391 * Propagate FRE changes immediately if the FPU
1392 * context is already loaded.
1393 */
1394 if (change & MIPS_CONF5_FRE &&
1395 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1396 change_c0_config5(MIPS_CONF5_FRE, val);
1397
1398 preempt_enable();
1399
1400 val = old_val ^
1401 (change & kvm_vz_config5_guest_wrmask(vcpu));
1402 write_gc0_config5(val);
1403 } else {
1404 kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1405 opc, inst.word);
1406 er = EMULATE_FAIL;
1407 }
1408
1409 if (er != EMULATE_FAIL)
1410 er = update_pc(vcpu, cause);
1411 } else {
1412 kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1413 opc, inst.word);
1414 er = EMULATE_FAIL;
1415 }
1416
1417 return er;
1418 }
1419
kvm_trap_vz_handle_ghfc(u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1420 static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
1421 struct kvm_vcpu *vcpu)
1422 {
1423 /*
1424 * Presumably this is due to MC (guest mode change), so lets trace some
1425 * relevant info.
1426 */
1427 trace_kvm_guest_mode_change(vcpu);
1428
1429 return EMULATE_DONE;
1430 }
1431
kvm_trap_vz_handle_hc(u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1432 static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1433 struct kvm_vcpu *vcpu)
1434 {
1435 enum emulation_result er;
1436 union mips_instruction inst;
1437 unsigned long curr_pc;
1438 int err;
1439
1440 if (cause & CAUSEF_BD)
1441 opc += 1;
1442 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1443 if (err)
1444 return EMULATE_FAIL;
1445
1446 /*
1447 * Update PC and hold onto current PC in case there is
1448 * an error and we want to rollback the PC
1449 */
1450 curr_pc = vcpu->arch.pc;
1451 er = update_pc(vcpu, cause);
1452 if (er == EMULATE_FAIL)
1453 return er;
1454
1455 er = kvm_mips_emul_hypcall(vcpu, inst);
1456 if (er == EMULATE_FAIL)
1457 vcpu->arch.pc = curr_pc;
1458
1459 return er;
1460 }
1461
kvm_trap_vz_no_handler_guest_exit(u32 gexccode,u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1462 static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1463 u32 cause,
1464 u32 *opc,
1465 struct kvm_vcpu *vcpu)
1466 {
1467 u32 inst;
1468
1469 /*
1470 * Fetch the instruction.
1471 */
1472 if (cause & CAUSEF_BD)
1473 opc += 1;
1474 kvm_get_badinstr(opc, vcpu, &inst);
1475
1476 kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x Status: %#x\n",
1477 gexccode, opc, inst, read_gc0_status());
1478
1479 return EMULATE_FAIL;
1480 }
1481
kvm_trap_vz_handle_guest_exit(struct kvm_vcpu * vcpu)1482 static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1483 {
1484 u32 *opc = (u32 *) vcpu->arch.pc;
1485 u32 cause = vcpu->arch.host_cp0_cause;
1486 enum emulation_result er = EMULATE_DONE;
1487 u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1488 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1489 int ret = RESUME_GUEST;
1490
1491 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1492 switch (gexccode) {
1493 case MIPS_GCTL0_GEXC_GPSI:
1494 ++vcpu->stat.vz_gpsi_exits;
1495 er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1496 break;
1497 case MIPS_GCTL0_GEXC_GSFC:
1498 ++vcpu->stat.vz_gsfc_exits;
1499 er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1500 break;
1501 case MIPS_GCTL0_GEXC_HC:
1502 ++vcpu->stat.vz_hc_exits;
1503 er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1504 break;
1505 case MIPS_GCTL0_GEXC_GRR:
1506 ++vcpu->stat.vz_grr_exits;
1507 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1508 vcpu);
1509 break;
1510 case MIPS_GCTL0_GEXC_GVA:
1511 ++vcpu->stat.vz_gva_exits;
1512 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1513 vcpu);
1514 break;
1515 case MIPS_GCTL0_GEXC_GHFC:
1516 ++vcpu->stat.vz_ghfc_exits;
1517 er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
1518 break;
1519 case MIPS_GCTL0_GEXC_GPA:
1520 ++vcpu->stat.vz_gpa_exits;
1521 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1522 vcpu);
1523 break;
1524 default:
1525 ++vcpu->stat.vz_resvd_exits;
1526 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1527 vcpu);
1528 break;
1529
1530 }
1531
1532 if (er == EMULATE_DONE) {
1533 ret = RESUME_GUEST;
1534 } else if (er == EMULATE_HYPERCALL) {
1535 ret = kvm_mips_handle_hypcall(vcpu);
1536 } else {
1537 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1538 ret = RESUME_HOST;
1539 }
1540 return ret;
1541 }
1542
1543 /**
1544 * kvm_trap_vz_handle_cop_unusable() - Guest used unusable coprocessor.
1545 * @vcpu: Virtual CPU context.
1546 *
1547 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1548 * by the root context.
1549 *
1550 * Return: value indicating whether to resume the host or the guest
1551 * (RESUME_HOST or RESUME_GUEST)
1552 */
kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu * vcpu)1553 static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1554 {
1555 u32 cause = vcpu->arch.host_cp0_cause;
1556 enum emulation_result er = EMULATE_FAIL;
1557 int ret = RESUME_GUEST;
1558
1559 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1560 /*
1561 * If guest FPU not present, the FPU operation should have been
1562 * treated as a reserved instruction!
1563 * If FPU already in use, we shouldn't get this at all.
1564 */
1565 if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1566 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1567 preempt_enable();
1568 return EMULATE_FAIL;
1569 }
1570
1571 kvm_own_fpu(vcpu);
1572 er = EMULATE_DONE;
1573 }
1574 /* other coprocessors not handled */
1575
1576 switch (er) {
1577 case EMULATE_DONE:
1578 ret = RESUME_GUEST;
1579 break;
1580
1581 case EMULATE_FAIL:
1582 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1583 ret = RESUME_HOST;
1584 break;
1585
1586 default:
1587 BUG();
1588 }
1589 return ret;
1590 }
1591
1592 /**
1593 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1594 * @vcpu: Virtual CPU context.
1595 *
1596 * Handle when the guest attempts to use MSA when it is disabled in the root
1597 * context.
1598 *
1599 * Return: value indicating whether to resume the host or the guest
1600 * (RESUME_HOST or RESUME_GUEST)
1601 */
kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu * vcpu)1602 static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1603 {
1604 /*
1605 * If MSA not present or not exposed to guest or FR=0, the MSA operation
1606 * should have been treated as a reserved instruction!
1607 * Same if CU1=1, FR=0.
1608 * If MSA already in use, we shouldn't get this at all.
1609 */
1610 if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1611 (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1612 !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1613 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1614 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1615 return RESUME_HOST;
1616 }
1617
1618 kvm_own_msa(vcpu);
1619
1620 return RESUME_GUEST;
1621 }
1622
kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu * vcpu)1623 static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1624 {
1625 struct kvm_run *run = vcpu->run;
1626 u32 *opc = (u32 *) vcpu->arch.pc;
1627 u32 cause = vcpu->arch.host_cp0_cause;
1628 ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1629 union mips_instruction inst;
1630 enum emulation_result er = EMULATE_DONE;
1631 int err, ret = RESUME_GUEST;
1632
1633 if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1634 /* A code fetch fault doesn't count as an MMIO */
1635 if (kvm_is_ifetch_fault(&vcpu->arch)) {
1636 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1637 return RESUME_HOST;
1638 }
1639
1640 /* Fetch the instruction */
1641 if (cause & CAUSEF_BD)
1642 opc += 1;
1643 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1644 if (err) {
1645 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1646 return RESUME_HOST;
1647 }
1648
1649 /* Treat as MMIO */
1650 er = kvm_mips_emulate_load(inst, cause, vcpu);
1651 if (er == EMULATE_FAIL) {
1652 kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1653 opc, badvaddr);
1654 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1655 }
1656 }
1657
1658 if (er == EMULATE_DONE) {
1659 ret = RESUME_GUEST;
1660 } else if (er == EMULATE_DO_MMIO) {
1661 run->exit_reason = KVM_EXIT_MMIO;
1662 ret = RESUME_HOST;
1663 } else {
1664 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1665 ret = RESUME_HOST;
1666 }
1667 return ret;
1668 }
1669
kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu * vcpu)1670 static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1671 {
1672 struct kvm_run *run = vcpu->run;
1673 u32 *opc = (u32 *) vcpu->arch.pc;
1674 u32 cause = vcpu->arch.host_cp0_cause;
1675 ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1676 union mips_instruction inst;
1677 enum emulation_result er = EMULATE_DONE;
1678 int err;
1679 int ret = RESUME_GUEST;
1680
1681 /* Just try the access again if we couldn't do the translation */
1682 if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1683 return RESUME_GUEST;
1684 vcpu->arch.host_cp0_badvaddr = badvaddr;
1685
1686 if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1687 /* Fetch the instruction */
1688 if (cause & CAUSEF_BD)
1689 opc += 1;
1690 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1691 if (err) {
1692 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1693 return RESUME_HOST;
1694 }
1695
1696 /* Treat as MMIO */
1697 er = kvm_mips_emulate_store(inst, cause, vcpu);
1698 if (er == EMULATE_FAIL) {
1699 kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1700 opc, badvaddr);
1701 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1702 }
1703 }
1704
1705 if (er == EMULATE_DONE) {
1706 ret = RESUME_GUEST;
1707 } else if (er == EMULATE_DO_MMIO) {
1708 run->exit_reason = KVM_EXIT_MMIO;
1709 ret = RESUME_HOST;
1710 } else {
1711 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1712 ret = RESUME_HOST;
1713 }
1714 return ret;
1715 }
1716
1717 static u64 kvm_vz_get_one_regs[] = {
1718 KVM_REG_MIPS_CP0_INDEX,
1719 KVM_REG_MIPS_CP0_ENTRYLO0,
1720 KVM_REG_MIPS_CP0_ENTRYLO1,
1721 KVM_REG_MIPS_CP0_CONTEXT,
1722 KVM_REG_MIPS_CP0_PAGEMASK,
1723 KVM_REG_MIPS_CP0_PAGEGRAIN,
1724 KVM_REG_MIPS_CP0_WIRED,
1725 KVM_REG_MIPS_CP0_HWRENA,
1726 KVM_REG_MIPS_CP0_BADVADDR,
1727 KVM_REG_MIPS_CP0_COUNT,
1728 KVM_REG_MIPS_CP0_ENTRYHI,
1729 KVM_REG_MIPS_CP0_COMPARE,
1730 KVM_REG_MIPS_CP0_STATUS,
1731 KVM_REG_MIPS_CP0_INTCTL,
1732 KVM_REG_MIPS_CP0_CAUSE,
1733 KVM_REG_MIPS_CP0_EPC,
1734 KVM_REG_MIPS_CP0_PRID,
1735 KVM_REG_MIPS_CP0_EBASE,
1736 KVM_REG_MIPS_CP0_CONFIG,
1737 KVM_REG_MIPS_CP0_CONFIG1,
1738 KVM_REG_MIPS_CP0_CONFIG2,
1739 KVM_REG_MIPS_CP0_CONFIG3,
1740 KVM_REG_MIPS_CP0_CONFIG4,
1741 KVM_REG_MIPS_CP0_CONFIG5,
1742 KVM_REG_MIPS_CP0_CONFIG6,
1743 #ifdef CONFIG_64BIT
1744 KVM_REG_MIPS_CP0_XCONTEXT,
1745 #endif
1746 KVM_REG_MIPS_CP0_ERROREPC,
1747
1748 KVM_REG_MIPS_COUNT_CTL,
1749 KVM_REG_MIPS_COUNT_RESUME,
1750 KVM_REG_MIPS_COUNT_HZ,
1751 };
1752
1753 static u64 kvm_vz_get_one_regs_contextconfig[] = {
1754 KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1755 #ifdef CONFIG_64BIT
1756 KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1757 #endif
1758 };
1759
1760 static u64 kvm_vz_get_one_regs_segments[] = {
1761 KVM_REG_MIPS_CP0_SEGCTL0,
1762 KVM_REG_MIPS_CP0_SEGCTL1,
1763 KVM_REG_MIPS_CP0_SEGCTL2,
1764 };
1765
1766 static u64 kvm_vz_get_one_regs_htw[] = {
1767 KVM_REG_MIPS_CP0_PWBASE,
1768 KVM_REG_MIPS_CP0_PWFIELD,
1769 KVM_REG_MIPS_CP0_PWSIZE,
1770 KVM_REG_MIPS_CP0_PWCTL,
1771 };
1772
1773 static u64 kvm_vz_get_one_regs_kscratch[] = {
1774 KVM_REG_MIPS_CP0_KSCRATCH1,
1775 KVM_REG_MIPS_CP0_KSCRATCH2,
1776 KVM_REG_MIPS_CP0_KSCRATCH3,
1777 KVM_REG_MIPS_CP0_KSCRATCH4,
1778 KVM_REG_MIPS_CP0_KSCRATCH5,
1779 KVM_REG_MIPS_CP0_KSCRATCH6,
1780 };
1781
kvm_vz_num_regs(struct kvm_vcpu * vcpu)1782 static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1783 {
1784 unsigned long ret;
1785
1786 ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1787 if (cpu_guest_has_userlocal)
1788 ++ret;
1789 if (cpu_guest_has_badinstr)
1790 ++ret;
1791 if (cpu_guest_has_badinstrp)
1792 ++ret;
1793 if (cpu_guest_has_contextconfig)
1794 ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1795 if (cpu_guest_has_segments)
1796 ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1797 if (cpu_guest_has_htw || cpu_guest_has_ldpte)
1798 ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1799 if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
1800 ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
1801 ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1802
1803 return ret;
1804 }
1805
kvm_vz_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * indices)1806 static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1807 {
1808 u64 index;
1809 unsigned int i;
1810
1811 if (copy_to_user(indices, kvm_vz_get_one_regs,
1812 sizeof(kvm_vz_get_one_regs)))
1813 return -EFAULT;
1814 indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1815
1816 if (cpu_guest_has_userlocal) {
1817 index = KVM_REG_MIPS_CP0_USERLOCAL;
1818 if (copy_to_user(indices, &index, sizeof(index)))
1819 return -EFAULT;
1820 ++indices;
1821 }
1822 if (cpu_guest_has_badinstr) {
1823 index = KVM_REG_MIPS_CP0_BADINSTR;
1824 if (copy_to_user(indices, &index, sizeof(index)))
1825 return -EFAULT;
1826 ++indices;
1827 }
1828 if (cpu_guest_has_badinstrp) {
1829 index = KVM_REG_MIPS_CP0_BADINSTRP;
1830 if (copy_to_user(indices, &index, sizeof(index)))
1831 return -EFAULT;
1832 ++indices;
1833 }
1834 if (cpu_guest_has_contextconfig) {
1835 if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1836 sizeof(kvm_vz_get_one_regs_contextconfig)))
1837 return -EFAULT;
1838 indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1839 }
1840 if (cpu_guest_has_segments) {
1841 if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1842 sizeof(kvm_vz_get_one_regs_segments)))
1843 return -EFAULT;
1844 indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1845 }
1846 if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
1847 if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
1848 sizeof(kvm_vz_get_one_regs_htw)))
1849 return -EFAULT;
1850 indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1851 }
1852 if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
1853 for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
1854 index = KVM_REG_MIPS_CP0_MAAR(i);
1855 if (copy_to_user(indices, &index, sizeof(index)))
1856 return -EFAULT;
1857 ++indices;
1858 }
1859
1860 index = KVM_REG_MIPS_CP0_MAARI;
1861 if (copy_to_user(indices, &index, sizeof(index)))
1862 return -EFAULT;
1863 ++indices;
1864 }
1865 for (i = 0; i < 6; ++i) {
1866 if (!cpu_guest_has_kscr(i + 2))
1867 continue;
1868
1869 if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1870 sizeof(kvm_vz_get_one_regs_kscratch[i])))
1871 return -EFAULT;
1872 ++indices;
1873 }
1874
1875 return 0;
1876 }
1877
entrylo_kvm_to_user(unsigned long v)1878 static inline s64 entrylo_kvm_to_user(unsigned long v)
1879 {
1880 s64 mask, ret = v;
1881
1882 if (BITS_PER_LONG == 32) {
1883 /*
1884 * KVM API exposes 64-bit version of the register, so move the
1885 * RI/XI bits up into place.
1886 */
1887 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1888 ret &= ~mask;
1889 ret |= ((s64)v & mask) << 32;
1890 }
1891 return ret;
1892 }
1893
entrylo_user_to_kvm(s64 v)1894 static inline unsigned long entrylo_user_to_kvm(s64 v)
1895 {
1896 unsigned long mask, ret = v;
1897
1898 if (BITS_PER_LONG == 32) {
1899 /*
1900 * KVM API exposes 64-bit versiono of the register, so move the
1901 * RI/XI bits down into place.
1902 */
1903 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1904 ret &= ~mask;
1905 ret |= (v >> 32) & mask;
1906 }
1907 return ret;
1908 }
1909
kvm_vz_get_one_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,s64 * v)1910 static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1911 const struct kvm_one_reg *reg,
1912 s64 *v)
1913 {
1914 struct mips_coproc *cop0 = &vcpu->arch.cop0;
1915 unsigned int idx;
1916
1917 switch (reg->id) {
1918 case KVM_REG_MIPS_CP0_INDEX:
1919 *v = (long)read_gc0_index();
1920 break;
1921 case KVM_REG_MIPS_CP0_ENTRYLO0:
1922 *v = entrylo_kvm_to_user(read_gc0_entrylo0());
1923 break;
1924 case KVM_REG_MIPS_CP0_ENTRYLO1:
1925 *v = entrylo_kvm_to_user(read_gc0_entrylo1());
1926 break;
1927 case KVM_REG_MIPS_CP0_CONTEXT:
1928 *v = (long)read_gc0_context();
1929 break;
1930 case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1931 if (!cpu_guest_has_contextconfig)
1932 return -EINVAL;
1933 *v = read_gc0_contextconfig();
1934 break;
1935 case KVM_REG_MIPS_CP0_USERLOCAL:
1936 if (!cpu_guest_has_userlocal)
1937 return -EINVAL;
1938 *v = read_gc0_userlocal();
1939 break;
1940 #ifdef CONFIG_64BIT
1941 case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1942 if (!cpu_guest_has_contextconfig)
1943 return -EINVAL;
1944 *v = read_gc0_xcontextconfig();
1945 break;
1946 #endif
1947 case KVM_REG_MIPS_CP0_PAGEMASK:
1948 *v = (long)read_gc0_pagemask();
1949 break;
1950 case KVM_REG_MIPS_CP0_PAGEGRAIN:
1951 *v = (long)read_gc0_pagegrain();
1952 break;
1953 case KVM_REG_MIPS_CP0_SEGCTL0:
1954 if (!cpu_guest_has_segments)
1955 return -EINVAL;
1956 *v = read_gc0_segctl0();
1957 break;
1958 case KVM_REG_MIPS_CP0_SEGCTL1:
1959 if (!cpu_guest_has_segments)
1960 return -EINVAL;
1961 *v = read_gc0_segctl1();
1962 break;
1963 case KVM_REG_MIPS_CP0_SEGCTL2:
1964 if (!cpu_guest_has_segments)
1965 return -EINVAL;
1966 *v = read_gc0_segctl2();
1967 break;
1968 case KVM_REG_MIPS_CP0_PWBASE:
1969 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1970 return -EINVAL;
1971 *v = read_gc0_pwbase();
1972 break;
1973 case KVM_REG_MIPS_CP0_PWFIELD:
1974 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1975 return -EINVAL;
1976 *v = read_gc0_pwfield();
1977 break;
1978 case KVM_REG_MIPS_CP0_PWSIZE:
1979 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1980 return -EINVAL;
1981 *v = read_gc0_pwsize();
1982 break;
1983 case KVM_REG_MIPS_CP0_WIRED:
1984 *v = (long)read_gc0_wired();
1985 break;
1986 case KVM_REG_MIPS_CP0_PWCTL:
1987 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1988 return -EINVAL;
1989 *v = read_gc0_pwctl();
1990 break;
1991 case KVM_REG_MIPS_CP0_HWRENA:
1992 *v = (long)read_gc0_hwrena();
1993 break;
1994 case KVM_REG_MIPS_CP0_BADVADDR:
1995 *v = (long)read_gc0_badvaddr();
1996 break;
1997 case KVM_REG_MIPS_CP0_BADINSTR:
1998 if (!cpu_guest_has_badinstr)
1999 return -EINVAL;
2000 *v = read_gc0_badinstr();
2001 break;
2002 case KVM_REG_MIPS_CP0_BADINSTRP:
2003 if (!cpu_guest_has_badinstrp)
2004 return -EINVAL;
2005 *v = read_gc0_badinstrp();
2006 break;
2007 case KVM_REG_MIPS_CP0_COUNT:
2008 *v = kvm_mips_read_count(vcpu);
2009 break;
2010 case KVM_REG_MIPS_CP0_ENTRYHI:
2011 *v = (long)read_gc0_entryhi();
2012 break;
2013 case KVM_REG_MIPS_CP0_COMPARE:
2014 *v = (long)read_gc0_compare();
2015 break;
2016 case KVM_REG_MIPS_CP0_STATUS:
2017 *v = (long)read_gc0_status();
2018 break;
2019 case KVM_REG_MIPS_CP0_INTCTL:
2020 *v = read_gc0_intctl();
2021 break;
2022 case KVM_REG_MIPS_CP0_CAUSE:
2023 *v = (long)read_gc0_cause();
2024 break;
2025 case KVM_REG_MIPS_CP0_EPC:
2026 *v = (long)read_gc0_epc();
2027 break;
2028 case KVM_REG_MIPS_CP0_PRID:
2029 switch (boot_cpu_type()) {
2030 case CPU_CAVIUM_OCTEON3:
2031 /* Octeon III has a read-only guest.PRid */
2032 *v = read_gc0_prid();
2033 break;
2034 default:
2035 *v = (long)kvm_read_c0_guest_prid(cop0);
2036 break;
2037 }
2038 break;
2039 case KVM_REG_MIPS_CP0_EBASE:
2040 *v = kvm_vz_read_gc0_ebase();
2041 break;
2042 case KVM_REG_MIPS_CP0_CONFIG:
2043 *v = read_gc0_config();
2044 break;
2045 case KVM_REG_MIPS_CP0_CONFIG1:
2046 if (!cpu_guest_has_conf1)
2047 return -EINVAL;
2048 *v = read_gc0_config1();
2049 break;
2050 case KVM_REG_MIPS_CP0_CONFIG2:
2051 if (!cpu_guest_has_conf2)
2052 return -EINVAL;
2053 *v = read_gc0_config2();
2054 break;
2055 case KVM_REG_MIPS_CP0_CONFIG3:
2056 if (!cpu_guest_has_conf3)
2057 return -EINVAL;
2058 *v = read_gc0_config3();
2059 break;
2060 case KVM_REG_MIPS_CP0_CONFIG4:
2061 if (!cpu_guest_has_conf4)
2062 return -EINVAL;
2063 *v = read_gc0_config4();
2064 break;
2065 case KVM_REG_MIPS_CP0_CONFIG5:
2066 if (!cpu_guest_has_conf5)
2067 return -EINVAL;
2068 *v = read_gc0_config5();
2069 break;
2070 case KVM_REG_MIPS_CP0_CONFIG6:
2071 *v = kvm_read_sw_gc0_config6(cop0);
2072 break;
2073 case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2074 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2075 return -EINVAL;
2076 idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2077 if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2078 return -EINVAL;
2079 *v = vcpu->arch.maar[idx];
2080 break;
2081 case KVM_REG_MIPS_CP0_MAARI:
2082 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2083 return -EINVAL;
2084 *v = kvm_read_sw_gc0_maari(&vcpu->arch.cop0);
2085 break;
2086 #ifdef CONFIG_64BIT
2087 case KVM_REG_MIPS_CP0_XCONTEXT:
2088 *v = read_gc0_xcontext();
2089 break;
2090 #endif
2091 case KVM_REG_MIPS_CP0_ERROREPC:
2092 *v = (long)read_gc0_errorepc();
2093 break;
2094 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2095 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2096 if (!cpu_guest_has_kscr(idx))
2097 return -EINVAL;
2098 switch (idx) {
2099 case 2:
2100 *v = (long)read_gc0_kscratch1();
2101 break;
2102 case 3:
2103 *v = (long)read_gc0_kscratch2();
2104 break;
2105 case 4:
2106 *v = (long)read_gc0_kscratch3();
2107 break;
2108 case 5:
2109 *v = (long)read_gc0_kscratch4();
2110 break;
2111 case 6:
2112 *v = (long)read_gc0_kscratch5();
2113 break;
2114 case 7:
2115 *v = (long)read_gc0_kscratch6();
2116 break;
2117 }
2118 break;
2119 case KVM_REG_MIPS_COUNT_CTL:
2120 *v = vcpu->arch.count_ctl;
2121 break;
2122 case KVM_REG_MIPS_COUNT_RESUME:
2123 *v = ktime_to_ns(vcpu->arch.count_resume);
2124 break;
2125 case KVM_REG_MIPS_COUNT_HZ:
2126 *v = vcpu->arch.count_hz;
2127 break;
2128 default:
2129 return -EINVAL;
2130 }
2131 return 0;
2132 }
2133
kvm_vz_set_one_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,s64 v)2134 static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
2135 const struct kvm_one_reg *reg,
2136 s64 v)
2137 {
2138 struct mips_coproc *cop0 = &vcpu->arch.cop0;
2139 unsigned int idx;
2140 int ret = 0;
2141 unsigned int cur, change;
2142
2143 switch (reg->id) {
2144 case KVM_REG_MIPS_CP0_INDEX:
2145 write_gc0_index(v);
2146 break;
2147 case KVM_REG_MIPS_CP0_ENTRYLO0:
2148 write_gc0_entrylo0(entrylo_user_to_kvm(v));
2149 break;
2150 case KVM_REG_MIPS_CP0_ENTRYLO1:
2151 write_gc0_entrylo1(entrylo_user_to_kvm(v));
2152 break;
2153 case KVM_REG_MIPS_CP0_CONTEXT:
2154 write_gc0_context(v);
2155 break;
2156 case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
2157 if (!cpu_guest_has_contextconfig)
2158 return -EINVAL;
2159 write_gc0_contextconfig(v);
2160 break;
2161 case KVM_REG_MIPS_CP0_USERLOCAL:
2162 if (!cpu_guest_has_userlocal)
2163 return -EINVAL;
2164 write_gc0_userlocal(v);
2165 break;
2166 #ifdef CONFIG_64BIT
2167 case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
2168 if (!cpu_guest_has_contextconfig)
2169 return -EINVAL;
2170 write_gc0_xcontextconfig(v);
2171 break;
2172 #endif
2173 case KVM_REG_MIPS_CP0_PAGEMASK:
2174 write_gc0_pagemask(v);
2175 break;
2176 case KVM_REG_MIPS_CP0_PAGEGRAIN:
2177 write_gc0_pagegrain(v);
2178 break;
2179 case KVM_REG_MIPS_CP0_SEGCTL0:
2180 if (!cpu_guest_has_segments)
2181 return -EINVAL;
2182 write_gc0_segctl0(v);
2183 break;
2184 case KVM_REG_MIPS_CP0_SEGCTL1:
2185 if (!cpu_guest_has_segments)
2186 return -EINVAL;
2187 write_gc0_segctl1(v);
2188 break;
2189 case KVM_REG_MIPS_CP0_SEGCTL2:
2190 if (!cpu_guest_has_segments)
2191 return -EINVAL;
2192 write_gc0_segctl2(v);
2193 break;
2194 case KVM_REG_MIPS_CP0_PWBASE:
2195 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2196 return -EINVAL;
2197 write_gc0_pwbase(v);
2198 break;
2199 case KVM_REG_MIPS_CP0_PWFIELD:
2200 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2201 return -EINVAL;
2202 write_gc0_pwfield(v);
2203 break;
2204 case KVM_REG_MIPS_CP0_PWSIZE:
2205 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2206 return -EINVAL;
2207 write_gc0_pwsize(v);
2208 break;
2209 case KVM_REG_MIPS_CP0_WIRED:
2210 change_gc0_wired(MIPSR6_WIRED_WIRED, v);
2211 break;
2212 case KVM_REG_MIPS_CP0_PWCTL:
2213 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2214 return -EINVAL;
2215 write_gc0_pwctl(v);
2216 break;
2217 case KVM_REG_MIPS_CP0_HWRENA:
2218 write_gc0_hwrena(v);
2219 break;
2220 case KVM_REG_MIPS_CP0_BADVADDR:
2221 write_gc0_badvaddr(v);
2222 break;
2223 case KVM_REG_MIPS_CP0_BADINSTR:
2224 if (!cpu_guest_has_badinstr)
2225 return -EINVAL;
2226 write_gc0_badinstr(v);
2227 break;
2228 case KVM_REG_MIPS_CP0_BADINSTRP:
2229 if (!cpu_guest_has_badinstrp)
2230 return -EINVAL;
2231 write_gc0_badinstrp(v);
2232 break;
2233 case KVM_REG_MIPS_CP0_COUNT:
2234 kvm_mips_write_count(vcpu, v);
2235 break;
2236 case KVM_REG_MIPS_CP0_ENTRYHI:
2237 write_gc0_entryhi(v);
2238 break;
2239 case KVM_REG_MIPS_CP0_COMPARE:
2240 kvm_mips_write_compare(vcpu, v, false);
2241 break;
2242 case KVM_REG_MIPS_CP0_STATUS:
2243 write_gc0_status(v);
2244 break;
2245 case KVM_REG_MIPS_CP0_INTCTL:
2246 write_gc0_intctl(v);
2247 break;
2248 case KVM_REG_MIPS_CP0_CAUSE:
2249 /*
2250 * If the timer is stopped or started (DC bit) it must look
2251 * atomic with changes to the timer interrupt pending bit (TI).
2252 * A timer interrupt should not happen in between.
2253 */
2254 if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
2255 if (v & CAUSEF_DC) {
2256 /* disable timer first */
2257 kvm_mips_count_disable_cause(vcpu);
2258 change_gc0_cause((u32)~CAUSEF_DC, v);
2259 } else {
2260 /* enable timer last */
2261 change_gc0_cause((u32)~CAUSEF_DC, v);
2262 kvm_mips_count_enable_cause(vcpu);
2263 }
2264 } else {
2265 write_gc0_cause(v);
2266 }
2267 break;
2268 case KVM_REG_MIPS_CP0_EPC:
2269 write_gc0_epc(v);
2270 break;
2271 case KVM_REG_MIPS_CP0_PRID:
2272 switch (boot_cpu_type()) {
2273 case CPU_CAVIUM_OCTEON3:
2274 /* Octeon III has a guest.PRid, but its read-only */
2275 break;
2276 default:
2277 kvm_write_c0_guest_prid(cop0, v);
2278 break;
2279 }
2280 break;
2281 case KVM_REG_MIPS_CP0_EBASE:
2282 kvm_vz_write_gc0_ebase(v);
2283 break;
2284 case KVM_REG_MIPS_CP0_CONFIG:
2285 cur = read_gc0_config();
2286 change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
2287 if (change) {
2288 v = cur ^ change;
2289 write_gc0_config(v);
2290 }
2291 break;
2292 case KVM_REG_MIPS_CP0_CONFIG1:
2293 if (!cpu_guest_has_conf1)
2294 break;
2295 cur = read_gc0_config1();
2296 change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
2297 if (change) {
2298 v = cur ^ change;
2299 write_gc0_config1(v);
2300 }
2301 break;
2302 case KVM_REG_MIPS_CP0_CONFIG2:
2303 if (!cpu_guest_has_conf2)
2304 break;
2305 cur = read_gc0_config2();
2306 change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
2307 if (change) {
2308 v = cur ^ change;
2309 write_gc0_config2(v);
2310 }
2311 break;
2312 case KVM_REG_MIPS_CP0_CONFIG3:
2313 if (!cpu_guest_has_conf3)
2314 break;
2315 cur = read_gc0_config3();
2316 change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
2317 if (change) {
2318 v = cur ^ change;
2319 write_gc0_config3(v);
2320 }
2321 break;
2322 case KVM_REG_MIPS_CP0_CONFIG4:
2323 if (!cpu_guest_has_conf4)
2324 break;
2325 cur = read_gc0_config4();
2326 change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
2327 if (change) {
2328 v = cur ^ change;
2329 write_gc0_config4(v);
2330 }
2331 break;
2332 case KVM_REG_MIPS_CP0_CONFIG5:
2333 if (!cpu_guest_has_conf5)
2334 break;
2335 cur = read_gc0_config5();
2336 change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
2337 if (change) {
2338 v = cur ^ change;
2339 write_gc0_config5(v);
2340 }
2341 break;
2342 case KVM_REG_MIPS_CP0_CONFIG6:
2343 cur = kvm_read_sw_gc0_config6(cop0);
2344 change = (cur ^ v) & kvm_vz_config6_user_wrmask(vcpu);
2345 if (change) {
2346 v = cur ^ change;
2347 kvm_write_sw_gc0_config6(cop0, (int)v);
2348 }
2349 break;
2350 case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2351 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2352 return -EINVAL;
2353 idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2354 if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2355 return -EINVAL;
2356 vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
2357 break;
2358 case KVM_REG_MIPS_CP0_MAARI:
2359 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2360 return -EINVAL;
2361 kvm_write_maari(vcpu, v);
2362 break;
2363 #ifdef CONFIG_64BIT
2364 case KVM_REG_MIPS_CP0_XCONTEXT:
2365 write_gc0_xcontext(v);
2366 break;
2367 #endif
2368 case KVM_REG_MIPS_CP0_ERROREPC:
2369 write_gc0_errorepc(v);
2370 break;
2371 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2372 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2373 if (!cpu_guest_has_kscr(idx))
2374 return -EINVAL;
2375 switch (idx) {
2376 case 2:
2377 write_gc0_kscratch1(v);
2378 break;
2379 case 3:
2380 write_gc0_kscratch2(v);
2381 break;
2382 case 4:
2383 write_gc0_kscratch3(v);
2384 break;
2385 case 5:
2386 write_gc0_kscratch4(v);
2387 break;
2388 case 6:
2389 write_gc0_kscratch5(v);
2390 break;
2391 case 7:
2392 write_gc0_kscratch6(v);
2393 break;
2394 }
2395 break;
2396 case KVM_REG_MIPS_COUNT_CTL:
2397 ret = kvm_mips_set_count_ctl(vcpu, v);
2398 break;
2399 case KVM_REG_MIPS_COUNT_RESUME:
2400 ret = kvm_mips_set_count_resume(vcpu, v);
2401 break;
2402 case KVM_REG_MIPS_COUNT_HZ:
2403 ret = kvm_mips_set_count_hz(vcpu, v);
2404 break;
2405 default:
2406 return -EINVAL;
2407 }
2408 return ret;
2409 }
2410
2411 #define guestid_cache(cpu) (cpu_data[cpu].guestid_cache)
kvm_vz_get_new_guestid(unsigned long cpu,struct kvm_vcpu * vcpu)2412 static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
2413 {
2414 unsigned long guestid = guestid_cache(cpu);
2415
2416 if (!(++guestid & GUESTID_MASK)) {
2417 if (cpu_has_vtag_icache)
2418 flush_icache_all();
2419
2420 if (!guestid) /* fix version if needed */
2421 guestid = GUESTID_FIRST_VERSION;
2422
2423 ++guestid; /* guestid 0 reserved for root */
2424
2425 /* start new guestid cycle */
2426 kvm_vz_local_flush_roottlb_all_guests();
2427 kvm_vz_local_flush_guesttlb_all();
2428 }
2429
2430 guestid_cache(cpu) = guestid;
2431 }
2432
2433 /* Returns 1 if the guest TLB may be clobbered */
kvm_vz_check_requests(struct kvm_vcpu * vcpu,int cpu)2434 static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
2435 {
2436 int ret = 0;
2437 int i;
2438
2439 if (!kvm_request_pending(vcpu))
2440 return 0;
2441
2442 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2443 if (cpu_has_guestid) {
2444 /* Drop all GuestIDs for this VCPU */
2445 for_each_possible_cpu(i)
2446 vcpu->arch.vzguestid[i] = 0;
2447 /* This will clobber guest TLB contents too */
2448 ret = 1;
2449 }
2450 /*
2451 * For Root ASID Dealias (RAD) we don't do anything here, but we
2452 * still need the request to ensure we recheck asid_flush_mask.
2453 * We can still return 0 as only the root TLB will be affected
2454 * by a root ASID flush.
2455 */
2456 }
2457
2458 return ret;
2459 }
2460
kvm_vz_vcpu_save_wired(struct kvm_vcpu * vcpu)2461 static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
2462 {
2463 unsigned int wired = read_gc0_wired();
2464 struct kvm_mips_tlb *tlbs;
2465 int i;
2466
2467 /* Expand the wired TLB array if necessary */
2468 wired &= MIPSR6_WIRED_WIRED;
2469 if (wired > vcpu->arch.wired_tlb_limit) {
2470 tlbs = krealloc(vcpu->arch.wired_tlb, wired *
2471 sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
2472 if (WARN_ON(!tlbs)) {
2473 /* Save whatever we can */
2474 wired = vcpu->arch.wired_tlb_limit;
2475 } else {
2476 vcpu->arch.wired_tlb = tlbs;
2477 vcpu->arch.wired_tlb_limit = wired;
2478 }
2479 }
2480
2481 if (wired)
2482 /* Save wired entries from the guest TLB */
2483 kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
2484 /* Invalidate any dropped entries since last time */
2485 for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
2486 vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
2487 vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
2488 vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
2489 vcpu->arch.wired_tlb[i].tlb_mask = 0;
2490 }
2491 vcpu->arch.wired_tlb_used = wired;
2492 }
2493
kvm_vz_vcpu_load_wired(struct kvm_vcpu * vcpu)2494 static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2495 {
2496 /* Load wired entries into the guest TLB */
2497 if (vcpu->arch.wired_tlb)
2498 kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2499 vcpu->arch.wired_tlb_used);
2500 }
2501
kvm_vz_vcpu_load_tlb(struct kvm_vcpu * vcpu,int cpu)2502 static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2503 {
2504 struct kvm *kvm = vcpu->kvm;
2505 struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2506 bool migrated;
2507
2508 /*
2509 * Are we entering guest context on a different CPU to last time?
2510 * If so, the VCPU's guest TLB state on this CPU may be stale.
2511 */
2512 migrated = (vcpu->arch.last_exec_cpu != cpu);
2513 vcpu->arch.last_exec_cpu = cpu;
2514
2515 /*
2516 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2517 * remains set until another vcpu is loaded in. As a rule GuestRID
2518 * remains zeroed when in root context unless the kernel is busy
2519 * manipulating guest tlb entries.
2520 */
2521 if (cpu_has_guestid) {
2522 /*
2523 * Check if our GuestID is of an older version and thus invalid.
2524 *
2525 * We also discard the stored GuestID if we've executed on
2526 * another CPU, as the guest mappings may have changed without
2527 * hypervisor knowledge.
2528 */
2529 if (migrated ||
2530 (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2531 GUESTID_VERSION_MASK) {
2532 kvm_vz_get_new_guestid(cpu, vcpu);
2533 vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2534 trace_kvm_guestid_change(vcpu,
2535 vcpu->arch.vzguestid[cpu]);
2536 }
2537
2538 /* Restore GuestID */
2539 change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2540 } else {
2541 /*
2542 * The Guest TLB only stores a single guest's TLB state, so
2543 * flush it if another VCPU has executed on this CPU.
2544 *
2545 * We also flush if we've executed on another CPU, as the guest
2546 * mappings may have changed without hypervisor knowledge.
2547 */
2548 if (migrated || last_exec_vcpu[cpu] != vcpu)
2549 kvm_vz_local_flush_guesttlb_all();
2550 last_exec_vcpu[cpu] = vcpu;
2551
2552 /*
2553 * Root ASID dealiases guest GPA mappings in the root TLB.
2554 * Allocate new root ASID if needed.
2555 */
2556 if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask))
2557 get_new_mmu_context(gpa_mm);
2558 else
2559 check_mmu_context(gpa_mm);
2560 }
2561 }
2562
kvm_vz_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2563 static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2564 {
2565 struct mips_coproc *cop0 = &vcpu->arch.cop0;
2566 bool migrated, all;
2567
2568 /*
2569 * Have we migrated to a different CPU?
2570 * If so, any old guest TLB state may be stale.
2571 */
2572 migrated = (vcpu->arch.last_sched_cpu != cpu);
2573
2574 /*
2575 * Was this the last VCPU to run on this CPU?
2576 * If not, any old guest state from this VCPU will have been clobbered.
2577 */
2578 all = migrated || (last_vcpu[cpu] != vcpu);
2579 last_vcpu[cpu] = vcpu;
2580
2581 /*
2582 * Restore CP0_Wired unconditionally as we clear it after use, and
2583 * restore wired guest TLB entries (while in guest context).
2584 */
2585 kvm_restore_gc0_wired(cop0);
2586 if (current->flags & PF_VCPU) {
2587 tlbw_use_hazard();
2588 kvm_vz_vcpu_load_tlb(vcpu, cpu);
2589 kvm_vz_vcpu_load_wired(vcpu);
2590 }
2591
2592 /*
2593 * Restore timer state regardless, as e.g. Cause.TI can change over time
2594 * if left unmaintained.
2595 */
2596 kvm_vz_restore_timer(vcpu);
2597
2598 /* Set MC bit if we want to trace guest mode changes */
2599 if (kvm_trace_guest_mode_change)
2600 set_c0_guestctl0(MIPS_GCTL0_MC);
2601 else
2602 clear_c0_guestctl0(MIPS_GCTL0_MC);
2603
2604 /* Don't bother restoring registers multiple times unless necessary */
2605 if (!all)
2606 return 0;
2607
2608 /*
2609 * Restore config registers first, as some implementations restrict
2610 * writes to other registers when the corresponding feature bits aren't
2611 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2612 */
2613 kvm_restore_gc0_config(cop0);
2614 if (cpu_guest_has_conf1)
2615 kvm_restore_gc0_config1(cop0);
2616 if (cpu_guest_has_conf2)
2617 kvm_restore_gc0_config2(cop0);
2618 if (cpu_guest_has_conf3)
2619 kvm_restore_gc0_config3(cop0);
2620 if (cpu_guest_has_conf4)
2621 kvm_restore_gc0_config4(cop0);
2622 if (cpu_guest_has_conf5)
2623 kvm_restore_gc0_config5(cop0);
2624 if (cpu_guest_has_conf6)
2625 kvm_restore_gc0_config6(cop0);
2626 if (cpu_guest_has_conf7)
2627 kvm_restore_gc0_config7(cop0);
2628
2629 kvm_restore_gc0_index(cop0);
2630 kvm_restore_gc0_entrylo0(cop0);
2631 kvm_restore_gc0_entrylo1(cop0);
2632 kvm_restore_gc0_context(cop0);
2633 if (cpu_guest_has_contextconfig)
2634 kvm_restore_gc0_contextconfig(cop0);
2635 #ifdef CONFIG_64BIT
2636 kvm_restore_gc0_xcontext(cop0);
2637 if (cpu_guest_has_contextconfig)
2638 kvm_restore_gc0_xcontextconfig(cop0);
2639 #endif
2640 kvm_restore_gc0_pagemask(cop0);
2641 kvm_restore_gc0_pagegrain(cop0);
2642 kvm_restore_gc0_hwrena(cop0);
2643 kvm_restore_gc0_badvaddr(cop0);
2644 kvm_restore_gc0_entryhi(cop0);
2645 kvm_restore_gc0_status(cop0);
2646 kvm_restore_gc0_intctl(cop0);
2647 kvm_restore_gc0_epc(cop0);
2648 kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2649 if (cpu_guest_has_userlocal)
2650 kvm_restore_gc0_userlocal(cop0);
2651
2652 kvm_restore_gc0_errorepc(cop0);
2653
2654 /* restore KScratch registers if enabled in guest */
2655 if (cpu_guest_has_conf4) {
2656 if (cpu_guest_has_kscr(2))
2657 kvm_restore_gc0_kscratch1(cop0);
2658 if (cpu_guest_has_kscr(3))
2659 kvm_restore_gc0_kscratch2(cop0);
2660 if (cpu_guest_has_kscr(4))
2661 kvm_restore_gc0_kscratch3(cop0);
2662 if (cpu_guest_has_kscr(5))
2663 kvm_restore_gc0_kscratch4(cop0);
2664 if (cpu_guest_has_kscr(6))
2665 kvm_restore_gc0_kscratch5(cop0);
2666 if (cpu_guest_has_kscr(7))
2667 kvm_restore_gc0_kscratch6(cop0);
2668 }
2669
2670 if (cpu_guest_has_badinstr)
2671 kvm_restore_gc0_badinstr(cop0);
2672 if (cpu_guest_has_badinstrp)
2673 kvm_restore_gc0_badinstrp(cop0);
2674
2675 if (cpu_guest_has_segments) {
2676 kvm_restore_gc0_segctl0(cop0);
2677 kvm_restore_gc0_segctl1(cop0);
2678 kvm_restore_gc0_segctl2(cop0);
2679 }
2680
2681 /* restore HTW registers */
2682 if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
2683 kvm_restore_gc0_pwbase(cop0);
2684 kvm_restore_gc0_pwfield(cop0);
2685 kvm_restore_gc0_pwsize(cop0);
2686 kvm_restore_gc0_pwctl(cop0);
2687 }
2688
2689 /* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2690 if (cpu_has_guestctl2)
2691 write_c0_guestctl2(
2692 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2693
2694 /*
2695 * We should clear linked load bit to break interrupted atomics. This
2696 * prevents a SC on the next VCPU from succeeding by matching a LL on
2697 * the previous VCPU.
2698 */
2699 if (vcpu->kvm->created_vcpus > 1)
2700 write_gc0_lladdr(0);
2701
2702 return 0;
2703 }
2704
kvm_vz_vcpu_put(struct kvm_vcpu * vcpu,int cpu)2705 static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2706 {
2707 struct mips_coproc *cop0 = &vcpu->arch.cop0;
2708
2709 if (current->flags & PF_VCPU)
2710 kvm_vz_vcpu_save_wired(vcpu);
2711
2712 kvm_lose_fpu(vcpu);
2713
2714 kvm_save_gc0_index(cop0);
2715 kvm_save_gc0_entrylo0(cop0);
2716 kvm_save_gc0_entrylo1(cop0);
2717 kvm_save_gc0_context(cop0);
2718 if (cpu_guest_has_contextconfig)
2719 kvm_save_gc0_contextconfig(cop0);
2720 #ifdef CONFIG_64BIT
2721 kvm_save_gc0_xcontext(cop0);
2722 if (cpu_guest_has_contextconfig)
2723 kvm_save_gc0_xcontextconfig(cop0);
2724 #endif
2725 kvm_save_gc0_pagemask(cop0);
2726 kvm_save_gc0_pagegrain(cop0);
2727 kvm_save_gc0_wired(cop0);
2728 /* allow wired TLB entries to be overwritten */
2729 clear_gc0_wired(MIPSR6_WIRED_WIRED);
2730 kvm_save_gc0_hwrena(cop0);
2731 kvm_save_gc0_badvaddr(cop0);
2732 kvm_save_gc0_entryhi(cop0);
2733 kvm_save_gc0_status(cop0);
2734 kvm_save_gc0_intctl(cop0);
2735 kvm_save_gc0_epc(cop0);
2736 kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2737 if (cpu_guest_has_userlocal)
2738 kvm_save_gc0_userlocal(cop0);
2739
2740 /* only save implemented config registers */
2741 kvm_save_gc0_config(cop0);
2742 if (cpu_guest_has_conf1)
2743 kvm_save_gc0_config1(cop0);
2744 if (cpu_guest_has_conf2)
2745 kvm_save_gc0_config2(cop0);
2746 if (cpu_guest_has_conf3)
2747 kvm_save_gc0_config3(cop0);
2748 if (cpu_guest_has_conf4)
2749 kvm_save_gc0_config4(cop0);
2750 if (cpu_guest_has_conf5)
2751 kvm_save_gc0_config5(cop0);
2752 if (cpu_guest_has_conf6)
2753 kvm_save_gc0_config6(cop0);
2754 if (cpu_guest_has_conf7)
2755 kvm_save_gc0_config7(cop0);
2756
2757 kvm_save_gc0_errorepc(cop0);
2758
2759 /* save KScratch registers if enabled in guest */
2760 if (cpu_guest_has_conf4) {
2761 if (cpu_guest_has_kscr(2))
2762 kvm_save_gc0_kscratch1(cop0);
2763 if (cpu_guest_has_kscr(3))
2764 kvm_save_gc0_kscratch2(cop0);
2765 if (cpu_guest_has_kscr(4))
2766 kvm_save_gc0_kscratch3(cop0);
2767 if (cpu_guest_has_kscr(5))
2768 kvm_save_gc0_kscratch4(cop0);
2769 if (cpu_guest_has_kscr(6))
2770 kvm_save_gc0_kscratch5(cop0);
2771 if (cpu_guest_has_kscr(7))
2772 kvm_save_gc0_kscratch6(cop0);
2773 }
2774
2775 if (cpu_guest_has_badinstr)
2776 kvm_save_gc0_badinstr(cop0);
2777 if (cpu_guest_has_badinstrp)
2778 kvm_save_gc0_badinstrp(cop0);
2779
2780 if (cpu_guest_has_segments) {
2781 kvm_save_gc0_segctl0(cop0);
2782 kvm_save_gc0_segctl1(cop0);
2783 kvm_save_gc0_segctl2(cop0);
2784 }
2785
2786 /* save HTW registers if enabled in guest */
2787 if (cpu_guest_has_ldpte || (cpu_guest_has_htw &&
2788 kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) {
2789 kvm_save_gc0_pwbase(cop0);
2790 kvm_save_gc0_pwfield(cop0);
2791 kvm_save_gc0_pwsize(cop0);
2792 kvm_save_gc0_pwctl(cop0);
2793 }
2794
2795 kvm_vz_save_timer(vcpu);
2796
2797 /* save Root.GuestCtl2 in unused Guest guestctl2 register */
2798 if (cpu_has_guestctl2)
2799 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2800 read_c0_guestctl2();
2801
2802 return 0;
2803 }
2804
2805 /**
2806 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2807 * @size: Number of guest VTLB entries (0 < @size <= root VTLB entries).
2808 *
2809 * Attempt to resize the guest VTLB by writing guest Config registers. This is
2810 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2811 * entries in the root VTLB.
2812 *
2813 * Returns: The resulting guest VTLB size.
2814 */
kvm_vz_resize_guest_vtlb(unsigned int size)2815 static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2816 {
2817 unsigned int config4 = 0, ret = 0, limit;
2818
2819 /* Write MMUSize - 1 into guest Config registers */
2820 if (cpu_guest_has_conf1)
2821 change_gc0_config1(MIPS_CONF1_TLBS,
2822 (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2823 if (cpu_guest_has_conf4) {
2824 config4 = read_gc0_config4();
2825 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2826 MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2827 config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2828 config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2829 MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2830 } else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2831 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2832 config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2833 config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2834 MIPS_CONF4_MMUSIZEEXT_SHIFT;
2835 }
2836 write_gc0_config4(config4);
2837 }
2838
2839 /*
2840 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2841 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2842 * not dropped)
2843 */
2844 if (cpu_has_mips_r6) {
2845 limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2846 MIPSR6_WIRED_LIMIT_SHIFT;
2847 if (size - 1 <= limit)
2848 limit = 0;
2849 write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2850 }
2851
2852 /* Read back MMUSize - 1 */
2853 back_to_back_c0_hazard();
2854 if (cpu_guest_has_conf1)
2855 ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2856 MIPS_CONF1_TLBS_SHIFT;
2857 if (config4) {
2858 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2859 MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2860 ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2861 MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2862 MIPS_CONF1_TLBS_SIZE;
2863 else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2864 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2865 ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2866 MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2867 MIPS_CONF1_TLBS_SIZE;
2868 }
2869 return ret + 1;
2870 }
2871
kvm_vz_hardware_enable(void)2872 static int kvm_vz_hardware_enable(void)
2873 {
2874 unsigned int mmu_size, guest_mmu_size, ftlb_size;
2875 u64 guest_cvmctl, cvmvmconfig;
2876
2877 switch (current_cpu_type()) {
2878 case CPU_CAVIUM_OCTEON3:
2879 /* Set up guest timer/perfcount IRQ lines */
2880 guest_cvmctl = read_gc0_cvmctl();
2881 guest_cvmctl &= ~CVMCTL_IPTI;
2882 guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
2883 guest_cvmctl &= ~CVMCTL_IPPCI;
2884 guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
2885 write_gc0_cvmctl(guest_cvmctl);
2886
2887 cvmvmconfig = read_c0_cvmvmconfig();
2888 /* No I/O hole translation. */
2889 cvmvmconfig |= CVMVMCONF_DGHT;
2890 /* Halve the root MMU size */
2891 mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2892 >> CVMVMCONF_MMUSIZEM1_S) + 1;
2893 guest_mmu_size = mmu_size / 2;
2894 mmu_size -= guest_mmu_size;
2895 cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2896 cvmvmconfig |= mmu_size - 1;
2897 write_c0_cvmvmconfig(cvmvmconfig);
2898
2899 /* Update our records */
2900 current_cpu_data.tlbsize = mmu_size;
2901 current_cpu_data.tlbsizevtlb = mmu_size;
2902 current_cpu_data.guest.tlbsize = guest_mmu_size;
2903
2904 /* Flush moved entries in new (guest) context */
2905 kvm_vz_local_flush_guesttlb_all();
2906 break;
2907 default:
2908 /*
2909 * ImgTec cores tend to use a shared root/guest TLB. To avoid
2910 * overlap of root wired and guest entries, the guest TLB may
2911 * need resizing.
2912 */
2913 mmu_size = current_cpu_data.tlbsizevtlb;
2914 ftlb_size = current_cpu_data.tlbsize - mmu_size;
2915
2916 /* Try switching to maximum guest VTLB size for flush */
2917 guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2918 current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2919 kvm_vz_local_flush_guesttlb_all();
2920
2921 /*
2922 * Reduce to make space for root wired entries and at least 2
2923 * root non-wired entries. This does assume that long-term wired
2924 * entries won't be added later.
2925 */
2926 guest_mmu_size = mmu_size - num_wired_entries() - 2;
2927 guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2928 current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2929
2930 /*
2931 * Write the VTLB size, but if another CPU has already written,
2932 * check it matches or we won't provide a consistent view to the
2933 * guest. If this ever happens it suggests an asymmetric number
2934 * of wired entries.
2935 */
2936 if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2937 WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2938 "Available guest VTLB size mismatch"))
2939 return -EINVAL;
2940 break;
2941 }
2942
2943 /*
2944 * Enable virtualization features granting guest direct control of
2945 * certain features:
2946 * CP0=1: Guest coprocessor 0 context.
2947 * AT=Guest: Guest MMU.
2948 * CG=1: Hit (virtual address) CACHE operations (optional).
2949 * CF=1: Guest Config registers.
2950 * CGI=1: Indexed flush CACHE operations (optional).
2951 */
2952 write_c0_guestctl0(MIPS_GCTL0_CP0 |
2953 (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2954 MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2955 if (cpu_has_guestctl0ext) {
2956 if (current_cpu_type() != CPU_LOONGSON64)
2957 set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2958 else
2959 clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2960 }
2961
2962 if (cpu_has_guestid) {
2963 write_c0_guestctl1(0);
2964 kvm_vz_local_flush_roottlb_all_guests();
2965
2966 GUESTID_MASK = current_cpu_data.guestid_mask;
2967 GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2968 GUESTID_VERSION_MASK = ~GUESTID_MASK;
2969
2970 current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2971 }
2972
2973 /* clear any pending injected virtual guest interrupts */
2974 if (cpu_has_guestctl2)
2975 clear_c0_guestctl2(0x3f << 10);
2976
2977 #ifdef CONFIG_CPU_LOONGSON64
2978 /* Control guest CCA attribute */
2979 if (cpu_has_csr())
2980 csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec);
2981 #endif
2982
2983 return 0;
2984 }
2985
kvm_vz_hardware_disable(void)2986 static void kvm_vz_hardware_disable(void)
2987 {
2988 u64 cvmvmconfig;
2989 unsigned int mmu_size;
2990
2991 /* Flush any remaining guest TLB entries */
2992 kvm_vz_local_flush_guesttlb_all();
2993
2994 switch (current_cpu_type()) {
2995 case CPU_CAVIUM_OCTEON3:
2996 /*
2997 * Allocate whole TLB for root. Existing guest TLB entries will
2998 * change ownership to the root TLB. We should be safe though as
2999 * they've already been flushed above while in guest TLB.
3000 */
3001 cvmvmconfig = read_c0_cvmvmconfig();
3002 mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
3003 >> CVMVMCONF_MMUSIZEM1_S) + 1;
3004 cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
3005 cvmvmconfig |= mmu_size - 1;
3006 write_c0_cvmvmconfig(cvmvmconfig);
3007
3008 /* Update our records */
3009 current_cpu_data.tlbsize = mmu_size;
3010 current_cpu_data.tlbsizevtlb = mmu_size;
3011 current_cpu_data.guest.tlbsize = 0;
3012
3013 /* Flush moved entries in new (root) context */
3014 local_flush_tlb_all();
3015 break;
3016 }
3017
3018 if (cpu_has_guestid) {
3019 write_c0_guestctl1(0);
3020 kvm_vz_local_flush_roottlb_all_guests();
3021 }
3022 }
3023
kvm_vz_check_extension(struct kvm * kvm,long ext)3024 static int kvm_vz_check_extension(struct kvm *kvm, long ext)
3025 {
3026 int r;
3027
3028 switch (ext) {
3029 case KVM_CAP_MIPS_VZ:
3030 /* we wouldn't be here unless cpu_has_vz */
3031 r = 1;
3032 break;
3033 #ifdef CONFIG_64BIT
3034 case KVM_CAP_MIPS_64BIT:
3035 /* We support 64-bit registers/operations and addresses */
3036 r = 2;
3037 break;
3038 #endif
3039 case KVM_CAP_IOEVENTFD:
3040 r = 1;
3041 break;
3042 default:
3043 r = 0;
3044 break;
3045 }
3046
3047 return r;
3048 }
3049
kvm_vz_vcpu_init(struct kvm_vcpu * vcpu)3050 static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
3051 {
3052 int i;
3053
3054 for_each_possible_cpu(i)
3055 vcpu->arch.vzguestid[i] = 0;
3056
3057 return 0;
3058 }
3059
kvm_vz_vcpu_uninit(struct kvm_vcpu * vcpu)3060 static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
3061 {
3062 int cpu;
3063
3064 /*
3065 * If the VCPU is freed and reused as another VCPU, we don't want the
3066 * matching pointer wrongly hanging around in last_vcpu[] or
3067 * last_exec_vcpu[].
3068 */
3069 for_each_possible_cpu(cpu) {
3070 if (last_vcpu[cpu] == vcpu)
3071 last_vcpu[cpu] = NULL;
3072 if (last_exec_vcpu[cpu] == vcpu)
3073 last_exec_vcpu[cpu] = NULL;
3074 }
3075 }
3076
kvm_vz_vcpu_setup(struct kvm_vcpu * vcpu)3077 static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
3078 {
3079 struct mips_coproc *cop0 = &vcpu->arch.cop0;
3080 unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
3081
3082 /*
3083 * Start off the timer at the same frequency as the host timer, but the
3084 * soft timer doesn't handle frequencies greater than 1GHz yet.
3085 */
3086 if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
3087 count_hz = mips_hpt_frequency;
3088 kvm_mips_init_count(vcpu, count_hz);
3089
3090 /*
3091 * Initialize guest register state to valid architectural reset state.
3092 */
3093
3094 /* PageGrain */
3095 if (cpu_has_mips_r5 || cpu_has_mips_r6)
3096 kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
3097 /* Wired */
3098 if (cpu_has_mips_r6)
3099 kvm_write_sw_gc0_wired(cop0,
3100 read_gc0_wired() & MIPSR6_WIRED_LIMIT);
3101 /* Status */
3102 kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
3103 if (cpu_has_mips_r5 || cpu_has_mips_r6)
3104 kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
3105 /* IntCtl */
3106 kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
3107 (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
3108 /* PRId */
3109 kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
3110 /* EBase */
3111 kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
3112 /* Config */
3113 kvm_save_gc0_config(cop0);
3114 /* architecturally writable (e.g. from guest) */
3115 kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
3116 _page_cachable_default >> _CACHE_SHIFT);
3117 /* architecturally read only, but maybe writable from root */
3118 kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
3119 if (cpu_guest_has_conf1) {
3120 kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
3121 /* Config1 */
3122 kvm_save_gc0_config1(cop0);
3123 /* architecturally read only, but maybe writable from root */
3124 kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2 |
3125 MIPS_CONF1_MD |
3126 MIPS_CONF1_PC |
3127 MIPS_CONF1_WR |
3128 MIPS_CONF1_CA |
3129 MIPS_CONF1_FP);
3130 }
3131 if (cpu_guest_has_conf2) {
3132 kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
3133 /* Config2 */
3134 kvm_save_gc0_config2(cop0);
3135 }
3136 if (cpu_guest_has_conf3) {
3137 kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
3138 /* Config3 */
3139 kvm_save_gc0_config3(cop0);
3140 /* architecturally writable (e.g. from guest) */
3141 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
3142 /* architecturally read only, but maybe writable from root */
3143 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA |
3144 MIPS_CONF3_BPG |
3145 MIPS_CONF3_ULRI |
3146 MIPS_CONF3_DSP |
3147 MIPS_CONF3_CTXTC |
3148 MIPS_CONF3_ITL |
3149 MIPS_CONF3_LPA |
3150 MIPS_CONF3_VEIC |
3151 MIPS_CONF3_VINT |
3152 MIPS_CONF3_SP |
3153 MIPS_CONF3_CDMM |
3154 MIPS_CONF3_MT |
3155 MIPS_CONF3_SM |
3156 MIPS_CONF3_TL);
3157 }
3158 if (cpu_guest_has_conf4) {
3159 kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
3160 /* Config4 */
3161 kvm_save_gc0_config4(cop0);
3162 }
3163 if (cpu_guest_has_conf5) {
3164 kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
3165 /* Config5 */
3166 kvm_save_gc0_config5(cop0);
3167 /* architecturally writable (e.g. from guest) */
3168 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K |
3169 MIPS_CONF5_CV |
3170 MIPS_CONF5_MSAEN |
3171 MIPS_CONF5_UFE |
3172 MIPS_CONF5_FRE |
3173 MIPS_CONF5_SBRI |
3174 MIPS_CONF5_UFR);
3175 /* architecturally read only, but maybe writable from root */
3176 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
3177 }
3178
3179 if (cpu_guest_has_contextconfig) {
3180 /* ContextConfig */
3181 kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
3182 #ifdef CONFIG_64BIT
3183 /* XContextConfig */
3184 /* bits SEGBITS-13+3:4 set */
3185 kvm_write_sw_gc0_xcontextconfig(cop0,
3186 ((1ull << (cpu_vmbits - 13)) - 1) << 4);
3187 #endif
3188 }
3189
3190 /* Implementation dependent, use the legacy layout */
3191 if (cpu_guest_has_segments) {
3192 /* SegCtl0, SegCtl1, SegCtl2 */
3193 kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
3194 kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
3195 (_page_cachable_default >> _CACHE_SHIFT) <<
3196 (16 + MIPS_SEGCFG_C_SHIFT));
3197 kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
3198 }
3199
3200 /* reset HTW registers */
3201 if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) {
3202 /* PWField */
3203 kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
3204 /* PWSize */
3205 kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
3206 }
3207
3208 /* start with no pending virtual guest interrupts */
3209 if (cpu_has_guestctl2)
3210 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
3211
3212 /* Put PC at reset vector */
3213 vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
3214
3215 return 0;
3216 }
3217
kvm_vz_prepare_flush_shadow(struct kvm * kvm)3218 static void kvm_vz_prepare_flush_shadow(struct kvm *kvm)
3219 {
3220 if (!cpu_has_guestid) {
3221 /*
3222 * For each CPU there is a single GPA ASID used by all VCPUs in
3223 * the VM, so it doesn't make sense for the VCPUs to handle
3224 * invalidation of these ASIDs individually.
3225 *
3226 * Instead mark all CPUs as needing ASID invalidation in
3227 * asid_flush_mask, and kvm_flush_remote_tlbs(kvm) will
3228 * kick any running VCPUs so they check asid_flush_mask.
3229 */
3230 cpumask_setall(&kvm->arch.asid_flush_mask);
3231 }
3232 }
3233
kvm_vz_vcpu_reenter(struct kvm_vcpu * vcpu)3234 static void kvm_vz_vcpu_reenter(struct kvm_vcpu *vcpu)
3235 {
3236 int cpu = smp_processor_id();
3237 int preserve_guest_tlb;
3238
3239 preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
3240
3241 if (preserve_guest_tlb)
3242 kvm_vz_vcpu_save_wired(vcpu);
3243
3244 kvm_vz_vcpu_load_tlb(vcpu, cpu);
3245
3246 if (preserve_guest_tlb)
3247 kvm_vz_vcpu_load_wired(vcpu);
3248 }
3249
kvm_vz_vcpu_run(struct kvm_vcpu * vcpu)3250 static int kvm_vz_vcpu_run(struct kvm_vcpu *vcpu)
3251 {
3252 int cpu = smp_processor_id();
3253 int r;
3254
3255 kvm_vz_acquire_htimer(vcpu);
3256 /* Check if we have any exceptions/interrupts pending */
3257 kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
3258
3259 kvm_vz_check_requests(vcpu, cpu);
3260 kvm_vz_vcpu_load_tlb(vcpu, cpu);
3261 kvm_vz_vcpu_load_wired(vcpu);
3262
3263 r = vcpu->arch.vcpu_run(vcpu);
3264
3265 kvm_vz_vcpu_save_wired(vcpu);
3266
3267 return r;
3268 }
3269
3270 static struct kvm_mips_callbacks kvm_vz_callbacks = {
3271 .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
3272 .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
3273 .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
3274 .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
3275 .handle_addr_err_st = kvm_trap_vz_no_handler,
3276 .handle_addr_err_ld = kvm_trap_vz_no_handler,
3277 .handle_syscall = kvm_trap_vz_no_handler,
3278 .handle_res_inst = kvm_trap_vz_no_handler,
3279 .handle_break = kvm_trap_vz_no_handler,
3280 .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
3281 .handle_guest_exit = kvm_trap_vz_handle_guest_exit,
3282
3283 .hardware_enable = kvm_vz_hardware_enable,
3284 .hardware_disable = kvm_vz_hardware_disable,
3285 .check_extension = kvm_vz_check_extension,
3286 .vcpu_init = kvm_vz_vcpu_init,
3287 .vcpu_uninit = kvm_vz_vcpu_uninit,
3288 .vcpu_setup = kvm_vz_vcpu_setup,
3289 .prepare_flush_shadow = kvm_vz_prepare_flush_shadow,
3290 .gva_to_gpa = kvm_vz_gva_to_gpa_cb,
3291 .queue_timer_int = kvm_vz_queue_timer_int_cb,
3292 .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
3293 .queue_io_int = kvm_vz_queue_io_int_cb,
3294 .dequeue_io_int = kvm_vz_dequeue_io_int_cb,
3295 .irq_deliver = kvm_vz_irq_deliver_cb,
3296 .irq_clear = kvm_vz_irq_clear_cb,
3297 .num_regs = kvm_vz_num_regs,
3298 .copy_reg_indices = kvm_vz_copy_reg_indices,
3299 .get_one_reg = kvm_vz_get_one_reg,
3300 .set_one_reg = kvm_vz_set_one_reg,
3301 .vcpu_load = kvm_vz_vcpu_load,
3302 .vcpu_put = kvm_vz_vcpu_put,
3303 .vcpu_run = kvm_vz_vcpu_run,
3304 .vcpu_reenter = kvm_vz_vcpu_reenter,
3305 };
3306
3307 /* FIXME: Get rid of the callbacks now that trap-and-emulate is gone. */
3308 const struct kvm_mips_callbacks * const kvm_mips_callbacks = &kvm_vz_callbacks;
3309
kvm_mips_emulation_init(void)3310 int kvm_mips_emulation_init(void)
3311 {
3312 if (!cpu_has_vz)
3313 return -ENODEV;
3314
3315 /*
3316 * VZ requires at least 2 KScratch registers, so it should have been
3317 * possible to allocate pgd_reg.
3318 */
3319 if (WARN(pgd_reg == -1,
3320 "pgd_reg not allocated even though cpu_has_vz\n"))
3321 return -ENODEV;
3322
3323 pr_info("Starting KVM with MIPS VZ extensions\n");
3324 return 0;
3325 }
3326