1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs extent cache support
4 *
5 * Copyright (c) 2015 Motorola Mobility
6 * Copyright (c) 2015 Samsung Electronics
7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
8 * Chao Yu <chao2.yu@samsung.com>
9 *
10 * block_age-based extent cache added by:
11 * Copyright (c) 2022 xiaomi Co., Ltd.
12 * http://www.xiaomi.com/
13 */
14
15 #include <linux/fs.h>
16 #include <linux/f2fs_fs.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include <trace/events/f2fs.h>
21
sanity_check_extent_cache(struct inode * inode,struct page * ipage)22 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage)
23 {
24 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
25 struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
26 struct extent_info ei;
27
28 get_read_extent_info(&ei, i_ext);
29
30 if (!ei.len)
31 return true;
32
33 if (!f2fs_is_valid_blkaddr(sbi, ei.blk, DATA_GENERIC_ENHANCE) ||
34 !f2fs_is_valid_blkaddr(sbi, ei.blk + ei.len - 1,
35 DATA_GENERIC_ENHANCE)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: inode (ino=%lx) extent info [%u, %u, %u] is incorrect, run fsck to fix",
38 __func__, inode->i_ino,
39 ei.blk, ei.fofs, ei.len);
40 return false;
41 }
42 return true;
43 }
44
__set_extent_info(struct extent_info * ei,unsigned int fofs,unsigned int len,block_t blk,bool keep_clen,unsigned long age,unsigned long last_blocks,enum extent_type type)45 static void __set_extent_info(struct extent_info *ei,
46 unsigned int fofs, unsigned int len,
47 block_t blk, bool keep_clen,
48 unsigned long age, unsigned long last_blocks,
49 enum extent_type type)
50 {
51 ei->fofs = fofs;
52 ei->len = len;
53
54 if (type == EX_READ) {
55 ei->blk = blk;
56 if (keep_clen)
57 return;
58 #ifdef CONFIG_F2FS_FS_COMPRESSION
59 ei->c_len = 0;
60 #endif
61 } else if (type == EX_BLOCK_AGE) {
62 ei->age = age;
63 ei->last_blocks = last_blocks;
64 }
65 }
66
__init_may_extent_tree(struct inode * inode,enum extent_type type)67 static bool __init_may_extent_tree(struct inode *inode, enum extent_type type)
68 {
69 if (type == EX_READ)
70 return test_opt(F2FS_I_SB(inode), READ_EXTENT_CACHE) &&
71 S_ISREG(inode->i_mode);
72 if (type == EX_BLOCK_AGE)
73 return test_opt(F2FS_I_SB(inode), AGE_EXTENT_CACHE) &&
74 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode));
75 return false;
76 }
77
__may_extent_tree(struct inode * inode,enum extent_type type)78 static bool __may_extent_tree(struct inode *inode, enum extent_type type)
79 {
80 /*
81 * for recovered files during mount do not create extents
82 * if shrinker is not registered.
83 */
84 if (list_empty(&F2FS_I_SB(inode)->s_list))
85 return false;
86
87 if (!__init_may_extent_tree(inode, type))
88 return false;
89
90 if (type == EX_READ) {
91 if (is_inode_flag_set(inode, FI_NO_EXTENT))
92 return false;
93 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
94 !f2fs_sb_has_readonly(F2FS_I_SB(inode)))
95 return false;
96 } else if (type == EX_BLOCK_AGE) {
97 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE))
98 return false;
99 if (file_is_cold(inode))
100 return false;
101 }
102 return true;
103 }
104
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)105 static void __try_update_largest_extent(struct extent_tree *et,
106 struct extent_node *en)
107 {
108 if (et->type != EX_READ)
109 return;
110 if (en->ei.len <= et->largest.len)
111 return;
112
113 et->largest = en->ei;
114 et->largest_updated = true;
115 }
116
__is_extent_mergeable(struct extent_info * back,struct extent_info * front,enum extent_type type)117 static bool __is_extent_mergeable(struct extent_info *back,
118 struct extent_info *front, enum extent_type type)
119 {
120 if (type == EX_READ) {
121 #ifdef CONFIG_F2FS_FS_COMPRESSION
122 if (back->c_len && back->len != back->c_len)
123 return false;
124 if (front->c_len && front->len != front->c_len)
125 return false;
126 #endif
127 return (back->fofs + back->len == front->fofs &&
128 back->blk + back->len == front->blk);
129 } else if (type == EX_BLOCK_AGE) {
130 return (back->fofs + back->len == front->fofs &&
131 abs(back->age - front->age) <= SAME_AGE_REGION &&
132 abs(back->last_blocks - front->last_blocks) <=
133 SAME_AGE_REGION);
134 }
135 return false;
136 }
137
__is_back_mergeable(struct extent_info * cur,struct extent_info * back,enum extent_type type)138 static bool __is_back_mergeable(struct extent_info *cur,
139 struct extent_info *back, enum extent_type type)
140 {
141 return __is_extent_mergeable(back, cur, type);
142 }
143
__is_front_mergeable(struct extent_info * cur,struct extent_info * front,enum extent_type type)144 static bool __is_front_mergeable(struct extent_info *cur,
145 struct extent_info *front, enum extent_type type)
146 {
147 return __is_extent_mergeable(cur, front, type);
148 }
149
__lookup_extent_node(struct rb_root_cached * root,struct extent_node * cached_en,unsigned int fofs)150 static struct extent_node *__lookup_extent_node(struct rb_root_cached *root,
151 struct extent_node *cached_en, unsigned int fofs)
152 {
153 struct rb_node *node = root->rb_root.rb_node;
154 struct extent_node *en;
155
156 /* check a cached entry */
157 if (cached_en && cached_en->ei.fofs <= fofs &&
158 cached_en->ei.fofs + cached_en->ei.len > fofs)
159 return cached_en;
160
161 /* check rb_tree */
162 while (node) {
163 en = rb_entry(node, struct extent_node, rb_node);
164
165 if (fofs < en->ei.fofs)
166 node = node->rb_left;
167 else if (fofs >= en->ei.fofs + en->ei.len)
168 node = node->rb_right;
169 else
170 return en;
171 }
172 return NULL;
173 }
174
175 /*
176 * lookup rb entry in position of @fofs in rb-tree,
177 * if hit, return the entry, otherwise, return NULL
178 * @prev_ex: extent before fofs
179 * @next_ex: extent after fofs
180 * @insert_p: insert point for new extent at fofs
181 * in order to simplify the insertion after.
182 * tree must stay unchanged between lookup and insertion.
183 */
__lookup_extent_node_ret(struct rb_root_cached * root,struct extent_node * cached_en,unsigned int fofs,struct extent_node ** prev_entry,struct extent_node ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent,bool * leftmost)184 static struct extent_node *__lookup_extent_node_ret(struct rb_root_cached *root,
185 struct extent_node *cached_en,
186 unsigned int fofs,
187 struct extent_node **prev_entry,
188 struct extent_node **next_entry,
189 struct rb_node ***insert_p,
190 struct rb_node **insert_parent,
191 bool *leftmost)
192 {
193 struct rb_node **pnode = &root->rb_root.rb_node;
194 struct rb_node *parent = NULL, *tmp_node;
195 struct extent_node *en = cached_en;
196
197 *insert_p = NULL;
198 *insert_parent = NULL;
199 *prev_entry = NULL;
200 *next_entry = NULL;
201
202 if (RB_EMPTY_ROOT(&root->rb_root))
203 return NULL;
204
205 if (en && en->ei.fofs <= fofs && en->ei.fofs + en->ei.len > fofs)
206 goto lookup_neighbors;
207
208 *leftmost = true;
209
210 while (*pnode) {
211 parent = *pnode;
212 en = rb_entry(*pnode, struct extent_node, rb_node);
213
214 if (fofs < en->ei.fofs) {
215 pnode = &(*pnode)->rb_left;
216 } else if (fofs >= en->ei.fofs + en->ei.len) {
217 pnode = &(*pnode)->rb_right;
218 *leftmost = false;
219 } else {
220 goto lookup_neighbors;
221 }
222 }
223
224 *insert_p = pnode;
225 *insert_parent = parent;
226
227 en = rb_entry(parent, struct extent_node, rb_node);
228 tmp_node = parent;
229 if (parent && fofs > en->ei.fofs)
230 tmp_node = rb_next(parent);
231 *next_entry = rb_entry_safe(tmp_node, struct extent_node, rb_node);
232
233 tmp_node = parent;
234 if (parent && fofs < en->ei.fofs)
235 tmp_node = rb_prev(parent);
236 *prev_entry = rb_entry_safe(tmp_node, struct extent_node, rb_node);
237 return NULL;
238
239 lookup_neighbors:
240 if (fofs == en->ei.fofs) {
241 /* lookup prev node for merging backward later */
242 tmp_node = rb_prev(&en->rb_node);
243 *prev_entry = rb_entry_safe(tmp_node,
244 struct extent_node, rb_node);
245 }
246 if (fofs == en->ei.fofs + en->ei.len - 1) {
247 /* lookup next node for merging frontward later */
248 tmp_node = rb_next(&en->rb_node);
249 *next_entry = rb_entry_safe(tmp_node,
250 struct extent_node, rb_node);
251 }
252 return en;
253 }
254
255 static struct kmem_cache *extent_tree_slab;
256 static struct kmem_cache *extent_node_slab;
257
__attach_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct rb_node * parent,struct rb_node ** p,bool leftmost)258 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
259 struct extent_tree *et, struct extent_info *ei,
260 struct rb_node *parent, struct rb_node **p,
261 bool leftmost)
262 {
263 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
264 struct extent_node *en;
265
266 en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi);
267 if (!en)
268 return NULL;
269
270 en->ei = *ei;
271 INIT_LIST_HEAD(&en->list);
272 en->et = et;
273
274 rb_link_node(&en->rb_node, parent, p);
275 rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
276 atomic_inc(&et->node_cnt);
277 atomic_inc(&eti->total_ext_node);
278 return en;
279 }
280
__detach_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_node * en)281 static void __detach_extent_node(struct f2fs_sb_info *sbi,
282 struct extent_tree *et, struct extent_node *en)
283 {
284 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
285
286 rb_erase_cached(&en->rb_node, &et->root);
287 atomic_dec(&et->node_cnt);
288 atomic_dec(&eti->total_ext_node);
289
290 if (et->cached_en == en)
291 et->cached_en = NULL;
292 kmem_cache_free(extent_node_slab, en);
293 }
294
295 /*
296 * Flow to release an extent_node:
297 * 1. list_del_init
298 * 2. __detach_extent_node
299 * 3. kmem_cache_free.
300 */
__release_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_node * en)301 static void __release_extent_node(struct f2fs_sb_info *sbi,
302 struct extent_tree *et, struct extent_node *en)
303 {
304 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
305
306 spin_lock(&eti->extent_lock);
307 f2fs_bug_on(sbi, list_empty(&en->list));
308 list_del_init(&en->list);
309 spin_unlock(&eti->extent_lock);
310
311 __detach_extent_node(sbi, et, en);
312 }
313
__grab_extent_tree(struct inode * inode,enum extent_type type)314 static struct extent_tree *__grab_extent_tree(struct inode *inode,
315 enum extent_type type)
316 {
317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
318 struct extent_tree_info *eti = &sbi->extent_tree[type];
319 struct extent_tree *et;
320 nid_t ino = inode->i_ino;
321
322 mutex_lock(&eti->extent_tree_lock);
323 et = radix_tree_lookup(&eti->extent_tree_root, ino);
324 if (!et) {
325 et = f2fs_kmem_cache_alloc(extent_tree_slab,
326 GFP_NOFS, true, NULL);
327 f2fs_radix_tree_insert(&eti->extent_tree_root, ino, et);
328 memset(et, 0, sizeof(struct extent_tree));
329 et->ino = ino;
330 et->type = type;
331 et->root = RB_ROOT_CACHED;
332 et->cached_en = NULL;
333 rwlock_init(&et->lock);
334 INIT_LIST_HEAD(&et->list);
335 atomic_set(&et->node_cnt, 0);
336 atomic_inc(&eti->total_ext_tree);
337 } else {
338 atomic_dec(&eti->total_zombie_tree);
339 list_del_init(&et->list);
340 }
341 mutex_unlock(&eti->extent_tree_lock);
342
343 /* never died until evict_inode */
344 F2FS_I(inode)->extent_tree[type] = et;
345
346 return et;
347 }
348
__free_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et)349 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
350 struct extent_tree *et)
351 {
352 struct rb_node *node, *next;
353 struct extent_node *en;
354 unsigned int count = atomic_read(&et->node_cnt);
355
356 node = rb_first_cached(&et->root);
357 while (node) {
358 next = rb_next(node);
359 en = rb_entry(node, struct extent_node, rb_node);
360 __release_extent_node(sbi, et, en);
361 node = next;
362 }
363
364 return count - atomic_read(&et->node_cnt);
365 }
366
__drop_largest_extent(struct extent_tree * et,pgoff_t fofs,unsigned int len)367 static void __drop_largest_extent(struct extent_tree *et,
368 pgoff_t fofs, unsigned int len)
369 {
370 if (fofs < (pgoff_t)et->largest.fofs + et->largest.len &&
371 fofs + len > et->largest.fofs) {
372 et->largest.len = 0;
373 et->largest_updated = true;
374 }
375 }
376
f2fs_init_read_extent_tree(struct inode * inode,struct page * ipage)377 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage)
378 {
379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
381 struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
382 struct extent_tree *et;
383 struct extent_node *en;
384 struct extent_info ei;
385
386 if (!__may_extent_tree(inode, EX_READ)) {
387 /* drop largest read extent */
388 if (i_ext->len) {
389 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
390 i_ext->len = 0;
391 set_page_dirty(ipage);
392 }
393 set_inode_flag(inode, FI_NO_EXTENT);
394 return;
395 }
396
397 et = __grab_extent_tree(inode, EX_READ);
398
399 get_read_extent_info(&ei, i_ext);
400
401 write_lock(&et->lock);
402 if (atomic_read(&et->node_cnt) || !ei.len)
403 goto skip;
404
405 en = __attach_extent_node(sbi, et, &ei, NULL,
406 &et->root.rb_root.rb_node, true);
407 if (en) {
408 et->largest = en->ei;
409 et->cached_en = en;
410
411 spin_lock(&eti->extent_lock);
412 list_add_tail(&en->list, &eti->extent_list);
413 spin_unlock(&eti->extent_lock);
414 }
415 skip:
416 /* Let's drop, if checkpoint got corrupted. */
417 if (f2fs_cp_error(sbi)) {
418 et->largest.len = 0;
419 et->largest_updated = true;
420 }
421 write_unlock(&et->lock);
422 }
423
f2fs_init_age_extent_tree(struct inode * inode)424 void f2fs_init_age_extent_tree(struct inode *inode)
425 {
426 if (!__init_may_extent_tree(inode, EX_BLOCK_AGE))
427 return;
428 __grab_extent_tree(inode, EX_BLOCK_AGE);
429 }
430
f2fs_init_extent_tree(struct inode * inode)431 void f2fs_init_extent_tree(struct inode *inode)
432 {
433 /* initialize read cache */
434 if (__init_may_extent_tree(inode, EX_READ))
435 __grab_extent_tree(inode, EX_READ);
436
437 /* initialize block age cache */
438 if (__init_may_extent_tree(inode, EX_BLOCK_AGE))
439 __grab_extent_tree(inode, EX_BLOCK_AGE);
440 }
441
__lookup_extent_tree(struct inode * inode,pgoff_t pgofs,struct extent_info * ei,enum extent_type type)442 static bool __lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
443 struct extent_info *ei, enum extent_type type)
444 {
445 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
446 struct extent_tree_info *eti = &sbi->extent_tree[type];
447 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
448 struct extent_node *en;
449 bool ret = false;
450
451 if (!et)
452 return false;
453
454 trace_f2fs_lookup_extent_tree_start(inode, pgofs, type);
455
456 read_lock(&et->lock);
457
458 if (type == EX_READ &&
459 et->largest.fofs <= pgofs &&
460 (pgoff_t)et->largest.fofs + et->largest.len > pgofs) {
461 *ei = et->largest;
462 ret = true;
463 stat_inc_largest_node_hit(sbi);
464 goto out;
465 }
466
467 en = __lookup_extent_node(&et->root, et->cached_en, pgofs);
468 if (!en)
469 goto out;
470
471 if (en == et->cached_en)
472 stat_inc_cached_node_hit(sbi, type);
473 else
474 stat_inc_rbtree_node_hit(sbi, type);
475
476 *ei = en->ei;
477 spin_lock(&eti->extent_lock);
478 if (!list_empty(&en->list)) {
479 list_move_tail(&en->list, &eti->extent_list);
480 et->cached_en = en;
481 }
482 spin_unlock(&eti->extent_lock);
483 ret = true;
484 out:
485 stat_inc_total_hit(sbi, type);
486 read_unlock(&et->lock);
487
488 if (type == EX_READ)
489 trace_f2fs_lookup_read_extent_tree_end(inode, pgofs, ei);
490 else if (type == EX_BLOCK_AGE)
491 trace_f2fs_lookup_age_extent_tree_end(inode, pgofs, ei);
492 return ret;
493 }
494
__try_merge_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct extent_node * prev_ex,struct extent_node * next_ex)495 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
496 struct extent_tree *et, struct extent_info *ei,
497 struct extent_node *prev_ex,
498 struct extent_node *next_ex)
499 {
500 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
501 struct extent_node *en = NULL;
502
503 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei, et->type)) {
504 prev_ex->ei.len += ei->len;
505 ei = &prev_ex->ei;
506 en = prev_ex;
507 }
508
509 if (next_ex && __is_front_mergeable(ei, &next_ex->ei, et->type)) {
510 next_ex->ei.fofs = ei->fofs;
511 next_ex->ei.len += ei->len;
512 if (et->type == EX_READ)
513 next_ex->ei.blk = ei->blk;
514 if (en)
515 __release_extent_node(sbi, et, prev_ex);
516
517 en = next_ex;
518 }
519
520 if (!en)
521 return NULL;
522
523 __try_update_largest_extent(et, en);
524
525 spin_lock(&eti->extent_lock);
526 if (!list_empty(&en->list)) {
527 list_move_tail(&en->list, &eti->extent_list);
528 et->cached_en = en;
529 }
530 spin_unlock(&eti->extent_lock);
531 return en;
532 }
533
__insert_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct rb_node ** insert_p,struct rb_node * insert_parent,bool leftmost)534 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
535 struct extent_tree *et, struct extent_info *ei,
536 struct rb_node **insert_p,
537 struct rb_node *insert_parent,
538 bool leftmost)
539 {
540 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
541 struct rb_node **p = &et->root.rb_root.rb_node;
542 struct rb_node *parent = NULL;
543 struct extent_node *en = NULL;
544
545 if (insert_p && insert_parent) {
546 parent = insert_parent;
547 p = insert_p;
548 goto do_insert;
549 }
550
551 leftmost = true;
552
553 /* look up extent_node in the rb tree */
554 while (*p) {
555 parent = *p;
556 en = rb_entry(parent, struct extent_node, rb_node);
557
558 if (ei->fofs < en->ei.fofs) {
559 p = &(*p)->rb_left;
560 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
561 p = &(*p)->rb_right;
562 leftmost = false;
563 } else {
564 f2fs_bug_on(sbi, 1);
565 }
566 }
567
568 do_insert:
569 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
570 if (!en)
571 return NULL;
572
573 __try_update_largest_extent(et, en);
574
575 /* update in global extent list */
576 spin_lock(&eti->extent_lock);
577 list_add_tail(&en->list, &eti->extent_list);
578 et->cached_en = en;
579 spin_unlock(&eti->extent_lock);
580 return en;
581 }
582
__update_extent_tree_range(struct inode * inode,struct extent_info * tei,enum extent_type type)583 static void __update_extent_tree_range(struct inode *inode,
584 struct extent_info *tei, enum extent_type type)
585 {
586 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
587 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
588 struct extent_node *en = NULL, *en1 = NULL;
589 struct extent_node *prev_en = NULL, *next_en = NULL;
590 struct extent_info ei, dei, prev;
591 struct rb_node **insert_p = NULL, *insert_parent = NULL;
592 unsigned int fofs = tei->fofs, len = tei->len;
593 unsigned int end = fofs + len;
594 bool updated = false;
595 bool leftmost = false;
596
597 if (!et)
598 return;
599
600 if (type == EX_READ)
601 trace_f2fs_update_read_extent_tree_range(inode, fofs, len,
602 tei->blk, 0);
603 else if (type == EX_BLOCK_AGE)
604 trace_f2fs_update_age_extent_tree_range(inode, fofs, len,
605 tei->age, tei->last_blocks);
606
607 write_lock(&et->lock);
608
609 if (type == EX_READ) {
610 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
611 write_unlock(&et->lock);
612 return;
613 }
614
615 prev = et->largest;
616 dei.len = 0;
617
618 /*
619 * drop largest extent before lookup, in case it's already
620 * been shrunk from extent tree
621 */
622 __drop_largest_extent(et, fofs, len);
623 }
624
625 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
626 en = __lookup_extent_node_ret(&et->root,
627 et->cached_en, fofs,
628 &prev_en, &next_en,
629 &insert_p, &insert_parent,
630 &leftmost);
631 if (!en)
632 en = next_en;
633
634 /* 2. invalidate all extent nodes in range [fofs, fofs + len - 1] */
635 while (en && en->ei.fofs < end) {
636 unsigned int org_end;
637 int parts = 0; /* # of parts current extent split into */
638
639 next_en = en1 = NULL;
640
641 dei = en->ei;
642 org_end = dei.fofs + dei.len;
643 f2fs_bug_on(sbi, fofs >= org_end);
644
645 if (fofs > dei.fofs && (type != EX_READ ||
646 fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN)) {
647 en->ei.len = fofs - en->ei.fofs;
648 prev_en = en;
649 parts = 1;
650 }
651
652 if (end < org_end && (type != EX_READ ||
653 org_end - end >= F2FS_MIN_EXTENT_LEN)) {
654 if (parts) {
655 __set_extent_info(&ei,
656 end, org_end - end,
657 end - dei.fofs + dei.blk, false,
658 dei.age, dei.last_blocks,
659 type);
660 en1 = __insert_extent_tree(sbi, et, &ei,
661 NULL, NULL, true);
662 next_en = en1;
663 } else {
664 __set_extent_info(&en->ei,
665 end, en->ei.len - (end - dei.fofs),
666 en->ei.blk + (end - dei.fofs), true,
667 dei.age, dei.last_blocks,
668 type);
669 next_en = en;
670 }
671 parts++;
672 }
673
674 if (!next_en) {
675 struct rb_node *node = rb_next(&en->rb_node);
676
677 next_en = rb_entry_safe(node, struct extent_node,
678 rb_node);
679 }
680
681 if (parts)
682 __try_update_largest_extent(et, en);
683 else
684 __release_extent_node(sbi, et, en);
685
686 /*
687 * if original extent is split into zero or two parts, extent
688 * tree has been altered by deletion or insertion, therefore
689 * invalidate pointers regard to tree.
690 */
691 if (parts != 1) {
692 insert_p = NULL;
693 insert_parent = NULL;
694 }
695 en = next_en;
696 }
697
698 if (type == EX_BLOCK_AGE)
699 goto update_age_extent_cache;
700
701 /* 3. update extent in read extent cache */
702 BUG_ON(type != EX_READ);
703
704 if (tei->blk) {
705 __set_extent_info(&ei, fofs, len, tei->blk, false,
706 0, 0, EX_READ);
707 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
708 __insert_extent_tree(sbi, et, &ei,
709 insert_p, insert_parent, leftmost);
710
711 /* give up extent_cache, if split and small updates happen */
712 if (dei.len >= 1 &&
713 prev.len < F2FS_MIN_EXTENT_LEN &&
714 et->largest.len < F2FS_MIN_EXTENT_LEN) {
715 et->largest.len = 0;
716 et->largest_updated = true;
717 set_inode_flag(inode, FI_NO_EXTENT);
718 }
719 }
720
721 if (is_inode_flag_set(inode, FI_NO_EXTENT))
722 __free_extent_tree(sbi, et);
723
724 if (et->largest_updated) {
725 et->largest_updated = false;
726 updated = true;
727 }
728 goto out_read_extent_cache;
729 update_age_extent_cache:
730 if (!tei->last_blocks)
731 goto out_read_extent_cache;
732
733 __set_extent_info(&ei, fofs, len, 0, false,
734 tei->age, tei->last_blocks, EX_BLOCK_AGE);
735 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
736 __insert_extent_tree(sbi, et, &ei,
737 insert_p, insert_parent, leftmost);
738 out_read_extent_cache:
739 write_unlock(&et->lock);
740
741 if (updated)
742 f2fs_mark_inode_dirty_sync(inode, true);
743 }
744
745 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)746 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
747 pgoff_t fofs, block_t blkaddr, unsigned int llen,
748 unsigned int c_len)
749 {
750 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
751 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
752 struct extent_node *en = NULL;
753 struct extent_node *prev_en = NULL, *next_en = NULL;
754 struct extent_info ei;
755 struct rb_node **insert_p = NULL, *insert_parent = NULL;
756 bool leftmost = false;
757
758 trace_f2fs_update_read_extent_tree_range(inode, fofs, llen,
759 blkaddr, c_len);
760
761 /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */
762 if (is_inode_flag_set(inode, FI_NO_EXTENT))
763 return;
764
765 write_lock(&et->lock);
766
767 en = __lookup_extent_node_ret(&et->root,
768 et->cached_en, fofs,
769 &prev_en, &next_en,
770 &insert_p, &insert_parent,
771 &leftmost);
772 if (en)
773 goto unlock_out;
774
775 __set_extent_info(&ei, fofs, llen, blkaddr, true, 0, 0, EX_READ);
776 ei.c_len = c_len;
777
778 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
779 __insert_extent_tree(sbi, et, &ei,
780 insert_p, insert_parent, leftmost);
781 unlock_out:
782 write_unlock(&et->lock);
783 }
784 #endif
785
__calculate_block_age(struct f2fs_sb_info * sbi,unsigned long long new,unsigned long long old)786 static unsigned long long __calculate_block_age(struct f2fs_sb_info *sbi,
787 unsigned long long new,
788 unsigned long long old)
789 {
790 unsigned int rem_old, rem_new;
791 unsigned long long res;
792 unsigned int weight = sbi->last_age_weight;
793
794 res = div_u64_rem(new, 100, &rem_new) * (100 - weight)
795 + div_u64_rem(old, 100, &rem_old) * weight;
796
797 if (rem_new)
798 res += rem_new * (100 - weight) / 100;
799 if (rem_old)
800 res += rem_old * weight / 100;
801
802 return res;
803 }
804
805 /* This returns a new age and allocated blocks in ei */
__get_new_block_age(struct inode * inode,struct extent_info * ei,block_t blkaddr)806 static int __get_new_block_age(struct inode *inode, struct extent_info *ei,
807 block_t blkaddr)
808 {
809 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
810 loff_t f_size = i_size_read(inode);
811 unsigned long long cur_blocks =
812 atomic64_read(&sbi->allocated_data_blocks);
813 struct extent_info tei = *ei; /* only fofs and len are valid */
814
815 /*
816 * When I/O is not aligned to a PAGE_SIZE, update will happen to the last
817 * file block even in seq write. So don't record age for newly last file
818 * block here.
819 */
820 if ((f_size >> PAGE_SHIFT) == ei->fofs && f_size & (PAGE_SIZE - 1) &&
821 blkaddr == NEW_ADDR)
822 return -EINVAL;
823
824 if (__lookup_extent_tree(inode, ei->fofs, &tei, EX_BLOCK_AGE)) {
825 unsigned long long cur_age;
826
827 if (cur_blocks >= tei.last_blocks)
828 cur_age = cur_blocks - tei.last_blocks;
829 else
830 /* allocated_data_blocks overflow */
831 cur_age = ULLONG_MAX - tei.last_blocks + cur_blocks;
832
833 if (tei.age)
834 ei->age = __calculate_block_age(sbi, cur_age, tei.age);
835 else
836 ei->age = cur_age;
837 ei->last_blocks = cur_blocks;
838 WARN_ON(ei->age > cur_blocks);
839 return 0;
840 }
841
842 f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
843
844 /* the data block was allocated for the first time */
845 if (blkaddr == NEW_ADDR)
846 goto out;
847
848 if (__is_valid_data_blkaddr(blkaddr) &&
849 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
850 f2fs_bug_on(sbi, 1);
851 return -EINVAL;
852 }
853 out:
854 /*
855 * init block age with zero, this can happen when the block age extent
856 * was reclaimed due to memory constraint or system reboot
857 */
858 ei->age = 0;
859 ei->last_blocks = cur_blocks;
860 return 0;
861 }
862
__update_extent_cache(struct dnode_of_data * dn,enum extent_type type)863 static void __update_extent_cache(struct dnode_of_data *dn, enum extent_type type)
864 {
865 struct extent_info ei = {};
866
867 if (!__may_extent_tree(dn->inode, type))
868 return;
869
870 ei.fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
871 dn->ofs_in_node;
872 ei.len = 1;
873
874 if (type == EX_READ) {
875 if (dn->data_blkaddr == NEW_ADDR)
876 ei.blk = NULL_ADDR;
877 else
878 ei.blk = dn->data_blkaddr;
879 } else if (type == EX_BLOCK_AGE) {
880 if (__get_new_block_age(dn->inode, &ei, dn->data_blkaddr))
881 return;
882 }
883 __update_extent_tree_range(dn->inode, &ei, type);
884 }
885
__shrink_extent_tree(struct f2fs_sb_info * sbi,int nr_shrink,enum extent_type type)886 static unsigned int __shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink,
887 enum extent_type type)
888 {
889 struct extent_tree_info *eti = &sbi->extent_tree[type];
890 struct extent_tree *et, *next;
891 struct extent_node *en;
892 unsigned int node_cnt = 0, tree_cnt = 0;
893 int remained;
894
895 if (!atomic_read(&eti->total_zombie_tree))
896 goto free_node;
897
898 if (!mutex_trylock(&eti->extent_tree_lock))
899 goto out;
900
901 /* 1. remove unreferenced extent tree */
902 list_for_each_entry_safe(et, next, &eti->zombie_list, list) {
903 if (atomic_read(&et->node_cnt)) {
904 write_lock(&et->lock);
905 node_cnt += __free_extent_tree(sbi, et);
906 write_unlock(&et->lock);
907 }
908 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
909 list_del_init(&et->list);
910 radix_tree_delete(&eti->extent_tree_root, et->ino);
911 kmem_cache_free(extent_tree_slab, et);
912 atomic_dec(&eti->total_ext_tree);
913 atomic_dec(&eti->total_zombie_tree);
914 tree_cnt++;
915
916 if (node_cnt + tree_cnt >= nr_shrink)
917 goto unlock_out;
918 cond_resched();
919 }
920 mutex_unlock(&eti->extent_tree_lock);
921
922 free_node:
923 /* 2. remove LRU extent entries */
924 if (!mutex_trylock(&eti->extent_tree_lock))
925 goto out;
926
927 remained = nr_shrink - (node_cnt + tree_cnt);
928
929 spin_lock(&eti->extent_lock);
930 for (; remained > 0; remained--) {
931 if (list_empty(&eti->extent_list))
932 break;
933 en = list_first_entry(&eti->extent_list,
934 struct extent_node, list);
935 et = en->et;
936 if (!write_trylock(&et->lock)) {
937 /* refresh this extent node's position in extent list */
938 list_move_tail(&en->list, &eti->extent_list);
939 continue;
940 }
941
942 list_del_init(&en->list);
943 spin_unlock(&eti->extent_lock);
944
945 __detach_extent_node(sbi, et, en);
946
947 write_unlock(&et->lock);
948 node_cnt++;
949 spin_lock(&eti->extent_lock);
950 }
951 spin_unlock(&eti->extent_lock);
952
953 unlock_out:
954 mutex_unlock(&eti->extent_tree_lock);
955 out:
956 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt, type);
957
958 return node_cnt + tree_cnt;
959 }
960
961 /* read extent cache operations */
f2fs_lookup_read_extent_cache(struct inode * inode,pgoff_t pgofs,struct extent_info * ei)962 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
963 struct extent_info *ei)
964 {
965 if (!__may_extent_tree(inode, EX_READ))
966 return false;
967
968 return __lookup_extent_tree(inode, pgofs, ei, EX_READ);
969 }
970
f2fs_lookup_read_extent_cache_block(struct inode * inode,pgoff_t index,block_t * blkaddr)971 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
972 block_t *blkaddr)
973 {
974 struct extent_info ei = {};
975
976 if (!f2fs_lookup_read_extent_cache(inode, index, &ei))
977 return false;
978 *blkaddr = ei.blk + index - ei.fofs;
979 return true;
980 }
981
f2fs_update_read_extent_cache(struct dnode_of_data * dn)982 void f2fs_update_read_extent_cache(struct dnode_of_data *dn)
983 {
984 return __update_extent_cache(dn, EX_READ);
985 }
986
f2fs_update_read_extent_cache_range(struct dnode_of_data * dn,pgoff_t fofs,block_t blkaddr,unsigned int len)987 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
988 pgoff_t fofs, block_t blkaddr, unsigned int len)
989 {
990 struct extent_info ei = {
991 .fofs = fofs,
992 .len = len,
993 .blk = blkaddr,
994 };
995
996 if (!__may_extent_tree(dn->inode, EX_READ))
997 return;
998
999 __update_extent_tree_range(dn->inode, &ei, EX_READ);
1000 }
1001
f2fs_shrink_read_extent_tree(struct f2fs_sb_info * sbi,int nr_shrink)1002 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1003 {
1004 if (!test_opt(sbi, READ_EXTENT_CACHE))
1005 return 0;
1006
1007 return __shrink_extent_tree(sbi, nr_shrink, EX_READ);
1008 }
1009
1010 /* block age extent cache operations */
f2fs_lookup_age_extent_cache(struct inode * inode,pgoff_t pgofs,struct extent_info * ei)1011 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
1012 struct extent_info *ei)
1013 {
1014 if (!__may_extent_tree(inode, EX_BLOCK_AGE))
1015 return false;
1016
1017 return __lookup_extent_tree(inode, pgofs, ei, EX_BLOCK_AGE);
1018 }
1019
f2fs_update_age_extent_cache(struct dnode_of_data * dn)1020 void f2fs_update_age_extent_cache(struct dnode_of_data *dn)
1021 {
1022 return __update_extent_cache(dn, EX_BLOCK_AGE);
1023 }
1024
f2fs_update_age_extent_cache_range(struct dnode_of_data * dn,pgoff_t fofs,unsigned int len)1025 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
1026 pgoff_t fofs, unsigned int len)
1027 {
1028 struct extent_info ei = {
1029 .fofs = fofs,
1030 .len = len,
1031 };
1032
1033 if (!__may_extent_tree(dn->inode, EX_BLOCK_AGE))
1034 return;
1035
1036 __update_extent_tree_range(dn->inode, &ei, EX_BLOCK_AGE);
1037 }
1038
f2fs_shrink_age_extent_tree(struct f2fs_sb_info * sbi,int nr_shrink)1039 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1040 {
1041 if (!test_opt(sbi, AGE_EXTENT_CACHE))
1042 return 0;
1043
1044 return __shrink_extent_tree(sbi, nr_shrink, EX_BLOCK_AGE);
1045 }
1046
__destroy_extent_node(struct inode * inode,enum extent_type type)1047 static unsigned int __destroy_extent_node(struct inode *inode,
1048 enum extent_type type)
1049 {
1050 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1051 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1052 unsigned int node_cnt = 0;
1053
1054 if (!et || !atomic_read(&et->node_cnt))
1055 return 0;
1056
1057 write_lock(&et->lock);
1058 node_cnt = __free_extent_tree(sbi, et);
1059 write_unlock(&et->lock);
1060
1061 return node_cnt;
1062 }
1063
f2fs_destroy_extent_node(struct inode * inode)1064 void f2fs_destroy_extent_node(struct inode *inode)
1065 {
1066 __destroy_extent_node(inode, EX_READ);
1067 __destroy_extent_node(inode, EX_BLOCK_AGE);
1068 }
1069
__drop_extent_tree(struct inode * inode,enum extent_type type)1070 static void __drop_extent_tree(struct inode *inode, enum extent_type type)
1071 {
1072 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1073 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1074 bool updated = false;
1075
1076 if (!__may_extent_tree(inode, type))
1077 return;
1078
1079 write_lock(&et->lock);
1080 __free_extent_tree(sbi, et);
1081 if (type == EX_READ) {
1082 set_inode_flag(inode, FI_NO_EXTENT);
1083 if (et->largest.len) {
1084 et->largest.len = 0;
1085 updated = true;
1086 }
1087 }
1088 write_unlock(&et->lock);
1089 if (updated)
1090 f2fs_mark_inode_dirty_sync(inode, true);
1091 }
1092
f2fs_drop_extent_tree(struct inode * inode)1093 void f2fs_drop_extent_tree(struct inode *inode)
1094 {
1095 __drop_extent_tree(inode, EX_READ);
1096 __drop_extent_tree(inode, EX_BLOCK_AGE);
1097 }
1098
__destroy_extent_tree(struct inode * inode,enum extent_type type)1099 static void __destroy_extent_tree(struct inode *inode, enum extent_type type)
1100 {
1101 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1102 struct extent_tree_info *eti = &sbi->extent_tree[type];
1103 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1104 unsigned int node_cnt = 0;
1105
1106 if (!et)
1107 return;
1108
1109 if (inode->i_nlink && !is_bad_inode(inode) &&
1110 atomic_read(&et->node_cnt)) {
1111 mutex_lock(&eti->extent_tree_lock);
1112 list_add_tail(&et->list, &eti->zombie_list);
1113 atomic_inc(&eti->total_zombie_tree);
1114 mutex_unlock(&eti->extent_tree_lock);
1115 return;
1116 }
1117
1118 /* free all extent info belong to this extent tree */
1119 node_cnt = __destroy_extent_node(inode, type);
1120
1121 /* delete extent tree entry in radix tree */
1122 mutex_lock(&eti->extent_tree_lock);
1123 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
1124 radix_tree_delete(&eti->extent_tree_root, inode->i_ino);
1125 kmem_cache_free(extent_tree_slab, et);
1126 atomic_dec(&eti->total_ext_tree);
1127 mutex_unlock(&eti->extent_tree_lock);
1128
1129 F2FS_I(inode)->extent_tree[type] = NULL;
1130
1131 trace_f2fs_destroy_extent_tree(inode, node_cnt, type);
1132 }
1133
f2fs_destroy_extent_tree(struct inode * inode)1134 void f2fs_destroy_extent_tree(struct inode *inode)
1135 {
1136 __destroy_extent_tree(inode, EX_READ);
1137 __destroy_extent_tree(inode, EX_BLOCK_AGE);
1138 }
1139
__init_extent_tree_info(struct extent_tree_info * eti)1140 static void __init_extent_tree_info(struct extent_tree_info *eti)
1141 {
1142 INIT_RADIX_TREE(&eti->extent_tree_root, GFP_NOIO);
1143 mutex_init(&eti->extent_tree_lock);
1144 INIT_LIST_HEAD(&eti->extent_list);
1145 spin_lock_init(&eti->extent_lock);
1146 atomic_set(&eti->total_ext_tree, 0);
1147 INIT_LIST_HEAD(&eti->zombie_list);
1148 atomic_set(&eti->total_zombie_tree, 0);
1149 atomic_set(&eti->total_ext_node, 0);
1150 }
1151
f2fs_init_extent_cache_info(struct f2fs_sb_info * sbi)1152 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
1153 {
1154 __init_extent_tree_info(&sbi->extent_tree[EX_READ]);
1155 __init_extent_tree_info(&sbi->extent_tree[EX_BLOCK_AGE]);
1156
1157 /* initialize for block age extents */
1158 atomic64_set(&sbi->allocated_data_blocks, 0);
1159 sbi->hot_data_age_threshold = DEF_HOT_DATA_AGE_THRESHOLD;
1160 sbi->warm_data_age_threshold = DEF_WARM_DATA_AGE_THRESHOLD;
1161 sbi->last_age_weight = LAST_AGE_WEIGHT;
1162 }
1163
f2fs_create_extent_cache(void)1164 int __init f2fs_create_extent_cache(void)
1165 {
1166 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1167 sizeof(struct extent_tree));
1168 if (!extent_tree_slab)
1169 return -ENOMEM;
1170 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1171 sizeof(struct extent_node));
1172 if (!extent_node_slab) {
1173 kmem_cache_destroy(extent_tree_slab);
1174 return -ENOMEM;
1175 }
1176 return 0;
1177 }
1178
f2fs_destroy_extent_cache(void)1179 void f2fs_destroy_extent_cache(void)
1180 {
1181 kmem_cache_destroy(extent_node_slab);
1182 kmem_cache_destroy(extent_tree_slab);
1183 }
1184