xref: /openbmc/linux/drivers/net/wireless/ath/wil6210/main.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: ISC
2  /*
3   * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4   * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5   */
6  
7  #include <linux/moduleparam.h>
8  #include <linux/if_arp.h>
9  #include <linux/etherdevice.h>
10  #include <linux/rtnetlink.h>
11  
12  #include "wil6210.h"
13  #include "txrx.h"
14  #include "txrx_edma.h"
15  #include "wmi.h"
16  #include "boot_loader.h"
17  
18  #define WAIT_FOR_HALP_VOTE_MS 100
19  #define WAIT_FOR_SCAN_ABORT_MS 1000
20  #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
21  #define WIL_BOARD_FILE_MAX_NAMELEN 128
22  
23  bool debug_fw; /* = false; */
24  module_param(debug_fw, bool, 0444);
25  MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
26  
27  static u8 oob_mode;
28  module_param(oob_mode, byte, 0444);
29  MODULE_PARM_DESC(oob_mode,
30  		 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
31  
32  bool no_fw_recovery;
33  module_param(no_fw_recovery, bool, 0644);
34  MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
35  
36  /* if not set via modparam, will be set to default value of 1/8 of
37   * rx ring size during init flow
38   */
39  unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
40  module_param(rx_ring_overflow_thrsh, ushort, 0444);
41  MODULE_PARM_DESC(rx_ring_overflow_thrsh,
42  		 " RX ring overflow threshold in descriptors.");
43  
44  /* We allow allocation of more than 1 page buffers to support large packets.
45   * It is suboptimal behavior performance wise in case MTU above page size.
46   */
47  unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
mtu_max_set(const char * val,const struct kernel_param * kp)48  static int mtu_max_set(const char *val, const struct kernel_param *kp)
49  {
50  	int ret;
51  
52  	/* sets mtu_max directly. no need to restore it in case of
53  	 * illegal value since we assume this will fail insmod
54  	 */
55  	ret = param_set_uint(val, kp);
56  	if (ret)
57  		return ret;
58  
59  	if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
60  		ret = -EINVAL;
61  
62  	return ret;
63  }
64  
65  static const struct kernel_param_ops mtu_max_ops = {
66  	.set = mtu_max_set,
67  	.get = param_get_uint,
68  };
69  
70  module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
71  MODULE_PARM_DESC(mtu_max, " Max MTU value.");
72  
73  static uint rx_ring_order;
74  static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
75  static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
76  
ring_order_set(const char * val,const struct kernel_param * kp)77  static int ring_order_set(const char *val, const struct kernel_param *kp)
78  {
79  	int ret;
80  	uint x;
81  
82  	ret = kstrtouint(val, 0, &x);
83  	if (ret)
84  		return ret;
85  
86  	if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
87  		return -EINVAL;
88  
89  	*((uint *)kp->arg) = x;
90  
91  	return 0;
92  }
93  
94  static const struct kernel_param_ops ring_order_ops = {
95  	.set = ring_order_set,
96  	.get = param_get_uint,
97  };
98  
99  module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
100  MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
101  module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
102  MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
103  module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
104  MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
105  
106  enum {
107  	WIL_BOOT_ERR,
108  	WIL_BOOT_VANILLA,
109  	WIL_BOOT_PRODUCTION,
110  	WIL_BOOT_DEVELOPMENT,
111  };
112  
113  enum {
114  	WIL_SIG_STATUS_VANILLA = 0x0,
115  	WIL_SIG_STATUS_DEVELOPMENT = 0x1,
116  	WIL_SIG_STATUS_PRODUCTION = 0x2,
117  	WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
118  };
119  
120  #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
121  #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
122  
123  #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
124  
125  #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
126  /* round up to be above 2 ms total */
127  #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
128  
129  /*
130   * Due to a hardware issue,
131   * one has to read/write to/from NIC in 32-bit chunks;
132   * regular memcpy_fromio and siblings will
133   * not work on 64-bit platform - it uses 64-bit transactions
134   *
135   * Force 32-bit transactions to enable NIC on 64-bit platforms
136   *
137   * To avoid byte swap on big endian host, __raw_{read|write}l
138   * should be used - {read|write}l would swap bytes to provide
139   * little endian on PCI value in host endianness.
140   */
wil_memcpy_fromio_32(void * dst,const volatile void __iomem * src,size_t count)141  void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
142  			  size_t count)
143  {
144  	u32 *d = dst;
145  	const volatile u32 __iomem *s = src;
146  
147  	for (; count >= 4; count -= 4)
148  		*d++ = __raw_readl(s++);
149  
150  	if (unlikely(count)) {
151  		/* count can be 1..3 */
152  		u32 tmp = __raw_readl(s);
153  
154  		memcpy(d, &tmp, count);
155  	}
156  }
157  
wil_memcpy_toio_32(volatile void __iomem * dst,const void * src,size_t count)158  void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
159  			size_t count)
160  {
161  	volatile u32 __iomem *d = dst;
162  	const u32 *s = src;
163  
164  	for (; count >= 4; count -= 4)
165  		__raw_writel(*s++, d++);
166  
167  	if (unlikely(count)) {
168  		/* count can be 1..3 */
169  		u32 tmp = 0;
170  
171  		memcpy(&tmp, s, count);
172  		__raw_writel(tmp, d);
173  	}
174  }
175  
176  /* Device memory access is prohibited while reset or suspend.
177   * wil_mem_access_lock protects accessing device memory in these cases
178   */
wil_mem_access_lock(struct wil6210_priv * wil)179  int wil_mem_access_lock(struct wil6210_priv *wil)
180  {
181  	if (!down_read_trylock(&wil->mem_lock))
182  		return -EBUSY;
183  
184  	if (test_bit(wil_status_suspending, wil->status) ||
185  	    test_bit(wil_status_suspended, wil->status)) {
186  		up_read(&wil->mem_lock);
187  		return -EBUSY;
188  	}
189  
190  	return 0;
191  }
192  
wil_mem_access_unlock(struct wil6210_priv * wil)193  void wil_mem_access_unlock(struct wil6210_priv *wil)
194  {
195  	up_read(&wil->mem_lock);
196  }
197  
wil_ring_fini_tx(struct wil6210_priv * wil,int id)198  static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
199  {
200  	struct wil_ring *ring = &wil->ring_tx[id];
201  	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
202  
203  	lockdep_assert_held(&wil->mutex);
204  
205  	if (!ring->va)
206  		return;
207  
208  	wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
209  
210  	spin_lock_bh(&txdata->lock);
211  	txdata->dot1x_open = false;
212  	txdata->mid = U8_MAX;
213  	txdata->enabled = 0; /* no Tx can be in progress or start anew */
214  	spin_unlock_bh(&txdata->lock);
215  	/* napi_synchronize waits for completion of the current NAPI but will
216  	 * not prevent the next NAPI run.
217  	 * Add a memory barrier to guarantee that txdata->enabled is zeroed
218  	 * before napi_synchronize so that the next scheduled NAPI will not
219  	 * handle this vring
220  	 */
221  	wmb();
222  	/* make sure NAPI won't touch this vring */
223  	if (test_bit(wil_status_napi_en, wil->status))
224  		napi_synchronize(&wil->napi_tx);
225  
226  	wil->txrx_ops.ring_fini_tx(wil, ring);
227  }
228  
wil_vif_is_connected(struct wil6210_priv * wil,u8 mid)229  static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
230  {
231  	int i;
232  
233  	for (i = 0; i < wil->max_assoc_sta; i++) {
234  		if (wil->sta[i].mid == mid &&
235  		    wil->sta[i].status == wil_sta_connected)
236  			return true;
237  	}
238  
239  	return false;
240  }
241  
wil_disconnect_cid_complete(struct wil6210_vif * vif,int cid,u16 reason_code)242  static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
243  					u16 reason_code)
244  __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
245  {
246  	uint i;
247  	struct wil6210_priv *wil = vif_to_wil(vif);
248  	struct net_device *ndev = vif_to_ndev(vif);
249  	struct wireless_dev *wdev = vif_to_wdev(vif);
250  	struct wil_sta_info *sta = &wil->sta[cid];
251  	int min_ring_id = wil_get_min_tx_ring_id(wil);
252  
253  	might_sleep();
254  	wil_dbg_misc(wil,
255  		     "disconnect_cid_complete: CID %d, MID %d, status %d\n",
256  		     cid, sta->mid, sta->status);
257  	/* inform upper layers */
258  	if (sta->status != wil_sta_unused) {
259  		if (vif->mid != sta->mid) {
260  			wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
261  				vif->mid);
262  		}
263  
264  		switch (wdev->iftype) {
265  		case NL80211_IFTYPE_AP:
266  		case NL80211_IFTYPE_P2P_GO:
267  			/* AP-like interface */
268  			cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
269  			break;
270  		default:
271  			break;
272  		}
273  		sta->status = wil_sta_unused;
274  		sta->mid = U8_MAX;
275  	}
276  	/* reorder buffers */
277  	for (i = 0; i < WIL_STA_TID_NUM; i++) {
278  		struct wil_tid_ampdu_rx *r;
279  
280  		spin_lock_bh(&sta->tid_rx_lock);
281  
282  		r = sta->tid_rx[i];
283  		sta->tid_rx[i] = NULL;
284  		wil_tid_ampdu_rx_free(wil, r);
285  
286  		spin_unlock_bh(&sta->tid_rx_lock);
287  	}
288  	/* crypto context */
289  	memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
290  	memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
291  	/* release vrings */
292  	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
293  		if (wil->ring2cid_tid[i][0] == cid)
294  			wil_ring_fini_tx(wil, i);
295  	}
296  	/* statistics */
297  	memset(&sta->stats, 0, sizeof(sta->stats));
298  	sta->stats.tx_latency_min_us = U32_MAX;
299  }
300  
_wil6210_disconnect_complete(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)301  static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
302  					 const u8 *bssid, u16 reason_code)
303  {
304  	struct wil6210_priv *wil = vif_to_wil(vif);
305  	int cid = -ENOENT;
306  	struct net_device *ndev;
307  	struct wireless_dev *wdev;
308  
309  	ndev = vif_to_ndev(vif);
310  	wdev = vif_to_wdev(vif);
311  
312  	might_sleep();
313  	wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
314  		 bssid, reason_code);
315  
316  	/* Cases are:
317  	 * - disconnect single STA, still connected
318  	 * - disconnect single STA, already disconnected
319  	 * - disconnect all
320  	 *
321  	 * For "disconnect all", there are 3 options:
322  	 * - bssid == NULL
323  	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
324  	 * - bssid is our MAC address
325  	 */
326  	if (bssid && !is_broadcast_ether_addr(bssid) &&
327  	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
328  		cid = wil_find_cid(wil, vif->mid, bssid);
329  		wil_dbg_misc(wil,
330  			     "Disconnect complete %pM, CID=%d, reason=%d\n",
331  			     bssid, cid, reason_code);
332  		if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
333  			wil_disconnect_cid_complete(vif, cid, reason_code);
334  	} else { /* all */
335  		wil_dbg_misc(wil, "Disconnect complete all\n");
336  		for (cid = 0; cid < wil->max_assoc_sta; cid++)
337  			wil_disconnect_cid_complete(vif, cid, reason_code);
338  	}
339  
340  	/* link state */
341  	switch (wdev->iftype) {
342  	case NL80211_IFTYPE_STATION:
343  	case NL80211_IFTYPE_P2P_CLIENT:
344  		wil_bcast_fini(vif);
345  		wil_update_net_queues_bh(wil, vif, NULL, true);
346  		netif_carrier_off(ndev);
347  		if (!wil_has_other_active_ifaces(wil, ndev, false, true))
348  			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
349  
350  		if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
351  			atomic_dec(&wil->connected_vifs);
352  			cfg80211_disconnected(ndev, reason_code,
353  					      NULL, 0,
354  					      vif->locally_generated_disc,
355  					      GFP_KERNEL);
356  			vif->locally_generated_disc = false;
357  		} else if (test_bit(wil_vif_fwconnecting, vif->status)) {
358  			cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
359  						WLAN_STATUS_UNSPECIFIED_FAILURE,
360  						GFP_KERNEL);
361  			vif->bss = NULL;
362  		}
363  		clear_bit(wil_vif_fwconnecting, vif->status);
364  		clear_bit(wil_vif_ft_roam, vif->status);
365  		vif->ptk_rekey_state = WIL_REKEY_IDLE;
366  
367  		break;
368  	case NL80211_IFTYPE_AP:
369  	case NL80211_IFTYPE_P2P_GO:
370  		if (!wil_vif_is_connected(wil, vif->mid)) {
371  			wil_update_net_queues_bh(wil, vif, NULL, true);
372  			if (test_and_clear_bit(wil_vif_fwconnected,
373  					       vif->status))
374  				atomic_dec(&wil->connected_vifs);
375  		} else {
376  			wil_update_net_queues_bh(wil, vif, NULL, false);
377  		}
378  		break;
379  	default:
380  		break;
381  	}
382  }
383  
wil_disconnect_cid(struct wil6210_vif * vif,int cid,u16 reason_code)384  static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
385  			      u16 reason_code)
386  {
387  	struct wil6210_priv *wil = vif_to_wil(vif);
388  	struct wireless_dev *wdev = vif_to_wdev(vif);
389  	struct wil_sta_info *sta = &wil->sta[cid];
390  	bool del_sta = false;
391  
392  	might_sleep();
393  	wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
394  		     cid, sta->mid, sta->status);
395  
396  	if (sta->status == wil_sta_unused)
397  		return 0;
398  
399  	if (vif->mid != sta->mid) {
400  		wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
401  		return -EINVAL;
402  	}
403  
404  	/* inform lower layers */
405  	if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
406  		del_sta = true;
407  
408  	/* disconnect by sending command disconnect/del_sta and wait
409  	 * synchronously for WMI_DISCONNECT_EVENTID event.
410  	 */
411  	return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
412  }
413  
_wil6210_disconnect(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)414  static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
415  				u16 reason_code)
416  {
417  	struct wil6210_priv *wil;
418  	struct net_device *ndev;
419  	int cid = -ENOENT;
420  
421  	if (unlikely(!vif))
422  		return;
423  
424  	wil = vif_to_wil(vif);
425  	ndev = vif_to_ndev(vif);
426  
427  	might_sleep();
428  	wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
429  
430  	/* Cases are:
431  	 * - disconnect single STA, still connected
432  	 * - disconnect single STA, already disconnected
433  	 * - disconnect all
434  	 *
435  	 * For "disconnect all", there are 3 options:
436  	 * - bssid == NULL
437  	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
438  	 * - bssid is our MAC address
439  	 */
440  	if (bssid && !is_broadcast_ether_addr(bssid) &&
441  	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
442  		cid = wil_find_cid(wil, vif->mid, bssid);
443  		wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
444  			     bssid, cid, reason_code);
445  		if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
446  			wil_disconnect_cid(vif, cid, reason_code);
447  	} else { /* all */
448  		wil_dbg_misc(wil, "Disconnect all\n");
449  		for (cid = 0; cid < wil->max_assoc_sta; cid++)
450  			wil_disconnect_cid(vif, cid, reason_code);
451  	}
452  
453  	/* call event handler manually after processing wmi_call,
454  	 * to avoid deadlock - disconnect event handler acquires
455  	 * wil->mutex while it is already held here
456  	 */
457  	_wil6210_disconnect_complete(vif, bssid, reason_code);
458  }
459  
wil_disconnect_worker(struct work_struct * work)460  void wil_disconnect_worker(struct work_struct *work)
461  {
462  	struct wil6210_vif *vif = container_of(work,
463  			struct wil6210_vif, disconnect_worker);
464  	struct wil6210_priv *wil = vif_to_wil(vif);
465  	struct net_device *ndev = vif_to_ndev(vif);
466  	int rc;
467  	struct {
468  		struct wmi_cmd_hdr wmi;
469  		struct wmi_disconnect_event evt;
470  	} __packed reply;
471  
472  	if (test_bit(wil_vif_fwconnected, vif->status))
473  		/* connect succeeded after all */
474  		return;
475  
476  	if (!test_bit(wil_vif_fwconnecting, vif->status))
477  		/* already disconnected */
478  		return;
479  
480  	memset(&reply, 0, sizeof(reply));
481  
482  	rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
483  		      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
484  		      WIL6210_DISCONNECT_TO_MS);
485  	if (rc) {
486  		wil_err(wil, "disconnect error %d\n", rc);
487  		return;
488  	}
489  
490  	wil_update_net_queues_bh(wil, vif, NULL, true);
491  	netif_carrier_off(ndev);
492  	cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
493  				WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
494  	clear_bit(wil_vif_fwconnecting, vif->status);
495  }
496  
wil_wait_for_recovery(struct wil6210_priv * wil)497  static int wil_wait_for_recovery(struct wil6210_priv *wil)
498  {
499  	if (wait_event_interruptible(wil->wq, wil->recovery_state !=
500  				     fw_recovery_pending)) {
501  		wil_err(wil, "Interrupt, canceling recovery\n");
502  		return -ERESTARTSYS;
503  	}
504  	if (wil->recovery_state != fw_recovery_running) {
505  		wil_info(wil, "Recovery cancelled\n");
506  		return -EINTR;
507  	}
508  	wil_info(wil, "Proceed with recovery\n");
509  	return 0;
510  }
511  
wil_set_recovery_state(struct wil6210_priv * wil,int state)512  void wil_set_recovery_state(struct wil6210_priv *wil, int state)
513  {
514  	wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
515  		     wil->recovery_state, state);
516  
517  	wil->recovery_state = state;
518  	wake_up_interruptible(&wil->wq);
519  }
520  
wil_is_recovery_blocked(struct wil6210_priv * wil)521  bool wil_is_recovery_blocked(struct wil6210_priv *wil)
522  {
523  	return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
524  }
525  
wil_fw_error_worker(struct work_struct * work)526  static void wil_fw_error_worker(struct work_struct *work)
527  {
528  	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
529  						fw_error_worker);
530  	struct net_device *ndev = wil->main_ndev;
531  	struct wireless_dev *wdev;
532  
533  	wil_dbg_misc(wil, "fw error worker\n");
534  
535  	if (!ndev || !(ndev->flags & IFF_UP)) {
536  		wil_info(wil, "No recovery - interface is down\n");
537  		return;
538  	}
539  	wdev = ndev->ieee80211_ptr;
540  
541  	/* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
542  	 * passed since last recovery attempt
543  	 */
544  	if (time_is_after_jiffies(wil->last_fw_recovery +
545  				  WIL6210_FW_RECOVERY_TO))
546  		wil->recovery_count++;
547  	else
548  		wil->recovery_count = 1; /* fw was alive for a long time */
549  
550  	if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
551  		wil_err(wil, "too many recovery attempts (%d), giving up\n",
552  			wil->recovery_count);
553  		return;
554  	}
555  
556  	wil->last_fw_recovery = jiffies;
557  
558  	wil_info(wil, "fw error recovery requested (try %d)...\n",
559  		 wil->recovery_count);
560  	if (!no_fw_recovery)
561  		wil->recovery_state = fw_recovery_running;
562  	if (wil_wait_for_recovery(wil) != 0)
563  		return;
564  
565  	rtnl_lock();
566  	mutex_lock(&wil->mutex);
567  	/* Needs adaptation for multiple VIFs
568  	 * need to go over all VIFs and consider the appropriate
569  	 * recovery because each one can have different iftype.
570  	 */
571  	switch (wdev->iftype) {
572  	case NL80211_IFTYPE_STATION:
573  	case NL80211_IFTYPE_P2P_CLIENT:
574  	case NL80211_IFTYPE_MONITOR:
575  		/* silent recovery, upper layers will see disconnect */
576  		__wil_down(wil);
577  		__wil_up(wil);
578  		break;
579  	case NL80211_IFTYPE_AP:
580  	case NL80211_IFTYPE_P2P_GO:
581  		if (no_fw_recovery) /* upper layers do recovery */
582  			break;
583  		/* silent recovery, upper layers will see disconnect */
584  		__wil_down(wil);
585  		__wil_up(wil);
586  		mutex_unlock(&wil->mutex);
587  		wil_cfg80211_ap_recovery(wil);
588  		mutex_lock(&wil->mutex);
589  		wil_info(wil, "... completed\n");
590  		break;
591  	default:
592  		wil_err(wil, "No recovery - unknown interface type %d\n",
593  			wdev->iftype);
594  		break;
595  	}
596  
597  	mutex_unlock(&wil->mutex);
598  	rtnl_unlock();
599  }
600  
wil_find_free_ring(struct wil6210_priv * wil)601  static int wil_find_free_ring(struct wil6210_priv *wil)
602  {
603  	int i;
604  	int min_ring_id = wil_get_min_tx_ring_id(wil);
605  
606  	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
607  		if (!wil->ring_tx[i].va)
608  			return i;
609  	}
610  	return -EINVAL;
611  }
612  
wil_ring_init_tx(struct wil6210_vif * vif,int cid)613  int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
614  {
615  	struct wil6210_priv *wil = vif_to_wil(vif);
616  	int rc = -EINVAL, ringid;
617  
618  	if (cid < 0) {
619  		wil_err(wil, "No connection pending\n");
620  		goto out;
621  	}
622  	ringid = wil_find_free_ring(wil);
623  	if (ringid < 0) {
624  		wil_err(wil, "No free vring found\n");
625  		goto out;
626  	}
627  
628  	wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
629  		    cid, vif->mid, ringid);
630  
631  	rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
632  					cid, 0);
633  	if (rc)
634  		wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
635  			cid, vif->mid, ringid);
636  
637  out:
638  	return rc;
639  }
640  
wil_bcast_init(struct wil6210_vif * vif)641  int wil_bcast_init(struct wil6210_vif *vif)
642  {
643  	struct wil6210_priv *wil = vif_to_wil(vif);
644  	int ri = vif->bcast_ring, rc;
645  
646  	if (ri >= 0 && wil->ring_tx[ri].va)
647  		return 0;
648  
649  	ri = wil_find_free_ring(wil);
650  	if (ri < 0)
651  		return ri;
652  
653  	vif->bcast_ring = ri;
654  	rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
655  	if (rc)
656  		vif->bcast_ring = -1;
657  
658  	return rc;
659  }
660  
wil_bcast_fini(struct wil6210_vif * vif)661  void wil_bcast_fini(struct wil6210_vif *vif)
662  {
663  	struct wil6210_priv *wil = vif_to_wil(vif);
664  	int ri = vif->bcast_ring;
665  
666  	if (ri < 0)
667  		return;
668  
669  	vif->bcast_ring = -1;
670  	wil_ring_fini_tx(wil, ri);
671  }
672  
wil_bcast_fini_all(struct wil6210_priv * wil)673  void wil_bcast_fini_all(struct wil6210_priv *wil)
674  {
675  	int i;
676  	struct wil6210_vif *vif;
677  
678  	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
679  		vif = wil->vifs[i];
680  		if (vif)
681  			wil_bcast_fini(vif);
682  	}
683  }
684  
wil_priv_init(struct wil6210_priv * wil)685  int wil_priv_init(struct wil6210_priv *wil)
686  {
687  	uint i;
688  
689  	wil_dbg_misc(wil, "priv_init\n");
690  
691  	memset(wil->sta, 0, sizeof(wil->sta));
692  	for (i = 0; i < WIL6210_MAX_CID; i++) {
693  		spin_lock_init(&wil->sta[i].tid_rx_lock);
694  		wil->sta[i].mid = U8_MAX;
695  	}
696  
697  	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
698  		spin_lock_init(&wil->ring_tx_data[i].lock);
699  		wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
700  	}
701  
702  	mutex_init(&wil->mutex);
703  	mutex_init(&wil->vif_mutex);
704  	mutex_init(&wil->wmi_mutex);
705  	mutex_init(&wil->halp.lock);
706  
707  	init_completion(&wil->wmi_ready);
708  	init_completion(&wil->wmi_call);
709  	init_completion(&wil->halp.comp);
710  
711  	INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
712  	INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
713  
714  	INIT_LIST_HEAD(&wil->pending_wmi_ev);
715  	spin_lock_init(&wil->wmi_ev_lock);
716  	spin_lock_init(&wil->net_queue_lock);
717  	spin_lock_init(&wil->eap_lock);
718  
719  	init_waitqueue_head(&wil->wq);
720  	init_rwsem(&wil->mem_lock);
721  
722  	wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
723  	if (!wil->wmi_wq)
724  		return -EAGAIN;
725  
726  	wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
727  	if (!wil->wq_service)
728  		goto out_wmi_wq;
729  
730  	wil->last_fw_recovery = jiffies;
731  	wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
732  	wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
733  	wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
734  	wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
735  
736  	if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
737  		rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
738  
739  	wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
740  
741  	wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
742  			      WMI_WAKEUP_TRIGGER_BCAST;
743  	memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
744  	wil->ring_idle_trsh = 16;
745  
746  	wil->reply_mid = U8_MAX;
747  	wil->max_vifs = 1;
748  	wil->max_assoc_sta = max_assoc_sta;
749  
750  	/* edma configuration can be updated via debugfs before allocation */
751  	wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
752  	wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
753  
754  	/* Rx status ring size should be bigger than the number of RX buffers
755  	 * in order to prevent backpressure on the status ring, which may
756  	 * cause HW freeze.
757  	 */
758  	wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
759  	/* Number of RX buffer IDs should be bigger than the RX descriptor
760  	 * ring size as in HW reorder flow, the HW can consume additional
761  	 * buffers before releasing the previous ones.
762  	 */
763  	wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
764  
765  	wil->amsdu_en = true;
766  
767  	return 0;
768  
769  out_wmi_wq:
770  	destroy_workqueue(wil->wmi_wq);
771  
772  	return -EAGAIN;
773  }
774  
wil6210_bus_request(struct wil6210_priv * wil,u32 kbps)775  void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
776  {
777  	if (wil->platform_ops.bus_request) {
778  		wil->bus_request_kbps = kbps;
779  		wil->platform_ops.bus_request(wil->platform_handle, kbps);
780  	}
781  }
782  
783  /**
784   * wil6210_disconnect - disconnect one connection
785   * @vif: virtual interface context
786   * @bssid: peer to disconnect, NULL to disconnect all
787   * @reason_code: Reason code for the Disassociation frame
788   *
789   * Disconnect and release associated resources. Issue WMI
790   * command(s) to trigger MAC disconnect. When command was issued
791   * successfully, call the wil6210_disconnect_complete function
792   * to handle the event synchronously
793   */
wil6210_disconnect(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)794  void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
795  			u16 reason_code)
796  {
797  	struct wil6210_priv *wil = vif_to_wil(vif);
798  
799  	wil_dbg_misc(wil, "disconnecting\n");
800  
801  	del_timer_sync(&vif->connect_timer);
802  	_wil6210_disconnect(vif, bssid, reason_code);
803  }
804  
805  /**
806   * wil6210_disconnect_complete - handle disconnect event
807   * @vif: virtual interface context
808   * @bssid: peer to disconnect, NULL to disconnect all
809   * @reason_code: Reason code for the Disassociation frame
810   *
811   * Release associated resources and indicate upper layers the
812   * connection is terminated.
813   */
wil6210_disconnect_complete(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)814  void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
815  				 u16 reason_code)
816  {
817  	struct wil6210_priv *wil = vif_to_wil(vif);
818  
819  	wil_dbg_misc(wil, "got disconnect\n");
820  
821  	del_timer_sync(&vif->connect_timer);
822  	_wil6210_disconnect_complete(vif, bssid, reason_code);
823  }
824  
wil_priv_deinit(struct wil6210_priv * wil)825  void wil_priv_deinit(struct wil6210_priv *wil)
826  {
827  	wil_dbg_misc(wil, "priv_deinit\n");
828  
829  	wil_set_recovery_state(wil, fw_recovery_idle);
830  	cancel_work_sync(&wil->fw_error_worker);
831  	wmi_event_flush(wil);
832  	destroy_workqueue(wil->wq_service);
833  	destroy_workqueue(wil->wmi_wq);
834  	kfree(wil->brd_info);
835  }
836  
wil_shutdown_bl(struct wil6210_priv * wil)837  static void wil_shutdown_bl(struct wil6210_priv *wil)
838  {
839  	u32 val;
840  
841  	wil_s(wil, RGF_USER_BL +
842  	      offsetof(struct bl_dedicated_registers_v1,
843  		       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
844  
845  	usleep_range(100, 150);
846  
847  	val = wil_r(wil, RGF_USER_BL +
848  		    offsetof(struct bl_dedicated_registers_v1,
849  			     bl_shutdown_handshake));
850  	if (val & BL_SHUTDOWN_HS_RTD) {
851  		wil_dbg_misc(wil, "BL is ready for halt\n");
852  		return;
853  	}
854  
855  	wil_err(wil, "BL did not report ready for halt\n");
856  }
857  
858  /* this format is used by ARC embedded CPU for instruction memory */
ARC_me_imm32(u32 d)859  static inline u32 ARC_me_imm32(u32 d)
860  {
861  	return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
862  }
863  
864  /* defines access to interrupt vectors for wil_freeze_bl */
865  #define ARC_IRQ_VECTOR_OFFSET(N)	((N) * 8)
866  /* ARC long jump instruction */
867  #define ARC_JAL_INST			(0x20200f80)
868  
wil_freeze_bl(struct wil6210_priv * wil)869  static void wil_freeze_bl(struct wil6210_priv *wil)
870  {
871  	u32 jal, upc, saved;
872  	u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
873  
874  	jal = wil_r(wil, wil->iccm_base + ivt3);
875  	if (jal != ARC_me_imm32(ARC_JAL_INST)) {
876  		wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
877  		return;
878  	}
879  
880  	/* prevent the target from entering deep sleep
881  	 * and disabling memory access
882  	 */
883  	saved = wil_r(wil, RGF_USER_USAGE_8);
884  	wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
885  	usleep_range(20, 25); /* let the BL process the bit */
886  
887  	/* redirect to endless loop in the INT_L1 context and let it trap */
888  	wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
889  	usleep_range(20, 25); /* let the BL get into the trap */
890  
891  	/* verify the BL is frozen */
892  	upc = wil_r(wil, RGF_USER_CPU_PC);
893  	if (upc < ivt3 || (upc > (ivt3 + 8)))
894  		wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
895  
896  	wil_w(wil, RGF_USER_USAGE_8, saved);
897  }
898  
wil_bl_prepare_halt(struct wil6210_priv * wil)899  static void wil_bl_prepare_halt(struct wil6210_priv *wil)
900  {
901  	u32 tmp, ver;
902  
903  	/* before halting device CPU driver must make sure BL is not accessing
904  	 * host memory. This is done differently depending on BL version:
905  	 * 1. For very old BL versions the procedure is skipped
906  	 * (not supported).
907  	 * 2. For old BL version we use a special trick to freeze the BL
908  	 * 3. For new BL versions we shutdown the BL using handshake procedure.
909  	 */
910  	tmp = wil_r(wil, RGF_USER_BL +
911  		    offsetof(struct bl_dedicated_registers_v0,
912  			     boot_loader_struct_version));
913  	if (!tmp) {
914  		wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
915  		return;
916  	}
917  
918  	tmp = wil_r(wil, RGF_USER_BL +
919  		    offsetof(struct bl_dedicated_registers_v1,
920  			     bl_shutdown_handshake));
921  	ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
922  
923  	if (ver > 0)
924  		wil_shutdown_bl(wil);
925  	else
926  		wil_freeze_bl(wil);
927  }
928  
wil_halt_cpu(struct wil6210_priv * wil)929  static inline void wil_halt_cpu(struct wil6210_priv *wil)
930  {
931  	if (wil->hw_version >= HW_VER_TALYN_MB) {
932  		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
933  		      BIT_USER_USER_CPU_MAN_RST);
934  		wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
935  		      BIT_USER_MAC_CPU_MAN_RST);
936  	} else {
937  		wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
938  		wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
939  	}
940  }
941  
wil_release_cpu(struct wil6210_priv * wil)942  static inline void wil_release_cpu(struct wil6210_priv *wil)
943  {
944  	/* Start CPU */
945  	if (wil->hw_version >= HW_VER_TALYN_MB)
946  		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
947  	else
948  		wil_w(wil, RGF_USER_USER_CPU_0, 1);
949  }
950  
wil_set_oob_mode(struct wil6210_priv * wil,u8 mode)951  static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
952  {
953  	wil_info(wil, "oob_mode to %d\n", mode);
954  	switch (mode) {
955  	case 0:
956  		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
957  		      BIT_USER_OOB_R2_MODE);
958  		break;
959  	case 1:
960  		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
961  		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
962  		break;
963  	case 2:
964  		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
965  		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
966  		break;
967  	default:
968  		wil_err(wil, "invalid oob_mode: %d\n", mode);
969  	}
970  }
971  
wil_wait_device_ready(struct wil6210_priv * wil,int no_flash)972  static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
973  {
974  	int delay = 0;
975  	u32 x, x1 = 0;
976  
977  	/* wait until device ready. */
978  	if (no_flash) {
979  		msleep(PMU_READY_DELAY_MS);
980  
981  		wil_dbg_misc(wil, "Reset completed\n");
982  	} else {
983  		do {
984  			msleep(RST_DELAY);
985  			x = wil_r(wil, RGF_USER_BL +
986  				  offsetof(struct bl_dedicated_registers_v0,
987  					   boot_loader_ready));
988  			if (x1 != x) {
989  				wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
990  					     x1, x);
991  				x1 = x;
992  			}
993  			if (delay++ > RST_COUNT) {
994  				wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
995  					x);
996  				return -ETIME;
997  			}
998  		} while (x != BL_READY);
999  
1000  		wil_dbg_misc(wil, "Reset completed in %d ms\n",
1001  			     delay * RST_DELAY);
1002  	}
1003  
1004  	return 0;
1005  }
1006  
wil_wait_device_ready_talyn_mb(struct wil6210_priv * wil)1007  static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1008  {
1009  	u32 otp_hw;
1010  	u8 signature_status;
1011  	bool otp_signature_err;
1012  	bool hw_section_done;
1013  	u32 otp_qc_secured;
1014  	int delay = 0;
1015  
1016  	/* Wait for OTP signature test to complete */
1017  	usleep_range(2000, 2200);
1018  
1019  	wil->boot_config = WIL_BOOT_ERR;
1020  
1021  	/* Poll until OTP signature status is valid.
1022  	 * In vanilla and development modes, when signature test is complete
1023  	 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1024  	 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1025  	 * for signature status change to 2 or 3.
1026  	 */
1027  	do {
1028  		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1029  		signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1030  		otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1031  
1032  		if (otp_signature_err &&
1033  		    signature_status == WIL_SIG_STATUS_VANILLA) {
1034  			wil->boot_config = WIL_BOOT_VANILLA;
1035  			break;
1036  		}
1037  		if (otp_signature_err &&
1038  		    signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1039  			wil->boot_config = WIL_BOOT_DEVELOPMENT;
1040  			break;
1041  		}
1042  		if (!otp_signature_err &&
1043  		    signature_status == WIL_SIG_STATUS_PRODUCTION) {
1044  			wil->boot_config = WIL_BOOT_PRODUCTION;
1045  			break;
1046  		}
1047  		if  (!otp_signature_err &&
1048  		     signature_status ==
1049  		     WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1050  			/* Unrecognized OTP signature found. Possibly a
1051  			 * corrupted production signature, access control
1052  			 * is applied as in production mode, therefore
1053  			 * do not fail
1054  			 */
1055  			wil->boot_config = WIL_BOOT_PRODUCTION;
1056  			break;
1057  		}
1058  		if (delay++ > OTP_HW_COUNT)
1059  			break;
1060  
1061  		usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1062  	} while (!otp_signature_err && signature_status == 0);
1063  
1064  	if (wil->boot_config == WIL_BOOT_ERR) {
1065  		wil_err(wil,
1066  			"invalid boot config, signature_status %d otp_signature_err %d\n",
1067  			signature_status, otp_signature_err);
1068  		return -ETIME;
1069  	}
1070  
1071  	wil_dbg_misc(wil,
1072  		     "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1073  		     delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1074  
1075  	if (wil->boot_config == WIL_BOOT_VANILLA)
1076  		/* Assuming not SPI boot (currently not supported) */
1077  		goto out;
1078  
1079  	hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1080  	delay = 0;
1081  
1082  	while (!hw_section_done) {
1083  		msleep(RST_DELAY);
1084  
1085  		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1086  		hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1087  
1088  		if (delay++ > RST_COUNT) {
1089  			wil_err(wil, "TO waiting for hw_section_done\n");
1090  			return -ETIME;
1091  		}
1092  	}
1093  
1094  	wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1095  
1096  	otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1097  	wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1098  	wil_dbg_misc(wil, "secured boot is %sabled\n",
1099  		     wil->secured_boot ? "en" : "dis");
1100  
1101  out:
1102  	wil_dbg_misc(wil, "Reset completed\n");
1103  
1104  	return 0;
1105  }
1106  
wil_target_reset(struct wil6210_priv * wil,int no_flash)1107  static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1108  {
1109  	u32 x;
1110  	int rc;
1111  
1112  	wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1113  
1114  	if (wil->hw_version < HW_VER_TALYN) {
1115  		/* Clear MAC link up */
1116  		wil_s(wil, RGF_HP_CTRL, BIT(15));
1117  		wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1118  		      BIT_HPAL_PERST_FROM_PAD);
1119  		wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1120  	}
1121  
1122  	wil_halt_cpu(wil);
1123  
1124  	if (!no_flash) {
1125  		/* clear all boot loader "ready" bits */
1126  		wil_w(wil, RGF_USER_BL +
1127  		      offsetof(struct bl_dedicated_registers_v0,
1128  			       boot_loader_ready), 0);
1129  		/* this should be safe to write even with old BLs */
1130  		wil_w(wil, RGF_USER_BL +
1131  		      offsetof(struct bl_dedicated_registers_v1,
1132  			       bl_shutdown_handshake), 0);
1133  	}
1134  	/* Clear Fw Download notification */
1135  	wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1136  
1137  	wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1138  	/* XTAL stabilization should take about 3ms */
1139  	usleep_range(5000, 7000);
1140  	x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1141  	if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1142  		wil_err(wil, "Xtal stabilization timeout\n"
1143  			"RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1144  		return -ETIME;
1145  	}
1146  	/* switch 10k to XTAL*/
1147  	wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1148  	/* 40 MHz */
1149  	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1150  
1151  	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1152  	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1153  
1154  	if (wil->hw_version >= HW_VER_TALYN_MB) {
1155  		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1156  		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1157  		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1158  		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1159  	} else {
1160  		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1161  		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1162  		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1163  		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1164  	}
1165  
1166  	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1167  	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1168  
1169  	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1170  	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1171  	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1172  	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1173  
1174  	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1175  	/* reset A2 PCIE AHB */
1176  	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1177  
1178  	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1179  
1180  	if (wil->hw_version == HW_VER_TALYN_MB)
1181  		rc = wil_wait_device_ready_talyn_mb(wil);
1182  	else
1183  		rc = wil_wait_device_ready(wil, no_flash);
1184  	if (rc)
1185  		return rc;
1186  
1187  	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1188  
1189  	/* enable fix for HW bug related to the SA/DA swap in AP Rx */
1190  	wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1191  	      BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1192  
1193  	if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1194  		/* Reset OTP HW vectors to fit 40MHz */
1195  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1196  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1197  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1198  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1199  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1200  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1201  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1202  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1203  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1204  		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1205  		wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1206  	}
1207  
1208  	return 0;
1209  }
1210  
wil_collect_fw_info(struct wil6210_priv * wil)1211  static void wil_collect_fw_info(struct wil6210_priv *wil)
1212  {
1213  	struct wiphy *wiphy = wil_to_wiphy(wil);
1214  	u8 retry_short;
1215  	int rc;
1216  
1217  	wil_refresh_fw_capabilities(wil);
1218  
1219  	rc = wmi_get_mgmt_retry(wil, &retry_short);
1220  	if (!rc) {
1221  		wiphy->retry_short = retry_short;
1222  		wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1223  	}
1224  }
1225  
wil_refresh_fw_capabilities(struct wil6210_priv * wil)1226  void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1227  {
1228  	struct wiphy *wiphy = wil_to_wiphy(wil);
1229  	int features;
1230  
1231  	wil->keep_radio_on_during_sleep =
1232  		test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1233  			 wil->platform_capa) &&
1234  		test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1235  
1236  	wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1237  		 wil->keep_radio_on_during_sleep);
1238  
1239  	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1240  		wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1241  	else
1242  		wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1243  
1244  	if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1245  		wiphy->max_sched_scan_reqs = 1;
1246  		wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1247  		wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1248  		wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1249  		wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1250  	}
1251  
1252  	if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1253  		wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1254  
1255  	if (wil->platform_ops.set_features) {
1256  		features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1257  				     wil->fw_capabilities) &&
1258  			    test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1259  				     wil->platform_capa)) ?
1260  			BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1261  
1262  		if (wil->n_msi == 3)
1263  			features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1264  
1265  		wil->platform_ops.set_features(wil->platform_handle, features);
1266  	}
1267  
1268  	if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1269  		     wil->fw_capabilities)) {
1270  		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1271  		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1272  	} else {
1273  		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1274  		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1275  	}
1276  
1277  	update_supported_bands(wil);
1278  }
1279  
wil_mbox_ring_le2cpus(struct wil6210_mbox_ring * r)1280  void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1281  {
1282  	le32_to_cpus(&r->base);
1283  	le16_to_cpus(&r->entry_size);
1284  	le16_to_cpus(&r->size);
1285  	le32_to_cpus(&r->tail);
1286  	le32_to_cpus(&r->head);
1287  }
1288  
1289  /* construct actual board file name to use */
wil_get_board_file(struct wil6210_priv * wil,char * buf,size_t len)1290  void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1291  {
1292  	const char *board_file;
1293  	const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1294  			      WIL_FW_NAME_TALYN;
1295  
1296  	if (wil->board_file) {
1297  		board_file = wil->board_file;
1298  	} else {
1299  		/* If specific FW file is used for Talyn,
1300  		 * use specific board file
1301  		 */
1302  		if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1303  			board_file = WIL_BRD_NAME_TALYN;
1304  		else
1305  			board_file = WIL_BOARD_FILE_NAME;
1306  	}
1307  
1308  	strscpy(buf, board_file, len);
1309  }
1310  
wil_get_bl_info(struct wil6210_priv * wil)1311  static int wil_get_bl_info(struct wil6210_priv *wil)
1312  {
1313  	struct net_device *ndev = wil->main_ndev;
1314  	struct wiphy *wiphy = wil_to_wiphy(wil);
1315  	union {
1316  		struct bl_dedicated_registers_v0 bl0;
1317  		struct bl_dedicated_registers_v1 bl1;
1318  	} bl;
1319  	u32 bl_ver;
1320  	u8 *mac;
1321  	u16 rf_status;
1322  
1323  	wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1324  			     sizeof(bl));
1325  	bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1326  	mac = bl.bl0.mac_address;
1327  
1328  	if (bl_ver == 0) {
1329  		le32_to_cpus(&bl.bl0.rf_type);
1330  		le32_to_cpus(&bl.bl0.baseband_type);
1331  		rf_status = 0; /* actually, unknown */
1332  		wil_info(wil,
1333  			 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1334  			 bl_ver, mac,
1335  			 bl.bl0.rf_type, bl.bl0.baseband_type);
1336  		wil_info(wil, "Boot Loader build unknown for struct v0\n");
1337  	} else {
1338  		le16_to_cpus(&bl.bl1.rf_type);
1339  		rf_status = le16_to_cpu(bl.bl1.rf_status);
1340  		le32_to_cpus(&bl.bl1.baseband_type);
1341  		le16_to_cpus(&bl.bl1.bl_version_subminor);
1342  		le16_to_cpus(&bl.bl1.bl_version_build);
1343  		wil_info(wil,
1344  			 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1345  			 bl_ver, mac,
1346  			 bl.bl1.rf_type, rf_status,
1347  			 bl.bl1.baseband_type);
1348  		wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1349  			 bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1350  			 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1351  	}
1352  
1353  	if (!is_valid_ether_addr(mac)) {
1354  		wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1355  		return -EINVAL;
1356  	}
1357  
1358  	ether_addr_copy(ndev->perm_addr, mac);
1359  	ether_addr_copy(wiphy->perm_addr, mac);
1360  	if (!is_valid_ether_addr(ndev->dev_addr))
1361  		eth_hw_addr_set(ndev, mac);
1362  
1363  	if (rf_status) {/* bad RF cable? */
1364  		wil_err(wil, "RF communication error 0x%04x",
1365  			rf_status);
1366  		return -EAGAIN;
1367  	}
1368  
1369  	return 0;
1370  }
1371  
wil_bl_crash_info(struct wil6210_priv * wil,bool is_err)1372  static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1373  {
1374  	u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1375  	u32 bl_ver = wil_r(wil, RGF_USER_BL +
1376  			   offsetof(struct bl_dedicated_registers_v0,
1377  				    boot_loader_struct_version));
1378  
1379  	if (bl_ver < 2)
1380  		return;
1381  
1382  	bl_assert_code = wil_r(wil, RGF_USER_BL +
1383  			       offsetof(struct bl_dedicated_registers_v1,
1384  					bl_assert_code));
1385  	bl_assert_blink = wil_r(wil, RGF_USER_BL +
1386  				offsetof(struct bl_dedicated_registers_v1,
1387  					 bl_assert_blink));
1388  	bl_magic_number = wil_r(wil, RGF_USER_BL +
1389  				offsetof(struct bl_dedicated_registers_v1,
1390  					 bl_magic_number));
1391  
1392  	if (is_err) {
1393  		wil_err(wil,
1394  			"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1395  			bl_assert_code, bl_assert_blink, bl_magic_number);
1396  	} else {
1397  		wil_dbg_misc(wil,
1398  			     "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1399  			     bl_assert_code, bl_assert_blink, bl_magic_number);
1400  	}
1401  }
1402  
wil_get_otp_info(struct wil6210_priv * wil)1403  static int wil_get_otp_info(struct wil6210_priv *wil)
1404  {
1405  	struct net_device *ndev = wil->main_ndev;
1406  	struct wiphy *wiphy = wil_to_wiphy(wil);
1407  	u8 mac[8];
1408  	int mac_addr;
1409  
1410  	/* OEM MAC has precedence */
1411  	mac_addr = RGF_OTP_OEM_MAC;
1412  	wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1413  
1414  	if (is_valid_ether_addr(mac)) {
1415  		wil_info(wil, "using OEM MAC %pM\n", mac);
1416  	} else {
1417  		if (wil->hw_version >= HW_VER_TALYN_MB)
1418  			mac_addr = RGF_OTP_MAC_TALYN_MB;
1419  		else
1420  			mac_addr = RGF_OTP_MAC;
1421  
1422  		wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1423  				     sizeof(mac));
1424  	}
1425  
1426  	if (!is_valid_ether_addr(mac)) {
1427  		wil_err(wil, "Invalid MAC %pM\n", mac);
1428  		return -EINVAL;
1429  	}
1430  
1431  	ether_addr_copy(ndev->perm_addr, mac);
1432  	ether_addr_copy(wiphy->perm_addr, mac);
1433  	if (!is_valid_ether_addr(ndev->dev_addr))
1434  		eth_hw_addr_set(ndev, mac);
1435  
1436  	return 0;
1437  }
1438  
wil_wait_for_fw_ready(struct wil6210_priv * wil)1439  static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1440  {
1441  	ulong to = msecs_to_jiffies(2000);
1442  	ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1443  
1444  	if (0 == left) {
1445  		wil_err(wil, "Firmware not ready\n");
1446  		return -ETIME;
1447  	} else {
1448  		wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1449  			 jiffies_to_msecs(to-left), wil->hw_version);
1450  	}
1451  	return 0;
1452  }
1453  
wil_abort_scan(struct wil6210_vif * vif,bool sync)1454  void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1455  {
1456  	struct wil6210_priv *wil = vif_to_wil(vif);
1457  	int rc;
1458  	struct cfg80211_scan_info info = {
1459  		.aborted = true,
1460  	};
1461  
1462  	lockdep_assert_held(&wil->vif_mutex);
1463  
1464  	if (!vif->scan_request)
1465  		return;
1466  
1467  	wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1468  	del_timer_sync(&vif->scan_timer);
1469  	mutex_unlock(&wil->vif_mutex);
1470  	rc = wmi_abort_scan(vif);
1471  	if (!rc && sync)
1472  		wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1473  						 msecs_to_jiffies(
1474  						 WAIT_FOR_SCAN_ABORT_MS));
1475  
1476  	mutex_lock(&wil->vif_mutex);
1477  	if (vif->scan_request) {
1478  		cfg80211_scan_done(vif->scan_request, &info);
1479  		vif->scan_request = NULL;
1480  	}
1481  }
1482  
wil_abort_scan_all_vifs(struct wil6210_priv * wil,bool sync)1483  void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1484  {
1485  	int i;
1486  
1487  	lockdep_assert_held(&wil->vif_mutex);
1488  
1489  	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1490  		struct wil6210_vif *vif = wil->vifs[i];
1491  
1492  		if (vif)
1493  			wil_abort_scan(vif, sync);
1494  	}
1495  }
1496  
wil_ps_update(struct wil6210_priv * wil,enum wmi_ps_profile_type ps_profile)1497  int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1498  {
1499  	int rc;
1500  
1501  	if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1502  		wil_err(wil, "set_power_mgmt not supported\n");
1503  		return -EOPNOTSUPP;
1504  	}
1505  
1506  	rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1507  	if (rc)
1508  		wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1509  	else
1510  		wil->ps_profile = ps_profile;
1511  
1512  	return rc;
1513  }
1514  
wil_pre_fw_config(struct wil6210_priv * wil)1515  static void wil_pre_fw_config(struct wil6210_priv *wil)
1516  {
1517  	wil_clear_fw_log_addr(wil);
1518  	/* Mark FW as loaded from host */
1519  	wil_s(wil, RGF_USER_USAGE_6, 1);
1520  
1521  	/* clear any interrupts which on-card-firmware
1522  	 * may have set
1523  	 */
1524  	wil6210_clear_irq(wil);
1525  	/* CAF_ICR - clear and mask */
1526  	/* it is W1C, clear by writing back same value */
1527  	if (wil->hw_version < HW_VER_TALYN_MB) {
1528  		wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1529  		wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1530  	}
1531  	/* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1532  	 * In Talyn-MB host cannot access this register due to
1533  	 * access control, hence PAL_UNIT_ICR is cleared by the FW
1534  	 */
1535  	if (wil->hw_version < HW_VER_TALYN_MB)
1536  		wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1537  		      0);
1538  
1539  	if (wil->fw_calib_result > 0) {
1540  		__le32 val = cpu_to_le32(wil->fw_calib_result |
1541  						(CALIB_RESULT_SIGNATURE << 8));
1542  		wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1543  	}
1544  }
1545  
wil_restore_vifs(struct wil6210_priv * wil)1546  static int wil_restore_vifs(struct wil6210_priv *wil)
1547  {
1548  	struct wil6210_vif *vif;
1549  	struct net_device *ndev;
1550  	struct wireless_dev *wdev;
1551  	int i, rc;
1552  
1553  	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1554  		vif = wil->vifs[i];
1555  		if (!vif)
1556  			continue;
1557  		vif->ap_isolate = 0;
1558  		if (vif->mid) {
1559  			ndev = vif_to_ndev(vif);
1560  			wdev = vif_to_wdev(vif);
1561  			rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1562  					       wdev->iftype);
1563  			if (rc) {
1564  				wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1565  					i, wdev->iftype, rc);
1566  				return rc;
1567  			}
1568  		}
1569  	}
1570  
1571  	return 0;
1572  }
1573  
1574  /*
1575   * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1576   * driver clears the addresses before FW starts and FW initializes the address
1577   * when it is ready to send logs.
1578   */
wil_clear_fw_log_addr(struct wil6210_priv * wil)1579  void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1580  {
1581  	/* FW log addr */
1582  	wil_w(wil, RGF_USER_USAGE_1, 0);
1583  	/* ucode log addr */
1584  	wil_w(wil, RGF_USER_USAGE_2, 0);
1585  	wil_dbg_misc(wil, "Cleared FW and ucode log address");
1586  }
1587  
1588  /*
1589   * We reset all the structures, and we reset the UMAC.
1590   * After calling this routine, you're expected to reload
1591   * the firmware.
1592   */
wil_reset(struct wil6210_priv * wil,bool load_fw)1593  int wil_reset(struct wil6210_priv *wil, bool load_fw)
1594  {
1595  	int rc, i;
1596  	unsigned long status_flags = BIT(wil_status_resetting);
1597  	int no_flash;
1598  	struct wil6210_vif *vif;
1599  
1600  	wil_dbg_misc(wil, "reset\n");
1601  
1602  	WARN_ON(!mutex_is_locked(&wil->mutex));
1603  	WARN_ON(test_bit(wil_status_napi_en, wil->status));
1604  
1605  	if (debug_fw) {
1606  		static const u8 mac[ETH_ALEN] = {
1607  			0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1608  		};
1609  		struct net_device *ndev = wil->main_ndev;
1610  
1611  		ether_addr_copy(ndev->perm_addr, mac);
1612  		eth_hw_addr_set(ndev, ndev->perm_addr);
1613  		return 0;
1614  	}
1615  
1616  	if (wil->hw_version == HW_VER_UNKNOWN)
1617  		return -ENODEV;
1618  
1619  	if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1620  	    wil->hw_version < HW_VER_TALYN_MB) {
1621  		wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1622  		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1623  	}
1624  
1625  	if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1626  		wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1627  		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1628  	}
1629  
1630  	if (wil->platform_ops.notify) {
1631  		rc = wil->platform_ops.notify(wil->platform_handle,
1632  					      WIL_PLATFORM_EVT_PRE_RESET);
1633  		if (rc)
1634  			wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1635  				rc);
1636  	}
1637  
1638  	set_bit(wil_status_resetting, wil->status);
1639  	mutex_lock(&wil->vif_mutex);
1640  	wil_abort_scan_all_vifs(wil, false);
1641  	mutex_unlock(&wil->vif_mutex);
1642  
1643  	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1644  		vif = wil->vifs[i];
1645  		if (vif) {
1646  			cancel_work_sync(&vif->disconnect_worker);
1647  			wil6210_disconnect(vif, NULL,
1648  					   WLAN_REASON_DEAUTH_LEAVING);
1649  			vif->ptk_rekey_state = WIL_REKEY_IDLE;
1650  		}
1651  	}
1652  	wil_bcast_fini_all(wil);
1653  
1654  	/* Disable device led before reset*/
1655  	wmi_led_cfg(wil, false);
1656  
1657  	down_write(&wil->mem_lock);
1658  
1659  	/* prevent NAPI from being scheduled and prevent wmi commands */
1660  	mutex_lock(&wil->wmi_mutex);
1661  	if (test_bit(wil_status_suspending, wil->status))
1662  		status_flags |= BIT(wil_status_suspending);
1663  	bitmap_and(wil->status, wil->status, &status_flags,
1664  		   wil_status_last);
1665  	wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1666  	mutex_unlock(&wil->wmi_mutex);
1667  
1668  	wil_mask_irq(wil);
1669  
1670  	wmi_event_flush(wil);
1671  
1672  	flush_workqueue(wil->wq_service);
1673  	flush_workqueue(wil->wmi_wq);
1674  
1675  	no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1676  	if (!no_flash)
1677  		wil_bl_crash_info(wil, false);
1678  	wil_disable_irq(wil);
1679  	rc = wil_target_reset(wil, no_flash);
1680  	wil6210_clear_irq(wil);
1681  	wil_enable_irq(wil);
1682  	wil->txrx_ops.rx_fini(wil);
1683  	wil->txrx_ops.tx_fini(wil);
1684  	if (rc) {
1685  		if (!no_flash)
1686  			wil_bl_crash_info(wil, true);
1687  		goto out;
1688  	}
1689  
1690  	if (no_flash) {
1691  		rc = wil_get_otp_info(wil);
1692  	} else {
1693  		rc = wil_get_bl_info(wil);
1694  		if (rc == -EAGAIN && !load_fw)
1695  			/* ignore RF error if not going up */
1696  			rc = 0;
1697  	}
1698  	if (rc)
1699  		goto out;
1700  
1701  	wil_set_oob_mode(wil, oob_mode);
1702  	if (load_fw) {
1703  		char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1704  
1705  		if  (wil->secured_boot) {
1706  			wil_err(wil, "secured boot is not supported\n");
1707  			up_write(&wil->mem_lock);
1708  			return -ENOTSUPP;
1709  		}
1710  
1711  		board_file[0] = '\0';
1712  		wil_get_board_file(wil, board_file, sizeof(board_file));
1713  		wil_info(wil, "Use firmware <%s> + board <%s>\n",
1714  			 wil->wil_fw_name, board_file);
1715  
1716  		if (!no_flash)
1717  			wil_bl_prepare_halt(wil);
1718  
1719  		wil_halt_cpu(wil);
1720  		memset(wil->fw_version, 0, sizeof(wil->fw_version));
1721  		/* Loading f/w from the file */
1722  		rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1723  		if (rc)
1724  			goto out;
1725  		if (wil->num_of_brd_entries)
1726  			rc = wil_request_board(wil, board_file);
1727  		else
1728  			rc = wil_request_firmware(wil, board_file, true);
1729  		if (rc)
1730  			goto out;
1731  
1732  		wil_pre_fw_config(wil);
1733  		wil_release_cpu(wil);
1734  	}
1735  
1736  	/* init after reset */
1737  	reinit_completion(&wil->wmi_ready);
1738  	reinit_completion(&wil->wmi_call);
1739  	reinit_completion(&wil->halp.comp);
1740  
1741  	clear_bit(wil_status_resetting, wil->status);
1742  
1743  	up_write(&wil->mem_lock);
1744  
1745  	if (load_fw) {
1746  		wil_unmask_irq(wil);
1747  
1748  		/* we just started MAC, wait for FW ready */
1749  		rc = wil_wait_for_fw_ready(wil);
1750  		if (rc)
1751  			return rc;
1752  
1753  		/* check FW is responsive */
1754  		rc = wmi_echo(wil);
1755  		if (rc) {
1756  			wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1757  			return rc;
1758  		}
1759  
1760  		wil->txrx_ops.configure_interrupt_moderation(wil);
1761  
1762  		/* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1763  		 * while there is back-pressure from Host during RX
1764  		 */
1765  		if (wil->hw_version >= HW_VER_TALYN_MB)
1766  			wil_s(wil, RGF_DMA_MISC_CTL,
1767  			      BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1768  
1769  		rc = wil_restore_vifs(wil);
1770  		if (rc) {
1771  			wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1772  			return rc;
1773  		}
1774  
1775  		wil_collect_fw_info(wil);
1776  
1777  		if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1778  			wil_ps_update(wil, wil->ps_profile);
1779  
1780  		if (wil->platform_ops.notify) {
1781  			rc = wil->platform_ops.notify(wil->platform_handle,
1782  						      WIL_PLATFORM_EVT_FW_RDY);
1783  			if (rc) {
1784  				wil_err(wil, "FW_RDY notify failed, rc %d\n",
1785  					rc);
1786  				rc = 0;
1787  			}
1788  		}
1789  	}
1790  
1791  	return rc;
1792  
1793  out:
1794  	up_write(&wil->mem_lock);
1795  	clear_bit(wil_status_resetting, wil->status);
1796  	return rc;
1797  }
1798  
wil_fw_error_recovery(struct wil6210_priv * wil)1799  void wil_fw_error_recovery(struct wil6210_priv *wil)
1800  {
1801  	wil_dbg_misc(wil, "starting fw error recovery\n");
1802  
1803  	if (test_bit(wil_status_resetting, wil->status)) {
1804  		wil_info(wil, "Reset already in progress\n");
1805  		return;
1806  	}
1807  
1808  	wil->recovery_state = fw_recovery_pending;
1809  	schedule_work(&wil->fw_error_worker);
1810  }
1811  
__wil_up(struct wil6210_priv * wil)1812  int __wil_up(struct wil6210_priv *wil)
1813  {
1814  	struct net_device *ndev = wil->main_ndev;
1815  	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1816  	int rc;
1817  
1818  	WARN_ON(!mutex_is_locked(&wil->mutex));
1819  
1820  	rc = wil_reset(wil, true);
1821  	if (rc)
1822  		return rc;
1823  
1824  	/* Rx RING. After MAC and beacon */
1825  	if (rx_ring_order == 0)
1826  		rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1827  			WIL_RX_RING_SIZE_ORDER_DEFAULT :
1828  			WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1829  
1830  	rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1831  	if (rc)
1832  		return rc;
1833  
1834  	rc = wil->txrx_ops.tx_init(wil);
1835  	if (rc)
1836  		return rc;
1837  
1838  	switch (wdev->iftype) {
1839  	case NL80211_IFTYPE_STATION:
1840  		wil_dbg_misc(wil, "type: STATION\n");
1841  		ndev->type = ARPHRD_ETHER;
1842  		break;
1843  	case NL80211_IFTYPE_AP:
1844  		wil_dbg_misc(wil, "type: AP\n");
1845  		ndev->type = ARPHRD_ETHER;
1846  		break;
1847  	case NL80211_IFTYPE_P2P_CLIENT:
1848  		wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1849  		ndev->type = ARPHRD_ETHER;
1850  		break;
1851  	case NL80211_IFTYPE_P2P_GO:
1852  		wil_dbg_misc(wil, "type: P2P_GO\n");
1853  		ndev->type = ARPHRD_ETHER;
1854  		break;
1855  	case NL80211_IFTYPE_MONITOR:
1856  		wil_dbg_misc(wil, "type: Monitor\n");
1857  		ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1858  		/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1859  		break;
1860  	default:
1861  		return -EOPNOTSUPP;
1862  	}
1863  
1864  	/* MAC address - pre-requisite for other commands */
1865  	wmi_set_mac_address(wil, ndev->dev_addr);
1866  
1867  	wil_dbg_misc(wil, "NAPI enable\n");
1868  	napi_enable(&wil->napi_rx);
1869  	napi_enable(&wil->napi_tx);
1870  	set_bit(wil_status_napi_en, wil->status);
1871  
1872  	wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1873  
1874  	return 0;
1875  }
1876  
wil_up(struct wil6210_priv * wil)1877  int wil_up(struct wil6210_priv *wil)
1878  {
1879  	int rc;
1880  
1881  	wil_dbg_misc(wil, "up\n");
1882  
1883  	mutex_lock(&wil->mutex);
1884  	rc = __wil_up(wil);
1885  	mutex_unlock(&wil->mutex);
1886  
1887  	return rc;
1888  }
1889  
__wil_down(struct wil6210_priv * wil)1890  int __wil_down(struct wil6210_priv *wil)
1891  {
1892  	int rc;
1893  	WARN_ON(!mutex_is_locked(&wil->mutex));
1894  
1895  	set_bit(wil_status_resetting, wil->status);
1896  
1897  	wil6210_bus_request(wil, 0);
1898  
1899  	wil_disable_irq(wil);
1900  	if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1901  		napi_disable(&wil->napi_rx);
1902  		napi_disable(&wil->napi_tx);
1903  		wil_dbg_misc(wil, "NAPI disable\n");
1904  	}
1905  	wil_enable_irq(wil);
1906  
1907  	mutex_lock(&wil->vif_mutex);
1908  	wil_p2p_stop_radio_operations(wil);
1909  	wil_abort_scan_all_vifs(wil, false);
1910  	mutex_unlock(&wil->vif_mutex);
1911  
1912  	rc = wil_reset(wil, false);
1913  
1914  	return rc;
1915  }
1916  
wil_down(struct wil6210_priv * wil)1917  int wil_down(struct wil6210_priv *wil)
1918  {
1919  	int rc;
1920  
1921  	wil_dbg_misc(wil, "down\n");
1922  
1923  	wil_set_recovery_state(wil, fw_recovery_idle);
1924  	mutex_lock(&wil->mutex);
1925  	rc = __wil_down(wil);
1926  	mutex_unlock(&wil->mutex);
1927  
1928  	return rc;
1929  }
1930  
wil_find_cid(struct wil6210_priv * wil,u8 mid,const u8 * mac)1931  int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1932  {
1933  	int i;
1934  	int rc = -ENOENT;
1935  
1936  	for (i = 0; i < wil->max_assoc_sta; i++) {
1937  		if (wil->sta[i].mid == mid &&
1938  		    wil->sta[i].status != wil_sta_unused &&
1939  		    ether_addr_equal(wil->sta[i].addr, mac)) {
1940  			rc = i;
1941  			break;
1942  		}
1943  	}
1944  
1945  	return rc;
1946  }
1947  
wil_halp_vote(struct wil6210_priv * wil)1948  void wil_halp_vote(struct wil6210_priv *wil)
1949  {
1950  	unsigned long rc;
1951  	unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1952  
1953  	if (wil->hw_version >= HW_VER_TALYN_MB)
1954  		return;
1955  
1956  	mutex_lock(&wil->halp.lock);
1957  
1958  	wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1959  		    wil->halp.ref_cnt);
1960  
1961  	if (++wil->halp.ref_cnt == 1) {
1962  		reinit_completion(&wil->halp.comp);
1963  		/* mark to IRQ context to handle HALP ICR */
1964  		wil->halp.handle_icr = true;
1965  		wil6210_set_halp(wil);
1966  		rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1967  		if (!rc) {
1968  			wil_err(wil, "HALP vote timed out\n");
1969  			/* Mask HALP as done in case the interrupt is raised */
1970  			wil->halp.handle_icr = false;
1971  			wil6210_mask_halp(wil);
1972  		} else {
1973  			wil_dbg_irq(wil,
1974  				    "halp_vote: HALP vote completed after %d ms\n",
1975  				    jiffies_to_msecs(to_jiffies - rc));
1976  		}
1977  	}
1978  
1979  	wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1980  		    wil->halp.ref_cnt);
1981  
1982  	mutex_unlock(&wil->halp.lock);
1983  }
1984  
wil_halp_unvote(struct wil6210_priv * wil)1985  void wil_halp_unvote(struct wil6210_priv *wil)
1986  {
1987  	if (wil->hw_version >= HW_VER_TALYN_MB)
1988  		return;
1989  
1990  	WARN_ON(wil->halp.ref_cnt == 0);
1991  
1992  	mutex_lock(&wil->halp.lock);
1993  
1994  	wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1995  		    wil->halp.ref_cnt);
1996  
1997  	if (--wil->halp.ref_cnt == 0) {
1998  		wil6210_clear_halp(wil);
1999  		wil_dbg_irq(wil, "HALP unvote\n");
2000  	}
2001  
2002  	wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2003  		    wil->halp.ref_cnt);
2004  
2005  	mutex_unlock(&wil->halp.lock);
2006  }
2007  
wil_init_txrx_ops(struct wil6210_priv * wil)2008  void wil_init_txrx_ops(struct wil6210_priv *wil)
2009  {
2010  	if (wil->use_enhanced_dma_hw)
2011  		wil_init_txrx_ops_edma(wil);
2012  	else
2013  		wil_init_txrx_ops_legacy_dma(wil);
2014  }
2015