1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 #include <linux/nvme-auth.h> 28 29 #define CREATE_TRACE_POINTS 30 #include "trace.h" 31 32 #define NVME_MINORS (1U << MINORBITS) 33 34 struct nvme_ns_info { 35 struct nvme_ns_ids ids; 36 u32 nsid; 37 __le32 anagrpid; 38 bool is_shared; 39 bool is_readonly; 40 bool is_ready; 41 bool is_removed; 42 }; 43 44 unsigned int admin_timeout = 60; 45 module_param(admin_timeout, uint, 0644); 46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 47 EXPORT_SYMBOL_GPL(admin_timeout); 48 49 unsigned int nvme_io_timeout = 30; 50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 52 EXPORT_SYMBOL_GPL(nvme_io_timeout); 53 54 static unsigned char shutdown_timeout = 5; 55 module_param(shutdown_timeout, byte, 0644); 56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 57 58 static u8 nvme_max_retries = 5; 59 module_param_named(max_retries, nvme_max_retries, byte, 0644); 60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 61 62 static unsigned long default_ps_max_latency_us = 100000; 63 module_param(default_ps_max_latency_us, ulong, 0644); 64 MODULE_PARM_DESC(default_ps_max_latency_us, 65 "max power saving latency for new devices; use PM QOS to change per device"); 66 67 static bool force_apst; 68 module_param(force_apst, bool, 0644); 69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 70 71 static unsigned long apst_primary_timeout_ms = 100; 72 module_param(apst_primary_timeout_ms, ulong, 0644); 73 MODULE_PARM_DESC(apst_primary_timeout_ms, 74 "primary APST timeout in ms"); 75 76 static unsigned long apst_secondary_timeout_ms = 2000; 77 module_param(apst_secondary_timeout_ms, ulong, 0644); 78 MODULE_PARM_DESC(apst_secondary_timeout_ms, 79 "secondary APST timeout in ms"); 80 81 static unsigned long apst_primary_latency_tol_us = 15000; 82 module_param(apst_primary_latency_tol_us, ulong, 0644); 83 MODULE_PARM_DESC(apst_primary_latency_tol_us, 84 "primary APST latency tolerance in us"); 85 86 static unsigned long apst_secondary_latency_tol_us = 100000; 87 module_param(apst_secondary_latency_tol_us, ulong, 0644); 88 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 89 "secondary APST latency tolerance in us"); 90 91 /* 92 * nvme_wq - hosts nvme related works that are not reset or delete 93 * nvme_reset_wq - hosts nvme reset works 94 * nvme_delete_wq - hosts nvme delete works 95 * 96 * nvme_wq will host works such as scan, aen handling, fw activation, 97 * keep-alive, periodic reconnects etc. nvme_reset_wq 98 * runs reset works which also flush works hosted on nvme_wq for 99 * serialization purposes. nvme_delete_wq host controller deletion 100 * works which flush reset works for serialization. 101 */ 102 struct workqueue_struct *nvme_wq; 103 EXPORT_SYMBOL_GPL(nvme_wq); 104 105 struct workqueue_struct *nvme_reset_wq; 106 EXPORT_SYMBOL_GPL(nvme_reset_wq); 107 108 struct workqueue_struct *nvme_delete_wq; 109 EXPORT_SYMBOL_GPL(nvme_delete_wq); 110 111 static LIST_HEAD(nvme_subsystems); 112 DEFINE_MUTEX(nvme_subsystems_lock); 113 114 static DEFINE_IDA(nvme_instance_ida); 115 static dev_t nvme_ctrl_base_chr_devt; 116 static struct class *nvme_class; 117 static struct class *nvme_subsys_class; 118 119 static DEFINE_IDA(nvme_ns_chr_minor_ida); 120 static dev_t nvme_ns_chr_devt; 121 static struct class *nvme_ns_chr_class; 122 123 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 125 unsigned nsid); 126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 127 struct nvme_command *cmd); 128 nvme_queue_scan(struct nvme_ctrl * ctrl)129 void nvme_queue_scan(struct nvme_ctrl *ctrl) 130 { 131 /* 132 * Only new queue scan work when admin and IO queues are both alive 133 */ 134 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 135 queue_work(nvme_wq, &ctrl->scan_work); 136 } 137 138 /* 139 * Use this function to proceed with scheduling reset_work for a controller 140 * that had previously been set to the resetting state. This is intended for 141 * code paths that can't be interrupted by other reset attempts. A hot removal 142 * may prevent this from succeeding. 143 */ nvme_try_sched_reset(struct nvme_ctrl * ctrl)144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 145 { 146 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 147 return -EBUSY; 148 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 149 return -EBUSY; 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 153 nvme_failfast_work(struct work_struct * work)154 static void nvme_failfast_work(struct work_struct *work) 155 { 156 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 157 struct nvme_ctrl, failfast_work); 158 159 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 160 return; 161 162 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 163 dev_info(ctrl->device, "failfast expired\n"); 164 nvme_kick_requeue_lists(ctrl); 165 } 166 nvme_start_failfast_work(struct nvme_ctrl * ctrl)167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 168 { 169 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 170 return; 171 172 schedule_delayed_work(&ctrl->failfast_work, 173 ctrl->opts->fast_io_fail_tmo * HZ); 174 } 175 nvme_stop_failfast_work(struct nvme_ctrl * ctrl)176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 177 { 178 if (!ctrl->opts) 179 return; 180 181 cancel_delayed_work_sync(&ctrl->failfast_work); 182 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 183 } 184 185 nvme_reset_ctrl(struct nvme_ctrl * ctrl)186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 187 { 188 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 189 return -EBUSY; 190 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 191 return -EBUSY; 192 return 0; 193 } 194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 195 nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 197 { 198 int ret; 199 200 ret = nvme_reset_ctrl(ctrl); 201 if (!ret) { 202 flush_work(&ctrl->reset_work); 203 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 204 ret = -ENETRESET; 205 } 206 207 return ret; 208 } 209 nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 211 { 212 dev_info(ctrl->device, 213 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 214 215 flush_work(&ctrl->reset_work); 216 nvme_stop_ctrl(ctrl); 217 nvme_remove_namespaces(ctrl); 218 ctrl->ops->delete_ctrl(ctrl); 219 nvme_uninit_ctrl(ctrl); 220 } 221 nvme_delete_ctrl_work(struct work_struct * work)222 static void nvme_delete_ctrl_work(struct work_struct *work) 223 { 224 struct nvme_ctrl *ctrl = 225 container_of(work, struct nvme_ctrl, delete_work); 226 227 nvme_do_delete_ctrl(ctrl); 228 } 229 nvme_delete_ctrl(struct nvme_ctrl * ctrl)230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 231 { 232 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 233 return -EBUSY; 234 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 235 return -EBUSY; 236 return 0; 237 } 238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 239 nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 241 { 242 /* 243 * Keep a reference until nvme_do_delete_ctrl() complete, 244 * since ->delete_ctrl can free the controller. 245 */ 246 nvme_get_ctrl(ctrl); 247 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 248 nvme_do_delete_ctrl(ctrl); 249 nvme_put_ctrl(ctrl); 250 } 251 nvme_error_status(u16 status)252 static blk_status_t nvme_error_status(u16 status) 253 { 254 switch (status & 0x7ff) { 255 case NVME_SC_SUCCESS: 256 return BLK_STS_OK; 257 case NVME_SC_CAP_EXCEEDED: 258 return BLK_STS_NOSPC; 259 case NVME_SC_LBA_RANGE: 260 case NVME_SC_CMD_INTERRUPTED: 261 case NVME_SC_NS_NOT_READY: 262 return BLK_STS_TARGET; 263 case NVME_SC_BAD_ATTRIBUTES: 264 case NVME_SC_ONCS_NOT_SUPPORTED: 265 case NVME_SC_INVALID_OPCODE: 266 case NVME_SC_INVALID_FIELD: 267 case NVME_SC_INVALID_NS: 268 return BLK_STS_NOTSUPP; 269 case NVME_SC_WRITE_FAULT: 270 case NVME_SC_READ_ERROR: 271 case NVME_SC_UNWRITTEN_BLOCK: 272 case NVME_SC_ACCESS_DENIED: 273 case NVME_SC_READ_ONLY: 274 case NVME_SC_COMPARE_FAILED: 275 return BLK_STS_MEDIUM; 276 case NVME_SC_GUARD_CHECK: 277 case NVME_SC_APPTAG_CHECK: 278 case NVME_SC_REFTAG_CHECK: 279 case NVME_SC_INVALID_PI: 280 return BLK_STS_PROTECTION; 281 case NVME_SC_RESERVATION_CONFLICT: 282 return BLK_STS_RESV_CONFLICT; 283 case NVME_SC_HOST_PATH_ERROR: 284 return BLK_STS_TRANSPORT; 285 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 286 return BLK_STS_ZONE_ACTIVE_RESOURCE; 287 case NVME_SC_ZONE_TOO_MANY_OPEN: 288 return BLK_STS_ZONE_OPEN_RESOURCE; 289 default: 290 return BLK_STS_IOERR; 291 } 292 } 293 nvme_retry_req(struct request * req)294 static void nvme_retry_req(struct request *req) 295 { 296 unsigned long delay = 0; 297 u16 crd; 298 299 /* The mask and shift result must be <= 3 */ 300 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 301 if (crd) 302 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 303 304 nvme_req(req)->retries++; 305 blk_mq_requeue_request(req, false); 306 blk_mq_delay_kick_requeue_list(req->q, delay); 307 } 308 nvme_log_error(struct request * req)309 static void nvme_log_error(struct request *req) 310 { 311 struct nvme_ns *ns = req->q->queuedata; 312 struct nvme_request *nr = nvme_req(req); 313 314 if (ns) { 315 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 316 ns->disk ? ns->disk->disk_name : "?", 317 nvme_get_opcode_str(nr->cmd->common.opcode), 318 nr->cmd->common.opcode, 319 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 320 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 321 nvme_get_error_status_str(nr->status), 322 nr->status >> 8 & 7, /* Status Code Type */ 323 nr->status & 0xff, /* Status Code */ 324 nr->status & NVME_SC_MORE ? "MORE " : "", 325 nr->status & NVME_SC_DNR ? "DNR " : ""); 326 return; 327 } 328 329 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 330 dev_name(nr->ctrl->device), 331 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 332 nr->cmd->common.opcode, 333 nvme_get_error_status_str(nr->status), 334 nr->status >> 8 & 7, /* Status Code Type */ 335 nr->status & 0xff, /* Status Code */ 336 nr->status & NVME_SC_MORE ? "MORE " : "", 337 nr->status & NVME_SC_DNR ? "DNR " : ""); 338 } 339 340 enum nvme_disposition { 341 COMPLETE, 342 RETRY, 343 FAILOVER, 344 AUTHENTICATE, 345 }; 346 nvme_decide_disposition(struct request * req)347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 348 { 349 if (likely(nvme_req(req)->status == 0)) 350 return COMPLETE; 351 352 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 353 return AUTHENTICATE; 354 355 if (blk_noretry_request(req) || 356 (nvme_req(req)->status & NVME_SC_DNR) || 357 nvme_req(req)->retries >= nvme_max_retries) 358 return COMPLETE; 359 360 if (req->cmd_flags & REQ_NVME_MPATH) { 361 if (nvme_is_path_error(nvme_req(req)->status) || 362 blk_queue_dying(req->q)) 363 return FAILOVER; 364 } else { 365 if (blk_queue_dying(req->q)) 366 return COMPLETE; 367 } 368 369 return RETRY; 370 } 371 nvme_end_req_zoned(struct request * req)372 static inline void nvme_end_req_zoned(struct request *req) 373 { 374 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 375 req_op(req) == REQ_OP_ZONE_APPEND) 376 req->__sector = nvme_lba_to_sect(req->q->queuedata, 377 le64_to_cpu(nvme_req(req)->result.u64)); 378 } 379 nvme_end_req(struct request * req)380 void nvme_end_req(struct request *req) 381 { 382 blk_status_t status = nvme_error_status(nvme_req(req)->status); 383 384 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 385 nvme_log_error(req); 386 nvme_end_req_zoned(req); 387 nvme_trace_bio_complete(req); 388 if (req->cmd_flags & REQ_NVME_MPATH) 389 nvme_mpath_end_request(req); 390 blk_mq_end_request(req, status); 391 } 392 nvme_complete_rq(struct request * req)393 void nvme_complete_rq(struct request *req) 394 { 395 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 396 397 trace_nvme_complete_rq(req); 398 nvme_cleanup_cmd(req); 399 400 /* 401 * Completions of long-running commands should not be able to 402 * defer sending of periodic keep alives, since the controller 403 * may have completed processing such commands a long time ago 404 * (arbitrarily close to command submission time). 405 * req->deadline - req->timeout is the command submission time 406 * in jiffies. 407 */ 408 if (ctrl->kas && 409 req->deadline - req->timeout >= ctrl->ka_last_check_time) 410 ctrl->comp_seen = true; 411 412 switch (nvme_decide_disposition(req)) { 413 case COMPLETE: 414 nvme_end_req(req); 415 return; 416 case RETRY: 417 nvme_retry_req(req); 418 return; 419 case FAILOVER: 420 nvme_failover_req(req); 421 return; 422 case AUTHENTICATE: 423 #ifdef CONFIG_NVME_AUTH 424 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 425 nvme_retry_req(req); 426 #else 427 nvme_end_req(req); 428 #endif 429 return; 430 } 431 } 432 EXPORT_SYMBOL_GPL(nvme_complete_rq); 433 nvme_complete_batch_req(struct request * req)434 void nvme_complete_batch_req(struct request *req) 435 { 436 trace_nvme_complete_rq(req); 437 nvme_cleanup_cmd(req); 438 nvme_end_req_zoned(req); 439 } 440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 441 442 /* 443 * Called to unwind from ->queue_rq on a failed command submission so that the 444 * multipathing code gets called to potentially failover to another path. 445 * The caller needs to unwind all transport specific resource allocations and 446 * must return propagate the return value. 447 */ nvme_host_path_error(struct request * req)448 blk_status_t nvme_host_path_error(struct request *req) 449 { 450 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 451 blk_mq_set_request_complete(req); 452 nvme_complete_rq(req); 453 return BLK_STS_OK; 454 } 455 EXPORT_SYMBOL_GPL(nvme_host_path_error); 456 nvme_cancel_request(struct request * req,void * data)457 bool nvme_cancel_request(struct request *req, void *data) 458 { 459 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 460 "Cancelling I/O %d", req->tag); 461 462 /* don't abort one completed or idle request */ 463 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 464 return true; 465 466 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 467 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 468 blk_mq_complete_request(req); 469 return true; 470 } 471 EXPORT_SYMBOL_GPL(nvme_cancel_request); 472 nvme_cancel_tagset(struct nvme_ctrl * ctrl)473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 474 { 475 if (ctrl->tagset) { 476 blk_mq_tagset_busy_iter(ctrl->tagset, 477 nvme_cancel_request, ctrl); 478 blk_mq_tagset_wait_completed_request(ctrl->tagset); 479 } 480 } 481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 482 nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 484 { 485 if (ctrl->admin_tagset) { 486 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 487 nvme_cancel_request, ctrl); 488 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 489 } 490 } 491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 492 nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 494 enum nvme_ctrl_state new_state) 495 { 496 enum nvme_ctrl_state old_state; 497 unsigned long flags; 498 bool changed = false; 499 500 spin_lock_irqsave(&ctrl->lock, flags); 501 502 old_state = nvme_ctrl_state(ctrl); 503 switch (new_state) { 504 case NVME_CTRL_LIVE: 505 switch (old_state) { 506 case NVME_CTRL_CONNECTING: 507 changed = true; 508 fallthrough; 509 default: 510 break; 511 } 512 break; 513 case NVME_CTRL_RESETTING: 514 switch (old_state) { 515 case NVME_CTRL_NEW: 516 case NVME_CTRL_LIVE: 517 changed = true; 518 fallthrough; 519 default: 520 break; 521 } 522 break; 523 case NVME_CTRL_CONNECTING: 524 switch (old_state) { 525 case NVME_CTRL_NEW: 526 case NVME_CTRL_RESETTING: 527 changed = true; 528 fallthrough; 529 default: 530 break; 531 } 532 break; 533 case NVME_CTRL_DELETING: 534 switch (old_state) { 535 case NVME_CTRL_LIVE: 536 case NVME_CTRL_RESETTING: 537 case NVME_CTRL_CONNECTING: 538 changed = true; 539 fallthrough; 540 default: 541 break; 542 } 543 break; 544 case NVME_CTRL_DELETING_NOIO: 545 switch (old_state) { 546 case NVME_CTRL_DELETING: 547 case NVME_CTRL_DEAD: 548 changed = true; 549 fallthrough; 550 default: 551 break; 552 } 553 break; 554 case NVME_CTRL_DEAD: 555 switch (old_state) { 556 case NVME_CTRL_DELETING: 557 changed = true; 558 fallthrough; 559 default: 560 break; 561 } 562 break; 563 default: 564 break; 565 } 566 567 if (changed) { 568 WRITE_ONCE(ctrl->state, new_state); 569 wake_up_all(&ctrl->state_wq); 570 } 571 572 spin_unlock_irqrestore(&ctrl->lock, flags); 573 if (!changed) 574 return false; 575 576 if (new_state == NVME_CTRL_LIVE) { 577 if (old_state == NVME_CTRL_CONNECTING) 578 nvme_stop_failfast_work(ctrl); 579 nvme_kick_requeue_lists(ctrl); 580 } else if (new_state == NVME_CTRL_CONNECTING && 581 old_state == NVME_CTRL_RESETTING) { 582 nvme_start_failfast_work(ctrl); 583 } 584 return changed; 585 } 586 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 587 588 /* 589 * Waits for the controller state to be resetting, or returns false if it is 590 * not possible to ever transition to that state. 591 */ nvme_wait_reset(struct nvme_ctrl * ctrl)592 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 593 { 594 wait_event(ctrl->state_wq, 595 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 596 nvme_state_terminal(ctrl)); 597 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 598 } 599 EXPORT_SYMBOL_GPL(nvme_wait_reset); 600 nvme_free_ns_head(struct kref * ref)601 static void nvme_free_ns_head(struct kref *ref) 602 { 603 struct nvme_ns_head *head = 604 container_of(ref, struct nvme_ns_head, ref); 605 606 nvme_mpath_remove_disk(head); 607 ida_free(&head->subsys->ns_ida, head->instance); 608 cleanup_srcu_struct(&head->srcu); 609 nvme_put_subsystem(head->subsys); 610 kfree(head); 611 } 612 nvme_tryget_ns_head(struct nvme_ns_head * head)613 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 614 { 615 return kref_get_unless_zero(&head->ref); 616 } 617 nvme_put_ns_head(struct nvme_ns_head * head)618 void nvme_put_ns_head(struct nvme_ns_head *head) 619 { 620 kref_put(&head->ref, nvme_free_ns_head); 621 } 622 nvme_free_ns(struct kref * kref)623 static void nvme_free_ns(struct kref *kref) 624 { 625 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 626 627 put_disk(ns->disk); 628 nvme_put_ns_head(ns->head); 629 nvme_put_ctrl(ns->ctrl); 630 kfree(ns); 631 } 632 nvme_get_ns(struct nvme_ns * ns)633 bool nvme_get_ns(struct nvme_ns *ns) 634 { 635 return kref_get_unless_zero(&ns->kref); 636 } 637 nvme_put_ns(struct nvme_ns * ns)638 void nvme_put_ns(struct nvme_ns *ns) 639 { 640 kref_put(&ns->kref, nvme_free_ns); 641 } 642 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 643 nvme_clear_nvme_request(struct request * req)644 static inline void nvme_clear_nvme_request(struct request *req) 645 { 646 nvme_req(req)->status = 0; 647 nvme_req(req)->retries = 0; 648 nvme_req(req)->flags = 0; 649 req->rq_flags |= RQF_DONTPREP; 650 } 651 652 /* initialize a passthrough request */ nvme_init_request(struct request * req,struct nvme_command * cmd)653 void nvme_init_request(struct request *req, struct nvme_command *cmd) 654 { 655 if (req->q->queuedata) 656 req->timeout = NVME_IO_TIMEOUT; 657 else /* no queuedata implies admin queue */ 658 req->timeout = NVME_ADMIN_TIMEOUT; 659 660 /* passthru commands should let the driver set the SGL flags */ 661 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 662 663 req->cmd_flags |= REQ_FAILFAST_DRIVER; 664 if (req->mq_hctx->type == HCTX_TYPE_POLL) 665 req->cmd_flags |= REQ_POLLED; 666 nvme_clear_nvme_request(req); 667 req->rq_flags |= RQF_QUIET; 668 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 669 } 670 EXPORT_SYMBOL_GPL(nvme_init_request); 671 672 /* 673 * For something we're not in a state to send to the device the default action 674 * is to busy it and retry it after the controller state is recovered. However, 675 * if the controller is deleting or if anything is marked for failfast or 676 * nvme multipath it is immediately failed. 677 * 678 * Note: commands used to initialize the controller will be marked for failfast. 679 * Note: nvme cli/ioctl commands are marked for failfast. 680 */ nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)681 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 682 struct request *rq) 683 { 684 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 685 686 if (state != NVME_CTRL_DELETING_NOIO && 687 state != NVME_CTRL_DELETING && 688 state != NVME_CTRL_DEAD && 689 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 690 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 691 return BLK_STS_RESOURCE; 692 return nvme_host_path_error(rq); 693 } 694 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 695 __nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live)696 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 697 bool queue_live) 698 { 699 struct nvme_request *req = nvme_req(rq); 700 701 /* 702 * currently we have a problem sending passthru commands 703 * on the admin_q if the controller is not LIVE because we can't 704 * make sure that they are going out after the admin connect, 705 * controller enable and/or other commands in the initialization 706 * sequence. until the controller will be LIVE, fail with 707 * BLK_STS_RESOURCE so that they will be rescheduled. 708 */ 709 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 710 return false; 711 712 if (ctrl->ops->flags & NVME_F_FABRICS) { 713 /* 714 * Only allow commands on a live queue, except for the connect 715 * command, which is require to set the queue live in the 716 * appropinquate states. 717 */ 718 switch (nvme_ctrl_state(ctrl)) { 719 case NVME_CTRL_CONNECTING: 720 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 721 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 722 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 723 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 724 return true; 725 break; 726 default: 727 break; 728 case NVME_CTRL_DEAD: 729 return false; 730 } 731 } 732 733 return queue_live; 734 } 735 EXPORT_SYMBOL_GPL(__nvme_check_ready); 736 nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)737 static inline void nvme_setup_flush(struct nvme_ns *ns, 738 struct nvme_command *cmnd) 739 { 740 memset(cmnd, 0, sizeof(*cmnd)); 741 cmnd->common.opcode = nvme_cmd_flush; 742 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 743 } 744 nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)745 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 746 struct nvme_command *cmnd) 747 { 748 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 749 struct nvme_dsm_range *range; 750 struct bio *bio; 751 752 /* 753 * Some devices do not consider the DSM 'Number of Ranges' field when 754 * determining how much data to DMA. Always allocate memory for maximum 755 * number of segments to prevent device reading beyond end of buffer. 756 */ 757 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 758 759 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 760 if (!range) { 761 /* 762 * If we fail allocation our range, fallback to the controller 763 * discard page. If that's also busy, it's safe to return 764 * busy, as we know we can make progress once that's freed. 765 */ 766 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 767 return BLK_STS_RESOURCE; 768 769 range = page_address(ns->ctrl->discard_page); 770 } 771 772 if (queue_max_discard_segments(req->q) == 1) { 773 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req)); 774 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9); 775 776 range[0].cattr = cpu_to_le32(0); 777 range[0].nlb = cpu_to_le32(nlb); 778 range[0].slba = cpu_to_le64(slba); 779 n = 1; 780 } else { 781 __rq_for_each_bio(bio, req) { 782 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 783 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 784 785 if (n < segments) { 786 range[n].cattr = cpu_to_le32(0); 787 range[n].nlb = cpu_to_le32(nlb); 788 range[n].slba = cpu_to_le64(slba); 789 } 790 n++; 791 } 792 } 793 794 if (WARN_ON_ONCE(n != segments)) { 795 if (virt_to_page(range) == ns->ctrl->discard_page) 796 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 797 else 798 kfree(range); 799 return BLK_STS_IOERR; 800 } 801 802 memset(cmnd, 0, sizeof(*cmnd)); 803 cmnd->dsm.opcode = nvme_cmd_dsm; 804 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 805 cmnd->dsm.nr = cpu_to_le32(segments - 1); 806 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 807 808 bvec_set_virt(&req->special_vec, range, alloc_size); 809 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 810 811 return BLK_STS_OK; 812 } 813 nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)814 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 815 struct request *req) 816 { 817 u32 upper, lower; 818 u64 ref48; 819 820 /* both rw and write zeroes share the same reftag format */ 821 switch (ns->guard_type) { 822 case NVME_NVM_NS_16B_GUARD: 823 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 824 break; 825 case NVME_NVM_NS_64B_GUARD: 826 ref48 = ext_pi_ref_tag(req); 827 lower = lower_32_bits(ref48); 828 upper = upper_32_bits(ref48); 829 830 cmnd->rw.reftag = cpu_to_le32(lower); 831 cmnd->rw.cdw3 = cpu_to_le32(upper); 832 break; 833 default: 834 break; 835 } 836 } 837 nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)838 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 839 struct request *req, struct nvme_command *cmnd) 840 { 841 memset(cmnd, 0, sizeof(*cmnd)); 842 843 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 844 return nvme_setup_discard(ns, req, cmnd); 845 846 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 847 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 848 cmnd->write_zeroes.slba = 849 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 850 cmnd->write_zeroes.length = 851 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 852 853 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC)) 854 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 855 856 if (nvme_ns_has_pi(ns)) { 857 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 858 859 switch (ns->pi_type) { 860 case NVME_NS_DPS_PI_TYPE1: 861 case NVME_NS_DPS_PI_TYPE2: 862 nvme_set_ref_tag(ns, cmnd, req); 863 break; 864 } 865 } 866 867 return BLK_STS_OK; 868 } 869 nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)870 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 871 struct request *req, struct nvme_command *cmnd, 872 enum nvme_opcode op) 873 { 874 u16 control = 0; 875 u32 dsmgmt = 0; 876 877 if (req->cmd_flags & REQ_FUA) 878 control |= NVME_RW_FUA; 879 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 880 control |= NVME_RW_LR; 881 882 if (req->cmd_flags & REQ_RAHEAD) 883 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 884 885 cmnd->rw.opcode = op; 886 cmnd->rw.flags = 0; 887 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 888 cmnd->rw.cdw2 = 0; 889 cmnd->rw.cdw3 = 0; 890 cmnd->rw.metadata = 0; 891 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 892 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 893 cmnd->rw.reftag = 0; 894 cmnd->rw.apptag = 0; 895 cmnd->rw.appmask = 0; 896 897 if (ns->ms) { 898 /* 899 * If formated with metadata, the block layer always provides a 900 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 901 * we enable the PRACT bit for protection information or set the 902 * namespace capacity to zero to prevent any I/O. 903 */ 904 if (!blk_integrity_rq(req)) { 905 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 906 return BLK_STS_NOTSUPP; 907 control |= NVME_RW_PRINFO_PRACT; 908 } 909 910 switch (ns->pi_type) { 911 case NVME_NS_DPS_PI_TYPE3: 912 control |= NVME_RW_PRINFO_PRCHK_GUARD; 913 break; 914 case NVME_NS_DPS_PI_TYPE1: 915 case NVME_NS_DPS_PI_TYPE2: 916 control |= NVME_RW_PRINFO_PRCHK_GUARD | 917 NVME_RW_PRINFO_PRCHK_REF; 918 if (op == nvme_cmd_zone_append) 919 control |= NVME_RW_APPEND_PIREMAP; 920 nvme_set_ref_tag(ns, cmnd, req); 921 break; 922 } 923 } 924 925 cmnd->rw.control = cpu_to_le16(control); 926 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 927 return 0; 928 } 929 nvme_cleanup_cmd(struct request * req)930 void nvme_cleanup_cmd(struct request *req) 931 { 932 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 933 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 934 935 if (req->special_vec.bv_page == ctrl->discard_page) 936 clear_bit_unlock(0, &ctrl->discard_page_busy); 937 else 938 kfree(bvec_virt(&req->special_vec)); 939 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 940 } 941 } 942 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 943 nvme_setup_cmd(struct nvme_ns * ns,struct request * req)944 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 945 { 946 struct nvme_command *cmd = nvme_req(req)->cmd; 947 blk_status_t ret = BLK_STS_OK; 948 949 if (!(req->rq_flags & RQF_DONTPREP)) 950 nvme_clear_nvme_request(req); 951 952 switch (req_op(req)) { 953 case REQ_OP_DRV_IN: 954 case REQ_OP_DRV_OUT: 955 /* these are setup prior to execution in nvme_init_request() */ 956 break; 957 case REQ_OP_FLUSH: 958 nvme_setup_flush(ns, cmd); 959 break; 960 case REQ_OP_ZONE_RESET_ALL: 961 case REQ_OP_ZONE_RESET: 962 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 963 break; 964 case REQ_OP_ZONE_OPEN: 965 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 966 break; 967 case REQ_OP_ZONE_CLOSE: 968 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 969 break; 970 case REQ_OP_ZONE_FINISH: 971 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 972 break; 973 case REQ_OP_WRITE_ZEROES: 974 ret = nvme_setup_write_zeroes(ns, req, cmd); 975 break; 976 case REQ_OP_DISCARD: 977 ret = nvme_setup_discard(ns, req, cmd); 978 break; 979 case REQ_OP_READ: 980 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 981 break; 982 case REQ_OP_WRITE: 983 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 984 break; 985 case REQ_OP_ZONE_APPEND: 986 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 987 break; 988 default: 989 WARN_ON_ONCE(1); 990 return BLK_STS_IOERR; 991 } 992 993 cmd->common.command_id = nvme_cid(req); 994 trace_nvme_setup_cmd(req, cmd); 995 return ret; 996 } 997 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 998 999 /* 1000 * Return values: 1001 * 0: success 1002 * >0: nvme controller's cqe status response 1003 * <0: kernel error in lieu of controller response 1004 */ nvme_execute_rq(struct request * rq,bool at_head)1005 int nvme_execute_rq(struct request *rq, bool at_head) 1006 { 1007 blk_status_t status; 1008 1009 status = blk_execute_rq(rq, at_head); 1010 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1011 return -EINTR; 1012 if (nvme_req(rq)->status) 1013 return nvme_req(rq)->status; 1014 return blk_status_to_errno(status); 1015 } 1016 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1017 1018 /* 1019 * Returns 0 on success. If the result is negative, it's a Linux error code; 1020 * if the result is positive, it's an NVM Express status code 1021 */ __nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,int at_head,blk_mq_req_flags_t flags)1022 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1023 union nvme_result *result, void *buffer, unsigned bufflen, 1024 int qid, int at_head, blk_mq_req_flags_t flags) 1025 { 1026 struct request *req; 1027 int ret; 1028 1029 if (qid == NVME_QID_ANY) 1030 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1031 else 1032 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1033 qid - 1); 1034 1035 if (IS_ERR(req)) 1036 return PTR_ERR(req); 1037 nvme_init_request(req, cmd); 1038 1039 if (buffer && bufflen) { 1040 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1041 if (ret) 1042 goto out; 1043 } 1044 1045 ret = nvme_execute_rq(req, at_head); 1046 if (result && ret >= 0) 1047 *result = nvme_req(req)->result; 1048 out: 1049 blk_mq_free_request(req); 1050 return ret; 1051 } 1052 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1053 nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1054 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1055 void *buffer, unsigned bufflen) 1056 { 1057 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1058 NVME_QID_ANY, 0, 0); 1059 } 1060 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1061 nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1062 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1063 { 1064 u32 effects = 0; 1065 1066 if (ns) { 1067 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1068 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1069 dev_warn_once(ctrl->device, 1070 "IO command:%02x has unusual effects:%08x\n", 1071 opcode, effects); 1072 1073 /* 1074 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1075 * which would deadlock when done on an I/O command. Note that 1076 * We already warn about an unusual effect above. 1077 */ 1078 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1079 } else { 1080 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1081 } 1082 1083 return effects; 1084 } 1085 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1086 nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1087 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1088 { 1089 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1090 1091 /* 1092 * For simplicity, IO to all namespaces is quiesced even if the command 1093 * effects say only one namespace is affected. 1094 */ 1095 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1096 mutex_lock(&ctrl->scan_lock); 1097 mutex_lock(&ctrl->subsys->lock); 1098 nvme_mpath_start_freeze(ctrl->subsys); 1099 nvme_mpath_wait_freeze(ctrl->subsys); 1100 nvme_start_freeze(ctrl); 1101 nvme_wait_freeze(ctrl); 1102 } 1103 return effects; 1104 } 1105 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1106 nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1107 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1108 struct nvme_command *cmd, int status) 1109 { 1110 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1111 nvme_unfreeze(ctrl); 1112 nvme_mpath_unfreeze(ctrl->subsys); 1113 mutex_unlock(&ctrl->subsys->lock); 1114 mutex_unlock(&ctrl->scan_lock); 1115 } 1116 if (effects & NVME_CMD_EFFECTS_CCC) { 1117 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1118 &ctrl->flags)) { 1119 dev_info(ctrl->device, 1120 "controller capabilities changed, reset may be required to take effect.\n"); 1121 } 1122 } 1123 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1124 nvme_queue_scan(ctrl); 1125 flush_work(&ctrl->scan_work); 1126 } 1127 if (ns) 1128 return; 1129 1130 switch (cmd->common.opcode) { 1131 case nvme_admin_set_features: 1132 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1133 case NVME_FEAT_KATO: 1134 /* 1135 * Keep alive commands interval on the host should be 1136 * updated when KATO is modified by Set Features 1137 * commands. 1138 */ 1139 if (!status) 1140 nvme_update_keep_alive(ctrl, cmd); 1141 break; 1142 default: 1143 break; 1144 } 1145 break; 1146 default: 1147 break; 1148 } 1149 } 1150 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1151 1152 /* 1153 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1154 * 1155 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1156 * accounting for transport roundtrip times [..]. 1157 */ nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1158 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1159 { 1160 unsigned long delay = ctrl->kato * HZ / 2; 1161 1162 /* 1163 * When using Traffic Based Keep Alive, we need to run 1164 * nvme_keep_alive_work at twice the normal frequency, as one 1165 * command completion can postpone sending a keep alive command 1166 * by up to twice the delay between runs. 1167 */ 1168 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1169 delay /= 2; 1170 return delay; 1171 } 1172 nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1173 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1174 { 1175 queue_delayed_work(nvme_wq, &ctrl->ka_work, 1176 nvme_keep_alive_work_period(ctrl)); 1177 } 1178 nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1179 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1180 blk_status_t status) 1181 { 1182 struct nvme_ctrl *ctrl = rq->end_io_data; 1183 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1184 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1185 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 1186 1187 /* 1188 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1189 * at the desired frequency. 1190 */ 1191 if (rtt <= delay) { 1192 delay -= rtt; 1193 } else { 1194 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1195 jiffies_to_msecs(rtt)); 1196 delay = 0; 1197 } 1198 1199 blk_mq_free_request(rq); 1200 1201 if (status) { 1202 dev_err(ctrl->device, 1203 "failed nvme_keep_alive_end_io error=%d\n", 1204 status); 1205 return RQ_END_IO_NONE; 1206 } 1207 1208 ctrl->ka_last_check_time = jiffies; 1209 ctrl->comp_seen = false; 1210 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) 1211 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1212 return RQ_END_IO_NONE; 1213 } 1214 nvme_keep_alive_work(struct work_struct * work)1215 static void nvme_keep_alive_work(struct work_struct *work) 1216 { 1217 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1218 struct nvme_ctrl, ka_work); 1219 bool comp_seen = ctrl->comp_seen; 1220 struct request *rq; 1221 1222 ctrl->ka_last_check_time = jiffies; 1223 1224 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1225 dev_dbg(ctrl->device, 1226 "reschedule traffic based keep-alive timer\n"); 1227 ctrl->comp_seen = false; 1228 nvme_queue_keep_alive_work(ctrl); 1229 return; 1230 } 1231 1232 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1233 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1234 if (IS_ERR(rq)) { 1235 /* allocation failure, reset the controller */ 1236 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1237 nvme_reset_ctrl(ctrl); 1238 return; 1239 } 1240 nvme_init_request(rq, &ctrl->ka_cmd); 1241 1242 rq->timeout = ctrl->kato * HZ; 1243 rq->end_io = nvme_keep_alive_end_io; 1244 rq->end_io_data = ctrl; 1245 blk_execute_rq_nowait(rq, false); 1246 } 1247 nvme_start_keep_alive(struct nvme_ctrl * ctrl)1248 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1249 { 1250 if (unlikely(ctrl->kato == 0)) 1251 return; 1252 1253 nvme_queue_keep_alive_work(ctrl); 1254 } 1255 nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1256 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1257 { 1258 if (unlikely(ctrl->kato == 0)) 1259 return; 1260 1261 cancel_delayed_work_sync(&ctrl->ka_work); 1262 } 1263 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1264 nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1265 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1266 struct nvme_command *cmd) 1267 { 1268 unsigned int new_kato = 1269 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1270 1271 dev_info(ctrl->device, 1272 "keep alive interval updated from %u ms to %u ms\n", 1273 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1274 1275 nvme_stop_keep_alive(ctrl); 1276 ctrl->kato = new_kato; 1277 nvme_start_keep_alive(ctrl); 1278 } 1279 1280 /* 1281 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1282 * flag, thus sending any new CNS opcodes has a big chance of not working. 1283 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1284 * (but not for any later version). 1285 */ nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1286 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1287 { 1288 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1289 return ctrl->vs < NVME_VS(1, 2, 0); 1290 return ctrl->vs < NVME_VS(1, 1, 0); 1291 } 1292 nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1293 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1294 { 1295 struct nvme_command c = { }; 1296 int error; 1297 1298 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1299 c.identify.opcode = nvme_admin_identify; 1300 c.identify.cns = NVME_ID_CNS_CTRL; 1301 1302 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1303 if (!*id) 1304 return -ENOMEM; 1305 1306 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1307 sizeof(struct nvme_id_ctrl)); 1308 if (error) { 1309 kfree(*id); 1310 *id = NULL; 1311 } 1312 return error; 1313 } 1314 nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1315 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1316 struct nvme_ns_id_desc *cur, bool *csi_seen) 1317 { 1318 const char *warn_str = "ctrl returned bogus length:"; 1319 void *data = cur; 1320 1321 switch (cur->nidt) { 1322 case NVME_NIDT_EUI64: 1323 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1324 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1325 warn_str, cur->nidl); 1326 return -1; 1327 } 1328 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1329 return NVME_NIDT_EUI64_LEN; 1330 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1331 return NVME_NIDT_EUI64_LEN; 1332 case NVME_NIDT_NGUID: 1333 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1334 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1335 warn_str, cur->nidl); 1336 return -1; 1337 } 1338 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1339 return NVME_NIDT_NGUID_LEN; 1340 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1341 return NVME_NIDT_NGUID_LEN; 1342 case NVME_NIDT_UUID: 1343 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1344 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1345 warn_str, cur->nidl); 1346 return -1; 1347 } 1348 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1349 return NVME_NIDT_UUID_LEN; 1350 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1351 return NVME_NIDT_UUID_LEN; 1352 case NVME_NIDT_CSI: 1353 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1354 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1355 warn_str, cur->nidl); 1356 return -1; 1357 } 1358 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1359 *csi_seen = true; 1360 return NVME_NIDT_CSI_LEN; 1361 default: 1362 /* Skip unknown types */ 1363 return cur->nidl; 1364 } 1365 } 1366 nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1367 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1368 struct nvme_ns_info *info) 1369 { 1370 struct nvme_command c = { }; 1371 bool csi_seen = false; 1372 int status, pos, len; 1373 void *data; 1374 1375 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1376 return 0; 1377 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1378 return 0; 1379 1380 c.identify.opcode = nvme_admin_identify; 1381 c.identify.nsid = cpu_to_le32(info->nsid); 1382 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1383 1384 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1385 if (!data) 1386 return -ENOMEM; 1387 1388 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1389 NVME_IDENTIFY_DATA_SIZE); 1390 if (status) { 1391 dev_warn(ctrl->device, 1392 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1393 info->nsid, status); 1394 goto free_data; 1395 } 1396 1397 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1398 struct nvme_ns_id_desc *cur = data + pos; 1399 1400 if (cur->nidl == 0) 1401 break; 1402 1403 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1404 if (len < 0) 1405 break; 1406 1407 len += sizeof(*cur); 1408 } 1409 1410 if (nvme_multi_css(ctrl) && !csi_seen) { 1411 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1412 info->nsid); 1413 status = -EINVAL; 1414 } 1415 1416 free_data: 1417 kfree(data); 1418 return status; 1419 } 1420 nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1421 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1422 struct nvme_id_ns **id) 1423 { 1424 struct nvme_command c = { }; 1425 int error; 1426 1427 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1428 c.identify.opcode = nvme_admin_identify; 1429 c.identify.nsid = cpu_to_le32(nsid); 1430 c.identify.cns = NVME_ID_CNS_NS; 1431 1432 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1433 if (!*id) 1434 return -ENOMEM; 1435 1436 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1437 if (error) { 1438 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1439 kfree(*id); 1440 *id = NULL; 1441 } 1442 return error; 1443 } 1444 nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1445 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1446 struct nvme_ns_info *info) 1447 { 1448 struct nvme_ns_ids *ids = &info->ids; 1449 struct nvme_id_ns *id; 1450 int ret; 1451 1452 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1453 if (ret) 1454 return ret; 1455 1456 if (id->ncap == 0) { 1457 /* namespace not allocated or attached */ 1458 info->is_removed = true; 1459 ret = -ENODEV; 1460 goto error; 1461 } 1462 1463 info->anagrpid = id->anagrpid; 1464 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1465 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1466 info->is_ready = true; 1467 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1468 dev_info(ctrl->device, 1469 "Ignoring bogus Namespace Identifiers\n"); 1470 } else { 1471 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1472 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1473 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1474 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1475 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1476 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1477 } 1478 1479 error: 1480 kfree(id); 1481 return ret; 1482 } 1483 nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1484 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1485 struct nvme_ns_info *info) 1486 { 1487 struct nvme_id_ns_cs_indep *id; 1488 struct nvme_command c = { 1489 .identify.opcode = nvme_admin_identify, 1490 .identify.nsid = cpu_to_le32(info->nsid), 1491 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1492 }; 1493 int ret; 1494 1495 id = kmalloc(sizeof(*id), GFP_KERNEL); 1496 if (!id) 1497 return -ENOMEM; 1498 1499 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1500 if (!ret) { 1501 info->anagrpid = id->anagrpid; 1502 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1503 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1504 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1505 } 1506 kfree(id); 1507 return ret; 1508 } 1509 nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1510 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1511 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1512 { 1513 union nvme_result res = { 0 }; 1514 struct nvme_command c = { }; 1515 int ret; 1516 1517 c.features.opcode = op; 1518 c.features.fid = cpu_to_le32(fid); 1519 c.features.dword11 = cpu_to_le32(dword11); 1520 1521 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1522 buffer, buflen, NVME_QID_ANY, 0, 0); 1523 if (ret >= 0 && result) 1524 *result = le32_to_cpu(res.u32); 1525 return ret; 1526 } 1527 nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1528 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1529 unsigned int dword11, void *buffer, size_t buflen, 1530 u32 *result) 1531 { 1532 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1533 buflen, result); 1534 } 1535 EXPORT_SYMBOL_GPL(nvme_set_features); 1536 nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1537 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1538 unsigned int dword11, void *buffer, size_t buflen, 1539 u32 *result) 1540 { 1541 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1542 buflen, result); 1543 } 1544 EXPORT_SYMBOL_GPL(nvme_get_features); 1545 nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1546 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1547 { 1548 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1549 u32 result; 1550 int status, nr_io_queues; 1551 1552 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1553 &result); 1554 1555 /* 1556 * It's either a kernel error or the host observed a connection 1557 * lost. In either case it's not possible communicate with the 1558 * controller and thus enter the error code path. 1559 */ 1560 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR) 1561 return status; 1562 1563 /* 1564 * Degraded controllers might return an error when setting the queue 1565 * count. We still want to be able to bring them online and offer 1566 * access to the admin queue, as that might be only way to fix them up. 1567 */ 1568 if (status > 0) { 1569 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1570 *count = 0; 1571 } else { 1572 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1573 *count = min(*count, nr_io_queues); 1574 } 1575 1576 return 0; 1577 } 1578 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1579 1580 #define NVME_AEN_SUPPORTED \ 1581 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1582 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1583 nvme_enable_aen(struct nvme_ctrl * ctrl)1584 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1585 { 1586 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1587 int status; 1588 1589 if (!supported_aens) 1590 return; 1591 1592 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1593 NULL, 0, &result); 1594 if (status) 1595 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1596 supported_aens); 1597 1598 queue_work(nvme_wq, &ctrl->async_event_work); 1599 } 1600 nvme_ns_open(struct nvme_ns * ns)1601 static int nvme_ns_open(struct nvme_ns *ns) 1602 { 1603 1604 /* should never be called due to GENHD_FL_HIDDEN */ 1605 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1606 goto fail; 1607 if (!nvme_get_ns(ns)) 1608 goto fail; 1609 if (!try_module_get(ns->ctrl->ops->module)) 1610 goto fail_put_ns; 1611 1612 return 0; 1613 1614 fail_put_ns: 1615 nvme_put_ns(ns); 1616 fail: 1617 return -ENXIO; 1618 } 1619 nvme_ns_release(struct nvme_ns * ns)1620 static void nvme_ns_release(struct nvme_ns *ns) 1621 { 1622 1623 module_put(ns->ctrl->ops->module); 1624 nvme_put_ns(ns); 1625 } 1626 nvme_open(struct gendisk * disk,blk_mode_t mode)1627 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1628 { 1629 return nvme_ns_open(disk->private_data); 1630 } 1631 nvme_release(struct gendisk * disk)1632 static void nvme_release(struct gendisk *disk) 1633 { 1634 nvme_ns_release(disk->private_data); 1635 } 1636 nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1637 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1638 { 1639 /* some standard values */ 1640 geo->heads = 1 << 6; 1641 geo->sectors = 1 << 5; 1642 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1643 return 0; 1644 } 1645 1646 #ifdef CONFIG_BLK_DEV_INTEGRITY nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1647 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1648 u32 max_integrity_segments) 1649 { 1650 struct blk_integrity integrity = { }; 1651 1652 switch (ns->pi_type) { 1653 case NVME_NS_DPS_PI_TYPE3: 1654 switch (ns->guard_type) { 1655 case NVME_NVM_NS_16B_GUARD: 1656 integrity.profile = &t10_pi_type3_crc; 1657 integrity.tag_size = sizeof(u16) + sizeof(u32); 1658 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1659 break; 1660 case NVME_NVM_NS_64B_GUARD: 1661 integrity.profile = &ext_pi_type3_crc64; 1662 integrity.tag_size = sizeof(u16) + 6; 1663 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1664 break; 1665 default: 1666 integrity.profile = NULL; 1667 break; 1668 } 1669 break; 1670 case NVME_NS_DPS_PI_TYPE1: 1671 case NVME_NS_DPS_PI_TYPE2: 1672 switch (ns->guard_type) { 1673 case NVME_NVM_NS_16B_GUARD: 1674 integrity.profile = &t10_pi_type1_crc; 1675 integrity.tag_size = sizeof(u16); 1676 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1677 break; 1678 case NVME_NVM_NS_64B_GUARD: 1679 integrity.profile = &ext_pi_type1_crc64; 1680 integrity.tag_size = sizeof(u16); 1681 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1682 break; 1683 default: 1684 integrity.profile = NULL; 1685 break; 1686 } 1687 break; 1688 default: 1689 integrity.profile = NULL; 1690 break; 1691 } 1692 1693 integrity.tuple_size = ns->ms; 1694 blk_integrity_register(disk, &integrity); 1695 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1696 } 1697 #else nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1698 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1699 u32 max_integrity_segments) 1700 { 1701 } 1702 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1703 nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1704 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1705 { 1706 struct nvme_ctrl *ctrl = ns->ctrl; 1707 struct request_queue *queue = disk->queue; 1708 u32 size = queue_logical_block_size(queue); 1709 1710 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) 1711 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); 1712 1713 if (ctrl->max_discard_sectors == 0) { 1714 blk_queue_max_discard_sectors(queue, 0); 1715 return; 1716 } 1717 1718 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1719 NVME_DSM_MAX_RANGES); 1720 1721 queue->limits.discard_granularity = size; 1722 1723 /* If discard is already enabled, don't reset queue limits */ 1724 if (queue->limits.max_discard_sectors) 1725 return; 1726 1727 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1728 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1729 1730 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1731 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1732 } 1733 nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1734 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1735 { 1736 return uuid_equal(&a->uuid, &b->uuid) && 1737 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1738 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1739 a->csi == b->csi; 1740 } 1741 nvme_init_ms(struct nvme_ns * ns,struct nvme_id_ns * id)1742 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1743 { 1744 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1745 unsigned lbaf = nvme_lbaf_index(id->flbas); 1746 struct nvme_ctrl *ctrl = ns->ctrl; 1747 struct nvme_command c = { }; 1748 struct nvme_id_ns_nvm *nvm; 1749 int ret = 0; 1750 u32 elbaf; 1751 1752 ns->pi_size = 0; 1753 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1754 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1755 ns->pi_size = sizeof(struct t10_pi_tuple); 1756 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1757 goto set_pi; 1758 } 1759 1760 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1761 if (!nvm) 1762 return -ENOMEM; 1763 1764 c.identify.opcode = nvme_admin_identify; 1765 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1766 c.identify.cns = NVME_ID_CNS_CS_NS; 1767 c.identify.csi = NVME_CSI_NVM; 1768 1769 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1770 if (ret) 1771 goto free_data; 1772 1773 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1774 1775 /* no support for storage tag formats right now */ 1776 if (nvme_elbaf_sts(elbaf)) 1777 goto free_data; 1778 1779 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1780 switch (ns->guard_type) { 1781 case NVME_NVM_NS_64B_GUARD: 1782 ns->pi_size = sizeof(struct crc64_pi_tuple); 1783 break; 1784 case NVME_NVM_NS_16B_GUARD: 1785 ns->pi_size = sizeof(struct t10_pi_tuple); 1786 break; 1787 default: 1788 break; 1789 } 1790 1791 free_data: 1792 kfree(nvm); 1793 set_pi: 1794 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1795 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1796 else 1797 ns->pi_type = 0; 1798 1799 return ret; 1800 } 1801 nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1802 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1803 { 1804 struct nvme_ctrl *ctrl = ns->ctrl; 1805 int ret; 1806 1807 ret = nvme_init_ms(ns, id); 1808 if (ret) 1809 return ret; 1810 1811 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1812 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1813 return 0; 1814 1815 if (ctrl->ops->flags & NVME_F_FABRICS) { 1816 /* 1817 * The NVMe over Fabrics specification only supports metadata as 1818 * part of the extended data LBA. We rely on HCA/HBA support to 1819 * remap the separate metadata buffer from the block layer. 1820 */ 1821 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1822 return 0; 1823 1824 ns->features |= NVME_NS_EXT_LBAS; 1825 1826 /* 1827 * The current fabrics transport drivers support namespace 1828 * metadata formats only if nvme_ns_has_pi() returns true. 1829 * Suppress support for all other formats so the namespace will 1830 * have a 0 capacity and not be usable through the block stack. 1831 * 1832 * Note, this check will need to be modified if any drivers 1833 * gain the ability to use other metadata formats. 1834 */ 1835 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1836 ns->features |= NVME_NS_METADATA_SUPPORTED; 1837 } else { 1838 /* 1839 * For PCIe controllers, we can't easily remap the separate 1840 * metadata buffer from the block layer and thus require a 1841 * separate metadata buffer for block layer metadata/PI support. 1842 * We allow extended LBAs for the passthrough interface, though. 1843 */ 1844 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1845 ns->features |= NVME_NS_EXT_LBAS; 1846 else 1847 ns->features |= NVME_NS_METADATA_SUPPORTED; 1848 } 1849 return 0; 1850 } 1851 nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1852 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1853 struct request_queue *q) 1854 { 1855 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1856 1857 if (ctrl->max_hw_sectors) { 1858 u32 max_segments = 1859 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1860 1861 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1862 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1863 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1864 } 1865 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1866 blk_queue_dma_alignment(q, 3); 1867 blk_queue_write_cache(q, vwc, vwc); 1868 } 1869 nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1870 static void nvme_update_disk_info(struct gendisk *disk, 1871 struct nvme_ns *ns, struct nvme_id_ns *id) 1872 { 1873 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1874 u32 bs = 1U << ns->lba_shift; 1875 u32 atomic_bs, phys_bs, io_opt = 0; 1876 1877 /* 1878 * The block layer can't support LBA sizes larger than the page size 1879 * or smaller than a sector size yet, so catch this early and don't 1880 * allow block I/O. 1881 */ 1882 if (ns->lba_shift > PAGE_SHIFT || ns->lba_shift < SECTOR_SHIFT) { 1883 capacity = 0; 1884 bs = (1 << 9); 1885 } 1886 1887 blk_integrity_unregister(disk); 1888 1889 atomic_bs = phys_bs = bs; 1890 if (id->nabo == 0) { 1891 /* 1892 * Bit 1 indicates whether NAWUPF is defined for this namespace 1893 * and whether it should be used instead of AWUPF. If NAWUPF == 1894 * 0 then AWUPF must be used instead. 1895 */ 1896 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1897 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1898 else 1899 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1900 } 1901 1902 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1903 /* NPWG = Namespace Preferred Write Granularity */ 1904 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1905 /* NOWS = Namespace Optimal Write Size */ 1906 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1907 } 1908 1909 blk_queue_logical_block_size(disk->queue, bs); 1910 /* 1911 * Linux filesystems assume writing a single physical block is 1912 * an atomic operation. Hence limit the physical block size to the 1913 * value of the Atomic Write Unit Power Fail parameter. 1914 */ 1915 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1916 blk_queue_io_min(disk->queue, phys_bs); 1917 blk_queue_io_opt(disk->queue, io_opt); 1918 1919 /* 1920 * Register a metadata profile for PI, or the plain non-integrity NVMe 1921 * metadata masquerading as Type 0 if supported, otherwise reject block 1922 * I/O to namespaces with metadata except when the namespace supports 1923 * PI, as it can strip/insert in that case. 1924 */ 1925 if (ns->ms) { 1926 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1927 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1928 nvme_init_integrity(disk, ns, 1929 ns->ctrl->max_integrity_segments); 1930 else if (!nvme_ns_has_pi(ns)) 1931 capacity = 0; 1932 } 1933 1934 set_capacity_and_notify(disk, capacity); 1935 1936 nvme_config_discard(disk, ns); 1937 blk_queue_max_write_zeroes_sectors(disk->queue, 1938 ns->ctrl->max_zeroes_sectors); 1939 } 1940 nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)1941 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1942 { 1943 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1944 } 1945 nvme_first_scan(struct gendisk * disk)1946 static inline bool nvme_first_scan(struct gendisk *disk) 1947 { 1948 /* nvme_alloc_ns() scans the disk prior to adding it */ 1949 return !disk_live(disk); 1950 } 1951 nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)1952 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1953 { 1954 struct nvme_ctrl *ctrl = ns->ctrl; 1955 u32 iob; 1956 1957 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1958 is_power_of_2(ctrl->max_hw_sectors)) 1959 iob = ctrl->max_hw_sectors; 1960 else 1961 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1962 1963 if (!iob) 1964 return; 1965 1966 if (!is_power_of_2(iob)) { 1967 if (nvme_first_scan(ns->disk)) 1968 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1969 ns->disk->disk_name, iob); 1970 return; 1971 } 1972 1973 if (blk_queue_is_zoned(ns->disk->queue)) { 1974 if (nvme_first_scan(ns->disk)) 1975 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1976 ns->disk->disk_name); 1977 return; 1978 } 1979 1980 blk_queue_chunk_sectors(ns->queue, iob); 1981 } 1982 nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)1983 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 1984 struct nvme_ns_info *info) 1985 { 1986 blk_mq_freeze_queue(ns->disk->queue); 1987 nvme_set_queue_limits(ns->ctrl, ns->queue); 1988 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 1989 blk_mq_unfreeze_queue(ns->disk->queue); 1990 1991 if (nvme_ns_head_multipath(ns->head)) { 1992 blk_mq_freeze_queue(ns->head->disk->queue); 1993 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 1994 nvme_mpath_revalidate_paths(ns); 1995 blk_stack_limits(&ns->head->disk->queue->limits, 1996 &ns->queue->limits, 0); 1997 ns->head->disk->flags |= GENHD_FL_HIDDEN; 1998 blk_mq_unfreeze_queue(ns->head->disk->queue); 1999 } 2000 2001 /* Hide the block-interface for these devices */ 2002 ns->disk->flags |= GENHD_FL_HIDDEN; 2003 set_bit(NVME_NS_READY, &ns->flags); 2004 2005 return 0; 2006 } 2007 nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2008 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2009 struct nvme_ns_info *info) 2010 { 2011 struct nvme_id_ns *id; 2012 unsigned lbaf; 2013 int ret; 2014 2015 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2016 if (ret) 2017 return ret; 2018 2019 if (id->ncap == 0) { 2020 /* namespace not allocated or attached */ 2021 info->is_removed = true; 2022 ret = -ENODEV; 2023 goto error; 2024 } 2025 2026 blk_mq_freeze_queue(ns->disk->queue); 2027 lbaf = nvme_lbaf_index(id->flbas); 2028 ns->lba_shift = id->lbaf[lbaf].ds; 2029 nvme_set_queue_limits(ns->ctrl, ns->queue); 2030 2031 ret = nvme_configure_metadata(ns, id); 2032 if (ret < 0) { 2033 blk_mq_unfreeze_queue(ns->disk->queue); 2034 goto out; 2035 } 2036 nvme_set_chunk_sectors(ns, id); 2037 nvme_update_disk_info(ns->disk, ns, id); 2038 2039 if (ns->head->ids.csi == NVME_CSI_ZNS) { 2040 ret = nvme_update_zone_info(ns, lbaf); 2041 if (ret) { 2042 blk_mq_unfreeze_queue(ns->disk->queue); 2043 goto out; 2044 } 2045 } 2046 2047 /* 2048 * Only set the DEAC bit if the device guarantees that reads from 2049 * deallocated data return zeroes. While the DEAC bit does not 2050 * require that, it must be a no-op if reads from deallocated data 2051 * do not return zeroes. 2052 */ 2053 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2054 ns->features |= NVME_NS_DEAC; 2055 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2056 set_bit(NVME_NS_READY, &ns->flags); 2057 blk_mq_unfreeze_queue(ns->disk->queue); 2058 2059 if (blk_queue_is_zoned(ns->queue)) { 2060 ret = nvme_revalidate_zones(ns); 2061 if (ret && !nvme_first_scan(ns->disk)) 2062 goto out; 2063 } 2064 2065 if (nvme_ns_head_multipath(ns->head)) { 2066 blk_mq_freeze_queue(ns->head->disk->queue); 2067 nvme_update_disk_info(ns->head->disk, ns, id); 2068 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2069 nvme_mpath_revalidate_paths(ns); 2070 blk_stack_limits(&ns->head->disk->queue->limits, 2071 &ns->queue->limits, 0); 2072 disk_update_readahead(ns->head->disk); 2073 blk_mq_unfreeze_queue(ns->head->disk->queue); 2074 } 2075 2076 ret = 0; 2077 out: 2078 /* 2079 * If probing fails due an unsupported feature, hide the block device, 2080 * but still allow other access. 2081 */ 2082 if (ret == -ENODEV) { 2083 ns->disk->flags |= GENHD_FL_HIDDEN; 2084 set_bit(NVME_NS_READY, &ns->flags); 2085 ret = 0; 2086 } 2087 2088 error: 2089 kfree(id); 2090 return ret; 2091 } 2092 nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2093 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2094 { 2095 switch (info->ids.csi) { 2096 case NVME_CSI_ZNS: 2097 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2098 dev_info(ns->ctrl->device, 2099 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2100 info->nsid); 2101 return nvme_update_ns_info_generic(ns, info); 2102 } 2103 return nvme_update_ns_info_block(ns, info); 2104 case NVME_CSI_NVM: 2105 return nvme_update_ns_info_block(ns, info); 2106 default: 2107 dev_info(ns->ctrl->device, 2108 "block device for nsid %u not supported (csi %u)\n", 2109 info->nsid, info->ids.csi); 2110 return nvme_update_ns_info_generic(ns, info); 2111 } 2112 } 2113 2114 #ifdef CONFIG_BLK_SED_OPAL nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2115 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2116 bool send) 2117 { 2118 struct nvme_ctrl *ctrl = data; 2119 struct nvme_command cmd = { }; 2120 2121 if (send) 2122 cmd.common.opcode = nvme_admin_security_send; 2123 else 2124 cmd.common.opcode = nvme_admin_security_recv; 2125 cmd.common.nsid = 0; 2126 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2127 cmd.common.cdw11 = cpu_to_le32(len); 2128 2129 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2130 NVME_QID_ANY, 1, 0); 2131 } 2132 nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2133 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2134 { 2135 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2136 if (!ctrl->opal_dev) 2137 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2138 else if (was_suspended) 2139 opal_unlock_from_suspend(ctrl->opal_dev); 2140 } else { 2141 free_opal_dev(ctrl->opal_dev); 2142 ctrl->opal_dev = NULL; 2143 } 2144 } 2145 #else nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2146 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2147 { 2148 } 2149 #endif /* CONFIG_BLK_SED_OPAL */ 2150 2151 #ifdef CONFIG_BLK_DEV_ZONED nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2152 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2153 unsigned int nr_zones, report_zones_cb cb, void *data) 2154 { 2155 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2156 data); 2157 } 2158 #else 2159 #define nvme_report_zones NULL 2160 #endif /* CONFIG_BLK_DEV_ZONED */ 2161 2162 const struct block_device_operations nvme_bdev_ops = { 2163 .owner = THIS_MODULE, 2164 .ioctl = nvme_ioctl, 2165 .compat_ioctl = blkdev_compat_ptr_ioctl, 2166 .open = nvme_open, 2167 .release = nvme_release, 2168 .getgeo = nvme_getgeo, 2169 .report_zones = nvme_report_zones, 2170 .pr_ops = &nvme_pr_ops, 2171 }; 2172 nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2173 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2174 u32 timeout, const char *op) 2175 { 2176 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2177 u32 csts; 2178 int ret; 2179 2180 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2181 if (csts == ~0) 2182 return -ENODEV; 2183 if ((csts & mask) == val) 2184 break; 2185 2186 usleep_range(1000, 2000); 2187 if (fatal_signal_pending(current)) 2188 return -EINTR; 2189 if (time_after(jiffies, timeout_jiffies)) { 2190 dev_err(ctrl->device, 2191 "Device not ready; aborting %s, CSTS=0x%x\n", 2192 op, csts); 2193 return -ENODEV; 2194 } 2195 } 2196 2197 return ret; 2198 } 2199 nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2200 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2201 { 2202 int ret; 2203 2204 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2205 if (shutdown) 2206 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2207 else 2208 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2209 2210 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2211 if (ret) 2212 return ret; 2213 2214 if (shutdown) { 2215 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2216 NVME_CSTS_SHST_CMPLT, 2217 ctrl->shutdown_timeout, "shutdown"); 2218 } 2219 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2220 msleep(NVME_QUIRK_DELAY_AMOUNT); 2221 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2222 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2223 } 2224 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2225 nvme_enable_ctrl(struct nvme_ctrl * ctrl)2226 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2227 { 2228 unsigned dev_page_min; 2229 u32 timeout; 2230 int ret; 2231 2232 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2233 if (ret) { 2234 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2235 return ret; 2236 } 2237 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2238 2239 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2240 dev_err(ctrl->device, 2241 "Minimum device page size %u too large for host (%u)\n", 2242 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2243 return -ENODEV; 2244 } 2245 2246 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2247 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2248 else 2249 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2250 2251 /* 2252 * Setting CRIME results in CSTS.RDY before the media is ready. This 2253 * makes it possible for media related commands to return the error 2254 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is 2255 * restructured to handle retries, disable CC.CRIME. 2256 */ 2257 ctrl->ctrl_config &= ~NVME_CC_CRIME; 2258 2259 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2260 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2261 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2262 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2263 if (ret) 2264 return ret; 2265 2266 /* Flush write to device (required if transport is PCI) */ 2267 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2268 if (ret) 2269 return ret; 2270 2271 /* CAP value may change after initial CC write */ 2272 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2273 if (ret) 2274 return ret; 2275 2276 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2277 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2278 u32 crto, ready_timeout; 2279 2280 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2281 if (ret) { 2282 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2283 ret); 2284 return ret; 2285 } 2286 2287 /* 2288 * CRTO should always be greater or equal to CAP.TO, but some 2289 * devices are known to get this wrong. Use the larger of the 2290 * two values. 2291 */ 2292 ready_timeout = NVME_CRTO_CRWMT(crto); 2293 2294 if (ready_timeout < timeout) 2295 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2296 crto, ctrl->cap); 2297 else 2298 timeout = ready_timeout; 2299 } 2300 2301 ctrl->ctrl_config |= NVME_CC_ENABLE; 2302 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2303 if (ret) 2304 return ret; 2305 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2306 (timeout + 1) / 2, "initialisation"); 2307 } 2308 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2309 nvme_configure_timestamp(struct nvme_ctrl * ctrl)2310 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2311 { 2312 __le64 ts; 2313 int ret; 2314 2315 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2316 return 0; 2317 2318 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2319 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2320 NULL); 2321 if (ret) 2322 dev_warn_once(ctrl->device, 2323 "could not set timestamp (%d)\n", ret); 2324 return ret; 2325 } 2326 nvme_configure_host_options(struct nvme_ctrl * ctrl)2327 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2328 { 2329 struct nvme_feat_host_behavior *host; 2330 u8 acre = 0, lbafee = 0; 2331 int ret; 2332 2333 /* Don't bother enabling the feature if retry delay is not reported */ 2334 if (ctrl->crdt[0]) 2335 acre = NVME_ENABLE_ACRE; 2336 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2337 lbafee = NVME_ENABLE_LBAFEE; 2338 2339 if (!acre && !lbafee) 2340 return 0; 2341 2342 host = kzalloc(sizeof(*host), GFP_KERNEL); 2343 if (!host) 2344 return 0; 2345 2346 host->acre = acre; 2347 host->lbafee = lbafee; 2348 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2349 host, sizeof(*host), NULL); 2350 kfree(host); 2351 return ret; 2352 } 2353 2354 /* 2355 * The function checks whether the given total (exlat + enlat) latency of 2356 * a power state allows the latter to be used as an APST transition target. 2357 * It does so by comparing the latency to the primary and secondary latency 2358 * tolerances defined by module params. If there's a match, the corresponding 2359 * timeout value is returned and the matching tolerance index (1 or 2) is 2360 * reported. 2361 */ nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2362 static bool nvme_apst_get_transition_time(u64 total_latency, 2363 u64 *transition_time, unsigned *last_index) 2364 { 2365 if (total_latency <= apst_primary_latency_tol_us) { 2366 if (*last_index == 1) 2367 return false; 2368 *last_index = 1; 2369 *transition_time = apst_primary_timeout_ms; 2370 return true; 2371 } 2372 if (apst_secondary_timeout_ms && 2373 total_latency <= apst_secondary_latency_tol_us) { 2374 if (*last_index <= 2) 2375 return false; 2376 *last_index = 2; 2377 *transition_time = apst_secondary_timeout_ms; 2378 return true; 2379 } 2380 return false; 2381 } 2382 2383 /* 2384 * APST (Autonomous Power State Transition) lets us program a table of power 2385 * state transitions that the controller will perform automatically. 2386 * 2387 * Depending on module params, one of the two supported techniques will be used: 2388 * 2389 * - If the parameters provide explicit timeouts and tolerances, they will be 2390 * used to build a table with up to 2 non-operational states to transition to. 2391 * The default parameter values were selected based on the values used by 2392 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2393 * regeneration of the APST table in the event of switching between external 2394 * and battery power, the timeouts and tolerances reflect a compromise 2395 * between values used by Microsoft for AC and battery scenarios. 2396 * - If not, we'll configure the table with a simple heuristic: we are willing 2397 * to spend at most 2% of the time transitioning between power states. 2398 * Therefore, when running in any given state, we will enter the next 2399 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2400 * microseconds, as long as that state's exit latency is under the requested 2401 * maximum latency. 2402 * 2403 * We will not autonomously enter any non-operational state for which the total 2404 * latency exceeds ps_max_latency_us. 2405 * 2406 * Users can set ps_max_latency_us to zero to turn off APST. 2407 */ nvme_configure_apst(struct nvme_ctrl * ctrl)2408 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2409 { 2410 struct nvme_feat_auto_pst *table; 2411 unsigned apste = 0; 2412 u64 max_lat_us = 0; 2413 __le64 target = 0; 2414 int max_ps = -1; 2415 int state; 2416 int ret; 2417 unsigned last_lt_index = UINT_MAX; 2418 2419 /* 2420 * If APST isn't supported or if we haven't been initialized yet, 2421 * then don't do anything. 2422 */ 2423 if (!ctrl->apsta) 2424 return 0; 2425 2426 if (ctrl->npss > 31) { 2427 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2428 return 0; 2429 } 2430 2431 table = kzalloc(sizeof(*table), GFP_KERNEL); 2432 if (!table) 2433 return 0; 2434 2435 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2436 /* Turn off APST. */ 2437 dev_dbg(ctrl->device, "APST disabled\n"); 2438 goto done; 2439 } 2440 2441 /* 2442 * Walk through all states from lowest- to highest-power. 2443 * According to the spec, lower-numbered states use more power. NPSS, 2444 * despite the name, is the index of the lowest-power state, not the 2445 * number of states. 2446 */ 2447 for (state = (int)ctrl->npss; state >= 0; state--) { 2448 u64 total_latency_us, exit_latency_us, transition_ms; 2449 2450 if (target) 2451 table->entries[state] = target; 2452 2453 /* 2454 * Don't allow transitions to the deepest state if it's quirked 2455 * off. 2456 */ 2457 if (state == ctrl->npss && 2458 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2459 continue; 2460 2461 /* 2462 * Is this state a useful non-operational state for higher-power 2463 * states to autonomously transition to? 2464 */ 2465 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2466 continue; 2467 2468 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2469 if (exit_latency_us > ctrl->ps_max_latency_us) 2470 continue; 2471 2472 total_latency_us = exit_latency_us + 2473 le32_to_cpu(ctrl->psd[state].entry_lat); 2474 2475 /* 2476 * This state is good. It can be used as the APST idle target 2477 * for higher power states. 2478 */ 2479 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2480 if (!nvme_apst_get_transition_time(total_latency_us, 2481 &transition_ms, &last_lt_index)) 2482 continue; 2483 } else { 2484 transition_ms = total_latency_us + 19; 2485 do_div(transition_ms, 20); 2486 if (transition_ms > (1 << 24) - 1) 2487 transition_ms = (1 << 24) - 1; 2488 } 2489 2490 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2491 if (max_ps == -1) 2492 max_ps = state; 2493 if (total_latency_us > max_lat_us) 2494 max_lat_us = total_latency_us; 2495 } 2496 2497 if (max_ps == -1) 2498 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2499 else 2500 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2501 max_ps, max_lat_us, (int)sizeof(*table), table); 2502 apste = 1; 2503 2504 done: 2505 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2506 table, sizeof(*table), NULL); 2507 if (ret) 2508 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2509 kfree(table); 2510 return ret; 2511 } 2512 nvme_set_latency_tolerance(struct device * dev,s32 val)2513 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2514 { 2515 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2516 u64 latency; 2517 2518 switch (val) { 2519 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2520 case PM_QOS_LATENCY_ANY: 2521 latency = U64_MAX; 2522 break; 2523 2524 default: 2525 latency = val; 2526 } 2527 2528 if (ctrl->ps_max_latency_us != latency) { 2529 ctrl->ps_max_latency_us = latency; 2530 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2531 nvme_configure_apst(ctrl); 2532 } 2533 } 2534 2535 struct nvme_core_quirk_entry { 2536 /* 2537 * NVMe model and firmware strings are padded with spaces. For 2538 * simplicity, strings in the quirk table are padded with NULLs 2539 * instead. 2540 */ 2541 u16 vid; 2542 const char *mn; 2543 const char *fr; 2544 unsigned long quirks; 2545 }; 2546 2547 static const struct nvme_core_quirk_entry core_quirks[] = { 2548 { 2549 /* 2550 * This Toshiba device seems to die using any APST states. See: 2551 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2552 */ 2553 .vid = 0x1179, 2554 .mn = "THNSF5256GPUK TOSHIBA", 2555 .quirks = NVME_QUIRK_NO_APST, 2556 }, 2557 { 2558 /* 2559 * This LiteON CL1-3D*-Q11 firmware version has a race 2560 * condition associated with actions related to suspend to idle 2561 * LiteON has resolved the problem in future firmware 2562 */ 2563 .vid = 0x14a4, 2564 .fr = "22301111", 2565 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2566 }, 2567 { 2568 /* 2569 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2570 * aborts I/O during any load, but more easily reproducible 2571 * with discards (fstrim). 2572 * 2573 * The device is left in a state where it is also not possible 2574 * to use "nvme set-feature" to disable APST, but booting with 2575 * nvme_core.default_ps_max_latency=0 works. 2576 */ 2577 .vid = 0x1e0f, 2578 .mn = "KCD6XVUL6T40", 2579 .quirks = NVME_QUIRK_NO_APST, 2580 }, 2581 { 2582 /* 2583 * The external Samsung X5 SSD fails initialization without a 2584 * delay before checking if it is ready and has a whole set of 2585 * other problems. To make this even more interesting, it 2586 * shares the PCI ID with internal Samsung 970 Evo Plus that 2587 * does not need or want these quirks. 2588 */ 2589 .vid = 0x144d, 2590 .mn = "Samsung Portable SSD X5", 2591 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2592 NVME_QUIRK_NO_DEEPEST_PS | 2593 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2594 } 2595 }; 2596 2597 /* match is null-terminated but idstr is space-padded. */ string_matches(const char * idstr,const char * match,size_t len)2598 static bool string_matches(const char *idstr, const char *match, size_t len) 2599 { 2600 size_t matchlen; 2601 2602 if (!match) 2603 return true; 2604 2605 matchlen = strlen(match); 2606 WARN_ON_ONCE(matchlen > len); 2607 2608 if (memcmp(idstr, match, matchlen)) 2609 return false; 2610 2611 for (; matchlen < len; matchlen++) 2612 if (idstr[matchlen] != ' ') 2613 return false; 2614 2615 return true; 2616 } 2617 quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2618 static bool quirk_matches(const struct nvme_id_ctrl *id, 2619 const struct nvme_core_quirk_entry *q) 2620 { 2621 return q->vid == le16_to_cpu(id->vid) && 2622 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2623 string_matches(id->fr, q->fr, sizeof(id->fr)); 2624 } 2625 nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2626 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2627 struct nvme_id_ctrl *id) 2628 { 2629 size_t nqnlen; 2630 int off; 2631 2632 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2633 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2634 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2635 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2636 return; 2637 } 2638 2639 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2640 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2641 } 2642 2643 /* 2644 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2645 * Base Specification 2.0. It is slightly different from the format 2646 * specified there due to historic reasons, and we can't change it now. 2647 */ 2648 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2649 "nqn.2014.08.org.nvmexpress:%04x%04x", 2650 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2651 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2652 off += sizeof(id->sn); 2653 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2654 off += sizeof(id->mn); 2655 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2656 } 2657 nvme_release_subsystem(struct device * dev)2658 static void nvme_release_subsystem(struct device *dev) 2659 { 2660 struct nvme_subsystem *subsys = 2661 container_of(dev, struct nvme_subsystem, dev); 2662 2663 if (subsys->instance >= 0) 2664 ida_free(&nvme_instance_ida, subsys->instance); 2665 kfree(subsys); 2666 } 2667 nvme_destroy_subsystem(struct kref * ref)2668 static void nvme_destroy_subsystem(struct kref *ref) 2669 { 2670 struct nvme_subsystem *subsys = 2671 container_of(ref, struct nvme_subsystem, ref); 2672 2673 mutex_lock(&nvme_subsystems_lock); 2674 list_del(&subsys->entry); 2675 mutex_unlock(&nvme_subsystems_lock); 2676 2677 ida_destroy(&subsys->ns_ida); 2678 device_del(&subsys->dev); 2679 put_device(&subsys->dev); 2680 } 2681 nvme_put_subsystem(struct nvme_subsystem * subsys)2682 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2683 { 2684 kref_put(&subsys->ref, nvme_destroy_subsystem); 2685 } 2686 __nvme_find_get_subsystem(const char * subsysnqn)2687 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2688 { 2689 struct nvme_subsystem *subsys; 2690 2691 lockdep_assert_held(&nvme_subsystems_lock); 2692 2693 /* 2694 * Fail matches for discovery subsystems. This results 2695 * in each discovery controller bound to a unique subsystem. 2696 * This avoids issues with validating controller values 2697 * that can only be true when there is a single unique subsystem. 2698 * There may be multiple and completely independent entities 2699 * that provide discovery controllers. 2700 */ 2701 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2702 return NULL; 2703 2704 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2705 if (strcmp(subsys->subnqn, subsysnqn)) 2706 continue; 2707 if (!kref_get_unless_zero(&subsys->ref)) 2708 continue; 2709 return subsys; 2710 } 2711 2712 return NULL; 2713 } 2714 nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2715 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2716 { 2717 return ctrl->opts && ctrl->opts->discovery_nqn; 2718 } 2719 nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2720 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2721 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2722 { 2723 struct nvme_ctrl *tmp; 2724 2725 lockdep_assert_held(&nvme_subsystems_lock); 2726 2727 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2728 if (nvme_state_terminal(tmp)) 2729 continue; 2730 2731 if (tmp->cntlid == ctrl->cntlid) { 2732 dev_err(ctrl->device, 2733 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2734 ctrl->cntlid, dev_name(tmp->device), 2735 subsys->subnqn); 2736 return false; 2737 } 2738 2739 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2740 nvme_discovery_ctrl(ctrl)) 2741 continue; 2742 2743 dev_err(ctrl->device, 2744 "Subsystem does not support multiple controllers\n"); 2745 return false; 2746 } 2747 2748 return true; 2749 } 2750 nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2751 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2752 { 2753 struct nvme_subsystem *subsys, *found; 2754 int ret; 2755 2756 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2757 if (!subsys) 2758 return -ENOMEM; 2759 2760 subsys->instance = -1; 2761 mutex_init(&subsys->lock); 2762 kref_init(&subsys->ref); 2763 INIT_LIST_HEAD(&subsys->ctrls); 2764 INIT_LIST_HEAD(&subsys->nsheads); 2765 nvme_init_subnqn(subsys, ctrl, id); 2766 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2767 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2768 subsys->vendor_id = le16_to_cpu(id->vid); 2769 subsys->cmic = id->cmic; 2770 2771 /* Versions prior to 1.4 don't necessarily report a valid type */ 2772 if (id->cntrltype == NVME_CTRL_DISC || 2773 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2774 subsys->subtype = NVME_NQN_DISC; 2775 else 2776 subsys->subtype = NVME_NQN_NVME; 2777 2778 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2779 dev_err(ctrl->device, 2780 "Subsystem %s is not a discovery controller", 2781 subsys->subnqn); 2782 kfree(subsys); 2783 return -EINVAL; 2784 } 2785 subsys->awupf = le16_to_cpu(id->awupf); 2786 nvme_mpath_default_iopolicy(subsys); 2787 2788 subsys->dev.class = nvme_subsys_class; 2789 subsys->dev.release = nvme_release_subsystem; 2790 subsys->dev.groups = nvme_subsys_attrs_groups; 2791 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2792 device_initialize(&subsys->dev); 2793 2794 mutex_lock(&nvme_subsystems_lock); 2795 found = __nvme_find_get_subsystem(subsys->subnqn); 2796 if (found) { 2797 put_device(&subsys->dev); 2798 subsys = found; 2799 2800 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2801 ret = -EINVAL; 2802 goto out_put_subsystem; 2803 } 2804 } else { 2805 ret = device_add(&subsys->dev); 2806 if (ret) { 2807 dev_err(ctrl->device, 2808 "failed to register subsystem device.\n"); 2809 put_device(&subsys->dev); 2810 goto out_unlock; 2811 } 2812 ida_init(&subsys->ns_ida); 2813 list_add_tail(&subsys->entry, &nvme_subsystems); 2814 } 2815 2816 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2817 dev_name(ctrl->device)); 2818 if (ret) { 2819 dev_err(ctrl->device, 2820 "failed to create sysfs link from subsystem.\n"); 2821 goto out_put_subsystem; 2822 } 2823 2824 if (!found) 2825 subsys->instance = ctrl->instance; 2826 ctrl->subsys = subsys; 2827 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2828 mutex_unlock(&nvme_subsystems_lock); 2829 return 0; 2830 2831 out_put_subsystem: 2832 nvme_put_subsystem(subsys); 2833 out_unlock: 2834 mutex_unlock(&nvme_subsystems_lock); 2835 return ret; 2836 } 2837 nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2838 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2839 void *log, size_t size, u64 offset) 2840 { 2841 struct nvme_command c = { }; 2842 u32 dwlen = nvme_bytes_to_numd(size); 2843 2844 c.get_log_page.opcode = nvme_admin_get_log_page; 2845 c.get_log_page.nsid = cpu_to_le32(nsid); 2846 c.get_log_page.lid = log_page; 2847 c.get_log_page.lsp = lsp; 2848 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2849 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2850 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2851 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2852 c.get_log_page.csi = csi; 2853 2854 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2855 } 2856 nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)2857 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2858 struct nvme_effects_log **log) 2859 { 2860 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi); 2861 int ret; 2862 2863 if (cel) 2864 goto out; 2865 2866 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2867 if (!cel) 2868 return -ENOMEM; 2869 2870 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2871 cel, sizeof(*cel), 0); 2872 if (ret) { 2873 kfree(cel); 2874 return ret; 2875 } 2876 2877 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2878 if (xa_is_err(old)) { 2879 kfree(cel); 2880 return xa_err(old); 2881 } 2882 out: 2883 *log = cel; 2884 return 0; 2885 } 2886 nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)2887 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2888 { 2889 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2890 2891 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2892 return UINT_MAX; 2893 return val; 2894 } 2895 nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)2896 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2897 { 2898 struct nvme_command c = { }; 2899 struct nvme_id_ctrl_nvm *id; 2900 int ret; 2901 2902 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2903 ctrl->max_discard_sectors = UINT_MAX; 2904 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2905 } else { 2906 ctrl->max_discard_sectors = 0; 2907 ctrl->max_discard_segments = 0; 2908 } 2909 2910 /* 2911 * Even though NVMe spec explicitly states that MDTS is not applicable 2912 * to the write-zeroes, we are cautious and limit the size to the 2913 * controllers max_hw_sectors value, which is based on the MDTS field 2914 * and possibly other limiting factors. 2915 */ 2916 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2917 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2918 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2919 else 2920 ctrl->max_zeroes_sectors = 0; 2921 2922 if (ctrl->subsys->subtype != NVME_NQN_NVME || 2923 nvme_ctrl_limited_cns(ctrl) || 2924 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 2925 return 0; 2926 2927 id = kzalloc(sizeof(*id), GFP_KERNEL); 2928 if (!id) 2929 return -ENOMEM; 2930 2931 c.identify.opcode = nvme_admin_identify; 2932 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2933 c.identify.csi = NVME_CSI_NVM; 2934 2935 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2936 if (ret) 2937 goto free_data; 2938 2939 if (id->dmrl) 2940 ctrl->max_discard_segments = id->dmrl; 2941 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 2942 if (id->wzsl) 2943 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2944 2945 free_data: 2946 if (ret > 0) 2947 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 2948 kfree(id); 2949 return ret; 2950 } 2951 nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)2952 static int nvme_init_effects_log(struct nvme_ctrl *ctrl, 2953 u8 csi, struct nvme_effects_log **log) 2954 { 2955 struct nvme_effects_log *effects, *old; 2956 2957 effects = kzalloc(sizeof(*effects), GFP_KERNEL); 2958 if (!effects) 2959 return -ENOMEM; 2960 2961 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL); 2962 if (xa_is_err(old)) { 2963 kfree(effects); 2964 return xa_err(old); 2965 } 2966 2967 *log = effects; 2968 return 0; 2969 } 2970 nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)2971 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 2972 { 2973 struct nvme_effects_log *log = ctrl->effects; 2974 2975 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 2976 NVME_CMD_EFFECTS_NCC | 2977 NVME_CMD_EFFECTS_CSE_MASK); 2978 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 2979 NVME_CMD_EFFECTS_CSE_MASK); 2980 2981 /* 2982 * The spec says the result of a security receive command depends on 2983 * the previous security send command. As such, many vendors log this 2984 * command as one to submitted only when no other commands to the same 2985 * namespace are outstanding. The intention is to tell the host to 2986 * prevent mixing security send and receive. 2987 * 2988 * This driver can only enforce such exclusive access against IO 2989 * queues, though. We are not readily able to enforce such a rule for 2990 * two commands to the admin queue, which is the only queue that 2991 * matters for this command. 2992 * 2993 * Rather than blindly freezing the IO queues for this effect that 2994 * doesn't even apply to IO, mask it off. 2995 */ 2996 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 2997 2998 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 2999 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3000 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3001 } 3002 nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3003 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3004 { 3005 int ret = 0; 3006 3007 if (ctrl->effects) 3008 return 0; 3009 3010 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3011 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3012 if (ret < 0) 3013 return ret; 3014 } 3015 3016 if (!ctrl->effects) { 3017 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3018 if (ret < 0) 3019 return ret; 3020 } 3021 3022 nvme_init_known_nvm_effects(ctrl); 3023 return 0; 3024 } 3025 nvme_init_identify(struct nvme_ctrl * ctrl)3026 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3027 { 3028 struct nvme_id_ctrl *id; 3029 u32 max_hw_sectors; 3030 bool prev_apst_enabled; 3031 int ret; 3032 3033 ret = nvme_identify_ctrl(ctrl, &id); 3034 if (ret) { 3035 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3036 return -EIO; 3037 } 3038 3039 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3040 ctrl->cntlid = le16_to_cpu(id->cntlid); 3041 3042 if (!ctrl->identified) { 3043 unsigned int i; 3044 3045 /* 3046 * Check for quirks. Quirk can depend on firmware version, 3047 * so, in principle, the set of quirks present can change 3048 * across a reset. As a possible future enhancement, we 3049 * could re-scan for quirks every time we reinitialize 3050 * the device, but we'd have to make sure that the driver 3051 * behaves intelligently if the quirks change. 3052 */ 3053 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3054 if (quirk_matches(id, &core_quirks[i])) 3055 ctrl->quirks |= core_quirks[i].quirks; 3056 } 3057 3058 ret = nvme_init_subsystem(ctrl, id); 3059 if (ret) 3060 goto out_free; 3061 3062 ret = nvme_init_effects(ctrl, id); 3063 if (ret) 3064 goto out_free; 3065 } 3066 memcpy(ctrl->subsys->firmware_rev, id->fr, 3067 sizeof(ctrl->subsys->firmware_rev)); 3068 3069 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3070 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3071 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3072 } 3073 3074 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3075 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3076 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3077 3078 ctrl->oacs = le16_to_cpu(id->oacs); 3079 ctrl->oncs = le16_to_cpu(id->oncs); 3080 ctrl->mtfa = le16_to_cpu(id->mtfa); 3081 ctrl->oaes = le32_to_cpu(id->oaes); 3082 ctrl->wctemp = le16_to_cpu(id->wctemp); 3083 ctrl->cctemp = le16_to_cpu(id->cctemp); 3084 3085 atomic_set(&ctrl->abort_limit, id->acl + 1); 3086 ctrl->vwc = id->vwc; 3087 if (id->mdts) 3088 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3089 else 3090 max_hw_sectors = UINT_MAX; 3091 ctrl->max_hw_sectors = 3092 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3093 3094 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3095 ctrl->sgls = le32_to_cpu(id->sgls); 3096 ctrl->kas = le16_to_cpu(id->kas); 3097 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3098 ctrl->ctratt = le32_to_cpu(id->ctratt); 3099 3100 ctrl->cntrltype = id->cntrltype; 3101 ctrl->dctype = id->dctype; 3102 3103 if (id->rtd3e) { 3104 /* us -> s */ 3105 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3106 3107 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3108 shutdown_timeout, 60); 3109 3110 if (ctrl->shutdown_timeout != shutdown_timeout) 3111 dev_info(ctrl->device, 3112 "Shutdown timeout set to %u seconds\n", 3113 ctrl->shutdown_timeout); 3114 } else 3115 ctrl->shutdown_timeout = shutdown_timeout; 3116 3117 ctrl->npss = id->npss; 3118 ctrl->apsta = id->apsta; 3119 prev_apst_enabled = ctrl->apst_enabled; 3120 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3121 if (force_apst && id->apsta) { 3122 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3123 ctrl->apst_enabled = true; 3124 } else { 3125 ctrl->apst_enabled = false; 3126 } 3127 } else { 3128 ctrl->apst_enabled = id->apsta; 3129 } 3130 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3131 3132 if (ctrl->ops->flags & NVME_F_FABRICS) { 3133 ctrl->icdoff = le16_to_cpu(id->icdoff); 3134 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3135 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3136 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3137 3138 /* 3139 * In fabrics we need to verify the cntlid matches the 3140 * admin connect 3141 */ 3142 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3143 dev_err(ctrl->device, 3144 "Mismatching cntlid: Connect %u vs Identify " 3145 "%u, rejecting\n", 3146 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3147 ret = -EINVAL; 3148 goto out_free; 3149 } 3150 3151 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3152 dev_err(ctrl->device, 3153 "keep-alive support is mandatory for fabrics\n"); 3154 ret = -EINVAL; 3155 goto out_free; 3156 } 3157 } else { 3158 ctrl->hmpre = le32_to_cpu(id->hmpre); 3159 ctrl->hmmin = le32_to_cpu(id->hmmin); 3160 ctrl->hmminds = le32_to_cpu(id->hmminds); 3161 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3162 } 3163 3164 ret = nvme_mpath_init_identify(ctrl, id); 3165 if (ret < 0) 3166 goto out_free; 3167 3168 if (ctrl->apst_enabled && !prev_apst_enabled) 3169 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3170 else if (!ctrl->apst_enabled && prev_apst_enabled) 3171 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3172 3173 out_free: 3174 kfree(id); 3175 return ret; 3176 } 3177 3178 /* 3179 * Initialize the cached copies of the Identify data and various controller 3180 * register in our nvme_ctrl structure. This should be called as soon as 3181 * the admin queue is fully up and running. 3182 */ nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3183 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3184 { 3185 int ret; 3186 3187 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3188 if (ret) { 3189 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3190 return ret; 3191 } 3192 3193 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3194 3195 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3196 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3197 3198 ret = nvme_init_identify(ctrl); 3199 if (ret) 3200 return ret; 3201 3202 ret = nvme_configure_apst(ctrl); 3203 if (ret < 0) 3204 return ret; 3205 3206 ret = nvme_configure_timestamp(ctrl); 3207 if (ret < 0) 3208 return ret; 3209 3210 ret = nvme_configure_host_options(ctrl); 3211 if (ret < 0) 3212 return ret; 3213 3214 nvme_configure_opal(ctrl, was_suspended); 3215 3216 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3217 /* 3218 * Do not return errors unless we are in a controller reset, 3219 * the controller works perfectly fine without hwmon. 3220 */ 3221 ret = nvme_hwmon_init(ctrl); 3222 if (ret == -EINTR) 3223 return ret; 3224 } 3225 3226 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3227 ctrl->identified = true; 3228 3229 return 0; 3230 } 3231 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3232 nvme_dev_open(struct inode * inode,struct file * file)3233 static int nvme_dev_open(struct inode *inode, struct file *file) 3234 { 3235 struct nvme_ctrl *ctrl = 3236 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3237 3238 switch (nvme_ctrl_state(ctrl)) { 3239 case NVME_CTRL_LIVE: 3240 break; 3241 default: 3242 return -EWOULDBLOCK; 3243 } 3244 3245 nvme_get_ctrl(ctrl); 3246 if (!try_module_get(ctrl->ops->module)) { 3247 nvme_put_ctrl(ctrl); 3248 return -EINVAL; 3249 } 3250 3251 file->private_data = ctrl; 3252 return 0; 3253 } 3254 nvme_dev_release(struct inode * inode,struct file * file)3255 static int nvme_dev_release(struct inode *inode, struct file *file) 3256 { 3257 struct nvme_ctrl *ctrl = 3258 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3259 3260 module_put(ctrl->ops->module); 3261 nvme_put_ctrl(ctrl); 3262 return 0; 3263 } 3264 3265 static const struct file_operations nvme_dev_fops = { 3266 .owner = THIS_MODULE, 3267 .open = nvme_dev_open, 3268 .release = nvme_dev_release, 3269 .unlocked_ioctl = nvme_dev_ioctl, 3270 .compat_ioctl = compat_ptr_ioctl, 3271 .uring_cmd = nvme_dev_uring_cmd, 3272 }; 3273 nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3274 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3275 unsigned nsid) 3276 { 3277 struct nvme_ns_head *h; 3278 3279 lockdep_assert_held(&ctrl->subsys->lock); 3280 3281 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3282 /* 3283 * Private namespaces can share NSIDs under some conditions. 3284 * In that case we can't use the same ns_head for namespaces 3285 * with the same NSID. 3286 */ 3287 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3288 continue; 3289 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3290 return h; 3291 } 3292 3293 return NULL; 3294 } 3295 nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3296 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3297 struct nvme_ns_ids *ids) 3298 { 3299 bool has_uuid = !uuid_is_null(&ids->uuid); 3300 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3301 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3302 struct nvme_ns_head *h; 3303 3304 lockdep_assert_held(&subsys->lock); 3305 3306 list_for_each_entry(h, &subsys->nsheads, entry) { 3307 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3308 return -EINVAL; 3309 if (has_nguid && 3310 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3311 return -EINVAL; 3312 if (has_eui64 && 3313 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3314 return -EINVAL; 3315 } 3316 3317 return 0; 3318 } 3319 nvme_cdev_rel(struct device * dev)3320 static void nvme_cdev_rel(struct device *dev) 3321 { 3322 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3323 } 3324 nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3325 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3326 { 3327 cdev_device_del(cdev, cdev_device); 3328 put_device(cdev_device); 3329 } 3330 nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3331 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3332 const struct file_operations *fops, struct module *owner) 3333 { 3334 int minor, ret; 3335 3336 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3337 if (minor < 0) 3338 return minor; 3339 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3340 cdev_device->class = nvme_ns_chr_class; 3341 cdev_device->release = nvme_cdev_rel; 3342 device_initialize(cdev_device); 3343 cdev_init(cdev, fops); 3344 cdev->owner = owner; 3345 ret = cdev_device_add(cdev, cdev_device); 3346 if (ret) 3347 put_device(cdev_device); 3348 3349 return ret; 3350 } 3351 nvme_ns_chr_open(struct inode * inode,struct file * file)3352 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3353 { 3354 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3355 } 3356 nvme_ns_chr_release(struct inode * inode,struct file * file)3357 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3358 { 3359 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3360 return 0; 3361 } 3362 3363 static const struct file_operations nvme_ns_chr_fops = { 3364 .owner = THIS_MODULE, 3365 .open = nvme_ns_chr_open, 3366 .release = nvme_ns_chr_release, 3367 .unlocked_ioctl = nvme_ns_chr_ioctl, 3368 .compat_ioctl = compat_ptr_ioctl, 3369 .uring_cmd = nvme_ns_chr_uring_cmd, 3370 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3371 }; 3372 nvme_add_ns_cdev(struct nvme_ns * ns)3373 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3374 { 3375 int ret; 3376 3377 ns->cdev_device.parent = ns->ctrl->device; 3378 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3379 ns->ctrl->instance, ns->head->instance); 3380 if (ret) 3381 return ret; 3382 3383 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3384 ns->ctrl->ops->module); 3385 } 3386 nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3387 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3388 struct nvme_ns_info *info) 3389 { 3390 struct nvme_ns_head *head; 3391 size_t size = sizeof(*head); 3392 int ret = -ENOMEM; 3393 3394 #ifdef CONFIG_NVME_MULTIPATH 3395 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3396 #endif 3397 3398 head = kzalloc(size, GFP_KERNEL); 3399 if (!head) 3400 goto out; 3401 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3402 if (ret < 0) 3403 goto out_free_head; 3404 head->instance = ret; 3405 INIT_LIST_HEAD(&head->list); 3406 ret = init_srcu_struct(&head->srcu); 3407 if (ret) 3408 goto out_ida_remove; 3409 head->subsys = ctrl->subsys; 3410 head->ns_id = info->nsid; 3411 head->ids = info->ids; 3412 head->shared = info->is_shared; 3413 kref_init(&head->ref); 3414 3415 if (head->ids.csi) { 3416 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3417 if (ret) 3418 goto out_cleanup_srcu; 3419 } else 3420 head->effects = ctrl->effects; 3421 3422 ret = nvme_mpath_alloc_disk(ctrl, head); 3423 if (ret) 3424 goto out_cleanup_srcu; 3425 3426 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3427 3428 kref_get(&ctrl->subsys->ref); 3429 3430 return head; 3431 out_cleanup_srcu: 3432 cleanup_srcu_struct(&head->srcu); 3433 out_ida_remove: 3434 ida_free(&ctrl->subsys->ns_ida, head->instance); 3435 out_free_head: 3436 kfree(head); 3437 out: 3438 if (ret > 0) 3439 ret = blk_status_to_errno(nvme_error_status(ret)); 3440 return ERR_PTR(ret); 3441 } 3442 nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3443 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3444 struct nvme_ns_ids *ids) 3445 { 3446 struct nvme_subsystem *s; 3447 int ret = 0; 3448 3449 /* 3450 * Note that this check is racy as we try to avoid holding the global 3451 * lock over the whole ns_head creation. But it is only intended as 3452 * a sanity check anyway. 3453 */ 3454 mutex_lock(&nvme_subsystems_lock); 3455 list_for_each_entry(s, &nvme_subsystems, entry) { 3456 if (s == this) 3457 continue; 3458 mutex_lock(&s->lock); 3459 ret = nvme_subsys_check_duplicate_ids(s, ids); 3460 mutex_unlock(&s->lock); 3461 if (ret) 3462 break; 3463 } 3464 mutex_unlock(&nvme_subsystems_lock); 3465 3466 return ret; 3467 } 3468 nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3469 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3470 { 3471 struct nvme_ctrl *ctrl = ns->ctrl; 3472 struct nvme_ns_head *head = NULL; 3473 int ret; 3474 3475 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3476 if (ret) { 3477 /* 3478 * We've found two different namespaces on two different 3479 * subsystems that report the same ID. This is pretty nasty 3480 * for anything that actually requires unique device 3481 * identification. In the kernel we need this for multipathing, 3482 * and in user space the /dev/disk/by-id/ links rely on it. 3483 * 3484 * If the device also claims to be multi-path capable back off 3485 * here now and refuse the probe the second device as this is a 3486 * recipe for data corruption. If not this is probably a 3487 * cheap consumer device if on the PCIe bus, so let the user 3488 * proceed and use the shiny toy, but warn that with changing 3489 * probing order (which due to our async probing could just be 3490 * device taking longer to startup) the other device could show 3491 * up at any time. 3492 */ 3493 nvme_print_device_info(ctrl); 3494 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3495 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3496 info->is_shared)) { 3497 dev_err(ctrl->device, 3498 "ignoring nsid %d because of duplicate IDs\n", 3499 info->nsid); 3500 return ret; 3501 } 3502 3503 dev_err(ctrl->device, 3504 "clearing duplicate IDs for nsid %d\n", info->nsid); 3505 dev_err(ctrl->device, 3506 "use of /dev/disk/by-id/ may cause data corruption\n"); 3507 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3508 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3509 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3510 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3511 } 3512 3513 mutex_lock(&ctrl->subsys->lock); 3514 head = nvme_find_ns_head(ctrl, info->nsid); 3515 if (!head) { 3516 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3517 if (ret) { 3518 dev_err(ctrl->device, 3519 "duplicate IDs in subsystem for nsid %d\n", 3520 info->nsid); 3521 goto out_unlock; 3522 } 3523 head = nvme_alloc_ns_head(ctrl, info); 3524 if (IS_ERR(head)) { 3525 ret = PTR_ERR(head); 3526 goto out_unlock; 3527 } 3528 } else { 3529 ret = -EINVAL; 3530 if (!info->is_shared || !head->shared) { 3531 dev_err(ctrl->device, 3532 "Duplicate unshared namespace %d\n", 3533 info->nsid); 3534 goto out_put_ns_head; 3535 } 3536 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3537 dev_err(ctrl->device, 3538 "IDs don't match for shared namespace %d\n", 3539 info->nsid); 3540 goto out_put_ns_head; 3541 } 3542 3543 if (!multipath) { 3544 dev_warn(ctrl->device, 3545 "Found shared namespace %d, but multipathing not supported.\n", 3546 info->nsid); 3547 dev_warn_once(ctrl->device, 3548 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3549 } 3550 } 3551 3552 list_add_tail_rcu(&ns->siblings, &head->list); 3553 ns->head = head; 3554 mutex_unlock(&ctrl->subsys->lock); 3555 return 0; 3556 3557 out_put_ns_head: 3558 nvme_put_ns_head(head); 3559 out_unlock: 3560 mutex_unlock(&ctrl->subsys->lock); 3561 return ret; 3562 } 3563 nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3564 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3565 { 3566 struct nvme_ns *ns, *ret = NULL; 3567 int srcu_idx; 3568 3569 srcu_idx = srcu_read_lock(&ctrl->srcu); 3570 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 3571 srcu_read_lock_held(&ctrl->srcu)) { 3572 if (ns->head->ns_id == nsid) { 3573 if (!nvme_get_ns(ns)) 3574 continue; 3575 ret = ns; 3576 break; 3577 } 3578 if (ns->head->ns_id > nsid) 3579 break; 3580 } 3581 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3582 return ret; 3583 } 3584 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3585 3586 /* 3587 * Add the namespace to the controller list while keeping the list ordered. 3588 */ nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3589 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3590 { 3591 struct nvme_ns *tmp; 3592 3593 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3594 if (tmp->head->ns_id < ns->head->ns_id) { 3595 list_add_rcu(&ns->list, &tmp->list); 3596 return; 3597 } 3598 } 3599 list_add(&ns->list, &ns->ctrl->namespaces); 3600 } 3601 nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3602 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3603 { 3604 struct nvme_ns *ns; 3605 struct gendisk *disk; 3606 int node = ctrl->numa_node; 3607 3608 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3609 if (!ns) 3610 return; 3611 3612 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3613 if (IS_ERR(disk)) 3614 goto out_free_ns; 3615 disk->fops = &nvme_bdev_ops; 3616 disk->private_data = ns; 3617 3618 ns->disk = disk; 3619 ns->queue = disk->queue; 3620 3621 if (ctrl->opts && ctrl->opts->data_digest) 3622 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3623 3624 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3625 if (ctrl->ops->supports_pci_p2pdma && 3626 ctrl->ops->supports_pci_p2pdma(ctrl)) 3627 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3628 3629 ns->ctrl = ctrl; 3630 kref_init(&ns->kref); 3631 3632 if (nvme_init_ns_head(ns, info)) 3633 goto out_cleanup_disk; 3634 3635 /* 3636 * If multipathing is enabled, the device name for all disks and not 3637 * just those that represent shared namespaces needs to be based on the 3638 * subsystem instance. Using the controller instance for private 3639 * namespaces could lead to naming collisions between shared and private 3640 * namespaces if they don't use a common numbering scheme. 3641 * 3642 * If multipathing is not enabled, disk names must use the controller 3643 * instance as shared namespaces will show up as multiple block 3644 * devices. 3645 */ 3646 if (nvme_ns_head_multipath(ns->head)) { 3647 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3648 ctrl->instance, ns->head->instance); 3649 disk->flags |= GENHD_FL_HIDDEN; 3650 } else if (multipath) { 3651 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3652 ns->head->instance); 3653 } else { 3654 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3655 ns->head->instance); 3656 } 3657 3658 if (nvme_update_ns_info(ns, info)) 3659 goto out_unlink_ns; 3660 3661 mutex_lock(&ctrl->namespaces_lock); 3662 /* 3663 * Ensure that no namespaces are added to the ctrl list after the queues 3664 * are frozen, thereby avoiding a deadlock between scan and reset. 3665 */ 3666 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3667 mutex_unlock(&ctrl->namespaces_lock); 3668 goto out_unlink_ns; 3669 } 3670 nvme_ns_add_to_ctrl_list(ns); 3671 mutex_unlock(&ctrl->namespaces_lock); 3672 synchronize_srcu(&ctrl->srcu); 3673 nvme_get_ctrl(ctrl); 3674 3675 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3676 goto out_cleanup_ns_from_list; 3677 3678 if (!nvme_ns_head_multipath(ns->head)) 3679 nvme_add_ns_cdev(ns); 3680 3681 nvme_mpath_add_disk(ns, info->anagrpid); 3682 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3683 3684 return; 3685 3686 out_cleanup_ns_from_list: 3687 nvme_put_ctrl(ctrl); 3688 mutex_lock(&ctrl->namespaces_lock); 3689 list_del_rcu(&ns->list); 3690 mutex_unlock(&ctrl->namespaces_lock); 3691 synchronize_srcu(&ctrl->srcu); 3692 out_unlink_ns: 3693 mutex_lock(&ctrl->subsys->lock); 3694 list_del_rcu(&ns->siblings); 3695 if (list_empty(&ns->head->list)) 3696 list_del_init(&ns->head->entry); 3697 mutex_unlock(&ctrl->subsys->lock); 3698 nvme_put_ns_head(ns->head); 3699 out_cleanup_disk: 3700 put_disk(disk); 3701 out_free_ns: 3702 kfree(ns); 3703 } 3704 nvme_ns_remove(struct nvme_ns * ns)3705 static void nvme_ns_remove(struct nvme_ns *ns) 3706 { 3707 bool last_path = false; 3708 3709 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3710 return; 3711 3712 clear_bit(NVME_NS_READY, &ns->flags); 3713 set_capacity(ns->disk, 0); 3714 nvme_fault_inject_fini(&ns->fault_inject); 3715 3716 /* 3717 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3718 * this ns going back into current_path. 3719 */ 3720 synchronize_srcu(&ns->head->srcu); 3721 3722 /* wait for concurrent submissions */ 3723 if (nvme_mpath_clear_current_path(ns)) 3724 synchronize_srcu(&ns->head->srcu); 3725 3726 mutex_lock(&ns->ctrl->subsys->lock); 3727 list_del_rcu(&ns->siblings); 3728 if (list_empty(&ns->head->list)) { 3729 list_del_init(&ns->head->entry); 3730 last_path = true; 3731 } 3732 mutex_unlock(&ns->ctrl->subsys->lock); 3733 3734 /* guarantee not available in head->list */ 3735 synchronize_srcu(&ns->head->srcu); 3736 3737 if (!nvme_ns_head_multipath(ns->head)) 3738 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3739 del_gendisk(ns->disk); 3740 3741 mutex_lock(&ns->ctrl->namespaces_lock); 3742 list_del_rcu(&ns->list); 3743 mutex_unlock(&ns->ctrl->namespaces_lock); 3744 synchronize_srcu(&ns->ctrl->srcu); 3745 3746 if (last_path) 3747 nvme_mpath_shutdown_disk(ns->head); 3748 nvme_put_ns(ns); 3749 } 3750 nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)3751 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3752 { 3753 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3754 3755 if (ns) { 3756 nvme_ns_remove(ns); 3757 nvme_put_ns(ns); 3758 } 3759 } 3760 nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)3761 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3762 { 3763 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3764 3765 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3766 dev_err(ns->ctrl->device, 3767 "identifiers changed for nsid %d\n", ns->head->ns_id); 3768 goto out; 3769 } 3770 3771 ret = nvme_update_ns_info(ns, info); 3772 out: 3773 /* 3774 * Only remove the namespace if we got a fatal error back from the 3775 * device, otherwise ignore the error and just move on. 3776 * 3777 * TODO: we should probably schedule a delayed retry here. 3778 */ 3779 if (ret > 0 && (ret & NVME_SC_DNR)) 3780 nvme_ns_remove(ns); 3781 } 3782 nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)3783 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3784 { 3785 struct nvme_ns_info info = { .nsid = nsid }; 3786 struct nvme_ns *ns; 3787 int ret; 3788 3789 if (nvme_identify_ns_descs(ctrl, &info)) 3790 return; 3791 3792 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 3793 dev_warn(ctrl->device, 3794 "command set not reported for nsid: %d\n", nsid); 3795 return; 3796 } 3797 3798 /* 3799 * If available try to use the Command Set Idependent Identify Namespace 3800 * data structure to find all the generic information that is needed to 3801 * set up a namespace. If not fall back to the legacy version. 3802 */ 3803 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 3804 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 3805 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 3806 else 3807 ret = nvme_ns_info_from_identify(ctrl, &info); 3808 3809 if (info.is_removed) 3810 nvme_ns_remove_by_nsid(ctrl, nsid); 3811 3812 /* 3813 * Ignore the namespace if it is not ready. We will get an AEN once it 3814 * becomes ready and restart the scan. 3815 */ 3816 if (ret || !info.is_ready) 3817 return; 3818 3819 ns = nvme_find_get_ns(ctrl, nsid); 3820 if (ns) { 3821 nvme_validate_ns(ns, &info); 3822 nvme_put_ns(ns); 3823 } else { 3824 nvme_alloc_ns(ctrl, &info); 3825 } 3826 } 3827 nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)3828 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3829 unsigned nsid) 3830 { 3831 struct nvme_ns *ns, *next; 3832 LIST_HEAD(rm_list); 3833 3834 mutex_lock(&ctrl->namespaces_lock); 3835 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3836 if (ns->head->ns_id > nsid) { 3837 list_del_rcu(&ns->list); 3838 synchronize_srcu(&ctrl->srcu); 3839 list_add_tail_rcu(&ns->list, &rm_list); 3840 } 3841 } 3842 mutex_unlock(&ctrl->namespaces_lock); 3843 3844 list_for_each_entry_safe(ns, next, &rm_list, list) 3845 nvme_ns_remove(ns); 3846 } 3847 nvme_scan_ns_list(struct nvme_ctrl * ctrl)3848 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3849 { 3850 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3851 __le32 *ns_list; 3852 u32 prev = 0; 3853 int ret = 0, i; 3854 3855 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3856 if (!ns_list) 3857 return -ENOMEM; 3858 3859 for (;;) { 3860 struct nvme_command cmd = { 3861 .identify.opcode = nvme_admin_identify, 3862 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3863 .identify.nsid = cpu_to_le32(prev), 3864 }; 3865 3866 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3867 NVME_IDENTIFY_DATA_SIZE); 3868 if (ret) { 3869 dev_warn(ctrl->device, 3870 "Identify NS List failed (status=0x%x)\n", ret); 3871 goto free; 3872 } 3873 3874 for (i = 0; i < nr_entries; i++) { 3875 u32 nsid = le32_to_cpu(ns_list[i]); 3876 3877 if (!nsid) /* end of the list? */ 3878 goto out; 3879 nvme_scan_ns(ctrl, nsid); 3880 while (++prev < nsid) 3881 nvme_ns_remove_by_nsid(ctrl, prev); 3882 } 3883 } 3884 out: 3885 nvme_remove_invalid_namespaces(ctrl, prev); 3886 free: 3887 kfree(ns_list); 3888 return ret; 3889 } 3890 nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)3891 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 3892 { 3893 struct nvme_id_ctrl *id; 3894 u32 nn, i; 3895 3896 if (nvme_identify_ctrl(ctrl, &id)) 3897 return; 3898 nn = le32_to_cpu(id->nn); 3899 kfree(id); 3900 3901 for (i = 1; i <= nn; i++) 3902 nvme_scan_ns(ctrl, i); 3903 3904 nvme_remove_invalid_namespaces(ctrl, nn); 3905 } 3906 nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)3907 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3908 { 3909 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3910 __le32 *log; 3911 int error; 3912 3913 log = kzalloc(log_size, GFP_KERNEL); 3914 if (!log) 3915 return; 3916 3917 /* 3918 * We need to read the log to clear the AEN, but we don't want to rely 3919 * on it for the changed namespace information as userspace could have 3920 * raced with us in reading the log page, which could cause us to miss 3921 * updates. 3922 */ 3923 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 3924 NVME_CSI_NVM, log, log_size, 0); 3925 if (error) 3926 dev_warn(ctrl->device, 3927 "reading changed ns log failed: %d\n", error); 3928 3929 kfree(log); 3930 } 3931 nvme_scan_work(struct work_struct * work)3932 static void nvme_scan_work(struct work_struct *work) 3933 { 3934 struct nvme_ctrl *ctrl = 3935 container_of(work, struct nvme_ctrl, scan_work); 3936 int ret; 3937 3938 /* No tagset on a live ctrl means IO queues could not created */ 3939 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 3940 return; 3941 3942 /* 3943 * Identify controller limits can change at controller reset due to 3944 * new firmware download, even though it is not common we cannot ignore 3945 * such scenario. Controller's non-mdts limits are reported in the unit 3946 * of logical blocks that is dependent on the format of attached 3947 * namespace. Hence re-read the limits at the time of ns allocation. 3948 */ 3949 ret = nvme_init_non_mdts_limits(ctrl); 3950 if (ret < 0) { 3951 dev_warn(ctrl->device, 3952 "reading non-mdts-limits failed: %d\n", ret); 3953 return; 3954 } 3955 3956 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3957 dev_info(ctrl->device, "rescanning namespaces.\n"); 3958 nvme_clear_changed_ns_log(ctrl); 3959 } 3960 3961 mutex_lock(&ctrl->scan_lock); 3962 if (nvme_ctrl_limited_cns(ctrl)) { 3963 nvme_scan_ns_sequential(ctrl); 3964 } else { 3965 /* 3966 * Fall back to sequential scan if DNR is set to handle broken 3967 * devices which should support Identify NS List (as per the VS 3968 * they report) but don't actually support it. 3969 */ 3970 ret = nvme_scan_ns_list(ctrl); 3971 if (ret > 0 && ret & NVME_SC_DNR) 3972 nvme_scan_ns_sequential(ctrl); 3973 } 3974 mutex_unlock(&ctrl->scan_lock); 3975 } 3976 3977 /* 3978 * This function iterates the namespace list unlocked to allow recovery from 3979 * controller failure. It is up to the caller to ensure the namespace list is 3980 * not modified by scan work while this function is executing. 3981 */ nvme_remove_namespaces(struct nvme_ctrl * ctrl)3982 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3983 { 3984 struct nvme_ns *ns, *next; 3985 LIST_HEAD(ns_list); 3986 3987 /* 3988 * make sure to requeue I/O to all namespaces as these 3989 * might result from the scan itself and must complete 3990 * for the scan_work to make progress 3991 */ 3992 nvme_mpath_clear_ctrl_paths(ctrl); 3993 3994 /* 3995 * Unquiesce io queues so any pending IO won't hang, especially 3996 * those submitted from scan work 3997 */ 3998 nvme_unquiesce_io_queues(ctrl); 3999 4000 /* prevent racing with ns scanning */ 4001 flush_work(&ctrl->scan_work); 4002 4003 /* 4004 * The dead states indicates the controller was not gracefully 4005 * disconnected. In that case, we won't be able to flush any data while 4006 * removing the namespaces' disks; fail all the queues now to avoid 4007 * potentially having to clean up the failed sync later. 4008 */ 4009 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4010 nvme_mark_namespaces_dead(ctrl); 4011 4012 /* this is a no-op when called from the controller reset handler */ 4013 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4014 4015 mutex_lock(&ctrl->namespaces_lock); 4016 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4017 mutex_unlock(&ctrl->namespaces_lock); 4018 synchronize_srcu(&ctrl->srcu); 4019 4020 list_for_each_entry_safe(ns, next, &ns_list, list) 4021 nvme_ns_remove(ns); 4022 } 4023 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4024 nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4025 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4026 { 4027 const struct nvme_ctrl *ctrl = 4028 container_of(dev, struct nvme_ctrl, ctrl_device); 4029 struct nvmf_ctrl_options *opts = ctrl->opts; 4030 int ret; 4031 4032 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4033 if (ret) 4034 return ret; 4035 4036 if (opts) { 4037 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4038 if (ret) 4039 return ret; 4040 4041 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4042 opts->trsvcid ?: "none"); 4043 if (ret) 4044 return ret; 4045 4046 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4047 opts->host_traddr ?: "none"); 4048 if (ret) 4049 return ret; 4050 4051 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4052 opts->host_iface ?: "none"); 4053 } 4054 return ret; 4055 } 4056 nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4057 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4058 { 4059 char *envp[2] = { envdata, NULL }; 4060 4061 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4062 } 4063 nvme_aen_uevent(struct nvme_ctrl * ctrl)4064 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4065 { 4066 char *envp[2] = { NULL, NULL }; 4067 u32 aen_result = ctrl->aen_result; 4068 4069 ctrl->aen_result = 0; 4070 if (!aen_result) 4071 return; 4072 4073 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4074 if (!envp[0]) 4075 return; 4076 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4077 kfree(envp[0]); 4078 } 4079 nvme_async_event_work(struct work_struct * work)4080 static void nvme_async_event_work(struct work_struct *work) 4081 { 4082 struct nvme_ctrl *ctrl = 4083 container_of(work, struct nvme_ctrl, async_event_work); 4084 4085 nvme_aen_uevent(ctrl); 4086 4087 /* 4088 * The transport drivers must guarantee AER submission here is safe by 4089 * flushing ctrl async_event_work after changing the controller state 4090 * from LIVE and before freeing the admin queue. 4091 */ 4092 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4093 ctrl->ops->submit_async_event(ctrl); 4094 } 4095 nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4096 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4097 { 4098 4099 u32 csts; 4100 4101 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4102 return false; 4103 4104 if (csts == ~0) 4105 return false; 4106 4107 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4108 } 4109 nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4110 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4111 { 4112 struct nvme_fw_slot_info_log *log; 4113 4114 log = kmalloc(sizeof(*log), GFP_KERNEL); 4115 if (!log) 4116 return; 4117 4118 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4119 log, sizeof(*log), 0)) 4120 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4121 kfree(log); 4122 } 4123 nvme_fw_act_work(struct work_struct * work)4124 static void nvme_fw_act_work(struct work_struct *work) 4125 { 4126 struct nvme_ctrl *ctrl = container_of(work, 4127 struct nvme_ctrl, fw_act_work); 4128 unsigned long fw_act_timeout; 4129 4130 nvme_auth_stop(ctrl); 4131 4132 if (ctrl->mtfa) 4133 fw_act_timeout = jiffies + 4134 msecs_to_jiffies(ctrl->mtfa * 100); 4135 else 4136 fw_act_timeout = jiffies + 4137 msecs_to_jiffies(admin_timeout * 1000); 4138 4139 nvme_quiesce_io_queues(ctrl); 4140 while (nvme_ctrl_pp_status(ctrl)) { 4141 if (time_after(jiffies, fw_act_timeout)) { 4142 dev_warn(ctrl->device, 4143 "Fw activation timeout, reset controller\n"); 4144 nvme_try_sched_reset(ctrl); 4145 return; 4146 } 4147 msleep(100); 4148 } 4149 4150 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4151 return; 4152 4153 nvme_unquiesce_io_queues(ctrl); 4154 /* read FW slot information to clear the AER */ 4155 nvme_get_fw_slot_info(ctrl); 4156 4157 queue_work(nvme_wq, &ctrl->async_event_work); 4158 } 4159 nvme_aer_type(u32 result)4160 static u32 nvme_aer_type(u32 result) 4161 { 4162 return result & 0x7; 4163 } 4164 nvme_aer_subtype(u32 result)4165 static u32 nvme_aer_subtype(u32 result) 4166 { 4167 return (result & 0xff00) >> 8; 4168 } 4169 nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4170 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4171 { 4172 u32 aer_notice_type = nvme_aer_subtype(result); 4173 bool requeue = true; 4174 4175 switch (aer_notice_type) { 4176 case NVME_AER_NOTICE_NS_CHANGED: 4177 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4178 nvme_queue_scan(ctrl); 4179 break; 4180 case NVME_AER_NOTICE_FW_ACT_STARTING: 4181 /* 4182 * We are (ab)using the RESETTING state to prevent subsequent 4183 * recovery actions from interfering with the controller's 4184 * firmware activation. 4185 */ 4186 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4187 requeue = false; 4188 queue_work(nvme_wq, &ctrl->fw_act_work); 4189 } 4190 break; 4191 #ifdef CONFIG_NVME_MULTIPATH 4192 case NVME_AER_NOTICE_ANA: 4193 if (!ctrl->ana_log_buf) 4194 break; 4195 queue_work(nvme_wq, &ctrl->ana_work); 4196 break; 4197 #endif 4198 case NVME_AER_NOTICE_DISC_CHANGED: 4199 ctrl->aen_result = result; 4200 break; 4201 default: 4202 dev_warn(ctrl->device, "async event result %08x\n", result); 4203 } 4204 return requeue; 4205 } 4206 nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4207 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4208 { 4209 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4210 nvme_reset_ctrl(ctrl); 4211 } 4212 nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4213 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4214 volatile union nvme_result *res) 4215 { 4216 u32 result = le32_to_cpu(res->u32); 4217 u32 aer_type = nvme_aer_type(result); 4218 u32 aer_subtype = nvme_aer_subtype(result); 4219 bool requeue = true; 4220 4221 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4222 return; 4223 4224 trace_nvme_async_event(ctrl, result); 4225 switch (aer_type) { 4226 case NVME_AER_NOTICE: 4227 requeue = nvme_handle_aen_notice(ctrl, result); 4228 break; 4229 case NVME_AER_ERROR: 4230 /* 4231 * For a persistent internal error, don't run async_event_work 4232 * to submit a new AER. The controller reset will do it. 4233 */ 4234 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4235 nvme_handle_aer_persistent_error(ctrl); 4236 return; 4237 } 4238 fallthrough; 4239 case NVME_AER_SMART: 4240 case NVME_AER_CSS: 4241 case NVME_AER_VS: 4242 ctrl->aen_result = result; 4243 break; 4244 default: 4245 break; 4246 } 4247 4248 if (requeue) 4249 queue_work(nvme_wq, &ctrl->async_event_work); 4250 } 4251 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4252 nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4253 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4254 const struct blk_mq_ops *ops, unsigned int cmd_size) 4255 { 4256 int ret; 4257 4258 memset(set, 0, sizeof(*set)); 4259 set->ops = ops; 4260 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4261 if (ctrl->ops->flags & NVME_F_FABRICS) 4262 /* Reserved for fabric connect and keep alive */ 4263 set->reserved_tags = 2; 4264 set->numa_node = ctrl->numa_node; 4265 set->flags = BLK_MQ_F_NO_SCHED; 4266 if (ctrl->ops->flags & NVME_F_BLOCKING) 4267 set->flags |= BLK_MQ_F_BLOCKING; 4268 set->cmd_size = cmd_size; 4269 set->driver_data = ctrl; 4270 set->nr_hw_queues = 1; 4271 set->timeout = NVME_ADMIN_TIMEOUT; 4272 ret = blk_mq_alloc_tag_set(set); 4273 if (ret) 4274 return ret; 4275 4276 ctrl->admin_q = blk_mq_init_queue(set); 4277 if (IS_ERR(ctrl->admin_q)) { 4278 ret = PTR_ERR(ctrl->admin_q); 4279 goto out_free_tagset; 4280 } 4281 4282 if (ctrl->ops->flags & NVME_F_FABRICS) { 4283 ctrl->fabrics_q = blk_mq_init_queue(set); 4284 if (IS_ERR(ctrl->fabrics_q)) { 4285 ret = PTR_ERR(ctrl->fabrics_q); 4286 goto out_cleanup_admin_q; 4287 } 4288 } 4289 4290 ctrl->admin_tagset = set; 4291 return 0; 4292 4293 out_cleanup_admin_q: 4294 blk_mq_destroy_queue(ctrl->admin_q); 4295 blk_put_queue(ctrl->admin_q); 4296 out_free_tagset: 4297 blk_mq_free_tag_set(set); 4298 ctrl->admin_q = NULL; 4299 ctrl->fabrics_q = NULL; 4300 return ret; 4301 } 4302 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4303 nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4304 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4305 { 4306 blk_mq_destroy_queue(ctrl->admin_q); 4307 blk_put_queue(ctrl->admin_q); 4308 if (ctrl->ops->flags & NVME_F_FABRICS) { 4309 blk_mq_destroy_queue(ctrl->fabrics_q); 4310 blk_put_queue(ctrl->fabrics_q); 4311 } 4312 blk_mq_free_tag_set(ctrl->admin_tagset); 4313 } 4314 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4315 nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4316 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4317 const struct blk_mq_ops *ops, unsigned int nr_maps, 4318 unsigned int cmd_size) 4319 { 4320 int ret; 4321 4322 memset(set, 0, sizeof(*set)); 4323 set->ops = ops; 4324 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4325 /* 4326 * Some Apple controllers requires tags to be unique across admin and 4327 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4328 */ 4329 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4330 set->reserved_tags = NVME_AQ_DEPTH; 4331 else if (ctrl->ops->flags & NVME_F_FABRICS) 4332 /* Reserved for fabric connect */ 4333 set->reserved_tags = 1; 4334 set->numa_node = ctrl->numa_node; 4335 set->flags = BLK_MQ_F_SHOULD_MERGE; 4336 if (ctrl->ops->flags & NVME_F_BLOCKING) 4337 set->flags |= BLK_MQ_F_BLOCKING; 4338 set->cmd_size = cmd_size, 4339 set->driver_data = ctrl; 4340 set->nr_hw_queues = ctrl->queue_count - 1; 4341 set->timeout = NVME_IO_TIMEOUT; 4342 set->nr_maps = nr_maps; 4343 ret = blk_mq_alloc_tag_set(set); 4344 if (ret) 4345 return ret; 4346 4347 if (ctrl->ops->flags & NVME_F_FABRICS) { 4348 ctrl->connect_q = blk_mq_init_queue(set); 4349 if (IS_ERR(ctrl->connect_q)) { 4350 ret = PTR_ERR(ctrl->connect_q); 4351 goto out_free_tag_set; 4352 } 4353 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, 4354 ctrl->connect_q); 4355 } 4356 4357 ctrl->tagset = set; 4358 return 0; 4359 4360 out_free_tag_set: 4361 blk_mq_free_tag_set(set); 4362 ctrl->connect_q = NULL; 4363 return ret; 4364 } 4365 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4366 nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4367 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4368 { 4369 if (ctrl->ops->flags & NVME_F_FABRICS) { 4370 blk_mq_destroy_queue(ctrl->connect_q); 4371 blk_put_queue(ctrl->connect_q); 4372 } 4373 blk_mq_free_tag_set(ctrl->tagset); 4374 } 4375 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4376 nvme_stop_ctrl(struct nvme_ctrl * ctrl)4377 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4378 { 4379 nvme_mpath_stop(ctrl); 4380 nvme_auth_stop(ctrl); 4381 nvme_stop_keep_alive(ctrl); 4382 nvme_stop_failfast_work(ctrl); 4383 flush_work(&ctrl->async_event_work); 4384 cancel_work_sync(&ctrl->fw_act_work); 4385 if (ctrl->ops->stop_ctrl) 4386 ctrl->ops->stop_ctrl(ctrl); 4387 } 4388 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4389 nvme_start_ctrl(struct nvme_ctrl * ctrl)4390 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4391 { 4392 nvme_start_keep_alive(ctrl); 4393 4394 nvme_enable_aen(ctrl); 4395 4396 /* 4397 * persistent discovery controllers need to send indication to userspace 4398 * to re-read the discovery log page to learn about possible changes 4399 * that were missed. We identify persistent discovery controllers by 4400 * checking that they started once before, hence are reconnecting back. 4401 */ 4402 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4403 nvme_discovery_ctrl(ctrl)) 4404 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4405 4406 if (ctrl->queue_count > 1) { 4407 nvme_queue_scan(ctrl); 4408 nvme_unquiesce_io_queues(ctrl); 4409 nvme_mpath_update(ctrl); 4410 } 4411 4412 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4413 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4414 } 4415 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4416 nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4417 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4418 { 4419 nvme_hwmon_exit(ctrl); 4420 nvme_fault_inject_fini(&ctrl->fault_inject); 4421 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4422 cdev_device_del(&ctrl->cdev, ctrl->device); 4423 nvme_put_ctrl(ctrl); 4424 } 4425 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4426 nvme_free_cels(struct nvme_ctrl * ctrl)4427 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4428 { 4429 struct nvme_effects_log *cel; 4430 unsigned long i; 4431 4432 xa_for_each(&ctrl->cels, i, cel) { 4433 xa_erase(&ctrl->cels, i); 4434 kfree(cel); 4435 } 4436 4437 xa_destroy(&ctrl->cels); 4438 } 4439 nvme_free_ctrl(struct device * dev)4440 static void nvme_free_ctrl(struct device *dev) 4441 { 4442 struct nvme_ctrl *ctrl = 4443 container_of(dev, struct nvme_ctrl, ctrl_device); 4444 struct nvme_subsystem *subsys = ctrl->subsys; 4445 4446 if (!subsys || ctrl->instance != subsys->instance) 4447 ida_free(&nvme_instance_ida, ctrl->instance); 4448 4449 nvme_free_cels(ctrl); 4450 nvme_mpath_uninit(ctrl); 4451 cleanup_srcu_struct(&ctrl->srcu); 4452 nvme_auth_stop(ctrl); 4453 nvme_auth_free(ctrl); 4454 __free_page(ctrl->discard_page); 4455 free_opal_dev(ctrl->opal_dev); 4456 4457 if (subsys) { 4458 mutex_lock(&nvme_subsystems_lock); 4459 list_del(&ctrl->subsys_entry); 4460 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4461 mutex_unlock(&nvme_subsystems_lock); 4462 } 4463 4464 ctrl->ops->free_ctrl(ctrl); 4465 4466 if (subsys) 4467 nvme_put_subsystem(subsys); 4468 } 4469 4470 /* 4471 * Initialize a NVMe controller structures. This needs to be called during 4472 * earliest initialization so that we have the initialized structured around 4473 * during probing. 4474 */ nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4475 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4476 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4477 { 4478 int ret; 4479 4480 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4481 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4482 spin_lock_init(&ctrl->lock); 4483 mutex_init(&ctrl->namespaces_lock); 4484 4485 ret = init_srcu_struct(&ctrl->srcu); 4486 if (ret) 4487 return ret; 4488 4489 mutex_init(&ctrl->scan_lock); 4490 INIT_LIST_HEAD(&ctrl->namespaces); 4491 xa_init(&ctrl->cels); 4492 ctrl->dev = dev; 4493 ctrl->ops = ops; 4494 ctrl->quirks = quirks; 4495 ctrl->numa_node = NUMA_NO_NODE; 4496 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4497 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4498 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4499 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4500 init_waitqueue_head(&ctrl->state_wq); 4501 4502 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4503 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4504 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4505 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4506 4507 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4508 PAGE_SIZE); 4509 ctrl->discard_page = alloc_page(GFP_KERNEL); 4510 if (!ctrl->discard_page) { 4511 ret = -ENOMEM; 4512 goto out; 4513 } 4514 4515 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4516 if (ret < 0) 4517 goto out; 4518 ctrl->instance = ret; 4519 4520 device_initialize(&ctrl->ctrl_device); 4521 ctrl->device = &ctrl->ctrl_device; 4522 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4523 ctrl->instance); 4524 ctrl->device->class = nvme_class; 4525 ctrl->device->parent = ctrl->dev; 4526 if (ops->dev_attr_groups) 4527 ctrl->device->groups = ops->dev_attr_groups; 4528 else 4529 ctrl->device->groups = nvme_dev_attr_groups; 4530 ctrl->device->release = nvme_free_ctrl; 4531 dev_set_drvdata(ctrl->device, ctrl); 4532 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4533 if (ret) 4534 goto out_release_instance; 4535 4536 nvme_get_ctrl(ctrl); 4537 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4538 ctrl->cdev.owner = ops->module; 4539 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4540 if (ret) 4541 goto out_free_name; 4542 4543 /* 4544 * Initialize latency tolerance controls. The sysfs files won't 4545 * be visible to userspace unless the device actually supports APST. 4546 */ 4547 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4548 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4549 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4550 4551 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4552 nvme_mpath_init_ctrl(ctrl); 4553 ret = nvme_auth_init_ctrl(ctrl); 4554 if (ret) 4555 goto out_free_cdev; 4556 4557 return 0; 4558 out_free_cdev: 4559 nvme_fault_inject_fini(&ctrl->fault_inject); 4560 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4561 cdev_device_del(&ctrl->cdev, ctrl->device); 4562 out_free_name: 4563 nvme_put_ctrl(ctrl); 4564 kfree_const(ctrl->device->kobj.name); 4565 out_release_instance: 4566 ida_free(&nvme_instance_ida, ctrl->instance); 4567 out: 4568 if (ctrl->discard_page) 4569 __free_page(ctrl->discard_page); 4570 cleanup_srcu_struct(&ctrl->srcu); 4571 return ret; 4572 } 4573 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4574 4575 /* let I/O to all namespaces fail in preparation for surprise removal */ nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)4576 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4577 { 4578 struct nvme_ns *ns; 4579 int srcu_idx; 4580 4581 srcu_idx = srcu_read_lock(&ctrl->srcu); 4582 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4583 srcu_read_lock_held(&ctrl->srcu)) 4584 blk_mark_disk_dead(ns->disk); 4585 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4586 } 4587 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4588 nvme_unfreeze(struct nvme_ctrl * ctrl)4589 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4590 { 4591 struct nvme_ns *ns; 4592 int srcu_idx; 4593 4594 srcu_idx = srcu_read_lock(&ctrl->srcu); 4595 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4596 srcu_read_lock_held(&ctrl->srcu)) 4597 blk_mq_unfreeze_queue(ns->queue); 4598 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4599 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4600 } 4601 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4602 nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4603 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4604 { 4605 struct nvme_ns *ns; 4606 int srcu_idx; 4607 4608 srcu_idx = srcu_read_lock(&ctrl->srcu); 4609 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4610 srcu_read_lock_held(&ctrl->srcu)) { 4611 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4612 if (timeout <= 0) 4613 break; 4614 } 4615 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4616 return timeout; 4617 } 4618 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4619 nvme_wait_freeze(struct nvme_ctrl * ctrl)4620 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4621 { 4622 struct nvme_ns *ns; 4623 int srcu_idx; 4624 4625 srcu_idx = srcu_read_lock(&ctrl->srcu); 4626 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4627 srcu_read_lock_held(&ctrl->srcu)) 4628 blk_mq_freeze_queue_wait(ns->queue); 4629 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4630 } 4631 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4632 nvme_start_freeze(struct nvme_ctrl * ctrl)4633 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4634 { 4635 struct nvme_ns *ns; 4636 int srcu_idx; 4637 4638 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4639 srcu_idx = srcu_read_lock(&ctrl->srcu); 4640 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4641 srcu_read_lock_held(&ctrl->srcu)) 4642 blk_freeze_queue_start(ns->queue); 4643 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4644 } 4645 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4646 nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)4647 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4648 { 4649 if (!ctrl->tagset) 4650 return; 4651 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4652 blk_mq_quiesce_tagset(ctrl->tagset); 4653 else 4654 blk_mq_wait_quiesce_done(ctrl->tagset); 4655 } 4656 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4657 nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)4658 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4659 { 4660 if (!ctrl->tagset) 4661 return; 4662 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4663 blk_mq_unquiesce_tagset(ctrl->tagset); 4664 } 4665 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4666 nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)4667 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4668 { 4669 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4670 blk_mq_quiesce_queue(ctrl->admin_q); 4671 else 4672 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4673 } 4674 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4675 nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)4676 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4677 { 4678 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4679 blk_mq_unquiesce_queue(ctrl->admin_q); 4680 } 4681 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4682 nvme_sync_io_queues(struct nvme_ctrl * ctrl)4683 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4684 { 4685 struct nvme_ns *ns; 4686 int srcu_idx; 4687 4688 srcu_idx = srcu_read_lock(&ctrl->srcu); 4689 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4690 srcu_read_lock_held(&ctrl->srcu)) 4691 blk_sync_queue(ns->queue); 4692 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4693 } 4694 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4695 nvme_sync_queues(struct nvme_ctrl * ctrl)4696 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4697 { 4698 nvme_sync_io_queues(ctrl); 4699 if (ctrl->admin_q) 4700 blk_sync_queue(ctrl->admin_q); 4701 } 4702 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4703 nvme_ctrl_from_file(struct file * file)4704 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4705 { 4706 if (file->f_op != &nvme_dev_fops) 4707 return NULL; 4708 return file->private_data; 4709 } 4710 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4711 4712 /* 4713 * Check we didn't inadvertently grow the command structure sizes: 4714 */ _nvme_check_size(void)4715 static inline void _nvme_check_size(void) 4716 { 4717 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4718 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4719 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4720 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4721 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4722 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4723 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4724 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4725 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4726 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4727 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4728 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4729 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4730 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4731 NVME_IDENTIFY_DATA_SIZE); 4732 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4733 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4734 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4735 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4736 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4737 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4738 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4739 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4740 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4741 } 4742 4743 nvme_core_init(void)4744 static int __init nvme_core_init(void) 4745 { 4746 int result = -ENOMEM; 4747 4748 _nvme_check_size(); 4749 4750 nvme_wq = alloc_workqueue("nvme-wq", 4751 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4752 if (!nvme_wq) 4753 goto out; 4754 4755 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4756 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4757 if (!nvme_reset_wq) 4758 goto destroy_wq; 4759 4760 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4761 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4762 if (!nvme_delete_wq) 4763 goto destroy_reset_wq; 4764 4765 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4766 NVME_MINORS, "nvme"); 4767 if (result < 0) 4768 goto destroy_delete_wq; 4769 4770 nvme_class = class_create("nvme"); 4771 if (IS_ERR(nvme_class)) { 4772 result = PTR_ERR(nvme_class); 4773 goto unregister_chrdev; 4774 } 4775 nvme_class->dev_uevent = nvme_class_uevent; 4776 4777 nvme_subsys_class = class_create("nvme-subsystem"); 4778 if (IS_ERR(nvme_subsys_class)) { 4779 result = PTR_ERR(nvme_subsys_class); 4780 goto destroy_class; 4781 } 4782 4783 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4784 "nvme-generic"); 4785 if (result < 0) 4786 goto destroy_subsys_class; 4787 4788 nvme_ns_chr_class = class_create("nvme-generic"); 4789 if (IS_ERR(nvme_ns_chr_class)) { 4790 result = PTR_ERR(nvme_ns_chr_class); 4791 goto unregister_generic_ns; 4792 } 4793 4794 result = nvme_init_auth(); 4795 if (result) 4796 goto destroy_ns_chr; 4797 return 0; 4798 4799 destroy_ns_chr: 4800 class_destroy(nvme_ns_chr_class); 4801 unregister_generic_ns: 4802 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4803 destroy_subsys_class: 4804 class_destroy(nvme_subsys_class); 4805 destroy_class: 4806 class_destroy(nvme_class); 4807 unregister_chrdev: 4808 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4809 destroy_delete_wq: 4810 destroy_workqueue(nvme_delete_wq); 4811 destroy_reset_wq: 4812 destroy_workqueue(nvme_reset_wq); 4813 destroy_wq: 4814 destroy_workqueue(nvme_wq); 4815 out: 4816 return result; 4817 } 4818 nvme_core_exit(void)4819 static void __exit nvme_core_exit(void) 4820 { 4821 nvme_exit_auth(); 4822 class_destroy(nvme_ns_chr_class); 4823 class_destroy(nvme_subsys_class); 4824 class_destroy(nvme_class); 4825 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4826 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4827 destroy_workqueue(nvme_delete_wq); 4828 destroy_workqueue(nvme_reset_wq); 4829 destroy_workqueue(nvme_wq); 4830 ida_destroy(&nvme_ns_chr_minor_ida); 4831 ida_destroy(&nvme_instance_ida); 4832 } 4833 4834 MODULE_LICENSE("GPL"); 4835 MODULE_VERSION("1.0"); 4836 module_init(nvme_core_init); 4837 module_exit(nvme_core_exit); 4838