xref: /openbmc/linux/drivers/media/i2c/ccs/ccs-reg-access.c (revision d0034a7a4ac7fae708146ac0059b9c47a1543f0d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * drivers/media/i2c/ccs/ccs-reg-access.c
4   *
5   * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6   *
7   * Copyright (C) 2020 Intel Corporation
8   * Copyright (C) 2011--2012 Nokia Corporation
9   * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10   */
11  
12  #include <asm/unaligned.h>
13  
14  #include <linux/delay.h>
15  #include <linux/i2c.h>
16  
17  #include "ccs.h"
18  #include "ccs-limits.h"
19  
float_to_u32_mul_1000000(struct i2c_client * client,u32 phloat)20  static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat)
21  {
22  	s32 exp;
23  	u64 man;
24  
25  	if (phloat >= 0x80000000) {
26  		dev_err(&client->dev, "this is a negative number\n");
27  		return 0;
28  	}
29  
30  	if (phloat == 0x7f800000)
31  		return ~0; /* Inf. */
32  
33  	if ((phloat & 0x7f800000) == 0x7f800000) {
34  		dev_err(&client->dev, "NaN or other special number\n");
35  		return 0;
36  	}
37  
38  	/* Valid cases begin here */
39  	if (phloat == 0)
40  		return 0; /* Valid zero */
41  
42  	if (phloat > 0x4f800000)
43  		return ~0; /* larger than 4294967295 */
44  
45  	/*
46  	 * Unbias exponent (note how phloat is now guaranteed to
47  	 * have 0 in the high bit)
48  	 */
49  	exp = ((int32_t)phloat >> 23) - 127;
50  
51  	/* Extract mantissa, add missing '1' bit and it's in MHz */
52  	man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL;
53  
54  	if (exp < 0)
55  		man >>= -exp;
56  	else
57  		man <<= exp;
58  
59  	man >>= 23; /* Remove mantissa bias */
60  
61  	return man & 0xffffffff;
62  }
63  
64  
65  /*
66   * Read a 8/16/32-bit i2c register.  The value is returned in 'val'.
67   * Returns zero if successful, or non-zero otherwise.
68   */
____ccs_read_addr(struct ccs_sensor * sensor,u16 reg,u16 len,u32 * val)69  static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len,
70  			     u32 *val)
71  {
72  	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
73  	struct i2c_msg msg;
74  	unsigned char data_buf[sizeof(u32)] = { 0 };
75  	unsigned char offset_buf[sizeof(u16)];
76  	int r;
77  
78  	if (len > sizeof(data_buf))
79  		return -EINVAL;
80  
81  	msg.addr = client->addr;
82  	msg.flags = 0;
83  	msg.len = sizeof(offset_buf);
84  	msg.buf = offset_buf;
85  	put_unaligned_be16(reg, offset_buf);
86  
87  	r = i2c_transfer(client->adapter, &msg, 1);
88  	if (r != 1) {
89  		if (r >= 0)
90  			r = -EBUSY;
91  		goto err;
92  	}
93  
94  	msg.len = len;
95  	msg.flags = I2C_M_RD;
96  	msg.buf = &data_buf[sizeof(data_buf) - len];
97  
98  	r = i2c_transfer(client->adapter, &msg, 1);
99  	if (r != 1) {
100  		if (r >= 0)
101  			r = -EBUSY;
102  		goto err;
103  	}
104  
105  	*val = get_unaligned_be32(data_buf);
106  
107  	return 0;
108  
109  err:
110  	dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r);
111  
112  	return r;
113  }
114  
115  /* Read a register using 8-bit access only. */
____ccs_read_addr_8only(struct ccs_sensor * sensor,u16 reg,u16 len,u32 * val)116  static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg,
117  				   u16 len, u32 *val)
118  {
119  	unsigned int i;
120  	int rval;
121  
122  	*val = 0;
123  
124  	for (i = 0; i < len; i++) {
125  		u32 val8;
126  
127  		rval = ____ccs_read_addr(sensor, reg + i, 1, &val8);
128  		if (rval < 0)
129  			return rval;
130  		*val |= val8 << ((len - i - 1) << 3);
131  	}
132  
133  	return 0;
134  }
135  
ccs_reg_width(u32 reg)136  unsigned int ccs_reg_width(u32 reg)
137  {
138  	if (reg & CCS_FL_16BIT)
139  		return sizeof(u16);
140  	if (reg & CCS_FL_32BIT)
141  		return sizeof(u32);
142  
143  	return sizeof(u8);
144  }
145  
ireal32_to_u32_mul_1000000(struct i2c_client * client,u32 val)146  static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val)
147  {
148  	if (val >> 10 > U32_MAX / 15625) {
149  		dev_warn(&client->dev, "value %u overflows!\n", val);
150  		return U32_MAX;
151  	}
152  
153  	return ((val >> 10) * 15625) +
154  		(val & GENMASK(9, 0)) * 15625 / 1024;
155  }
156  
ccs_reg_conv(struct ccs_sensor * sensor,u32 reg,u32 val)157  u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val)
158  {
159  	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
160  
161  	if (reg & CCS_FL_FLOAT_IREAL) {
162  		if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) &
163  		    CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL)
164  			val = ireal32_to_u32_mul_1000000(client, val);
165  		else
166  			val = float_to_u32_mul_1000000(client, val);
167  	} else if (reg & CCS_FL_IREAL) {
168  		val = ireal32_to_u32_mul_1000000(client, val);
169  	}
170  
171  	return val;
172  }
173  
174  /*
175   * Read a 8/16/32-bit i2c register.  The value is returned in 'val'.
176   * Returns zero if successful, or non-zero otherwise.
177   */
__ccs_read_addr(struct ccs_sensor * sensor,u32 reg,u32 * val,bool only8,bool conv)178  static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val,
179  			   bool only8, bool conv)
180  {
181  	unsigned int len = ccs_reg_width(reg);
182  	int rval;
183  
184  	if (!only8)
185  		rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val);
186  	else
187  		rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len,
188  					       val);
189  	if (rval < 0)
190  		return rval;
191  
192  	if (!conv)
193  		return 0;
194  
195  	*val = ccs_reg_conv(sensor, reg, *val);
196  
197  	return 0;
198  }
199  
__ccs_read_data(struct ccs_reg * regs,size_t num_regs,u32 reg,u32 * val)200  static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs,
201  			   u32 reg, u32 *val)
202  {
203  	unsigned int width = ccs_reg_width(reg);
204  	size_t i;
205  
206  	for (i = 0; i < num_regs; i++, regs++) {
207  		u8 *data;
208  
209  		if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width)
210  			continue;
211  
212  		if (regs->addr > CCS_REG_ADDR(reg))
213  			break;
214  
215  		data = &regs->value[CCS_REG_ADDR(reg) - regs->addr];
216  
217  		switch (width) {
218  		case sizeof(u8):
219  			*val = *data;
220  			break;
221  		case sizeof(u16):
222  			*val = get_unaligned_be16(data);
223  			break;
224  		case sizeof(u32):
225  			*val = get_unaligned_be32(data);
226  			break;
227  		default:
228  			WARN_ON(1);
229  			return -EINVAL;
230  		}
231  
232  		return 0;
233  	}
234  
235  	return -ENOENT;
236  }
237  
ccs_read_data(struct ccs_sensor * sensor,u32 reg,u32 * val)238  static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val)
239  {
240  	if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs,
241  			     sensor->sdata.num_sensor_read_only_regs,
242  			     reg, val))
243  		return 0;
244  
245  	return __ccs_read_data(sensor->mdata.module_read_only_regs,
246  			       sensor->mdata.num_module_read_only_regs,
247  			       reg, val);
248  }
249  
ccs_read_addr_raw(struct ccs_sensor * sensor,u32 reg,u32 * val,bool force8,bool quirk,bool conv,bool data)250  static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val,
251  			     bool force8, bool quirk, bool conv, bool data)
252  {
253  	int rval;
254  
255  	if (data) {
256  		rval = ccs_read_data(sensor, reg, val);
257  		if (!rval)
258  			return 0;
259  	}
260  
261  	if (quirk) {
262  		*val = 0;
263  		rval = ccs_call_quirk(sensor, reg_access, false, &reg, val);
264  		if (rval == -ENOIOCTLCMD)
265  			return 0;
266  		if (rval < 0)
267  			return rval;
268  
269  		if (force8)
270  			return __ccs_read_addr(sensor, reg, val, true, conv);
271  	}
272  
273  	return __ccs_read_addr(sensor, reg, val,
274  			       ccs_needs_quirk(sensor,
275  					       CCS_QUIRK_FLAG_8BIT_READ_ONLY),
276  			       conv);
277  }
278  
ccs_read_addr(struct ccs_sensor * sensor,u32 reg,u32 * val)279  int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val)
280  {
281  	return ccs_read_addr_raw(sensor, reg, val, false, true, true, true);
282  }
283  
ccs_read_addr_8only(struct ccs_sensor * sensor,u32 reg,u32 * val)284  int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val)
285  {
286  	return ccs_read_addr_raw(sensor, reg, val, true, true, true, true);
287  }
288  
ccs_read_addr_noconv(struct ccs_sensor * sensor,u32 reg,u32 * val)289  int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val)
290  {
291  	return ccs_read_addr_raw(sensor, reg, val, false, true, false, true);
292  }
293  
ccs_write_retry(struct i2c_client * client,struct i2c_msg * msg)294  static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg)
295  {
296  	unsigned int retries;
297  	int r;
298  
299  	for (retries = 0; retries < 10; retries++) {
300  		/*
301  		 * Due to unknown reason sensor stops responding. This
302  		 * loop is a temporaty solution until the root cause
303  		 * is found.
304  		 */
305  		r = i2c_transfer(client->adapter, msg, 1);
306  		if (r != 1) {
307  			usleep_range(1000, 2000);
308  			continue;
309  		}
310  
311  		if (retries)
312  			dev_err(&client->dev,
313  				"sensor i2c stall encountered. retries: %d\n",
314  				retries);
315  		return 0;
316  	}
317  
318  	return r;
319  }
320  
ccs_write_addr_no_quirk(struct ccs_sensor * sensor,u32 reg,u32 val)321  int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val)
322  {
323  	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
324  	struct i2c_msg msg;
325  	unsigned char data[6];
326  	unsigned int len = ccs_reg_width(reg);
327  	int r;
328  
329  	if (len > sizeof(data) - 2)
330  		return -EINVAL;
331  
332  	msg.addr = client->addr;
333  	msg.flags = 0; /* Write */
334  	msg.len = 2 + len;
335  	msg.buf = data;
336  
337  	put_unaligned_be16(CCS_REG_ADDR(reg), data);
338  	put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2);
339  
340  	dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n",
341  		CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1,
342  		ccs_reg_width(reg) << 1, val, val);
343  
344  	r = ccs_write_retry(client, &msg);
345  	if (r)
346  		dev_err(&client->dev,
347  			"wrote 0x%x to offset 0x%x error %d\n", val,
348  			CCS_REG_ADDR(reg), r);
349  
350  	return r;
351  }
352  
353  /*
354   * Write to a 8/16-bit register.
355   * Returns zero if successful, or non-zero otherwise.
356   */
ccs_write_addr(struct ccs_sensor * sensor,u32 reg,u32 val)357  int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val)
358  {
359  	int rval;
360  
361  	rval = ccs_call_quirk(sensor, reg_access, true, &reg, &val);
362  	if (rval == -ENOIOCTLCMD)
363  		return 0;
364  	if (rval < 0)
365  		return rval;
366  
367  	return ccs_write_addr_no_quirk(sensor, reg, val);
368  }
369  
370  #define MAX_WRITE_LEN	32U
371  
ccs_write_data_regs(struct ccs_sensor * sensor,struct ccs_reg * regs,size_t num_regs)372  int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs,
373  			size_t num_regs)
374  {
375  	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
376  	unsigned char buf[2 + MAX_WRITE_LEN];
377  	struct i2c_msg msg = {
378  		.addr = client->addr,
379  		.buf = buf,
380  	};
381  	size_t i;
382  
383  	for (i = 0; i < num_regs; i++, regs++) {
384  		unsigned char *regdata = regs->value;
385  		unsigned int j;
386  
387  		for (j = 0; j < regs->len;
388  		     j += msg.len - 2, regdata += msg.len - 2) {
389  			char printbuf[(MAX_WRITE_LEN << 1) +
390  				      1 /* \0 */] = { 0 };
391  			int rval;
392  
393  			msg.len = min(regs->len - j, MAX_WRITE_LEN);
394  
395  			bin2hex(printbuf, regdata, msg.len);
396  			dev_dbg(&client->dev,
397  				"writing msr reg 0x%4.4x value 0x%s\n",
398  				regs->addr + j, printbuf);
399  
400  			put_unaligned_be16(regs->addr + j, buf);
401  			memcpy(buf + 2, regdata, msg.len);
402  
403  			msg.len += 2;
404  
405  			rval = ccs_write_retry(client, &msg);
406  			if (rval) {
407  				dev_err(&client->dev,
408  					"error writing %u octets to address 0x%4.4x\n",
409  					msg.len, regs->addr + j);
410  				return rval;
411  			}
412  		}
413  	}
414  
415  	return 0;
416  }
417