xref: /openbmc/linux/drivers/nvme/host/core.c (revision 36db6e8484ed455bbb320d89a119378897ae991c)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * NVM Express device driver
4   * Copyright (c) 2011-2014, Intel Corporation.
5   */
6  
7  #include <linux/blkdev.h>
8  #include <linux/blk-mq.h>
9  #include <linux/blk-integrity.h>
10  #include <linux/compat.h>
11  #include <linux/delay.h>
12  #include <linux/errno.h>
13  #include <linux/hdreg.h>
14  #include <linux/kernel.h>
15  #include <linux/module.h>
16  #include <linux/backing-dev.h>
17  #include <linux/slab.h>
18  #include <linux/types.h>
19  #include <linux/pr.h>
20  #include <linux/ptrace.h>
21  #include <linux/nvme_ioctl.h>
22  #include <linux/pm_qos.h>
23  #include <asm/unaligned.h>
24  
25  #include "nvme.h"
26  #include "fabrics.h"
27  #include <linux/nvme-auth.h>
28  
29  #define CREATE_TRACE_POINTS
30  #include "trace.h"
31  
32  #define NVME_MINORS		(1U << MINORBITS)
33  
34  struct nvme_ns_info {
35  	struct nvme_ns_ids ids;
36  	u32 nsid;
37  	__le32 anagrpid;
38  	bool is_shared;
39  	bool is_readonly;
40  	bool is_ready;
41  	bool is_removed;
42  };
43  
44  unsigned int admin_timeout = 60;
45  module_param(admin_timeout, uint, 0644);
46  MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47  EXPORT_SYMBOL_GPL(admin_timeout);
48  
49  unsigned int nvme_io_timeout = 30;
50  module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51  MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52  EXPORT_SYMBOL_GPL(nvme_io_timeout);
53  
54  static unsigned char shutdown_timeout = 5;
55  module_param(shutdown_timeout, byte, 0644);
56  MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57  
58  static u8 nvme_max_retries = 5;
59  module_param_named(max_retries, nvme_max_retries, byte, 0644);
60  MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61  
62  static unsigned long default_ps_max_latency_us = 100000;
63  module_param(default_ps_max_latency_us, ulong, 0644);
64  MODULE_PARM_DESC(default_ps_max_latency_us,
65  		 "max power saving latency for new devices; use PM QOS to change per device");
66  
67  static bool force_apst;
68  module_param(force_apst, bool, 0644);
69  MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70  
71  static unsigned long apst_primary_timeout_ms = 100;
72  module_param(apst_primary_timeout_ms, ulong, 0644);
73  MODULE_PARM_DESC(apst_primary_timeout_ms,
74  	"primary APST timeout in ms");
75  
76  static unsigned long apst_secondary_timeout_ms = 2000;
77  module_param(apst_secondary_timeout_ms, ulong, 0644);
78  MODULE_PARM_DESC(apst_secondary_timeout_ms,
79  	"secondary APST timeout in ms");
80  
81  static unsigned long apst_primary_latency_tol_us = 15000;
82  module_param(apst_primary_latency_tol_us, ulong, 0644);
83  MODULE_PARM_DESC(apst_primary_latency_tol_us,
84  	"primary APST latency tolerance in us");
85  
86  static unsigned long apst_secondary_latency_tol_us = 100000;
87  module_param(apst_secondary_latency_tol_us, ulong, 0644);
88  MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89  	"secondary APST latency tolerance in us");
90  
91  /*
92   * nvme_wq - hosts nvme related works that are not reset or delete
93   * nvme_reset_wq - hosts nvme reset works
94   * nvme_delete_wq - hosts nvme delete works
95   *
96   * nvme_wq will host works such as scan, aen handling, fw activation,
97   * keep-alive, periodic reconnects etc. nvme_reset_wq
98   * runs reset works which also flush works hosted on nvme_wq for
99   * serialization purposes. nvme_delete_wq host controller deletion
100   * works which flush reset works for serialization.
101   */
102  struct workqueue_struct *nvme_wq;
103  EXPORT_SYMBOL_GPL(nvme_wq);
104  
105  struct workqueue_struct *nvme_reset_wq;
106  EXPORT_SYMBOL_GPL(nvme_reset_wq);
107  
108  struct workqueue_struct *nvme_delete_wq;
109  EXPORT_SYMBOL_GPL(nvme_delete_wq);
110  
111  static LIST_HEAD(nvme_subsystems);
112  DEFINE_MUTEX(nvme_subsystems_lock);
113  
114  static DEFINE_IDA(nvme_instance_ida);
115  static dev_t nvme_ctrl_base_chr_devt;
116  static struct class *nvme_class;
117  static struct class *nvme_subsys_class;
118  
119  static DEFINE_IDA(nvme_ns_chr_minor_ida);
120  static dev_t nvme_ns_chr_devt;
121  static struct class *nvme_ns_chr_class;
122  
123  static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124  static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125  					   unsigned nsid);
126  static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127  				   struct nvme_command *cmd);
128  
nvme_queue_scan(struct nvme_ctrl * ctrl)129  void nvme_queue_scan(struct nvme_ctrl *ctrl)
130  {
131  	/*
132  	 * Only new queue scan work when admin and IO queues are both alive
133  	 */
134  	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
135  		queue_work(nvme_wq, &ctrl->scan_work);
136  }
137  
138  /*
139   * Use this function to proceed with scheduling reset_work for a controller
140   * that had previously been set to the resetting state. This is intended for
141   * code paths that can't be interrupted by other reset attempts. A hot removal
142   * may prevent this from succeeding.
143   */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)144  int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145  {
146  	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
147  		return -EBUSY;
148  	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149  		return -EBUSY;
150  	return 0;
151  }
152  EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153  
nvme_failfast_work(struct work_struct * work)154  static void nvme_failfast_work(struct work_struct *work)
155  {
156  	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157  			struct nvme_ctrl, failfast_work);
158  
159  	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
160  		return;
161  
162  	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163  	dev_info(ctrl->device, "failfast expired\n");
164  	nvme_kick_requeue_lists(ctrl);
165  }
166  
nvme_start_failfast_work(struct nvme_ctrl * ctrl)167  static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168  {
169  	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170  		return;
171  
172  	schedule_delayed_work(&ctrl->failfast_work,
173  			      ctrl->opts->fast_io_fail_tmo * HZ);
174  }
175  
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)176  static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177  {
178  	if (!ctrl->opts)
179  		return;
180  
181  	cancel_delayed_work_sync(&ctrl->failfast_work);
182  	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183  }
184  
185  
nvme_reset_ctrl(struct nvme_ctrl * ctrl)186  int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187  {
188  	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189  		return -EBUSY;
190  	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191  		return -EBUSY;
192  	return 0;
193  }
194  EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195  
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)196  int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197  {
198  	int ret;
199  
200  	ret = nvme_reset_ctrl(ctrl);
201  	if (!ret) {
202  		flush_work(&ctrl->reset_work);
203  		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
204  			ret = -ENETRESET;
205  	}
206  
207  	return ret;
208  }
209  
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)210  static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211  {
212  	dev_info(ctrl->device,
213  		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214  
215  	flush_work(&ctrl->reset_work);
216  	nvme_stop_ctrl(ctrl);
217  	nvme_remove_namespaces(ctrl);
218  	ctrl->ops->delete_ctrl(ctrl);
219  	nvme_uninit_ctrl(ctrl);
220  }
221  
nvme_delete_ctrl_work(struct work_struct * work)222  static void nvme_delete_ctrl_work(struct work_struct *work)
223  {
224  	struct nvme_ctrl *ctrl =
225  		container_of(work, struct nvme_ctrl, delete_work);
226  
227  	nvme_do_delete_ctrl(ctrl);
228  }
229  
nvme_delete_ctrl(struct nvme_ctrl * ctrl)230  int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231  {
232  	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233  		return -EBUSY;
234  	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235  		return -EBUSY;
236  	return 0;
237  }
238  EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239  
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)240  void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241  {
242  	/*
243  	 * Keep a reference until nvme_do_delete_ctrl() complete,
244  	 * since ->delete_ctrl can free the controller.
245  	 */
246  	nvme_get_ctrl(ctrl);
247  	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248  		nvme_do_delete_ctrl(ctrl);
249  	nvme_put_ctrl(ctrl);
250  }
251  
nvme_error_status(u16 status)252  static blk_status_t nvme_error_status(u16 status)
253  {
254  	switch (status & 0x7ff) {
255  	case NVME_SC_SUCCESS:
256  		return BLK_STS_OK;
257  	case NVME_SC_CAP_EXCEEDED:
258  		return BLK_STS_NOSPC;
259  	case NVME_SC_LBA_RANGE:
260  	case NVME_SC_CMD_INTERRUPTED:
261  	case NVME_SC_NS_NOT_READY:
262  		return BLK_STS_TARGET;
263  	case NVME_SC_BAD_ATTRIBUTES:
264  	case NVME_SC_ONCS_NOT_SUPPORTED:
265  	case NVME_SC_INVALID_OPCODE:
266  	case NVME_SC_INVALID_FIELD:
267  	case NVME_SC_INVALID_NS:
268  		return BLK_STS_NOTSUPP;
269  	case NVME_SC_WRITE_FAULT:
270  	case NVME_SC_READ_ERROR:
271  	case NVME_SC_UNWRITTEN_BLOCK:
272  	case NVME_SC_ACCESS_DENIED:
273  	case NVME_SC_READ_ONLY:
274  	case NVME_SC_COMPARE_FAILED:
275  		return BLK_STS_MEDIUM;
276  	case NVME_SC_GUARD_CHECK:
277  	case NVME_SC_APPTAG_CHECK:
278  	case NVME_SC_REFTAG_CHECK:
279  	case NVME_SC_INVALID_PI:
280  		return BLK_STS_PROTECTION;
281  	case NVME_SC_RESERVATION_CONFLICT:
282  		return BLK_STS_RESV_CONFLICT;
283  	case NVME_SC_HOST_PATH_ERROR:
284  		return BLK_STS_TRANSPORT;
285  	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286  		return BLK_STS_ZONE_ACTIVE_RESOURCE;
287  	case NVME_SC_ZONE_TOO_MANY_OPEN:
288  		return BLK_STS_ZONE_OPEN_RESOURCE;
289  	default:
290  		return BLK_STS_IOERR;
291  	}
292  }
293  
nvme_retry_req(struct request * req)294  static void nvme_retry_req(struct request *req)
295  {
296  	unsigned long delay = 0;
297  	u16 crd;
298  
299  	/* The mask and shift result must be <= 3 */
300  	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301  	if (crd)
302  		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303  
304  	nvme_req(req)->retries++;
305  	blk_mq_requeue_request(req, false);
306  	blk_mq_delay_kick_requeue_list(req->q, delay);
307  }
308  
nvme_log_error(struct request * req)309  static void nvme_log_error(struct request *req)
310  {
311  	struct nvme_ns *ns = req->q->queuedata;
312  	struct nvme_request *nr = nvme_req(req);
313  
314  	if (ns) {
315  		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316  		       ns->disk ? ns->disk->disk_name : "?",
317  		       nvme_get_opcode_str(nr->cmd->common.opcode),
318  		       nr->cmd->common.opcode,
319  		       (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320  		       (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321  		       nvme_get_error_status_str(nr->status),
322  		       nr->status >> 8 & 7,	/* Status Code Type */
323  		       nr->status & 0xff,	/* Status Code */
324  		       nr->status & NVME_SC_MORE ? "MORE " : "",
325  		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
326  		return;
327  	}
328  
329  	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330  			   dev_name(nr->ctrl->device),
331  			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332  			   nr->cmd->common.opcode,
333  			   nvme_get_error_status_str(nr->status),
334  			   nr->status >> 8 & 7,	/* Status Code Type */
335  			   nr->status & 0xff,	/* Status Code */
336  			   nr->status & NVME_SC_MORE ? "MORE " : "",
337  			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
338  }
339  
340  enum nvme_disposition {
341  	COMPLETE,
342  	RETRY,
343  	FAILOVER,
344  	AUTHENTICATE,
345  };
346  
nvme_decide_disposition(struct request * req)347  static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348  {
349  	if (likely(nvme_req(req)->status == 0))
350  		return COMPLETE;
351  
352  	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353  		return AUTHENTICATE;
354  
355  	if (blk_noretry_request(req) ||
356  	    (nvme_req(req)->status & NVME_SC_DNR) ||
357  	    nvme_req(req)->retries >= nvme_max_retries)
358  		return COMPLETE;
359  
360  	if (req->cmd_flags & REQ_NVME_MPATH) {
361  		if (nvme_is_path_error(nvme_req(req)->status) ||
362  		    blk_queue_dying(req->q))
363  			return FAILOVER;
364  	} else {
365  		if (blk_queue_dying(req->q))
366  			return COMPLETE;
367  	}
368  
369  	return RETRY;
370  }
371  
nvme_end_req_zoned(struct request * req)372  static inline void nvme_end_req_zoned(struct request *req)
373  {
374  	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375  	    req_op(req) == REQ_OP_ZONE_APPEND)
376  		req->__sector = nvme_lba_to_sect(req->q->queuedata,
377  			le64_to_cpu(nvme_req(req)->result.u64));
378  }
379  
nvme_end_req(struct request * req)380  void nvme_end_req(struct request *req)
381  {
382  	blk_status_t status = nvme_error_status(nvme_req(req)->status);
383  
384  	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385  		nvme_log_error(req);
386  	nvme_end_req_zoned(req);
387  	nvme_trace_bio_complete(req);
388  	if (req->cmd_flags & REQ_NVME_MPATH)
389  		nvme_mpath_end_request(req);
390  	blk_mq_end_request(req, status);
391  }
392  
nvme_complete_rq(struct request * req)393  void nvme_complete_rq(struct request *req)
394  {
395  	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396  
397  	trace_nvme_complete_rq(req);
398  	nvme_cleanup_cmd(req);
399  
400  	/*
401  	 * Completions of long-running commands should not be able to
402  	 * defer sending of periodic keep alives, since the controller
403  	 * may have completed processing such commands a long time ago
404  	 * (arbitrarily close to command submission time).
405  	 * req->deadline - req->timeout is the command submission time
406  	 * in jiffies.
407  	 */
408  	if (ctrl->kas &&
409  	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
410  		ctrl->comp_seen = true;
411  
412  	switch (nvme_decide_disposition(req)) {
413  	case COMPLETE:
414  		nvme_end_req(req);
415  		return;
416  	case RETRY:
417  		nvme_retry_req(req);
418  		return;
419  	case FAILOVER:
420  		nvme_failover_req(req);
421  		return;
422  	case AUTHENTICATE:
423  #ifdef CONFIG_NVME_AUTH
424  		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425  		nvme_retry_req(req);
426  #else
427  		nvme_end_req(req);
428  #endif
429  		return;
430  	}
431  }
432  EXPORT_SYMBOL_GPL(nvme_complete_rq);
433  
nvme_complete_batch_req(struct request * req)434  void nvme_complete_batch_req(struct request *req)
435  {
436  	trace_nvme_complete_rq(req);
437  	nvme_cleanup_cmd(req);
438  	nvme_end_req_zoned(req);
439  }
440  EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441  
442  /*
443   * Called to unwind from ->queue_rq on a failed command submission so that the
444   * multipathing code gets called to potentially failover to another path.
445   * The caller needs to unwind all transport specific resource allocations and
446   * must return propagate the return value.
447   */
nvme_host_path_error(struct request * req)448  blk_status_t nvme_host_path_error(struct request *req)
449  {
450  	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451  	blk_mq_set_request_complete(req);
452  	nvme_complete_rq(req);
453  	return BLK_STS_OK;
454  }
455  EXPORT_SYMBOL_GPL(nvme_host_path_error);
456  
nvme_cancel_request(struct request * req,void * data)457  bool nvme_cancel_request(struct request *req, void *data)
458  {
459  	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460  				"Cancelling I/O %d", req->tag);
461  
462  	/* don't abort one completed or idle request */
463  	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464  		return true;
465  
466  	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467  	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468  	blk_mq_complete_request(req);
469  	return true;
470  }
471  EXPORT_SYMBOL_GPL(nvme_cancel_request);
472  
nvme_cancel_tagset(struct nvme_ctrl * ctrl)473  void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474  {
475  	if (ctrl->tagset) {
476  		blk_mq_tagset_busy_iter(ctrl->tagset,
477  				nvme_cancel_request, ctrl);
478  		blk_mq_tagset_wait_completed_request(ctrl->tagset);
479  	}
480  }
481  EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482  
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)483  void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484  {
485  	if (ctrl->admin_tagset) {
486  		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487  				nvme_cancel_request, ctrl);
488  		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489  	}
490  }
491  EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492  
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)493  bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494  		enum nvme_ctrl_state new_state)
495  {
496  	enum nvme_ctrl_state old_state;
497  	unsigned long flags;
498  	bool changed = false;
499  
500  	spin_lock_irqsave(&ctrl->lock, flags);
501  
502  	old_state = nvme_ctrl_state(ctrl);
503  	switch (new_state) {
504  	case NVME_CTRL_LIVE:
505  		switch (old_state) {
506  		case NVME_CTRL_CONNECTING:
507  			changed = true;
508  			fallthrough;
509  		default:
510  			break;
511  		}
512  		break;
513  	case NVME_CTRL_RESETTING:
514  		switch (old_state) {
515  		case NVME_CTRL_NEW:
516  		case NVME_CTRL_LIVE:
517  			changed = true;
518  			fallthrough;
519  		default:
520  			break;
521  		}
522  		break;
523  	case NVME_CTRL_CONNECTING:
524  		switch (old_state) {
525  		case NVME_CTRL_NEW:
526  		case NVME_CTRL_RESETTING:
527  			changed = true;
528  			fallthrough;
529  		default:
530  			break;
531  		}
532  		break;
533  	case NVME_CTRL_DELETING:
534  		switch (old_state) {
535  		case NVME_CTRL_LIVE:
536  		case NVME_CTRL_RESETTING:
537  		case NVME_CTRL_CONNECTING:
538  			changed = true;
539  			fallthrough;
540  		default:
541  			break;
542  		}
543  		break;
544  	case NVME_CTRL_DELETING_NOIO:
545  		switch (old_state) {
546  		case NVME_CTRL_DELETING:
547  		case NVME_CTRL_DEAD:
548  			changed = true;
549  			fallthrough;
550  		default:
551  			break;
552  		}
553  		break;
554  	case NVME_CTRL_DEAD:
555  		switch (old_state) {
556  		case NVME_CTRL_DELETING:
557  			changed = true;
558  			fallthrough;
559  		default:
560  			break;
561  		}
562  		break;
563  	default:
564  		break;
565  	}
566  
567  	if (changed) {
568  		WRITE_ONCE(ctrl->state, new_state);
569  		wake_up_all(&ctrl->state_wq);
570  	}
571  
572  	spin_unlock_irqrestore(&ctrl->lock, flags);
573  	if (!changed)
574  		return false;
575  
576  	if (new_state == NVME_CTRL_LIVE) {
577  		if (old_state == NVME_CTRL_CONNECTING)
578  			nvme_stop_failfast_work(ctrl);
579  		nvme_kick_requeue_lists(ctrl);
580  	} else if (new_state == NVME_CTRL_CONNECTING &&
581  		old_state == NVME_CTRL_RESETTING) {
582  		nvme_start_failfast_work(ctrl);
583  	}
584  	return changed;
585  }
586  EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
587  
588  /*
589   * Waits for the controller state to be resetting, or returns false if it is
590   * not possible to ever transition to that state.
591   */
nvme_wait_reset(struct nvme_ctrl * ctrl)592  bool nvme_wait_reset(struct nvme_ctrl *ctrl)
593  {
594  	wait_event(ctrl->state_wq,
595  		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
596  		   nvme_state_terminal(ctrl));
597  	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
598  }
599  EXPORT_SYMBOL_GPL(nvme_wait_reset);
600  
nvme_free_ns_head(struct kref * ref)601  static void nvme_free_ns_head(struct kref *ref)
602  {
603  	struct nvme_ns_head *head =
604  		container_of(ref, struct nvme_ns_head, ref);
605  
606  	nvme_mpath_remove_disk(head);
607  	ida_free(&head->subsys->ns_ida, head->instance);
608  	cleanup_srcu_struct(&head->srcu);
609  	nvme_put_subsystem(head->subsys);
610  	kfree(head);
611  }
612  
nvme_tryget_ns_head(struct nvme_ns_head * head)613  bool nvme_tryget_ns_head(struct nvme_ns_head *head)
614  {
615  	return kref_get_unless_zero(&head->ref);
616  }
617  
nvme_put_ns_head(struct nvme_ns_head * head)618  void nvme_put_ns_head(struct nvme_ns_head *head)
619  {
620  	kref_put(&head->ref, nvme_free_ns_head);
621  }
622  
nvme_free_ns(struct kref * kref)623  static void nvme_free_ns(struct kref *kref)
624  {
625  	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
626  
627  	put_disk(ns->disk);
628  	nvme_put_ns_head(ns->head);
629  	nvme_put_ctrl(ns->ctrl);
630  	kfree(ns);
631  }
632  
nvme_get_ns(struct nvme_ns * ns)633  bool nvme_get_ns(struct nvme_ns *ns)
634  {
635  	return kref_get_unless_zero(&ns->kref);
636  }
637  
nvme_put_ns(struct nvme_ns * ns)638  void nvme_put_ns(struct nvme_ns *ns)
639  {
640  	kref_put(&ns->kref, nvme_free_ns);
641  }
642  EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
643  
nvme_clear_nvme_request(struct request * req)644  static inline void nvme_clear_nvme_request(struct request *req)
645  {
646  	nvme_req(req)->status = 0;
647  	nvme_req(req)->retries = 0;
648  	nvme_req(req)->flags = 0;
649  	req->rq_flags |= RQF_DONTPREP;
650  }
651  
652  /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)653  void nvme_init_request(struct request *req, struct nvme_command *cmd)
654  {
655  	if (req->q->queuedata)
656  		req->timeout = NVME_IO_TIMEOUT;
657  	else /* no queuedata implies admin queue */
658  		req->timeout = NVME_ADMIN_TIMEOUT;
659  
660  	/* passthru commands should let the driver set the SGL flags */
661  	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
662  
663  	req->cmd_flags |= REQ_FAILFAST_DRIVER;
664  	if (req->mq_hctx->type == HCTX_TYPE_POLL)
665  		req->cmd_flags |= REQ_POLLED;
666  	nvme_clear_nvme_request(req);
667  	req->rq_flags |= RQF_QUIET;
668  	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
669  }
670  EXPORT_SYMBOL_GPL(nvme_init_request);
671  
672  /*
673   * For something we're not in a state to send to the device the default action
674   * is to busy it and retry it after the controller state is recovered.  However,
675   * if the controller is deleting or if anything is marked for failfast or
676   * nvme multipath it is immediately failed.
677   *
678   * Note: commands used to initialize the controller will be marked for failfast.
679   * Note: nvme cli/ioctl commands are marked for failfast.
680   */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)681  blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
682  		struct request *rq)
683  {
684  	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
685  
686  	if (state != NVME_CTRL_DELETING_NOIO &&
687  	    state != NVME_CTRL_DELETING &&
688  	    state != NVME_CTRL_DEAD &&
689  	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
690  	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
691  		return BLK_STS_RESOURCE;
692  	return nvme_host_path_error(rq);
693  }
694  EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
695  
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live)696  bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
697  		bool queue_live)
698  {
699  	struct nvme_request *req = nvme_req(rq);
700  
701  	/*
702  	 * currently we have a problem sending passthru commands
703  	 * on the admin_q if the controller is not LIVE because we can't
704  	 * make sure that they are going out after the admin connect,
705  	 * controller enable and/or other commands in the initialization
706  	 * sequence. until the controller will be LIVE, fail with
707  	 * BLK_STS_RESOURCE so that they will be rescheduled.
708  	 */
709  	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
710  		return false;
711  
712  	if (ctrl->ops->flags & NVME_F_FABRICS) {
713  		/*
714  		 * Only allow commands on a live queue, except for the connect
715  		 * command, which is require to set the queue live in the
716  		 * appropinquate states.
717  		 */
718  		switch (nvme_ctrl_state(ctrl)) {
719  		case NVME_CTRL_CONNECTING:
720  			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
721  			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
722  			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
723  			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
724  				return true;
725  			break;
726  		default:
727  			break;
728  		case NVME_CTRL_DEAD:
729  			return false;
730  		}
731  	}
732  
733  	return queue_live;
734  }
735  EXPORT_SYMBOL_GPL(__nvme_check_ready);
736  
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)737  static inline void nvme_setup_flush(struct nvme_ns *ns,
738  		struct nvme_command *cmnd)
739  {
740  	memset(cmnd, 0, sizeof(*cmnd));
741  	cmnd->common.opcode = nvme_cmd_flush;
742  	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
743  }
744  
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)745  static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
746  		struct nvme_command *cmnd)
747  {
748  	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
749  	struct nvme_dsm_range *range;
750  	struct bio *bio;
751  
752  	/*
753  	 * Some devices do not consider the DSM 'Number of Ranges' field when
754  	 * determining how much data to DMA. Always allocate memory for maximum
755  	 * number of segments to prevent device reading beyond end of buffer.
756  	 */
757  	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
758  
759  	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
760  	if (!range) {
761  		/*
762  		 * If we fail allocation our range, fallback to the controller
763  		 * discard page. If that's also busy, it's safe to return
764  		 * busy, as we know we can make progress once that's freed.
765  		 */
766  		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
767  			return BLK_STS_RESOURCE;
768  
769  		range = page_address(ns->ctrl->discard_page);
770  	}
771  
772  	if (queue_max_discard_segments(req->q) == 1) {
773  		u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
774  		u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
775  
776  		range[0].cattr = cpu_to_le32(0);
777  		range[0].nlb = cpu_to_le32(nlb);
778  		range[0].slba = cpu_to_le64(slba);
779  		n = 1;
780  	} else {
781  		__rq_for_each_bio(bio, req) {
782  			u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
783  			u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
784  
785  			if (n < segments) {
786  				range[n].cattr = cpu_to_le32(0);
787  				range[n].nlb = cpu_to_le32(nlb);
788  				range[n].slba = cpu_to_le64(slba);
789  			}
790  			n++;
791  		}
792  	}
793  
794  	if (WARN_ON_ONCE(n != segments)) {
795  		if (virt_to_page(range) == ns->ctrl->discard_page)
796  			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
797  		else
798  			kfree(range);
799  		return BLK_STS_IOERR;
800  	}
801  
802  	memset(cmnd, 0, sizeof(*cmnd));
803  	cmnd->dsm.opcode = nvme_cmd_dsm;
804  	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
805  	cmnd->dsm.nr = cpu_to_le32(segments - 1);
806  	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
807  
808  	bvec_set_virt(&req->special_vec, range, alloc_size);
809  	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
810  
811  	return BLK_STS_OK;
812  }
813  
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)814  static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
815  			      struct request *req)
816  {
817  	u32 upper, lower;
818  	u64 ref48;
819  
820  	/* both rw and write zeroes share the same reftag format */
821  	switch (ns->guard_type) {
822  	case NVME_NVM_NS_16B_GUARD:
823  		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
824  		break;
825  	case NVME_NVM_NS_64B_GUARD:
826  		ref48 = ext_pi_ref_tag(req);
827  		lower = lower_32_bits(ref48);
828  		upper = upper_32_bits(ref48);
829  
830  		cmnd->rw.reftag = cpu_to_le32(lower);
831  		cmnd->rw.cdw3 = cpu_to_le32(upper);
832  		break;
833  	default:
834  		break;
835  	}
836  }
837  
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)838  static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
839  		struct request *req, struct nvme_command *cmnd)
840  {
841  	memset(cmnd, 0, sizeof(*cmnd));
842  
843  	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
844  		return nvme_setup_discard(ns, req, cmnd);
845  
846  	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
847  	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
848  	cmnd->write_zeroes.slba =
849  		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
850  	cmnd->write_zeroes.length =
851  		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
852  
853  	if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
854  		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
855  
856  	if (nvme_ns_has_pi(ns)) {
857  		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
858  
859  		switch (ns->pi_type) {
860  		case NVME_NS_DPS_PI_TYPE1:
861  		case NVME_NS_DPS_PI_TYPE2:
862  			nvme_set_ref_tag(ns, cmnd, req);
863  			break;
864  		}
865  	}
866  
867  	return BLK_STS_OK;
868  }
869  
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)870  static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
871  		struct request *req, struct nvme_command *cmnd,
872  		enum nvme_opcode op)
873  {
874  	u16 control = 0;
875  	u32 dsmgmt = 0;
876  
877  	if (req->cmd_flags & REQ_FUA)
878  		control |= NVME_RW_FUA;
879  	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
880  		control |= NVME_RW_LR;
881  
882  	if (req->cmd_flags & REQ_RAHEAD)
883  		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
884  
885  	cmnd->rw.opcode = op;
886  	cmnd->rw.flags = 0;
887  	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
888  	cmnd->rw.cdw2 = 0;
889  	cmnd->rw.cdw3 = 0;
890  	cmnd->rw.metadata = 0;
891  	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
892  	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
893  	cmnd->rw.reftag = 0;
894  	cmnd->rw.apptag = 0;
895  	cmnd->rw.appmask = 0;
896  
897  	if (ns->ms) {
898  		/*
899  		 * If formated with metadata, the block layer always provides a
900  		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
901  		 * we enable the PRACT bit for protection information or set the
902  		 * namespace capacity to zero to prevent any I/O.
903  		 */
904  		if (!blk_integrity_rq(req)) {
905  			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
906  				return BLK_STS_NOTSUPP;
907  			control |= NVME_RW_PRINFO_PRACT;
908  		}
909  
910  		switch (ns->pi_type) {
911  		case NVME_NS_DPS_PI_TYPE3:
912  			control |= NVME_RW_PRINFO_PRCHK_GUARD;
913  			break;
914  		case NVME_NS_DPS_PI_TYPE1:
915  		case NVME_NS_DPS_PI_TYPE2:
916  			control |= NVME_RW_PRINFO_PRCHK_GUARD |
917  					NVME_RW_PRINFO_PRCHK_REF;
918  			if (op == nvme_cmd_zone_append)
919  				control |= NVME_RW_APPEND_PIREMAP;
920  			nvme_set_ref_tag(ns, cmnd, req);
921  			break;
922  		}
923  	}
924  
925  	cmnd->rw.control = cpu_to_le16(control);
926  	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
927  	return 0;
928  }
929  
nvme_cleanup_cmd(struct request * req)930  void nvme_cleanup_cmd(struct request *req)
931  {
932  	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
933  		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
934  
935  		if (req->special_vec.bv_page == ctrl->discard_page)
936  			clear_bit_unlock(0, &ctrl->discard_page_busy);
937  		else
938  			kfree(bvec_virt(&req->special_vec));
939  		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
940  	}
941  }
942  EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
943  
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)944  blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
945  {
946  	struct nvme_command *cmd = nvme_req(req)->cmd;
947  	blk_status_t ret = BLK_STS_OK;
948  
949  	if (!(req->rq_flags & RQF_DONTPREP))
950  		nvme_clear_nvme_request(req);
951  
952  	switch (req_op(req)) {
953  	case REQ_OP_DRV_IN:
954  	case REQ_OP_DRV_OUT:
955  		/* these are setup prior to execution in nvme_init_request() */
956  		break;
957  	case REQ_OP_FLUSH:
958  		nvme_setup_flush(ns, cmd);
959  		break;
960  	case REQ_OP_ZONE_RESET_ALL:
961  	case REQ_OP_ZONE_RESET:
962  		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
963  		break;
964  	case REQ_OP_ZONE_OPEN:
965  		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
966  		break;
967  	case REQ_OP_ZONE_CLOSE:
968  		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
969  		break;
970  	case REQ_OP_ZONE_FINISH:
971  		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
972  		break;
973  	case REQ_OP_WRITE_ZEROES:
974  		ret = nvme_setup_write_zeroes(ns, req, cmd);
975  		break;
976  	case REQ_OP_DISCARD:
977  		ret = nvme_setup_discard(ns, req, cmd);
978  		break;
979  	case REQ_OP_READ:
980  		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
981  		break;
982  	case REQ_OP_WRITE:
983  		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
984  		break;
985  	case REQ_OP_ZONE_APPEND:
986  		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
987  		break;
988  	default:
989  		WARN_ON_ONCE(1);
990  		return BLK_STS_IOERR;
991  	}
992  
993  	cmd->common.command_id = nvme_cid(req);
994  	trace_nvme_setup_cmd(req, cmd);
995  	return ret;
996  }
997  EXPORT_SYMBOL_GPL(nvme_setup_cmd);
998  
999  /*
1000   * Return values:
1001   * 0:  success
1002   * >0: nvme controller's cqe status response
1003   * <0: kernel error in lieu of controller response
1004   */
nvme_execute_rq(struct request * rq,bool at_head)1005  int nvme_execute_rq(struct request *rq, bool at_head)
1006  {
1007  	blk_status_t status;
1008  
1009  	status = blk_execute_rq(rq, at_head);
1010  	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1011  		return -EINTR;
1012  	if (nvme_req(rq)->status)
1013  		return nvme_req(rq)->status;
1014  	return blk_status_to_errno(status);
1015  }
1016  EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1017  
1018  /*
1019   * Returns 0 on success.  If the result is negative, it's a Linux error code;
1020   * if the result is positive, it's an NVM Express status code
1021   */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,int at_head,blk_mq_req_flags_t flags)1022  int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1023  		union nvme_result *result, void *buffer, unsigned bufflen,
1024  		int qid, int at_head, blk_mq_req_flags_t flags)
1025  {
1026  	struct request *req;
1027  	int ret;
1028  
1029  	if (qid == NVME_QID_ANY)
1030  		req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1031  	else
1032  		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1033  						qid - 1);
1034  
1035  	if (IS_ERR(req))
1036  		return PTR_ERR(req);
1037  	nvme_init_request(req, cmd);
1038  
1039  	if (buffer && bufflen) {
1040  		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1041  		if (ret)
1042  			goto out;
1043  	}
1044  
1045  	ret = nvme_execute_rq(req, at_head);
1046  	if (result && ret >= 0)
1047  		*result = nvme_req(req)->result;
1048   out:
1049  	blk_mq_free_request(req);
1050  	return ret;
1051  }
1052  EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1053  
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1054  int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1055  		void *buffer, unsigned bufflen)
1056  {
1057  	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1058  			NVME_QID_ANY, 0, 0);
1059  }
1060  EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1061  
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1062  u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1063  {
1064  	u32 effects = 0;
1065  
1066  	if (ns) {
1067  		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1068  		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1069  			dev_warn_once(ctrl->device,
1070  				"IO command:%02x has unusual effects:%08x\n",
1071  				opcode, effects);
1072  
1073  		/*
1074  		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1075  		 * which would deadlock when done on an I/O command.  Note that
1076  		 * We already warn about an unusual effect above.
1077  		 */
1078  		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1079  	} else {
1080  		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1081  	}
1082  
1083  	return effects;
1084  }
1085  EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1086  
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1087  u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1088  {
1089  	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1090  
1091  	/*
1092  	 * For simplicity, IO to all namespaces is quiesced even if the command
1093  	 * effects say only one namespace is affected.
1094  	 */
1095  	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1096  		mutex_lock(&ctrl->scan_lock);
1097  		mutex_lock(&ctrl->subsys->lock);
1098  		nvme_mpath_start_freeze(ctrl->subsys);
1099  		nvme_mpath_wait_freeze(ctrl->subsys);
1100  		nvme_start_freeze(ctrl);
1101  		nvme_wait_freeze(ctrl);
1102  	}
1103  	return effects;
1104  }
1105  EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1106  
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1107  void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1108  		       struct nvme_command *cmd, int status)
1109  {
1110  	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1111  		nvme_unfreeze(ctrl);
1112  		nvme_mpath_unfreeze(ctrl->subsys);
1113  		mutex_unlock(&ctrl->subsys->lock);
1114  		mutex_unlock(&ctrl->scan_lock);
1115  	}
1116  	if (effects & NVME_CMD_EFFECTS_CCC) {
1117  		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1118  				      &ctrl->flags)) {
1119  			dev_info(ctrl->device,
1120  "controller capabilities changed, reset may be required to take effect.\n");
1121  		}
1122  	}
1123  	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1124  		nvme_queue_scan(ctrl);
1125  		flush_work(&ctrl->scan_work);
1126  	}
1127  	if (ns)
1128  		return;
1129  
1130  	switch (cmd->common.opcode) {
1131  	case nvme_admin_set_features:
1132  		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1133  		case NVME_FEAT_KATO:
1134  			/*
1135  			 * Keep alive commands interval on the host should be
1136  			 * updated when KATO is modified by Set Features
1137  			 * commands.
1138  			 */
1139  			if (!status)
1140  				nvme_update_keep_alive(ctrl, cmd);
1141  			break;
1142  		default:
1143  			break;
1144  		}
1145  		break;
1146  	default:
1147  		break;
1148  	}
1149  }
1150  EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1151  
1152  /*
1153   * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1154   *
1155   *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1156   *   accounting for transport roundtrip times [..].
1157   */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1158  static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1159  {
1160  	unsigned long delay = ctrl->kato * HZ / 2;
1161  
1162  	/*
1163  	 * When using Traffic Based Keep Alive, we need to run
1164  	 * nvme_keep_alive_work at twice the normal frequency, as one
1165  	 * command completion can postpone sending a keep alive command
1166  	 * by up to twice the delay between runs.
1167  	 */
1168  	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1169  		delay /= 2;
1170  	return delay;
1171  }
1172  
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1173  static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1174  {
1175  	queue_delayed_work(nvme_wq, &ctrl->ka_work,
1176  			   nvme_keep_alive_work_period(ctrl));
1177  }
1178  
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1179  static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1180  						 blk_status_t status)
1181  {
1182  	struct nvme_ctrl *ctrl = rq->end_io_data;
1183  	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1184  	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1185  	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1186  
1187  	/*
1188  	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1189  	 * at the desired frequency.
1190  	 */
1191  	if (rtt <= delay) {
1192  		delay -= rtt;
1193  	} else {
1194  		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1195  			 jiffies_to_msecs(rtt));
1196  		delay = 0;
1197  	}
1198  
1199  	blk_mq_free_request(rq);
1200  
1201  	if (status) {
1202  		dev_err(ctrl->device,
1203  			"failed nvme_keep_alive_end_io error=%d\n",
1204  				status);
1205  		return RQ_END_IO_NONE;
1206  	}
1207  
1208  	ctrl->ka_last_check_time = jiffies;
1209  	ctrl->comp_seen = false;
1210  	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1211  		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1212  	return RQ_END_IO_NONE;
1213  }
1214  
nvme_keep_alive_work(struct work_struct * work)1215  static void nvme_keep_alive_work(struct work_struct *work)
1216  {
1217  	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1218  			struct nvme_ctrl, ka_work);
1219  	bool comp_seen = ctrl->comp_seen;
1220  	struct request *rq;
1221  
1222  	ctrl->ka_last_check_time = jiffies;
1223  
1224  	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1225  		dev_dbg(ctrl->device,
1226  			"reschedule traffic based keep-alive timer\n");
1227  		ctrl->comp_seen = false;
1228  		nvme_queue_keep_alive_work(ctrl);
1229  		return;
1230  	}
1231  
1232  	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1233  				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1234  	if (IS_ERR(rq)) {
1235  		/* allocation failure, reset the controller */
1236  		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1237  		nvme_reset_ctrl(ctrl);
1238  		return;
1239  	}
1240  	nvme_init_request(rq, &ctrl->ka_cmd);
1241  
1242  	rq->timeout = ctrl->kato * HZ;
1243  	rq->end_io = nvme_keep_alive_end_io;
1244  	rq->end_io_data = ctrl;
1245  	blk_execute_rq_nowait(rq, false);
1246  }
1247  
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1248  static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1249  {
1250  	if (unlikely(ctrl->kato == 0))
1251  		return;
1252  
1253  	nvme_queue_keep_alive_work(ctrl);
1254  }
1255  
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1256  void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1257  {
1258  	if (unlikely(ctrl->kato == 0))
1259  		return;
1260  
1261  	cancel_delayed_work_sync(&ctrl->ka_work);
1262  }
1263  EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1264  
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1265  static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1266  				   struct nvme_command *cmd)
1267  {
1268  	unsigned int new_kato =
1269  		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1270  
1271  	dev_info(ctrl->device,
1272  		 "keep alive interval updated from %u ms to %u ms\n",
1273  		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1274  
1275  	nvme_stop_keep_alive(ctrl);
1276  	ctrl->kato = new_kato;
1277  	nvme_start_keep_alive(ctrl);
1278  }
1279  
1280  /*
1281   * In NVMe 1.0 the CNS field was just a binary controller or namespace
1282   * flag, thus sending any new CNS opcodes has a big chance of not working.
1283   * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1284   * (but not for any later version).
1285   */
nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1286  static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1287  {
1288  	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1289  		return ctrl->vs < NVME_VS(1, 2, 0);
1290  	return ctrl->vs < NVME_VS(1, 1, 0);
1291  }
1292  
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1293  static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1294  {
1295  	struct nvme_command c = { };
1296  	int error;
1297  
1298  	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1299  	c.identify.opcode = nvme_admin_identify;
1300  	c.identify.cns = NVME_ID_CNS_CTRL;
1301  
1302  	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1303  	if (!*id)
1304  		return -ENOMEM;
1305  
1306  	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1307  			sizeof(struct nvme_id_ctrl));
1308  	if (error) {
1309  		kfree(*id);
1310  		*id = NULL;
1311  	}
1312  	return error;
1313  }
1314  
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1315  static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1316  		struct nvme_ns_id_desc *cur, bool *csi_seen)
1317  {
1318  	const char *warn_str = "ctrl returned bogus length:";
1319  	void *data = cur;
1320  
1321  	switch (cur->nidt) {
1322  	case NVME_NIDT_EUI64:
1323  		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1324  			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1325  				 warn_str, cur->nidl);
1326  			return -1;
1327  		}
1328  		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1329  			return NVME_NIDT_EUI64_LEN;
1330  		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1331  		return NVME_NIDT_EUI64_LEN;
1332  	case NVME_NIDT_NGUID:
1333  		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1334  			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1335  				 warn_str, cur->nidl);
1336  			return -1;
1337  		}
1338  		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1339  			return NVME_NIDT_NGUID_LEN;
1340  		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1341  		return NVME_NIDT_NGUID_LEN;
1342  	case NVME_NIDT_UUID:
1343  		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1344  			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1345  				 warn_str, cur->nidl);
1346  			return -1;
1347  		}
1348  		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1349  			return NVME_NIDT_UUID_LEN;
1350  		uuid_copy(&ids->uuid, data + sizeof(*cur));
1351  		return NVME_NIDT_UUID_LEN;
1352  	case NVME_NIDT_CSI:
1353  		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1354  			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1355  				 warn_str, cur->nidl);
1356  			return -1;
1357  		}
1358  		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1359  		*csi_seen = true;
1360  		return NVME_NIDT_CSI_LEN;
1361  	default:
1362  		/* Skip unknown types */
1363  		return cur->nidl;
1364  	}
1365  }
1366  
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1367  static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1368  		struct nvme_ns_info *info)
1369  {
1370  	struct nvme_command c = { };
1371  	bool csi_seen = false;
1372  	int status, pos, len;
1373  	void *data;
1374  
1375  	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1376  		return 0;
1377  	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1378  		return 0;
1379  
1380  	c.identify.opcode = nvme_admin_identify;
1381  	c.identify.nsid = cpu_to_le32(info->nsid);
1382  	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1383  
1384  	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1385  	if (!data)
1386  		return -ENOMEM;
1387  
1388  	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1389  				      NVME_IDENTIFY_DATA_SIZE);
1390  	if (status) {
1391  		dev_warn(ctrl->device,
1392  			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1393  			info->nsid, status);
1394  		goto free_data;
1395  	}
1396  
1397  	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1398  		struct nvme_ns_id_desc *cur = data + pos;
1399  
1400  		if (cur->nidl == 0)
1401  			break;
1402  
1403  		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1404  		if (len < 0)
1405  			break;
1406  
1407  		len += sizeof(*cur);
1408  	}
1409  
1410  	if (nvme_multi_css(ctrl) && !csi_seen) {
1411  		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1412  			 info->nsid);
1413  		status = -EINVAL;
1414  	}
1415  
1416  free_data:
1417  	kfree(data);
1418  	return status;
1419  }
1420  
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1421  static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1422  			struct nvme_id_ns **id)
1423  {
1424  	struct nvme_command c = { };
1425  	int error;
1426  
1427  	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1428  	c.identify.opcode = nvme_admin_identify;
1429  	c.identify.nsid = cpu_to_le32(nsid);
1430  	c.identify.cns = NVME_ID_CNS_NS;
1431  
1432  	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1433  	if (!*id)
1434  		return -ENOMEM;
1435  
1436  	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1437  	if (error) {
1438  		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1439  		kfree(*id);
1440  		*id = NULL;
1441  	}
1442  	return error;
1443  }
1444  
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1445  static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1446  		struct nvme_ns_info *info)
1447  {
1448  	struct nvme_ns_ids *ids = &info->ids;
1449  	struct nvme_id_ns *id;
1450  	int ret;
1451  
1452  	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1453  	if (ret)
1454  		return ret;
1455  
1456  	if (id->ncap == 0) {
1457  		/* namespace not allocated or attached */
1458  		info->is_removed = true;
1459  		ret = -ENODEV;
1460  		goto error;
1461  	}
1462  
1463  	info->anagrpid = id->anagrpid;
1464  	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1465  	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1466  	info->is_ready = true;
1467  	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1468  		dev_info(ctrl->device,
1469  			 "Ignoring bogus Namespace Identifiers\n");
1470  	} else {
1471  		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1472  		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1473  			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1474  		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1475  		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1476  			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1477  	}
1478  
1479  error:
1480  	kfree(id);
1481  	return ret;
1482  }
1483  
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1484  static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1485  		struct nvme_ns_info *info)
1486  {
1487  	struct nvme_id_ns_cs_indep *id;
1488  	struct nvme_command c = {
1489  		.identify.opcode	= nvme_admin_identify,
1490  		.identify.nsid		= cpu_to_le32(info->nsid),
1491  		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1492  	};
1493  	int ret;
1494  
1495  	id = kmalloc(sizeof(*id), GFP_KERNEL);
1496  	if (!id)
1497  		return -ENOMEM;
1498  
1499  	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1500  	if (!ret) {
1501  		info->anagrpid = id->anagrpid;
1502  		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1503  		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1504  		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1505  	}
1506  	kfree(id);
1507  	return ret;
1508  }
1509  
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1510  static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1511  		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1512  {
1513  	union nvme_result res = { 0 };
1514  	struct nvme_command c = { };
1515  	int ret;
1516  
1517  	c.features.opcode = op;
1518  	c.features.fid = cpu_to_le32(fid);
1519  	c.features.dword11 = cpu_to_le32(dword11);
1520  
1521  	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1522  			buffer, buflen, NVME_QID_ANY, 0, 0);
1523  	if (ret >= 0 && result)
1524  		*result = le32_to_cpu(res.u32);
1525  	return ret;
1526  }
1527  
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1528  int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1529  		      unsigned int dword11, void *buffer, size_t buflen,
1530  		      u32 *result)
1531  {
1532  	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1533  			     buflen, result);
1534  }
1535  EXPORT_SYMBOL_GPL(nvme_set_features);
1536  
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1537  int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1538  		      unsigned int dword11, void *buffer, size_t buflen,
1539  		      u32 *result)
1540  {
1541  	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1542  			     buflen, result);
1543  }
1544  EXPORT_SYMBOL_GPL(nvme_get_features);
1545  
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1546  int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1547  {
1548  	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1549  	u32 result;
1550  	int status, nr_io_queues;
1551  
1552  	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1553  			&result);
1554  
1555  	/*
1556  	 * It's either a kernel error or the host observed a connection
1557  	 * lost. In either case it's not possible communicate with the
1558  	 * controller and thus enter the error code path.
1559  	 */
1560  	if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1561  		return status;
1562  
1563  	/*
1564  	 * Degraded controllers might return an error when setting the queue
1565  	 * count.  We still want to be able to bring them online and offer
1566  	 * access to the admin queue, as that might be only way to fix them up.
1567  	 */
1568  	if (status > 0) {
1569  		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1570  		*count = 0;
1571  	} else {
1572  		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1573  		*count = min(*count, nr_io_queues);
1574  	}
1575  
1576  	return 0;
1577  }
1578  EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1579  
1580  #define NVME_AEN_SUPPORTED \
1581  	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1582  	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1583  
nvme_enable_aen(struct nvme_ctrl * ctrl)1584  static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1585  {
1586  	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1587  	int status;
1588  
1589  	if (!supported_aens)
1590  		return;
1591  
1592  	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1593  			NULL, 0, &result);
1594  	if (status)
1595  		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1596  			 supported_aens);
1597  
1598  	queue_work(nvme_wq, &ctrl->async_event_work);
1599  }
1600  
nvme_ns_open(struct nvme_ns * ns)1601  static int nvme_ns_open(struct nvme_ns *ns)
1602  {
1603  
1604  	/* should never be called due to GENHD_FL_HIDDEN */
1605  	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1606  		goto fail;
1607  	if (!nvme_get_ns(ns))
1608  		goto fail;
1609  	if (!try_module_get(ns->ctrl->ops->module))
1610  		goto fail_put_ns;
1611  
1612  	return 0;
1613  
1614  fail_put_ns:
1615  	nvme_put_ns(ns);
1616  fail:
1617  	return -ENXIO;
1618  }
1619  
nvme_ns_release(struct nvme_ns * ns)1620  static void nvme_ns_release(struct nvme_ns *ns)
1621  {
1622  
1623  	module_put(ns->ctrl->ops->module);
1624  	nvme_put_ns(ns);
1625  }
1626  
nvme_open(struct gendisk * disk,blk_mode_t mode)1627  static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1628  {
1629  	return nvme_ns_open(disk->private_data);
1630  }
1631  
nvme_release(struct gendisk * disk)1632  static void nvme_release(struct gendisk *disk)
1633  {
1634  	nvme_ns_release(disk->private_data);
1635  }
1636  
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1637  int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1638  {
1639  	/* some standard values */
1640  	geo->heads = 1 << 6;
1641  	geo->sectors = 1 << 5;
1642  	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1643  	return 0;
1644  }
1645  
1646  #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1647  static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1648  				u32 max_integrity_segments)
1649  {
1650  	struct blk_integrity integrity = { };
1651  
1652  	switch (ns->pi_type) {
1653  	case NVME_NS_DPS_PI_TYPE3:
1654  		switch (ns->guard_type) {
1655  		case NVME_NVM_NS_16B_GUARD:
1656  			integrity.profile = &t10_pi_type3_crc;
1657  			integrity.tag_size = sizeof(u16) + sizeof(u32);
1658  			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1659  			break;
1660  		case NVME_NVM_NS_64B_GUARD:
1661  			integrity.profile = &ext_pi_type3_crc64;
1662  			integrity.tag_size = sizeof(u16) + 6;
1663  			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1664  			break;
1665  		default:
1666  			integrity.profile = NULL;
1667  			break;
1668  		}
1669  		break;
1670  	case NVME_NS_DPS_PI_TYPE1:
1671  	case NVME_NS_DPS_PI_TYPE2:
1672  		switch (ns->guard_type) {
1673  		case NVME_NVM_NS_16B_GUARD:
1674  			integrity.profile = &t10_pi_type1_crc;
1675  			integrity.tag_size = sizeof(u16);
1676  			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1677  			break;
1678  		case NVME_NVM_NS_64B_GUARD:
1679  			integrity.profile = &ext_pi_type1_crc64;
1680  			integrity.tag_size = sizeof(u16);
1681  			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1682  			break;
1683  		default:
1684  			integrity.profile = NULL;
1685  			break;
1686  		}
1687  		break;
1688  	default:
1689  		integrity.profile = NULL;
1690  		break;
1691  	}
1692  
1693  	integrity.tuple_size = ns->ms;
1694  	blk_integrity_register(disk, &integrity);
1695  	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1696  }
1697  #else
nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1698  static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1699  				u32 max_integrity_segments)
1700  {
1701  }
1702  #endif /* CONFIG_BLK_DEV_INTEGRITY */
1703  
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1704  static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1705  {
1706  	struct nvme_ctrl *ctrl = ns->ctrl;
1707  	struct request_queue *queue = disk->queue;
1708  	u32 size = queue_logical_block_size(queue);
1709  
1710  	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1711  		ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1712  
1713  	if (ctrl->max_discard_sectors == 0) {
1714  		blk_queue_max_discard_sectors(queue, 0);
1715  		return;
1716  	}
1717  
1718  	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1719  			NVME_DSM_MAX_RANGES);
1720  
1721  	queue->limits.discard_granularity = size;
1722  
1723  	/* If discard is already enabled, don't reset queue limits */
1724  	if (queue->limits.max_discard_sectors)
1725  		return;
1726  
1727  	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1728  	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1729  
1730  	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1731  		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1732  }
1733  
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1734  static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1735  {
1736  	return uuid_equal(&a->uuid, &b->uuid) &&
1737  		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1738  		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1739  		a->csi == b->csi;
1740  }
1741  
nvme_init_ms(struct nvme_ns * ns,struct nvme_id_ns * id)1742  static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1743  {
1744  	bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1745  	unsigned lbaf = nvme_lbaf_index(id->flbas);
1746  	struct nvme_ctrl *ctrl = ns->ctrl;
1747  	struct nvme_command c = { };
1748  	struct nvme_id_ns_nvm *nvm;
1749  	int ret = 0;
1750  	u32 elbaf;
1751  
1752  	ns->pi_size = 0;
1753  	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1754  	if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1755  		ns->pi_size = sizeof(struct t10_pi_tuple);
1756  		ns->guard_type = NVME_NVM_NS_16B_GUARD;
1757  		goto set_pi;
1758  	}
1759  
1760  	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1761  	if (!nvm)
1762  		return -ENOMEM;
1763  
1764  	c.identify.opcode = nvme_admin_identify;
1765  	c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1766  	c.identify.cns = NVME_ID_CNS_CS_NS;
1767  	c.identify.csi = NVME_CSI_NVM;
1768  
1769  	ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1770  	if (ret)
1771  		goto free_data;
1772  
1773  	elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1774  
1775  	/* no support for storage tag formats right now */
1776  	if (nvme_elbaf_sts(elbaf))
1777  		goto free_data;
1778  
1779  	ns->guard_type = nvme_elbaf_guard_type(elbaf);
1780  	switch (ns->guard_type) {
1781  	case NVME_NVM_NS_64B_GUARD:
1782  		ns->pi_size = sizeof(struct crc64_pi_tuple);
1783  		break;
1784  	case NVME_NVM_NS_16B_GUARD:
1785  		ns->pi_size = sizeof(struct t10_pi_tuple);
1786  		break;
1787  	default:
1788  		break;
1789  	}
1790  
1791  free_data:
1792  	kfree(nvm);
1793  set_pi:
1794  	if (ns->pi_size && (first || ns->ms == ns->pi_size))
1795  		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1796  	else
1797  		ns->pi_type = 0;
1798  
1799  	return ret;
1800  }
1801  
nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1802  static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1803  {
1804  	struct nvme_ctrl *ctrl = ns->ctrl;
1805  	int ret;
1806  
1807  	ret = nvme_init_ms(ns, id);
1808  	if (ret)
1809  		return ret;
1810  
1811  	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1812  	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1813  		return 0;
1814  
1815  	if (ctrl->ops->flags & NVME_F_FABRICS) {
1816  		/*
1817  		 * The NVMe over Fabrics specification only supports metadata as
1818  		 * part of the extended data LBA.  We rely on HCA/HBA support to
1819  		 * remap the separate metadata buffer from the block layer.
1820  		 */
1821  		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1822  			return 0;
1823  
1824  		ns->features |= NVME_NS_EXT_LBAS;
1825  
1826  		/*
1827  		 * The current fabrics transport drivers support namespace
1828  		 * metadata formats only if nvme_ns_has_pi() returns true.
1829  		 * Suppress support for all other formats so the namespace will
1830  		 * have a 0 capacity and not be usable through the block stack.
1831  		 *
1832  		 * Note, this check will need to be modified if any drivers
1833  		 * gain the ability to use other metadata formats.
1834  		 */
1835  		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1836  			ns->features |= NVME_NS_METADATA_SUPPORTED;
1837  	} else {
1838  		/*
1839  		 * For PCIe controllers, we can't easily remap the separate
1840  		 * metadata buffer from the block layer and thus require a
1841  		 * separate metadata buffer for block layer metadata/PI support.
1842  		 * We allow extended LBAs for the passthrough interface, though.
1843  		 */
1844  		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1845  			ns->features |= NVME_NS_EXT_LBAS;
1846  		else
1847  			ns->features |= NVME_NS_METADATA_SUPPORTED;
1848  	}
1849  	return 0;
1850  }
1851  
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1852  static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1853  		struct request_queue *q)
1854  {
1855  	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1856  
1857  	if (ctrl->max_hw_sectors) {
1858  		u32 max_segments =
1859  			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1860  
1861  		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1862  		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1863  		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1864  	}
1865  	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1866  	blk_queue_dma_alignment(q, 3);
1867  	blk_queue_write_cache(q, vwc, vwc);
1868  }
1869  
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1870  static void nvme_update_disk_info(struct gendisk *disk,
1871  		struct nvme_ns *ns, struct nvme_id_ns *id)
1872  {
1873  	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1874  	u32 bs = 1U << ns->lba_shift;
1875  	u32 atomic_bs, phys_bs, io_opt = 0;
1876  
1877  	/*
1878  	 * The block layer can't support LBA sizes larger than the page size
1879  	 * or smaller than a sector size yet, so catch this early and don't
1880  	 * allow block I/O.
1881  	 */
1882  	if (ns->lba_shift > PAGE_SHIFT || ns->lba_shift < SECTOR_SHIFT) {
1883  		capacity = 0;
1884  		bs = (1 << 9);
1885  	}
1886  
1887  	blk_integrity_unregister(disk);
1888  
1889  	atomic_bs = phys_bs = bs;
1890  	if (id->nabo == 0) {
1891  		/*
1892  		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1893  		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1894  		 * 0 then AWUPF must be used instead.
1895  		 */
1896  		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1897  			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1898  		else
1899  			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1900  	}
1901  
1902  	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1903  		/* NPWG = Namespace Preferred Write Granularity */
1904  		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1905  		/* NOWS = Namespace Optimal Write Size */
1906  		io_opt = bs * (1 + le16_to_cpu(id->nows));
1907  	}
1908  
1909  	blk_queue_logical_block_size(disk->queue, bs);
1910  	/*
1911  	 * Linux filesystems assume writing a single physical block is
1912  	 * an atomic operation. Hence limit the physical block size to the
1913  	 * value of the Atomic Write Unit Power Fail parameter.
1914  	 */
1915  	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1916  	blk_queue_io_min(disk->queue, phys_bs);
1917  	blk_queue_io_opt(disk->queue, io_opt);
1918  
1919  	/*
1920  	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1921  	 * metadata masquerading as Type 0 if supported, otherwise reject block
1922  	 * I/O to namespaces with metadata except when the namespace supports
1923  	 * PI, as it can strip/insert in that case.
1924  	 */
1925  	if (ns->ms) {
1926  		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1927  		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1928  			nvme_init_integrity(disk, ns,
1929  					    ns->ctrl->max_integrity_segments);
1930  		else if (!nvme_ns_has_pi(ns))
1931  			capacity = 0;
1932  	}
1933  
1934  	set_capacity_and_notify(disk, capacity);
1935  
1936  	nvme_config_discard(disk, ns);
1937  	blk_queue_max_write_zeroes_sectors(disk->queue,
1938  					   ns->ctrl->max_zeroes_sectors);
1939  }
1940  
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)1941  static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1942  {
1943  	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1944  }
1945  
nvme_first_scan(struct gendisk * disk)1946  static inline bool nvme_first_scan(struct gendisk *disk)
1947  {
1948  	/* nvme_alloc_ns() scans the disk prior to adding it */
1949  	return !disk_live(disk);
1950  }
1951  
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)1952  static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1953  {
1954  	struct nvme_ctrl *ctrl = ns->ctrl;
1955  	u32 iob;
1956  
1957  	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1958  	    is_power_of_2(ctrl->max_hw_sectors))
1959  		iob = ctrl->max_hw_sectors;
1960  	else
1961  		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1962  
1963  	if (!iob)
1964  		return;
1965  
1966  	if (!is_power_of_2(iob)) {
1967  		if (nvme_first_scan(ns->disk))
1968  			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1969  				ns->disk->disk_name, iob);
1970  		return;
1971  	}
1972  
1973  	if (blk_queue_is_zoned(ns->disk->queue)) {
1974  		if (nvme_first_scan(ns->disk))
1975  			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1976  				ns->disk->disk_name);
1977  		return;
1978  	}
1979  
1980  	blk_queue_chunk_sectors(ns->queue, iob);
1981  }
1982  
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)1983  static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1984  		struct nvme_ns_info *info)
1985  {
1986  	blk_mq_freeze_queue(ns->disk->queue);
1987  	nvme_set_queue_limits(ns->ctrl, ns->queue);
1988  	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1989  	blk_mq_unfreeze_queue(ns->disk->queue);
1990  
1991  	if (nvme_ns_head_multipath(ns->head)) {
1992  		blk_mq_freeze_queue(ns->head->disk->queue);
1993  		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1994  		nvme_mpath_revalidate_paths(ns);
1995  		blk_stack_limits(&ns->head->disk->queue->limits,
1996  				 &ns->queue->limits, 0);
1997  		ns->head->disk->flags |= GENHD_FL_HIDDEN;
1998  		blk_mq_unfreeze_queue(ns->head->disk->queue);
1999  	}
2000  
2001  	/* Hide the block-interface for these devices */
2002  	ns->disk->flags |= GENHD_FL_HIDDEN;
2003  	set_bit(NVME_NS_READY, &ns->flags);
2004  
2005  	return 0;
2006  }
2007  
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2008  static int nvme_update_ns_info_block(struct nvme_ns *ns,
2009  		struct nvme_ns_info *info)
2010  {
2011  	struct nvme_id_ns *id;
2012  	unsigned lbaf;
2013  	int ret;
2014  
2015  	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2016  	if (ret)
2017  		return ret;
2018  
2019  	if (id->ncap == 0) {
2020  		/* namespace not allocated or attached */
2021  		info->is_removed = true;
2022  		ret = -ENODEV;
2023  		goto error;
2024  	}
2025  
2026  	blk_mq_freeze_queue(ns->disk->queue);
2027  	lbaf = nvme_lbaf_index(id->flbas);
2028  	ns->lba_shift = id->lbaf[lbaf].ds;
2029  	nvme_set_queue_limits(ns->ctrl, ns->queue);
2030  
2031  	ret = nvme_configure_metadata(ns, id);
2032  	if (ret < 0) {
2033  		blk_mq_unfreeze_queue(ns->disk->queue);
2034  		goto out;
2035  	}
2036  	nvme_set_chunk_sectors(ns, id);
2037  	nvme_update_disk_info(ns->disk, ns, id);
2038  
2039  	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2040  		ret = nvme_update_zone_info(ns, lbaf);
2041  		if (ret) {
2042  			blk_mq_unfreeze_queue(ns->disk->queue);
2043  			goto out;
2044  		}
2045  	}
2046  
2047  	/*
2048  	 * Only set the DEAC bit if the device guarantees that reads from
2049  	 * deallocated data return zeroes.  While the DEAC bit does not
2050  	 * require that, it must be a no-op if reads from deallocated data
2051  	 * do not return zeroes.
2052  	 */
2053  	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2054  		ns->features |= NVME_NS_DEAC;
2055  	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2056  	set_bit(NVME_NS_READY, &ns->flags);
2057  	blk_mq_unfreeze_queue(ns->disk->queue);
2058  
2059  	if (blk_queue_is_zoned(ns->queue)) {
2060  		ret = nvme_revalidate_zones(ns);
2061  		if (ret && !nvme_first_scan(ns->disk))
2062  			goto out;
2063  	}
2064  
2065  	if (nvme_ns_head_multipath(ns->head)) {
2066  		blk_mq_freeze_queue(ns->head->disk->queue);
2067  		nvme_update_disk_info(ns->head->disk, ns, id);
2068  		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2069  		nvme_mpath_revalidate_paths(ns);
2070  		blk_stack_limits(&ns->head->disk->queue->limits,
2071  				 &ns->queue->limits, 0);
2072  		disk_update_readahead(ns->head->disk);
2073  		blk_mq_unfreeze_queue(ns->head->disk->queue);
2074  	}
2075  
2076  	ret = 0;
2077  out:
2078  	/*
2079  	 * If probing fails due an unsupported feature, hide the block device,
2080  	 * but still allow other access.
2081  	 */
2082  	if (ret == -ENODEV) {
2083  		ns->disk->flags |= GENHD_FL_HIDDEN;
2084  		set_bit(NVME_NS_READY, &ns->flags);
2085  		ret = 0;
2086  	}
2087  
2088  error:
2089  	kfree(id);
2090  	return ret;
2091  }
2092  
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2093  static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2094  {
2095  	switch (info->ids.csi) {
2096  	case NVME_CSI_ZNS:
2097  		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2098  			dev_info(ns->ctrl->device,
2099  	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2100  				info->nsid);
2101  			return nvme_update_ns_info_generic(ns, info);
2102  		}
2103  		return nvme_update_ns_info_block(ns, info);
2104  	case NVME_CSI_NVM:
2105  		return nvme_update_ns_info_block(ns, info);
2106  	default:
2107  		dev_info(ns->ctrl->device,
2108  			"block device for nsid %u not supported (csi %u)\n",
2109  			info->nsid, info->ids.csi);
2110  		return nvme_update_ns_info_generic(ns, info);
2111  	}
2112  }
2113  
2114  #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2115  static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2116  		bool send)
2117  {
2118  	struct nvme_ctrl *ctrl = data;
2119  	struct nvme_command cmd = { };
2120  
2121  	if (send)
2122  		cmd.common.opcode = nvme_admin_security_send;
2123  	else
2124  		cmd.common.opcode = nvme_admin_security_recv;
2125  	cmd.common.nsid = 0;
2126  	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2127  	cmd.common.cdw11 = cpu_to_le32(len);
2128  
2129  	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2130  			NVME_QID_ANY, 1, 0);
2131  }
2132  
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2133  static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2134  {
2135  	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2136  		if (!ctrl->opal_dev)
2137  			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2138  		else if (was_suspended)
2139  			opal_unlock_from_suspend(ctrl->opal_dev);
2140  	} else {
2141  		free_opal_dev(ctrl->opal_dev);
2142  		ctrl->opal_dev = NULL;
2143  	}
2144  }
2145  #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2146  static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2147  {
2148  }
2149  #endif /* CONFIG_BLK_SED_OPAL */
2150  
2151  #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2152  static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2153  		unsigned int nr_zones, report_zones_cb cb, void *data)
2154  {
2155  	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2156  			data);
2157  }
2158  #else
2159  #define nvme_report_zones	NULL
2160  #endif /* CONFIG_BLK_DEV_ZONED */
2161  
2162  const struct block_device_operations nvme_bdev_ops = {
2163  	.owner		= THIS_MODULE,
2164  	.ioctl		= nvme_ioctl,
2165  	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2166  	.open		= nvme_open,
2167  	.release	= nvme_release,
2168  	.getgeo		= nvme_getgeo,
2169  	.report_zones	= nvme_report_zones,
2170  	.pr_ops		= &nvme_pr_ops,
2171  };
2172  
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2173  static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2174  		u32 timeout, const char *op)
2175  {
2176  	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2177  	u32 csts;
2178  	int ret;
2179  
2180  	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2181  		if (csts == ~0)
2182  			return -ENODEV;
2183  		if ((csts & mask) == val)
2184  			break;
2185  
2186  		usleep_range(1000, 2000);
2187  		if (fatal_signal_pending(current))
2188  			return -EINTR;
2189  		if (time_after(jiffies, timeout_jiffies)) {
2190  			dev_err(ctrl->device,
2191  				"Device not ready; aborting %s, CSTS=0x%x\n",
2192  				op, csts);
2193  			return -ENODEV;
2194  		}
2195  	}
2196  
2197  	return ret;
2198  }
2199  
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2200  int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2201  {
2202  	int ret;
2203  
2204  	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2205  	if (shutdown)
2206  		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2207  	else
2208  		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2209  
2210  	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2211  	if (ret)
2212  		return ret;
2213  
2214  	if (shutdown) {
2215  		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2216  				       NVME_CSTS_SHST_CMPLT,
2217  				       ctrl->shutdown_timeout, "shutdown");
2218  	}
2219  	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2220  		msleep(NVME_QUIRK_DELAY_AMOUNT);
2221  	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2222  			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2223  }
2224  EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2225  
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2226  int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2227  {
2228  	unsigned dev_page_min;
2229  	u32 timeout;
2230  	int ret;
2231  
2232  	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2233  	if (ret) {
2234  		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2235  		return ret;
2236  	}
2237  	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2238  
2239  	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2240  		dev_err(ctrl->device,
2241  			"Minimum device page size %u too large for host (%u)\n",
2242  			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2243  		return -ENODEV;
2244  	}
2245  
2246  	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2247  		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2248  	else
2249  		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2250  
2251  	/*
2252  	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2253  	 * makes it possible for media related commands to return the error
2254  	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2255  	 * restructured to handle retries, disable CC.CRIME.
2256  	 */
2257  	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2258  
2259  	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2260  	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2261  	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2262  	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2263  	if (ret)
2264  		return ret;
2265  
2266  	/* Flush write to device (required if transport is PCI) */
2267  	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2268  	if (ret)
2269  		return ret;
2270  
2271  	/* CAP value may change after initial CC write */
2272  	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2273  	if (ret)
2274  		return ret;
2275  
2276  	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2277  	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2278  		u32 crto, ready_timeout;
2279  
2280  		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2281  		if (ret) {
2282  			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2283  				ret);
2284  			return ret;
2285  		}
2286  
2287  		/*
2288  		 * CRTO should always be greater or equal to CAP.TO, but some
2289  		 * devices are known to get this wrong. Use the larger of the
2290  		 * two values.
2291  		 */
2292  		ready_timeout = NVME_CRTO_CRWMT(crto);
2293  
2294  		if (ready_timeout < timeout)
2295  			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2296  				      crto, ctrl->cap);
2297  		else
2298  			timeout = ready_timeout;
2299  	}
2300  
2301  	ctrl->ctrl_config |= NVME_CC_ENABLE;
2302  	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2303  	if (ret)
2304  		return ret;
2305  	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2306  			       (timeout + 1) / 2, "initialisation");
2307  }
2308  EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2309  
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2310  static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2311  {
2312  	__le64 ts;
2313  	int ret;
2314  
2315  	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2316  		return 0;
2317  
2318  	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2319  	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2320  			NULL);
2321  	if (ret)
2322  		dev_warn_once(ctrl->device,
2323  			"could not set timestamp (%d)\n", ret);
2324  	return ret;
2325  }
2326  
nvme_configure_host_options(struct nvme_ctrl * ctrl)2327  static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2328  {
2329  	struct nvme_feat_host_behavior *host;
2330  	u8 acre = 0, lbafee = 0;
2331  	int ret;
2332  
2333  	/* Don't bother enabling the feature if retry delay is not reported */
2334  	if (ctrl->crdt[0])
2335  		acre = NVME_ENABLE_ACRE;
2336  	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2337  		lbafee = NVME_ENABLE_LBAFEE;
2338  
2339  	if (!acre && !lbafee)
2340  		return 0;
2341  
2342  	host = kzalloc(sizeof(*host), GFP_KERNEL);
2343  	if (!host)
2344  		return 0;
2345  
2346  	host->acre = acre;
2347  	host->lbafee = lbafee;
2348  	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2349  				host, sizeof(*host), NULL);
2350  	kfree(host);
2351  	return ret;
2352  }
2353  
2354  /*
2355   * The function checks whether the given total (exlat + enlat) latency of
2356   * a power state allows the latter to be used as an APST transition target.
2357   * It does so by comparing the latency to the primary and secondary latency
2358   * tolerances defined by module params. If there's a match, the corresponding
2359   * timeout value is returned and the matching tolerance index (1 or 2) is
2360   * reported.
2361   */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2362  static bool nvme_apst_get_transition_time(u64 total_latency,
2363  		u64 *transition_time, unsigned *last_index)
2364  {
2365  	if (total_latency <= apst_primary_latency_tol_us) {
2366  		if (*last_index == 1)
2367  			return false;
2368  		*last_index = 1;
2369  		*transition_time = apst_primary_timeout_ms;
2370  		return true;
2371  	}
2372  	if (apst_secondary_timeout_ms &&
2373  		total_latency <= apst_secondary_latency_tol_us) {
2374  		if (*last_index <= 2)
2375  			return false;
2376  		*last_index = 2;
2377  		*transition_time = apst_secondary_timeout_ms;
2378  		return true;
2379  	}
2380  	return false;
2381  }
2382  
2383  /*
2384   * APST (Autonomous Power State Transition) lets us program a table of power
2385   * state transitions that the controller will perform automatically.
2386   *
2387   * Depending on module params, one of the two supported techniques will be used:
2388   *
2389   * - If the parameters provide explicit timeouts and tolerances, they will be
2390   *   used to build a table with up to 2 non-operational states to transition to.
2391   *   The default parameter values were selected based on the values used by
2392   *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2393   *   regeneration of the APST table in the event of switching between external
2394   *   and battery power, the timeouts and tolerances reflect a compromise
2395   *   between values used by Microsoft for AC and battery scenarios.
2396   * - If not, we'll configure the table with a simple heuristic: we are willing
2397   *   to spend at most 2% of the time transitioning between power states.
2398   *   Therefore, when running in any given state, we will enter the next
2399   *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2400   *   microseconds, as long as that state's exit latency is under the requested
2401   *   maximum latency.
2402   *
2403   * We will not autonomously enter any non-operational state for which the total
2404   * latency exceeds ps_max_latency_us.
2405   *
2406   * Users can set ps_max_latency_us to zero to turn off APST.
2407   */
nvme_configure_apst(struct nvme_ctrl * ctrl)2408  static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2409  {
2410  	struct nvme_feat_auto_pst *table;
2411  	unsigned apste = 0;
2412  	u64 max_lat_us = 0;
2413  	__le64 target = 0;
2414  	int max_ps = -1;
2415  	int state;
2416  	int ret;
2417  	unsigned last_lt_index = UINT_MAX;
2418  
2419  	/*
2420  	 * If APST isn't supported or if we haven't been initialized yet,
2421  	 * then don't do anything.
2422  	 */
2423  	if (!ctrl->apsta)
2424  		return 0;
2425  
2426  	if (ctrl->npss > 31) {
2427  		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2428  		return 0;
2429  	}
2430  
2431  	table = kzalloc(sizeof(*table), GFP_KERNEL);
2432  	if (!table)
2433  		return 0;
2434  
2435  	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2436  		/* Turn off APST. */
2437  		dev_dbg(ctrl->device, "APST disabled\n");
2438  		goto done;
2439  	}
2440  
2441  	/*
2442  	 * Walk through all states from lowest- to highest-power.
2443  	 * According to the spec, lower-numbered states use more power.  NPSS,
2444  	 * despite the name, is the index of the lowest-power state, not the
2445  	 * number of states.
2446  	 */
2447  	for (state = (int)ctrl->npss; state >= 0; state--) {
2448  		u64 total_latency_us, exit_latency_us, transition_ms;
2449  
2450  		if (target)
2451  			table->entries[state] = target;
2452  
2453  		/*
2454  		 * Don't allow transitions to the deepest state if it's quirked
2455  		 * off.
2456  		 */
2457  		if (state == ctrl->npss &&
2458  		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2459  			continue;
2460  
2461  		/*
2462  		 * Is this state a useful non-operational state for higher-power
2463  		 * states to autonomously transition to?
2464  		 */
2465  		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2466  			continue;
2467  
2468  		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2469  		if (exit_latency_us > ctrl->ps_max_latency_us)
2470  			continue;
2471  
2472  		total_latency_us = exit_latency_us +
2473  			le32_to_cpu(ctrl->psd[state].entry_lat);
2474  
2475  		/*
2476  		 * This state is good. It can be used as the APST idle target
2477  		 * for higher power states.
2478  		 */
2479  		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2480  			if (!nvme_apst_get_transition_time(total_latency_us,
2481  					&transition_ms, &last_lt_index))
2482  				continue;
2483  		} else {
2484  			transition_ms = total_latency_us + 19;
2485  			do_div(transition_ms, 20);
2486  			if (transition_ms > (1 << 24) - 1)
2487  				transition_ms = (1 << 24) - 1;
2488  		}
2489  
2490  		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2491  		if (max_ps == -1)
2492  			max_ps = state;
2493  		if (total_latency_us > max_lat_us)
2494  			max_lat_us = total_latency_us;
2495  	}
2496  
2497  	if (max_ps == -1)
2498  		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2499  	else
2500  		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2501  			max_ps, max_lat_us, (int)sizeof(*table), table);
2502  	apste = 1;
2503  
2504  done:
2505  	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2506  				table, sizeof(*table), NULL);
2507  	if (ret)
2508  		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2509  	kfree(table);
2510  	return ret;
2511  }
2512  
nvme_set_latency_tolerance(struct device * dev,s32 val)2513  static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2514  {
2515  	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2516  	u64 latency;
2517  
2518  	switch (val) {
2519  	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2520  	case PM_QOS_LATENCY_ANY:
2521  		latency = U64_MAX;
2522  		break;
2523  
2524  	default:
2525  		latency = val;
2526  	}
2527  
2528  	if (ctrl->ps_max_latency_us != latency) {
2529  		ctrl->ps_max_latency_us = latency;
2530  		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2531  			nvme_configure_apst(ctrl);
2532  	}
2533  }
2534  
2535  struct nvme_core_quirk_entry {
2536  	/*
2537  	 * NVMe model and firmware strings are padded with spaces.  For
2538  	 * simplicity, strings in the quirk table are padded with NULLs
2539  	 * instead.
2540  	 */
2541  	u16 vid;
2542  	const char *mn;
2543  	const char *fr;
2544  	unsigned long quirks;
2545  };
2546  
2547  static const struct nvme_core_quirk_entry core_quirks[] = {
2548  	{
2549  		/*
2550  		 * This Toshiba device seems to die using any APST states.  See:
2551  		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2552  		 */
2553  		.vid = 0x1179,
2554  		.mn = "THNSF5256GPUK TOSHIBA",
2555  		.quirks = NVME_QUIRK_NO_APST,
2556  	},
2557  	{
2558  		/*
2559  		 * This LiteON CL1-3D*-Q11 firmware version has a race
2560  		 * condition associated with actions related to suspend to idle
2561  		 * LiteON has resolved the problem in future firmware
2562  		 */
2563  		.vid = 0x14a4,
2564  		.fr = "22301111",
2565  		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2566  	},
2567  	{
2568  		/*
2569  		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2570  		 * aborts I/O during any load, but more easily reproducible
2571  		 * with discards (fstrim).
2572  		 *
2573  		 * The device is left in a state where it is also not possible
2574  		 * to use "nvme set-feature" to disable APST, but booting with
2575  		 * nvme_core.default_ps_max_latency=0 works.
2576  		 */
2577  		.vid = 0x1e0f,
2578  		.mn = "KCD6XVUL6T40",
2579  		.quirks = NVME_QUIRK_NO_APST,
2580  	},
2581  	{
2582  		/*
2583  		 * The external Samsung X5 SSD fails initialization without a
2584  		 * delay before checking if it is ready and has a whole set of
2585  		 * other problems.  To make this even more interesting, it
2586  		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2587  		 * does not need or want these quirks.
2588  		 */
2589  		.vid = 0x144d,
2590  		.mn = "Samsung Portable SSD X5",
2591  		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2592  			  NVME_QUIRK_NO_DEEPEST_PS |
2593  			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2594  	}
2595  };
2596  
2597  /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2598  static bool string_matches(const char *idstr, const char *match, size_t len)
2599  {
2600  	size_t matchlen;
2601  
2602  	if (!match)
2603  		return true;
2604  
2605  	matchlen = strlen(match);
2606  	WARN_ON_ONCE(matchlen > len);
2607  
2608  	if (memcmp(idstr, match, matchlen))
2609  		return false;
2610  
2611  	for (; matchlen < len; matchlen++)
2612  		if (idstr[matchlen] != ' ')
2613  			return false;
2614  
2615  	return true;
2616  }
2617  
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2618  static bool quirk_matches(const struct nvme_id_ctrl *id,
2619  			  const struct nvme_core_quirk_entry *q)
2620  {
2621  	return q->vid == le16_to_cpu(id->vid) &&
2622  		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2623  		string_matches(id->fr, q->fr, sizeof(id->fr));
2624  }
2625  
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2626  static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2627  		struct nvme_id_ctrl *id)
2628  {
2629  	size_t nqnlen;
2630  	int off;
2631  
2632  	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2633  		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2634  		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2635  			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2636  			return;
2637  		}
2638  
2639  		if (ctrl->vs >= NVME_VS(1, 2, 1))
2640  			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2641  	}
2642  
2643  	/*
2644  	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2645  	 * Base Specification 2.0.  It is slightly different from the format
2646  	 * specified there due to historic reasons, and we can't change it now.
2647  	 */
2648  	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2649  			"nqn.2014.08.org.nvmexpress:%04x%04x",
2650  			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2651  	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2652  	off += sizeof(id->sn);
2653  	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2654  	off += sizeof(id->mn);
2655  	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2656  }
2657  
nvme_release_subsystem(struct device * dev)2658  static void nvme_release_subsystem(struct device *dev)
2659  {
2660  	struct nvme_subsystem *subsys =
2661  		container_of(dev, struct nvme_subsystem, dev);
2662  
2663  	if (subsys->instance >= 0)
2664  		ida_free(&nvme_instance_ida, subsys->instance);
2665  	kfree(subsys);
2666  }
2667  
nvme_destroy_subsystem(struct kref * ref)2668  static void nvme_destroy_subsystem(struct kref *ref)
2669  {
2670  	struct nvme_subsystem *subsys =
2671  			container_of(ref, struct nvme_subsystem, ref);
2672  
2673  	mutex_lock(&nvme_subsystems_lock);
2674  	list_del(&subsys->entry);
2675  	mutex_unlock(&nvme_subsystems_lock);
2676  
2677  	ida_destroy(&subsys->ns_ida);
2678  	device_del(&subsys->dev);
2679  	put_device(&subsys->dev);
2680  }
2681  
nvme_put_subsystem(struct nvme_subsystem * subsys)2682  static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2683  {
2684  	kref_put(&subsys->ref, nvme_destroy_subsystem);
2685  }
2686  
__nvme_find_get_subsystem(const char * subsysnqn)2687  static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2688  {
2689  	struct nvme_subsystem *subsys;
2690  
2691  	lockdep_assert_held(&nvme_subsystems_lock);
2692  
2693  	/*
2694  	 * Fail matches for discovery subsystems. This results
2695  	 * in each discovery controller bound to a unique subsystem.
2696  	 * This avoids issues with validating controller values
2697  	 * that can only be true when there is a single unique subsystem.
2698  	 * There may be multiple and completely independent entities
2699  	 * that provide discovery controllers.
2700  	 */
2701  	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2702  		return NULL;
2703  
2704  	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2705  		if (strcmp(subsys->subnqn, subsysnqn))
2706  			continue;
2707  		if (!kref_get_unless_zero(&subsys->ref))
2708  			continue;
2709  		return subsys;
2710  	}
2711  
2712  	return NULL;
2713  }
2714  
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2715  static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2716  {
2717  	return ctrl->opts && ctrl->opts->discovery_nqn;
2718  }
2719  
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2720  static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2721  		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2722  {
2723  	struct nvme_ctrl *tmp;
2724  
2725  	lockdep_assert_held(&nvme_subsystems_lock);
2726  
2727  	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2728  		if (nvme_state_terminal(tmp))
2729  			continue;
2730  
2731  		if (tmp->cntlid == ctrl->cntlid) {
2732  			dev_err(ctrl->device,
2733  				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2734  				ctrl->cntlid, dev_name(tmp->device),
2735  				subsys->subnqn);
2736  			return false;
2737  		}
2738  
2739  		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2740  		    nvme_discovery_ctrl(ctrl))
2741  			continue;
2742  
2743  		dev_err(ctrl->device,
2744  			"Subsystem does not support multiple controllers\n");
2745  		return false;
2746  	}
2747  
2748  	return true;
2749  }
2750  
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2751  static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2752  {
2753  	struct nvme_subsystem *subsys, *found;
2754  	int ret;
2755  
2756  	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2757  	if (!subsys)
2758  		return -ENOMEM;
2759  
2760  	subsys->instance = -1;
2761  	mutex_init(&subsys->lock);
2762  	kref_init(&subsys->ref);
2763  	INIT_LIST_HEAD(&subsys->ctrls);
2764  	INIT_LIST_HEAD(&subsys->nsheads);
2765  	nvme_init_subnqn(subsys, ctrl, id);
2766  	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2767  	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2768  	subsys->vendor_id = le16_to_cpu(id->vid);
2769  	subsys->cmic = id->cmic;
2770  
2771  	/* Versions prior to 1.4 don't necessarily report a valid type */
2772  	if (id->cntrltype == NVME_CTRL_DISC ||
2773  	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2774  		subsys->subtype = NVME_NQN_DISC;
2775  	else
2776  		subsys->subtype = NVME_NQN_NVME;
2777  
2778  	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2779  		dev_err(ctrl->device,
2780  			"Subsystem %s is not a discovery controller",
2781  			subsys->subnqn);
2782  		kfree(subsys);
2783  		return -EINVAL;
2784  	}
2785  	subsys->awupf = le16_to_cpu(id->awupf);
2786  	nvme_mpath_default_iopolicy(subsys);
2787  
2788  	subsys->dev.class = nvme_subsys_class;
2789  	subsys->dev.release = nvme_release_subsystem;
2790  	subsys->dev.groups = nvme_subsys_attrs_groups;
2791  	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2792  	device_initialize(&subsys->dev);
2793  
2794  	mutex_lock(&nvme_subsystems_lock);
2795  	found = __nvme_find_get_subsystem(subsys->subnqn);
2796  	if (found) {
2797  		put_device(&subsys->dev);
2798  		subsys = found;
2799  
2800  		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2801  			ret = -EINVAL;
2802  			goto out_put_subsystem;
2803  		}
2804  	} else {
2805  		ret = device_add(&subsys->dev);
2806  		if (ret) {
2807  			dev_err(ctrl->device,
2808  				"failed to register subsystem device.\n");
2809  			put_device(&subsys->dev);
2810  			goto out_unlock;
2811  		}
2812  		ida_init(&subsys->ns_ida);
2813  		list_add_tail(&subsys->entry, &nvme_subsystems);
2814  	}
2815  
2816  	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2817  				dev_name(ctrl->device));
2818  	if (ret) {
2819  		dev_err(ctrl->device,
2820  			"failed to create sysfs link from subsystem.\n");
2821  		goto out_put_subsystem;
2822  	}
2823  
2824  	if (!found)
2825  		subsys->instance = ctrl->instance;
2826  	ctrl->subsys = subsys;
2827  	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2828  	mutex_unlock(&nvme_subsystems_lock);
2829  	return 0;
2830  
2831  out_put_subsystem:
2832  	nvme_put_subsystem(subsys);
2833  out_unlock:
2834  	mutex_unlock(&nvme_subsystems_lock);
2835  	return ret;
2836  }
2837  
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2838  int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2839  		void *log, size_t size, u64 offset)
2840  {
2841  	struct nvme_command c = { };
2842  	u32 dwlen = nvme_bytes_to_numd(size);
2843  
2844  	c.get_log_page.opcode = nvme_admin_get_log_page;
2845  	c.get_log_page.nsid = cpu_to_le32(nsid);
2846  	c.get_log_page.lid = log_page;
2847  	c.get_log_page.lsp = lsp;
2848  	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2849  	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2850  	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2851  	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2852  	c.get_log_page.csi = csi;
2853  
2854  	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2855  }
2856  
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)2857  static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2858  				struct nvme_effects_log **log)
2859  {
2860  	struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
2861  	int ret;
2862  
2863  	if (cel)
2864  		goto out;
2865  
2866  	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2867  	if (!cel)
2868  		return -ENOMEM;
2869  
2870  	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2871  			cel, sizeof(*cel), 0);
2872  	if (ret) {
2873  		kfree(cel);
2874  		return ret;
2875  	}
2876  
2877  	old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2878  	if (xa_is_err(old)) {
2879  		kfree(cel);
2880  		return xa_err(old);
2881  	}
2882  out:
2883  	*log = cel;
2884  	return 0;
2885  }
2886  
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)2887  static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2888  {
2889  	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2890  
2891  	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2892  		return UINT_MAX;
2893  	return val;
2894  }
2895  
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)2896  static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2897  {
2898  	struct nvme_command c = { };
2899  	struct nvme_id_ctrl_nvm *id;
2900  	int ret;
2901  
2902  	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2903  		ctrl->max_discard_sectors = UINT_MAX;
2904  		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2905  	} else {
2906  		ctrl->max_discard_sectors = 0;
2907  		ctrl->max_discard_segments = 0;
2908  	}
2909  
2910  	/*
2911  	 * Even though NVMe spec explicitly states that MDTS is not applicable
2912  	 * to the write-zeroes, we are cautious and limit the size to the
2913  	 * controllers max_hw_sectors value, which is based on the MDTS field
2914  	 * and possibly other limiting factors.
2915  	 */
2916  	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2917  	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2918  		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2919  	else
2920  		ctrl->max_zeroes_sectors = 0;
2921  
2922  	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2923  	    nvme_ctrl_limited_cns(ctrl) ||
2924  	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2925  		return 0;
2926  
2927  	id = kzalloc(sizeof(*id), GFP_KERNEL);
2928  	if (!id)
2929  		return -ENOMEM;
2930  
2931  	c.identify.opcode = nvme_admin_identify;
2932  	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2933  	c.identify.csi = NVME_CSI_NVM;
2934  
2935  	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2936  	if (ret)
2937  		goto free_data;
2938  
2939  	if (id->dmrl)
2940  		ctrl->max_discard_segments = id->dmrl;
2941  	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2942  	if (id->wzsl)
2943  		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2944  
2945  free_data:
2946  	if (ret > 0)
2947  		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2948  	kfree(id);
2949  	return ret;
2950  }
2951  
nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)2952  static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
2953  		u8 csi, struct nvme_effects_log **log)
2954  {
2955  	struct nvme_effects_log *effects, *old;
2956  
2957  	effects = kzalloc(sizeof(*effects), GFP_KERNEL);
2958  	if (!effects)
2959  		return -ENOMEM;
2960  
2961  	old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
2962  	if (xa_is_err(old)) {
2963  		kfree(effects);
2964  		return xa_err(old);
2965  	}
2966  
2967  	*log = effects;
2968  	return 0;
2969  }
2970  
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)2971  static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2972  {
2973  	struct nvme_effects_log	*log = ctrl->effects;
2974  
2975  	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2976  						NVME_CMD_EFFECTS_NCC |
2977  						NVME_CMD_EFFECTS_CSE_MASK);
2978  	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2979  						NVME_CMD_EFFECTS_CSE_MASK);
2980  
2981  	/*
2982  	 * The spec says the result of a security receive command depends on
2983  	 * the previous security send command. As such, many vendors log this
2984  	 * command as one to submitted only when no other commands to the same
2985  	 * namespace are outstanding. The intention is to tell the host to
2986  	 * prevent mixing security send and receive.
2987  	 *
2988  	 * This driver can only enforce such exclusive access against IO
2989  	 * queues, though. We are not readily able to enforce such a rule for
2990  	 * two commands to the admin queue, which is the only queue that
2991  	 * matters for this command.
2992  	 *
2993  	 * Rather than blindly freezing the IO queues for this effect that
2994  	 * doesn't even apply to IO, mask it off.
2995  	 */
2996  	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2997  
2998  	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2999  	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3000  	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3001  }
3002  
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3003  static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3004  {
3005  	int ret = 0;
3006  
3007  	if (ctrl->effects)
3008  		return 0;
3009  
3010  	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3011  		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3012  		if (ret < 0)
3013  			return ret;
3014  	}
3015  
3016  	if (!ctrl->effects) {
3017  		ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3018  		if (ret < 0)
3019  			return ret;
3020  	}
3021  
3022  	nvme_init_known_nvm_effects(ctrl);
3023  	return 0;
3024  }
3025  
nvme_init_identify(struct nvme_ctrl * ctrl)3026  static int nvme_init_identify(struct nvme_ctrl *ctrl)
3027  {
3028  	struct nvme_id_ctrl *id;
3029  	u32 max_hw_sectors;
3030  	bool prev_apst_enabled;
3031  	int ret;
3032  
3033  	ret = nvme_identify_ctrl(ctrl, &id);
3034  	if (ret) {
3035  		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3036  		return -EIO;
3037  	}
3038  
3039  	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3040  		ctrl->cntlid = le16_to_cpu(id->cntlid);
3041  
3042  	if (!ctrl->identified) {
3043  		unsigned int i;
3044  
3045  		/*
3046  		 * Check for quirks.  Quirk can depend on firmware version,
3047  		 * so, in principle, the set of quirks present can change
3048  		 * across a reset.  As a possible future enhancement, we
3049  		 * could re-scan for quirks every time we reinitialize
3050  		 * the device, but we'd have to make sure that the driver
3051  		 * behaves intelligently if the quirks change.
3052  		 */
3053  		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3054  			if (quirk_matches(id, &core_quirks[i]))
3055  				ctrl->quirks |= core_quirks[i].quirks;
3056  		}
3057  
3058  		ret = nvme_init_subsystem(ctrl, id);
3059  		if (ret)
3060  			goto out_free;
3061  
3062  		ret = nvme_init_effects(ctrl, id);
3063  		if (ret)
3064  			goto out_free;
3065  	}
3066  	memcpy(ctrl->subsys->firmware_rev, id->fr,
3067  	       sizeof(ctrl->subsys->firmware_rev));
3068  
3069  	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3070  		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3071  		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3072  	}
3073  
3074  	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3075  	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3076  	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3077  
3078  	ctrl->oacs = le16_to_cpu(id->oacs);
3079  	ctrl->oncs = le16_to_cpu(id->oncs);
3080  	ctrl->mtfa = le16_to_cpu(id->mtfa);
3081  	ctrl->oaes = le32_to_cpu(id->oaes);
3082  	ctrl->wctemp = le16_to_cpu(id->wctemp);
3083  	ctrl->cctemp = le16_to_cpu(id->cctemp);
3084  
3085  	atomic_set(&ctrl->abort_limit, id->acl + 1);
3086  	ctrl->vwc = id->vwc;
3087  	if (id->mdts)
3088  		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3089  	else
3090  		max_hw_sectors = UINT_MAX;
3091  	ctrl->max_hw_sectors =
3092  		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3093  
3094  	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3095  	ctrl->sgls = le32_to_cpu(id->sgls);
3096  	ctrl->kas = le16_to_cpu(id->kas);
3097  	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3098  	ctrl->ctratt = le32_to_cpu(id->ctratt);
3099  
3100  	ctrl->cntrltype = id->cntrltype;
3101  	ctrl->dctype = id->dctype;
3102  
3103  	if (id->rtd3e) {
3104  		/* us -> s */
3105  		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3106  
3107  		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3108  						 shutdown_timeout, 60);
3109  
3110  		if (ctrl->shutdown_timeout != shutdown_timeout)
3111  			dev_info(ctrl->device,
3112  				 "Shutdown timeout set to %u seconds\n",
3113  				 ctrl->shutdown_timeout);
3114  	} else
3115  		ctrl->shutdown_timeout = shutdown_timeout;
3116  
3117  	ctrl->npss = id->npss;
3118  	ctrl->apsta = id->apsta;
3119  	prev_apst_enabled = ctrl->apst_enabled;
3120  	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3121  		if (force_apst && id->apsta) {
3122  			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3123  			ctrl->apst_enabled = true;
3124  		} else {
3125  			ctrl->apst_enabled = false;
3126  		}
3127  	} else {
3128  		ctrl->apst_enabled = id->apsta;
3129  	}
3130  	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3131  
3132  	if (ctrl->ops->flags & NVME_F_FABRICS) {
3133  		ctrl->icdoff = le16_to_cpu(id->icdoff);
3134  		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3135  		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3136  		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3137  
3138  		/*
3139  		 * In fabrics we need to verify the cntlid matches the
3140  		 * admin connect
3141  		 */
3142  		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3143  			dev_err(ctrl->device,
3144  				"Mismatching cntlid: Connect %u vs Identify "
3145  				"%u, rejecting\n",
3146  				ctrl->cntlid, le16_to_cpu(id->cntlid));
3147  			ret = -EINVAL;
3148  			goto out_free;
3149  		}
3150  
3151  		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3152  			dev_err(ctrl->device,
3153  				"keep-alive support is mandatory for fabrics\n");
3154  			ret = -EINVAL;
3155  			goto out_free;
3156  		}
3157  	} else {
3158  		ctrl->hmpre = le32_to_cpu(id->hmpre);
3159  		ctrl->hmmin = le32_to_cpu(id->hmmin);
3160  		ctrl->hmminds = le32_to_cpu(id->hmminds);
3161  		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3162  	}
3163  
3164  	ret = nvme_mpath_init_identify(ctrl, id);
3165  	if (ret < 0)
3166  		goto out_free;
3167  
3168  	if (ctrl->apst_enabled && !prev_apst_enabled)
3169  		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3170  	else if (!ctrl->apst_enabled && prev_apst_enabled)
3171  		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3172  
3173  out_free:
3174  	kfree(id);
3175  	return ret;
3176  }
3177  
3178  /*
3179   * Initialize the cached copies of the Identify data and various controller
3180   * register in our nvme_ctrl structure.  This should be called as soon as
3181   * the admin queue is fully up and running.
3182   */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3183  int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3184  {
3185  	int ret;
3186  
3187  	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3188  	if (ret) {
3189  		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3190  		return ret;
3191  	}
3192  
3193  	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3194  
3195  	if (ctrl->vs >= NVME_VS(1, 1, 0))
3196  		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3197  
3198  	ret = nvme_init_identify(ctrl);
3199  	if (ret)
3200  		return ret;
3201  
3202  	ret = nvme_configure_apst(ctrl);
3203  	if (ret < 0)
3204  		return ret;
3205  
3206  	ret = nvme_configure_timestamp(ctrl);
3207  	if (ret < 0)
3208  		return ret;
3209  
3210  	ret = nvme_configure_host_options(ctrl);
3211  	if (ret < 0)
3212  		return ret;
3213  
3214  	nvme_configure_opal(ctrl, was_suspended);
3215  
3216  	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3217  		/*
3218  		 * Do not return errors unless we are in a controller reset,
3219  		 * the controller works perfectly fine without hwmon.
3220  		 */
3221  		ret = nvme_hwmon_init(ctrl);
3222  		if (ret == -EINTR)
3223  			return ret;
3224  	}
3225  
3226  	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3227  	ctrl->identified = true;
3228  
3229  	return 0;
3230  }
3231  EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3232  
nvme_dev_open(struct inode * inode,struct file * file)3233  static int nvme_dev_open(struct inode *inode, struct file *file)
3234  {
3235  	struct nvme_ctrl *ctrl =
3236  		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3237  
3238  	switch (nvme_ctrl_state(ctrl)) {
3239  	case NVME_CTRL_LIVE:
3240  		break;
3241  	default:
3242  		return -EWOULDBLOCK;
3243  	}
3244  
3245  	nvme_get_ctrl(ctrl);
3246  	if (!try_module_get(ctrl->ops->module)) {
3247  		nvme_put_ctrl(ctrl);
3248  		return -EINVAL;
3249  	}
3250  
3251  	file->private_data = ctrl;
3252  	return 0;
3253  }
3254  
nvme_dev_release(struct inode * inode,struct file * file)3255  static int nvme_dev_release(struct inode *inode, struct file *file)
3256  {
3257  	struct nvme_ctrl *ctrl =
3258  		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3259  
3260  	module_put(ctrl->ops->module);
3261  	nvme_put_ctrl(ctrl);
3262  	return 0;
3263  }
3264  
3265  static const struct file_operations nvme_dev_fops = {
3266  	.owner		= THIS_MODULE,
3267  	.open		= nvme_dev_open,
3268  	.release	= nvme_dev_release,
3269  	.unlocked_ioctl	= nvme_dev_ioctl,
3270  	.compat_ioctl	= compat_ptr_ioctl,
3271  	.uring_cmd	= nvme_dev_uring_cmd,
3272  };
3273  
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3274  static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3275  		unsigned nsid)
3276  {
3277  	struct nvme_ns_head *h;
3278  
3279  	lockdep_assert_held(&ctrl->subsys->lock);
3280  
3281  	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3282  		/*
3283  		 * Private namespaces can share NSIDs under some conditions.
3284  		 * In that case we can't use the same ns_head for namespaces
3285  		 * with the same NSID.
3286  		 */
3287  		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3288  			continue;
3289  		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3290  			return h;
3291  	}
3292  
3293  	return NULL;
3294  }
3295  
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3296  static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3297  		struct nvme_ns_ids *ids)
3298  {
3299  	bool has_uuid = !uuid_is_null(&ids->uuid);
3300  	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3301  	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3302  	struct nvme_ns_head *h;
3303  
3304  	lockdep_assert_held(&subsys->lock);
3305  
3306  	list_for_each_entry(h, &subsys->nsheads, entry) {
3307  		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3308  			return -EINVAL;
3309  		if (has_nguid &&
3310  		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3311  			return -EINVAL;
3312  		if (has_eui64 &&
3313  		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3314  			return -EINVAL;
3315  	}
3316  
3317  	return 0;
3318  }
3319  
nvme_cdev_rel(struct device * dev)3320  static void nvme_cdev_rel(struct device *dev)
3321  {
3322  	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3323  }
3324  
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3325  void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3326  {
3327  	cdev_device_del(cdev, cdev_device);
3328  	put_device(cdev_device);
3329  }
3330  
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3331  int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3332  		const struct file_operations *fops, struct module *owner)
3333  {
3334  	int minor, ret;
3335  
3336  	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3337  	if (minor < 0)
3338  		return minor;
3339  	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3340  	cdev_device->class = nvme_ns_chr_class;
3341  	cdev_device->release = nvme_cdev_rel;
3342  	device_initialize(cdev_device);
3343  	cdev_init(cdev, fops);
3344  	cdev->owner = owner;
3345  	ret = cdev_device_add(cdev, cdev_device);
3346  	if (ret)
3347  		put_device(cdev_device);
3348  
3349  	return ret;
3350  }
3351  
nvme_ns_chr_open(struct inode * inode,struct file * file)3352  static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3353  {
3354  	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3355  }
3356  
nvme_ns_chr_release(struct inode * inode,struct file * file)3357  static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3358  {
3359  	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3360  	return 0;
3361  }
3362  
3363  static const struct file_operations nvme_ns_chr_fops = {
3364  	.owner		= THIS_MODULE,
3365  	.open		= nvme_ns_chr_open,
3366  	.release	= nvme_ns_chr_release,
3367  	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3368  	.compat_ioctl	= compat_ptr_ioctl,
3369  	.uring_cmd	= nvme_ns_chr_uring_cmd,
3370  	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3371  };
3372  
nvme_add_ns_cdev(struct nvme_ns * ns)3373  static int nvme_add_ns_cdev(struct nvme_ns *ns)
3374  {
3375  	int ret;
3376  
3377  	ns->cdev_device.parent = ns->ctrl->device;
3378  	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3379  			   ns->ctrl->instance, ns->head->instance);
3380  	if (ret)
3381  		return ret;
3382  
3383  	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3384  			     ns->ctrl->ops->module);
3385  }
3386  
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3387  static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3388  		struct nvme_ns_info *info)
3389  {
3390  	struct nvme_ns_head *head;
3391  	size_t size = sizeof(*head);
3392  	int ret = -ENOMEM;
3393  
3394  #ifdef CONFIG_NVME_MULTIPATH
3395  	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3396  #endif
3397  
3398  	head = kzalloc(size, GFP_KERNEL);
3399  	if (!head)
3400  		goto out;
3401  	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3402  	if (ret < 0)
3403  		goto out_free_head;
3404  	head->instance = ret;
3405  	INIT_LIST_HEAD(&head->list);
3406  	ret = init_srcu_struct(&head->srcu);
3407  	if (ret)
3408  		goto out_ida_remove;
3409  	head->subsys = ctrl->subsys;
3410  	head->ns_id = info->nsid;
3411  	head->ids = info->ids;
3412  	head->shared = info->is_shared;
3413  	kref_init(&head->ref);
3414  
3415  	if (head->ids.csi) {
3416  		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3417  		if (ret)
3418  			goto out_cleanup_srcu;
3419  	} else
3420  		head->effects = ctrl->effects;
3421  
3422  	ret = nvme_mpath_alloc_disk(ctrl, head);
3423  	if (ret)
3424  		goto out_cleanup_srcu;
3425  
3426  	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3427  
3428  	kref_get(&ctrl->subsys->ref);
3429  
3430  	return head;
3431  out_cleanup_srcu:
3432  	cleanup_srcu_struct(&head->srcu);
3433  out_ida_remove:
3434  	ida_free(&ctrl->subsys->ns_ida, head->instance);
3435  out_free_head:
3436  	kfree(head);
3437  out:
3438  	if (ret > 0)
3439  		ret = blk_status_to_errno(nvme_error_status(ret));
3440  	return ERR_PTR(ret);
3441  }
3442  
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3443  static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3444  		struct nvme_ns_ids *ids)
3445  {
3446  	struct nvme_subsystem *s;
3447  	int ret = 0;
3448  
3449  	/*
3450  	 * Note that this check is racy as we try to avoid holding the global
3451  	 * lock over the whole ns_head creation.  But it is only intended as
3452  	 * a sanity check anyway.
3453  	 */
3454  	mutex_lock(&nvme_subsystems_lock);
3455  	list_for_each_entry(s, &nvme_subsystems, entry) {
3456  		if (s == this)
3457  			continue;
3458  		mutex_lock(&s->lock);
3459  		ret = nvme_subsys_check_duplicate_ids(s, ids);
3460  		mutex_unlock(&s->lock);
3461  		if (ret)
3462  			break;
3463  	}
3464  	mutex_unlock(&nvme_subsystems_lock);
3465  
3466  	return ret;
3467  }
3468  
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3469  static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3470  {
3471  	struct nvme_ctrl *ctrl = ns->ctrl;
3472  	struct nvme_ns_head *head = NULL;
3473  	int ret;
3474  
3475  	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3476  	if (ret) {
3477  		/*
3478  		 * We've found two different namespaces on two different
3479  		 * subsystems that report the same ID.  This is pretty nasty
3480  		 * for anything that actually requires unique device
3481  		 * identification.  In the kernel we need this for multipathing,
3482  		 * and in user space the /dev/disk/by-id/ links rely on it.
3483  		 *
3484  		 * If the device also claims to be multi-path capable back off
3485  		 * here now and refuse the probe the second device as this is a
3486  		 * recipe for data corruption.  If not this is probably a
3487  		 * cheap consumer device if on the PCIe bus, so let the user
3488  		 * proceed and use the shiny toy, but warn that with changing
3489  		 * probing order (which due to our async probing could just be
3490  		 * device taking longer to startup) the other device could show
3491  		 * up at any time.
3492  		 */
3493  		nvme_print_device_info(ctrl);
3494  		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3495  		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3496  		     info->is_shared)) {
3497  			dev_err(ctrl->device,
3498  				"ignoring nsid %d because of duplicate IDs\n",
3499  				info->nsid);
3500  			return ret;
3501  		}
3502  
3503  		dev_err(ctrl->device,
3504  			"clearing duplicate IDs for nsid %d\n", info->nsid);
3505  		dev_err(ctrl->device,
3506  			"use of /dev/disk/by-id/ may cause data corruption\n");
3507  		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3508  		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3509  		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3510  		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3511  	}
3512  
3513  	mutex_lock(&ctrl->subsys->lock);
3514  	head = nvme_find_ns_head(ctrl, info->nsid);
3515  	if (!head) {
3516  		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3517  		if (ret) {
3518  			dev_err(ctrl->device,
3519  				"duplicate IDs in subsystem for nsid %d\n",
3520  				info->nsid);
3521  			goto out_unlock;
3522  		}
3523  		head = nvme_alloc_ns_head(ctrl, info);
3524  		if (IS_ERR(head)) {
3525  			ret = PTR_ERR(head);
3526  			goto out_unlock;
3527  		}
3528  	} else {
3529  		ret = -EINVAL;
3530  		if (!info->is_shared || !head->shared) {
3531  			dev_err(ctrl->device,
3532  				"Duplicate unshared namespace %d\n",
3533  				info->nsid);
3534  			goto out_put_ns_head;
3535  		}
3536  		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3537  			dev_err(ctrl->device,
3538  				"IDs don't match for shared namespace %d\n",
3539  					info->nsid);
3540  			goto out_put_ns_head;
3541  		}
3542  
3543  		if (!multipath) {
3544  			dev_warn(ctrl->device,
3545  				"Found shared namespace %d, but multipathing not supported.\n",
3546  				info->nsid);
3547  			dev_warn_once(ctrl->device,
3548  				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3549  		}
3550  	}
3551  
3552  	list_add_tail_rcu(&ns->siblings, &head->list);
3553  	ns->head = head;
3554  	mutex_unlock(&ctrl->subsys->lock);
3555  	return 0;
3556  
3557  out_put_ns_head:
3558  	nvme_put_ns_head(head);
3559  out_unlock:
3560  	mutex_unlock(&ctrl->subsys->lock);
3561  	return ret;
3562  }
3563  
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3564  struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3565  {
3566  	struct nvme_ns *ns, *ret = NULL;
3567  	int srcu_idx;
3568  
3569  	srcu_idx = srcu_read_lock(&ctrl->srcu);
3570  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3571  				 srcu_read_lock_held(&ctrl->srcu)) {
3572  		if (ns->head->ns_id == nsid) {
3573  			if (!nvme_get_ns(ns))
3574  				continue;
3575  			ret = ns;
3576  			break;
3577  		}
3578  		if (ns->head->ns_id > nsid)
3579  			break;
3580  	}
3581  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3582  	return ret;
3583  }
3584  EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3585  
3586  /*
3587   * Add the namespace to the controller list while keeping the list ordered.
3588   */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3589  static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3590  {
3591  	struct nvme_ns *tmp;
3592  
3593  	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3594  		if (tmp->head->ns_id < ns->head->ns_id) {
3595  			list_add_rcu(&ns->list, &tmp->list);
3596  			return;
3597  		}
3598  	}
3599  	list_add(&ns->list, &ns->ctrl->namespaces);
3600  }
3601  
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3602  static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3603  {
3604  	struct nvme_ns *ns;
3605  	struct gendisk *disk;
3606  	int node = ctrl->numa_node;
3607  
3608  	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3609  	if (!ns)
3610  		return;
3611  
3612  	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3613  	if (IS_ERR(disk))
3614  		goto out_free_ns;
3615  	disk->fops = &nvme_bdev_ops;
3616  	disk->private_data = ns;
3617  
3618  	ns->disk = disk;
3619  	ns->queue = disk->queue;
3620  
3621  	if (ctrl->opts && ctrl->opts->data_digest)
3622  		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3623  
3624  	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3625  	if (ctrl->ops->supports_pci_p2pdma &&
3626  	    ctrl->ops->supports_pci_p2pdma(ctrl))
3627  		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3628  
3629  	ns->ctrl = ctrl;
3630  	kref_init(&ns->kref);
3631  
3632  	if (nvme_init_ns_head(ns, info))
3633  		goto out_cleanup_disk;
3634  
3635  	/*
3636  	 * If multipathing is enabled, the device name for all disks and not
3637  	 * just those that represent shared namespaces needs to be based on the
3638  	 * subsystem instance.  Using the controller instance for private
3639  	 * namespaces could lead to naming collisions between shared and private
3640  	 * namespaces if they don't use a common numbering scheme.
3641  	 *
3642  	 * If multipathing is not enabled, disk names must use the controller
3643  	 * instance as shared namespaces will show up as multiple block
3644  	 * devices.
3645  	 */
3646  	if (nvme_ns_head_multipath(ns->head)) {
3647  		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3648  			ctrl->instance, ns->head->instance);
3649  		disk->flags |= GENHD_FL_HIDDEN;
3650  	} else if (multipath) {
3651  		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3652  			ns->head->instance);
3653  	} else {
3654  		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3655  			ns->head->instance);
3656  	}
3657  
3658  	if (nvme_update_ns_info(ns, info))
3659  		goto out_unlink_ns;
3660  
3661  	mutex_lock(&ctrl->namespaces_lock);
3662  	/*
3663  	 * Ensure that no namespaces are added to the ctrl list after the queues
3664  	 * are frozen, thereby avoiding a deadlock between scan and reset.
3665  	 */
3666  	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3667  		mutex_unlock(&ctrl->namespaces_lock);
3668  		goto out_unlink_ns;
3669  	}
3670  	nvme_ns_add_to_ctrl_list(ns);
3671  	mutex_unlock(&ctrl->namespaces_lock);
3672  	synchronize_srcu(&ctrl->srcu);
3673  	nvme_get_ctrl(ctrl);
3674  
3675  	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3676  		goto out_cleanup_ns_from_list;
3677  
3678  	if (!nvme_ns_head_multipath(ns->head))
3679  		nvme_add_ns_cdev(ns);
3680  
3681  	nvme_mpath_add_disk(ns, info->anagrpid);
3682  	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3683  
3684  	return;
3685  
3686   out_cleanup_ns_from_list:
3687  	nvme_put_ctrl(ctrl);
3688  	mutex_lock(&ctrl->namespaces_lock);
3689  	list_del_rcu(&ns->list);
3690  	mutex_unlock(&ctrl->namespaces_lock);
3691  	synchronize_srcu(&ctrl->srcu);
3692   out_unlink_ns:
3693  	mutex_lock(&ctrl->subsys->lock);
3694  	list_del_rcu(&ns->siblings);
3695  	if (list_empty(&ns->head->list))
3696  		list_del_init(&ns->head->entry);
3697  	mutex_unlock(&ctrl->subsys->lock);
3698  	nvme_put_ns_head(ns->head);
3699   out_cleanup_disk:
3700  	put_disk(disk);
3701   out_free_ns:
3702  	kfree(ns);
3703  }
3704  
nvme_ns_remove(struct nvme_ns * ns)3705  static void nvme_ns_remove(struct nvme_ns *ns)
3706  {
3707  	bool last_path = false;
3708  
3709  	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3710  		return;
3711  
3712  	clear_bit(NVME_NS_READY, &ns->flags);
3713  	set_capacity(ns->disk, 0);
3714  	nvme_fault_inject_fini(&ns->fault_inject);
3715  
3716  	/*
3717  	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3718  	 * this ns going back into current_path.
3719  	 */
3720  	synchronize_srcu(&ns->head->srcu);
3721  
3722  	/* wait for concurrent submissions */
3723  	if (nvme_mpath_clear_current_path(ns))
3724  		synchronize_srcu(&ns->head->srcu);
3725  
3726  	mutex_lock(&ns->ctrl->subsys->lock);
3727  	list_del_rcu(&ns->siblings);
3728  	if (list_empty(&ns->head->list)) {
3729  		list_del_init(&ns->head->entry);
3730  		last_path = true;
3731  	}
3732  	mutex_unlock(&ns->ctrl->subsys->lock);
3733  
3734  	/* guarantee not available in head->list */
3735  	synchronize_srcu(&ns->head->srcu);
3736  
3737  	if (!nvme_ns_head_multipath(ns->head))
3738  		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3739  	del_gendisk(ns->disk);
3740  
3741  	mutex_lock(&ns->ctrl->namespaces_lock);
3742  	list_del_rcu(&ns->list);
3743  	mutex_unlock(&ns->ctrl->namespaces_lock);
3744  	synchronize_srcu(&ns->ctrl->srcu);
3745  
3746  	if (last_path)
3747  		nvme_mpath_shutdown_disk(ns->head);
3748  	nvme_put_ns(ns);
3749  }
3750  
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)3751  static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3752  {
3753  	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3754  
3755  	if (ns) {
3756  		nvme_ns_remove(ns);
3757  		nvme_put_ns(ns);
3758  	}
3759  }
3760  
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)3761  static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3762  {
3763  	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3764  
3765  	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3766  		dev_err(ns->ctrl->device,
3767  			"identifiers changed for nsid %d\n", ns->head->ns_id);
3768  		goto out;
3769  	}
3770  
3771  	ret = nvme_update_ns_info(ns, info);
3772  out:
3773  	/*
3774  	 * Only remove the namespace if we got a fatal error back from the
3775  	 * device, otherwise ignore the error and just move on.
3776  	 *
3777  	 * TODO: we should probably schedule a delayed retry here.
3778  	 */
3779  	if (ret > 0 && (ret & NVME_SC_DNR))
3780  		nvme_ns_remove(ns);
3781  }
3782  
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)3783  static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3784  {
3785  	struct nvme_ns_info info = { .nsid = nsid };
3786  	struct nvme_ns *ns;
3787  	int ret;
3788  
3789  	if (nvme_identify_ns_descs(ctrl, &info))
3790  		return;
3791  
3792  	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3793  		dev_warn(ctrl->device,
3794  			"command set not reported for nsid: %d\n", nsid);
3795  		return;
3796  	}
3797  
3798  	/*
3799  	 * If available try to use the Command Set Idependent Identify Namespace
3800  	 * data structure to find all the generic information that is needed to
3801  	 * set up a namespace.  If not fall back to the legacy version.
3802  	 */
3803  	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3804  	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3805  		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3806  	else
3807  		ret = nvme_ns_info_from_identify(ctrl, &info);
3808  
3809  	if (info.is_removed)
3810  		nvme_ns_remove_by_nsid(ctrl, nsid);
3811  
3812  	/*
3813  	 * Ignore the namespace if it is not ready. We will get an AEN once it
3814  	 * becomes ready and restart the scan.
3815  	 */
3816  	if (ret || !info.is_ready)
3817  		return;
3818  
3819  	ns = nvme_find_get_ns(ctrl, nsid);
3820  	if (ns) {
3821  		nvme_validate_ns(ns, &info);
3822  		nvme_put_ns(ns);
3823  	} else {
3824  		nvme_alloc_ns(ctrl, &info);
3825  	}
3826  }
3827  
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)3828  static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3829  					unsigned nsid)
3830  {
3831  	struct nvme_ns *ns, *next;
3832  	LIST_HEAD(rm_list);
3833  
3834  	mutex_lock(&ctrl->namespaces_lock);
3835  	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3836  		if (ns->head->ns_id > nsid) {
3837  			list_del_rcu(&ns->list);
3838  			synchronize_srcu(&ctrl->srcu);
3839  			list_add_tail_rcu(&ns->list, &rm_list);
3840  		}
3841  	}
3842  	mutex_unlock(&ctrl->namespaces_lock);
3843  
3844  	list_for_each_entry_safe(ns, next, &rm_list, list)
3845  		nvme_ns_remove(ns);
3846  }
3847  
nvme_scan_ns_list(struct nvme_ctrl * ctrl)3848  static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3849  {
3850  	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3851  	__le32 *ns_list;
3852  	u32 prev = 0;
3853  	int ret = 0, i;
3854  
3855  	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3856  	if (!ns_list)
3857  		return -ENOMEM;
3858  
3859  	for (;;) {
3860  		struct nvme_command cmd = {
3861  			.identify.opcode	= nvme_admin_identify,
3862  			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3863  			.identify.nsid		= cpu_to_le32(prev),
3864  		};
3865  
3866  		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3867  					    NVME_IDENTIFY_DATA_SIZE);
3868  		if (ret) {
3869  			dev_warn(ctrl->device,
3870  				"Identify NS List failed (status=0x%x)\n", ret);
3871  			goto free;
3872  		}
3873  
3874  		for (i = 0; i < nr_entries; i++) {
3875  			u32 nsid = le32_to_cpu(ns_list[i]);
3876  
3877  			if (!nsid)	/* end of the list? */
3878  				goto out;
3879  			nvme_scan_ns(ctrl, nsid);
3880  			while (++prev < nsid)
3881  				nvme_ns_remove_by_nsid(ctrl, prev);
3882  		}
3883  	}
3884   out:
3885  	nvme_remove_invalid_namespaces(ctrl, prev);
3886   free:
3887  	kfree(ns_list);
3888  	return ret;
3889  }
3890  
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)3891  static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3892  {
3893  	struct nvme_id_ctrl *id;
3894  	u32 nn, i;
3895  
3896  	if (nvme_identify_ctrl(ctrl, &id))
3897  		return;
3898  	nn = le32_to_cpu(id->nn);
3899  	kfree(id);
3900  
3901  	for (i = 1; i <= nn; i++)
3902  		nvme_scan_ns(ctrl, i);
3903  
3904  	nvme_remove_invalid_namespaces(ctrl, nn);
3905  }
3906  
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)3907  static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3908  {
3909  	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3910  	__le32 *log;
3911  	int error;
3912  
3913  	log = kzalloc(log_size, GFP_KERNEL);
3914  	if (!log)
3915  		return;
3916  
3917  	/*
3918  	 * We need to read the log to clear the AEN, but we don't want to rely
3919  	 * on it for the changed namespace information as userspace could have
3920  	 * raced with us in reading the log page, which could cause us to miss
3921  	 * updates.
3922  	 */
3923  	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3924  			NVME_CSI_NVM, log, log_size, 0);
3925  	if (error)
3926  		dev_warn(ctrl->device,
3927  			"reading changed ns log failed: %d\n", error);
3928  
3929  	kfree(log);
3930  }
3931  
nvme_scan_work(struct work_struct * work)3932  static void nvme_scan_work(struct work_struct *work)
3933  {
3934  	struct nvme_ctrl *ctrl =
3935  		container_of(work, struct nvme_ctrl, scan_work);
3936  	int ret;
3937  
3938  	/* No tagset on a live ctrl means IO queues could not created */
3939  	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
3940  		return;
3941  
3942  	/*
3943  	 * Identify controller limits can change at controller reset due to
3944  	 * new firmware download, even though it is not common we cannot ignore
3945  	 * such scenario. Controller's non-mdts limits are reported in the unit
3946  	 * of logical blocks that is dependent on the format of attached
3947  	 * namespace. Hence re-read the limits at the time of ns allocation.
3948  	 */
3949  	ret = nvme_init_non_mdts_limits(ctrl);
3950  	if (ret < 0) {
3951  		dev_warn(ctrl->device,
3952  			"reading non-mdts-limits failed: %d\n", ret);
3953  		return;
3954  	}
3955  
3956  	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3957  		dev_info(ctrl->device, "rescanning namespaces.\n");
3958  		nvme_clear_changed_ns_log(ctrl);
3959  	}
3960  
3961  	mutex_lock(&ctrl->scan_lock);
3962  	if (nvme_ctrl_limited_cns(ctrl)) {
3963  		nvme_scan_ns_sequential(ctrl);
3964  	} else {
3965  		/*
3966  		 * Fall back to sequential scan if DNR is set to handle broken
3967  		 * devices which should support Identify NS List (as per the VS
3968  		 * they report) but don't actually support it.
3969  		 */
3970  		ret = nvme_scan_ns_list(ctrl);
3971  		if (ret > 0 && ret & NVME_SC_DNR)
3972  			nvme_scan_ns_sequential(ctrl);
3973  	}
3974  	mutex_unlock(&ctrl->scan_lock);
3975  }
3976  
3977  /*
3978   * This function iterates the namespace list unlocked to allow recovery from
3979   * controller failure. It is up to the caller to ensure the namespace list is
3980   * not modified by scan work while this function is executing.
3981   */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)3982  void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3983  {
3984  	struct nvme_ns *ns, *next;
3985  	LIST_HEAD(ns_list);
3986  
3987  	/*
3988  	 * make sure to requeue I/O to all namespaces as these
3989  	 * might result from the scan itself and must complete
3990  	 * for the scan_work to make progress
3991  	 */
3992  	nvme_mpath_clear_ctrl_paths(ctrl);
3993  
3994  	/*
3995  	 * Unquiesce io queues so any pending IO won't hang, especially
3996  	 * those submitted from scan work
3997  	 */
3998  	nvme_unquiesce_io_queues(ctrl);
3999  
4000  	/* prevent racing with ns scanning */
4001  	flush_work(&ctrl->scan_work);
4002  
4003  	/*
4004  	 * The dead states indicates the controller was not gracefully
4005  	 * disconnected. In that case, we won't be able to flush any data while
4006  	 * removing the namespaces' disks; fail all the queues now to avoid
4007  	 * potentially having to clean up the failed sync later.
4008  	 */
4009  	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4010  		nvme_mark_namespaces_dead(ctrl);
4011  
4012  	/* this is a no-op when called from the controller reset handler */
4013  	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4014  
4015  	mutex_lock(&ctrl->namespaces_lock);
4016  	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4017  	mutex_unlock(&ctrl->namespaces_lock);
4018  	synchronize_srcu(&ctrl->srcu);
4019  
4020  	list_for_each_entry_safe(ns, next, &ns_list, list)
4021  		nvme_ns_remove(ns);
4022  }
4023  EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4024  
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4025  static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4026  {
4027  	const struct nvme_ctrl *ctrl =
4028  		container_of(dev, struct nvme_ctrl, ctrl_device);
4029  	struct nvmf_ctrl_options *opts = ctrl->opts;
4030  	int ret;
4031  
4032  	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4033  	if (ret)
4034  		return ret;
4035  
4036  	if (opts) {
4037  		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4038  		if (ret)
4039  			return ret;
4040  
4041  		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4042  				opts->trsvcid ?: "none");
4043  		if (ret)
4044  			return ret;
4045  
4046  		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4047  				opts->host_traddr ?: "none");
4048  		if (ret)
4049  			return ret;
4050  
4051  		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4052  				opts->host_iface ?: "none");
4053  	}
4054  	return ret;
4055  }
4056  
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4057  static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4058  {
4059  	char *envp[2] = { envdata, NULL };
4060  
4061  	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4062  }
4063  
nvme_aen_uevent(struct nvme_ctrl * ctrl)4064  static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4065  {
4066  	char *envp[2] = { NULL, NULL };
4067  	u32 aen_result = ctrl->aen_result;
4068  
4069  	ctrl->aen_result = 0;
4070  	if (!aen_result)
4071  		return;
4072  
4073  	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4074  	if (!envp[0])
4075  		return;
4076  	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4077  	kfree(envp[0]);
4078  }
4079  
nvme_async_event_work(struct work_struct * work)4080  static void nvme_async_event_work(struct work_struct *work)
4081  {
4082  	struct nvme_ctrl *ctrl =
4083  		container_of(work, struct nvme_ctrl, async_event_work);
4084  
4085  	nvme_aen_uevent(ctrl);
4086  
4087  	/*
4088  	 * The transport drivers must guarantee AER submission here is safe by
4089  	 * flushing ctrl async_event_work after changing the controller state
4090  	 * from LIVE and before freeing the admin queue.
4091  	*/
4092  	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4093  		ctrl->ops->submit_async_event(ctrl);
4094  }
4095  
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4096  static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4097  {
4098  
4099  	u32 csts;
4100  
4101  	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4102  		return false;
4103  
4104  	if (csts == ~0)
4105  		return false;
4106  
4107  	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4108  }
4109  
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4110  static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4111  {
4112  	struct nvme_fw_slot_info_log *log;
4113  
4114  	log = kmalloc(sizeof(*log), GFP_KERNEL);
4115  	if (!log)
4116  		return;
4117  
4118  	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4119  			log, sizeof(*log), 0))
4120  		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4121  	kfree(log);
4122  }
4123  
nvme_fw_act_work(struct work_struct * work)4124  static void nvme_fw_act_work(struct work_struct *work)
4125  {
4126  	struct nvme_ctrl *ctrl = container_of(work,
4127  				struct nvme_ctrl, fw_act_work);
4128  	unsigned long fw_act_timeout;
4129  
4130  	nvme_auth_stop(ctrl);
4131  
4132  	if (ctrl->mtfa)
4133  		fw_act_timeout = jiffies +
4134  				msecs_to_jiffies(ctrl->mtfa * 100);
4135  	else
4136  		fw_act_timeout = jiffies +
4137  				msecs_to_jiffies(admin_timeout * 1000);
4138  
4139  	nvme_quiesce_io_queues(ctrl);
4140  	while (nvme_ctrl_pp_status(ctrl)) {
4141  		if (time_after(jiffies, fw_act_timeout)) {
4142  			dev_warn(ctrl->device,
4143  				"Fw activation timeout, reset controller\n");
4144  			nvme_try_sched_reset(ctrl);
4145  			return;
4146  		}
4147  		msleep(100);
4148  	}
4149  
4150  	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4151  		return;
4152  
4153  	nvme_unquiesce_io_queues(ctrl);
4154  	/* read FW slot information to clear the AER */
4155  	nvme_get_fw_slot_info(ctrl);
4156  
4157  	queue_work(nvme_wq, &ctrl->async_event_work);
4158  }
4159  
nvme_aer_type(u32 result)4160  static u32 nvme_aer_type(u32 result)
4161  {
4162  	return result & 0x7;
4163  }
4164  
nvme_aer_subtype(u32 result)4165  static u32 nvme_aer_subtype(u32 result)
4166  {
4167  	return (result & 0xff00) >> 8;
4168  }
4169  
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4170  static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4171  {
4172  	u32 aer_notice_type = nvme_aer_subtype(result);
4173  	bool requeue = true;
4174  
4175  	switch (aer_notice_type) {
4176  	case NVME_AER_NOTICE_NS_CHANGED:
4177  		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4178  		nvme_queue_scan(ctrl);
4179  		break;
4180  	case NVME_AER_NOTICE_FW_ACT_STARTING:
4181  		/*
4182  		 * We are (ab)using the RESETTING state to prevent subsequent
4183  		 * recovery actions from interfering with the controller's
4184  		 * firmware activation.
4185  		 */
4186  		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4187  			requeue = false;
4188  			queue_work(nvme_wq, &ctrl->fw_act_work);
4189  		}
4190  		break;
4191  #ifdef CONFIG_NVME_MULTIPATH
4192  	case NVME_AER_NOTICE_ANA:
4193  		if (!ctrl->ana_log_buf)
4194  			break;
4195  		queue_work(nvme_wq, &ctrl->ana_work);
4196  		break;
4197  #endif
4198  	case NVME_AER_NOTICE_DISC_CHANGED:
4199  		ctrl->aen_result = result;
4200  		break;
4201  	default:
4202  		dev_warn(ctrl->device, "async event result %08x\n", result);
4203  	}
4204  	return requeue;
4205  }
4206  
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4207  static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4208  {
4209  	dev_warn(ctrl->device, "resetting controller due to AER\n");
4210  	nvme_reset_ctrl(ctrl);
4211  }
4212  
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4213  void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4214  		volatile union nvme_result *res)
4215  {
4216  	u32 result = le32_to_cpu(res->u32);
4217  	u32 aer_type = nvme_aer_type(result);
4218  	u32 aer_subtype = nvme_aer_subtype(result);
4219  	bool requeue = true;
4220  
4221  	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4222  		return;
4223  
4224  	trace_nvme_async_event(ctrl, result);
4225  	switch (aer_type) {
4226  	case NVME_AER_NOTICE:
4227  		requeue = nvme_handle_aen_notice(ctrl, result);
4228  		break;
4229  	case NVME_AER_ERROR:
4230  		/*
4231  		 * For a persistent internal error, don't run async_event_work
4232  		 * to submit a new AER. The controller reset will do it.
4233  		 */
4234  		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4235  			nvme_handle_aer_persistent_error(ctrl);
4236  			return;
4237  		}
4238  		fallthrough;
4239  	case NVME_AER_SMART:
4240  	case NVME_AER_CSS:
4241  	case NVME_AER_VS:
4242  		ctrl->aen_result = result;
4243  		break;
4244  	default:
4245  		break;
4246  	}
4247  
4248  	if (requeue)
4249  		queue_work(nvme_wq, &ctrl->async_event_work);
4250  }
4251  EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4252  
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4253  int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4254  		const struct blk_mq_ops *ops, unsigned int cmd_size)
4255  {
4256  	int ret;
4257  
4258  	memset(set, 0, sizeof(*set));
4259  	set->ops = ops;
4260  	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4261  	if (ctrl->ops->flags & NVME_F_FABRICS)
4262  		/* Reserved for fabric connect and keep alive */
4263  		set->reserved_tags = 2;
4264  	set->numa_node = ctrl->numa_node;
4265  	set->flags = BLK_MQ_F_NO_SCHED;
4266  	if (ctrl->ops->flags & NVME_F_BLOCKING)
4267  		set->flags |= BLK_MQ_F_BLOCKING;
4268  	set->cmd_size = cmd_size;
4269  	set->driver_data = ctrl;
4270  	set->nr_hw_queues = 1;
4271  	set->timeout = NVME_ADMIN_TIMEOUT;
4272  	ret = blk_mq_alloc_tag_set(set);
4273  	if (ret)
4274  		return ret;
4275  
4276  	ctrl->admin_q = blk_mq_init_queue(set);
4277  	if (IS_ERR(ctrl->admin_q)) {
4278  		ret = PTR_ERR(ctrl->admin_q);
4279  		goto out_free_tagset;
4280  	}
4281  
4282  	if (ctrl->ops->flags & NVME_F_FABRICS) {
4283  		ctrl->fabrics_q = blk_mq_init_queue(set);
4284  		if (IS_ERR(ctrl->fabrics_q)) {
4285  			ret = PTR_ERR(ctrl->fabrics_q);
4286  			goto out_cleanup_admin_q;
4287  		}
4288  	}
4289  
4290  	ctrl->admin_tagset = set;
4291  	return 0;
4292  
4293  out_cleanup_admin_q:
4294  	blk_mq_destroy_queue(ctrl->admin_q);
4295  	blk_put_queue(ctrl->admin_q);
4296  out_free_tagset:
4297  	blk_mq_free_tag_set(set);
4298  	ctrl->admin_q = NULL;
4299  	ctrl->fabrics_q = NULL;
4300  	return ret;
4301  }
4302  EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4303  
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4304  void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4305  {
4306  	blk_mq_destroy_queue(ctrl->admin_q);
4307  	blk_put_queue(ctrl->admin_q);
4308  	if (ctrl->ops->flags & NVME_F_FABRICS) {
4309  		blk_mq_destroy_queue(ctrl->fabrics_q);
4310  		blk_put_queue(ctrl->fabrics_q);
4311  	}
4312  	blk_mq_free_tag_set(ctrl->admin_tagset);
4313  }
4314  EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4315  
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4316  int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4317  		const struct blk_mq_ops *ops, unsigned int nr_maps,
4318  		unsigned int cmd_size)
4319  {
4320  	int ret;
4321  
4322  	memset(set, 0, sizeof(*set));
4323  	set->ops = ops;
4324  	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4325  	/*
4326  	 * Some Apple controllers requires tags to be unique across admin and
4327  	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4328  	 */
4329  	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4330  		set->reserved_tags = NVME_AQ_DEPTH;
4331  	else if (ctrl->ops->flags & NVME_F_FABRICS)
4332  		/* Reserved for fabric connect */
4333  		set->reserved_tags = 1;
4334  	set->numa_node = ctrl->numa_node;
4335  	set->flags = BLK_MQ_F_SHOULD_MERGE;
4336  	if (ctrl->ops->flags & NVME_F_BLOCKING)
4337  		set->flags |= BLK_MQ_F_BLOCKING;
4338  	set->cmd_size = cmd_size,
4339  	set->driver_data = ctrl;
4340  	set->nr_hw_queues = ctrl->queue_count - 1;
4341  	set->timeout = NVME_IO_TIMEOUT;
4342  	set->nr_maps = nr_maps;
4343  	ret = blk_mq_alloc_tag_set(set);
4344  	if (ret)
4345  		return ret;
4346  
4347  	if (ctrl->ops->flags & NVME_F_FABRICS) {
4348  		ctrl->connect_q = blk_mq_init_queue(set);
4349          	if (IS_ERR(ctrl->connect_q)) {
4350  			ret = PTR_ERR(ctrl->connect_q);
4351  			goto out_free_tag_set;
4352  		}
4353  		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4354  				   ctrl->connect_q);
4355  	}
4356  
4357  	ctrl->tagset = set;
4358  	return 0;
4359  
4360  out_free_tag_set:
4361  	blk_mq_free_tag_set(set);
4362  	ctrl->connect_q = NULL;
4363  	return ret;
4364  }
4365  EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4366  
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4367  void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4368  {
4369  	if (ctrl->ops->flags & NVME_F_FABRICS) {
4370  		blk_mq_destroy_queue(ctrl->connect_q);
4371  		blk_put_queue(ctrl->connect_q);
4372  	}
4373  	blk_mq_free_tag_set(ctrl->tagset);
4374  }
4375  EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4376  
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4377  void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4378  {
4379  	nvme_mpath_stop(ctrl);
4380  	nvme_auth_stop(ctrl);
4381  	nvme_stop_keep_alive(ctrl);
4382  	nvme_stop_failfast_work(ctrl);
4383  	flush_work(&ctrl->async_event_work);
4384  	cancel_work_sync(&ctrl->fw_act_work);
4385  	if (ctrl->ops->stop_ctrl)
4386  		ctrl->ops->stop_ctrl(ctrl);
4387  }
4388  EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4389  
nvme_start_ctrl(struct nvme_ctrl * ctrl)4390  void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4391  {
4392  	nvme_start_keep_alive(ctrl);
4393  
4394  	nvme_enable_aen(ctrl);
4395  
4396  	/*
4397  	 * persistent discovery controllers need to send indication to userspace
4398  	 * to re-read the discovery log page to learn about possible changes
4399  	 * that were missed. We identify persistent discovery controllers by
4400  	 * checking that they started once before, hence are reconnecting back.
4401  	 */
4402  	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4403  	    nvme_discovery_ctrl(ctrl))
4404  		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4405  
4406  	if (ctrl->queue_count > 1) {
4407  		nvme_queue_scan(ctrl);
4408  		nvme_unquiesce_io_queues(ctrl);
4409  		nvme_mpath_update(ctrl);
4410  	}
4411  
4412  	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4413  	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4414  }
4415  EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4416  
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4417  void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4418  {
4419  	nvme_hwmon_exit(ctrl);
4420  	nvme_fault_inject_fini(&ctrl->fault_inject);
4421  	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4422  	cdev_device_del(&ctrl->cdev, ctrl->device);
4423  	nvme_put_ctrl(ctrl);
4424  }
4425  EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4426  
nvme_free_cels(struct nvme_ctrl * ctrl)4427  static void nvme_free_cels(struct nvme_ctrl *ctrl)
4428  {
4429  	struct nvme_effects_log	*cel;
4430  	unsigned long i;
4431  
4432  	xa_for_each(&ctrl->cels, i, cel) {
4433  		xa_erase(&ctrl->cels, i);
4434  		kfree(cel);
4435  	}
4436  
4437  	xa_destroy(&ctrl->cels);
4438  }
4439  
nvme_free_ctrl(struct device * dev)4440  static void nvme_free_ctrl(struct device *dev)
4441  {
4442  	struct nvme_ctrl *ctrl =
4443  		container_of(dev, struct nvme_ctrl, ctrl_device);
4444  	struct nvme_subsystem *subsys = ctrl->subsys;
4445  
4446  	if (!subsys || ctrl->instance != subsys->instance)
4447  		ida_free(&nvme_instance_ida, ctrl->instance);
4448  
4449  	nvme_free_cels(ctrl);
4450  	nvme_mpath_uninit(ctrl);
4451  	cleanup_srcu_struct(&ctrl->srcu);
4452  	nvme_auth_stop(ctrl);
4453  	nvme_auth_free(ctrl);
4454  	__free_page(ctrl->discard_page);
4455  	free_opal_dev(ctrl->opal_dev);
4456  
4457  	if (subsys) {
4458  		mutex_lock(&nvme_subsystems_lock);
4459  		list_del(&ctrl->subsys_entry);
4460  		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4461  		mutex_unlock(&nvme_subsystems_lock);
4462  	}
4463  
4464  	ctrl->ops->free_ctrl(ctrl);
4465  
4466  	if (subsys)
4467  		nvme_put_subsystem(subsys);
4468  }
4469  
4470  /*
4471   * Initialize a NVMe controller structures.  This needs to be called during
4472   * earliest initialization so that we have the initialized structured around
4473   * during probing.
4474   */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4475  int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4476  		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4477  {
4478  	int ret;
4479  
4480  	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4481  	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4482  	spin_lock_init(&ctrl->lock);
4483  	mutex_init(&ctrl->namespaces_lock);
4484  
4485  	ret = init_srcu_struct(&ctrl->srcu);
4486  	if (ret)
4487  		return ret;
4488  
4489  	mutex_init(&ctrl->scan_lock);
4490  	INIT_LIST_HEAD(&ctrl->namespaces);
4491  	xa_init(&ctrl->cels);
4492  	ctrl->dev = dev;
4493  	ctrl->ops = ops;
4494  	ctrl->quirks = quirks;
4495  	ctrl->numa_node = NUMA_NO_NODE;
4496  	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4497  	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4498  	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4499  	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4500  	init_waitqueue_head(&ctrl->state_wq);
4501  
4502  	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4503  	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4504  	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4505  	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4506  
4507  	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4508  			PAGE_SIZE);
4509  	ctrl->discard_page = alloc_page(GFP_KERNEL);
4510  	if (!ctrl->discard_page) {
4511  		ret = -ENOMEM;
4512  		goto out;
4513  	}
4514  
4515  	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4516  	if (ret < 0)
4517  		goto out;
4518  	ctrl->instance = ret;
4519  
4520  	device_initialize(&ctrl->ctrl_device);
4521  	ctrl->device = &ctrl->ctrl_device;
4522  	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4523  			ctrl->instance);
4524  	ctrl->device->class = nvme_class;
4525  	ctrl->device->parent = ctrl->dev;
4526  	if (ops->dev_attr_groups)
4527  		ctrl->device->groups = ops->dev_attr_groups;
4528  	else
4529  		ctrl->device->groups = nvme_dev_attr_groups;
4530  	ctrl->device->release = nvme_free_ctrl;
4531  	dev_set_drvdata(ctrl->device, ctrl);
4532  	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4533  	if (ret)
4534  		goto out_release_instance;
4535  
4536  	nvme_get_ctrl(ctrl);
4537  	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4538  	ctrl->cdev.owner = ops->module;
4539  	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4540  	if (ret)
4541  		goto out_free_name;
4542  
4543  	/*
4544  	 * Initialize latency tolerance controls.  The sysfs files won't
4545  	 * be visible to userspace unless the device actually supports APST.
4546  	 */
4547  	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4548  	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4549  		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4550  
4551  	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4552  	nvme_mpath_init_ctrl(ctrl);
4553  	ret = nvme_auth_init_ctrl(ctrl);
4554  	if (ret)
4555  		goto out_free_cdev;
4556  
4557  	return 0;
4558  out_free_cdev:
4559  	nvme_fault_inject_fini(&ctrl->fault_inject);
4560  	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4561  	cdev_device_del(&ctrl->cdev, ctrl->device);
4562  out_free_name:
4563  	nvme_put_ctrl(ctrl);
4564  	kfree_const(ctrl->device->kobj.name);
4565  out_release_instance:
4566  	ida_free(&nvme_instance_ida, ctrl->instance);
4567  out:
4568  	if (ctrl->discard_page)
4569  		__free_page(ctrl->discard_page);
4570  	cleanup_srcu_struct(&ctrl->srcu);
4571  	return ret;
4572  }
4573  EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4574  
4575  /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)4576  void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4577  {
4578  	struct nvme_ns *ns;
4579  	int srcu_idx;
4580  
4581  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4582  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4583  				 srcu_read_lock_held(&ctrl->srcu))
4584  		blk_mark_disk_dead(ns->disk);
4585  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4586  }
4587  EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4588  
nvme_unfreeze(struct nvme_ctrl * ctrl)4589  void nvme_unfreeze(struct nvme_ctrl *ctrl)
4590  {
4591  	struct nvme_ns *ns;
4592  	int srcu_idx;
4593  
4594  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4595  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4596  				 srcu_read_lock_held(&ctrl->srcu))
4597  		blk_mq_unfreeze_queue(ns->queue);
4598  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4599  	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4600  }
4601  EXPORT_SYMBOL_GPL(nvme_unfreeze);
4602  
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4603  int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4604  {
4605  	struct nvme_ns *ns;
4606  	int srcu_idx;
4607  
4608  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4609  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4610  				 srcu_read_lock_held(&ctrl->srcu)) {
4611  		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4612  		if (timeout <= 0)
4613  			break;
4614  	}
4615  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4616  	return timeout;
4617  }
4618  EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4619  
nvme_wait_freeze(struct nvme_ctrl * ctrl)4620  void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4621  {
4622  	struct nvme_ns *ns;
4623  	int srcu_idx;
4624  
4625  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4626  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4627  				 srcu_read_lock_held(&ctrl->srcu))
4628  		blk_mq_freeze_queue_wait(ns->queue);
4629  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4630  }
4631  EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4632  
nvme_start_freeze(struct nvme_ctrl * ctrl)4633  void nvme_start_freeze(struct nvme_ctrl *ctrl)
4634  {
4635  	struct nvme_ns *ns;
4636  	int srcu_idx;
4637  
4638  	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4639  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4640  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4641  				 srcu_read_lock_held(&ctrl->srcu))
4642  		blk_freeze_queue_start(ns->queue);
4643  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4644  }
4645  EXPORT_SYMBOL_GPL(nvme_start_freeze);
4646  
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)4647  void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4648  {
4649  	if (!ctrl->tagset)
4650  		return;
4651  	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4652  		blk_mq_quiesce_tagset(ctrl->tagset);
4653  	else
4654  		blk_mq_wait_quiesce_done(ctrl->tagset);
4655  }
4656  EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4657  
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)4658  void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4659  {
4660  	if (!ctrl->tagset)
4661  		return;
4662  	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4663  		blk_mq_unquiesce_tagset(ctrl->tagset);
4664  }
4665  EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4666  
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)4667  void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4668  {
4669  	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4670  		blk_mq_quiesce_queue(ctrl->admin_q);
4671  	else
4672  		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4673  }
4674  EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4675  
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)4676  void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4677  {
4678  	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4679  		blk_mq_unquiesce_queue(ctrl->admin_q);
4680  }
4681  EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4682  
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4683  void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4684  {
4685  	struct nvme_ns *ns;
4686  	int srcu_idx;
4687  
4688  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4689  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4690  				 srcu_read_lock_held(&ctrl->srcu))
4691  		blk_sync_queue(ns->queue);
4692  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4693  }
4694  EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4695  
nvme_sync_queues(struct nvme_ctrl * ctrl)4696  void nvme_sync_queues(struct nvme_ctrl *ctrl)
4697  {
4698  	nvme_sync_io_queues(ctrl);
4699  	if (ctrl->admin_q)
4700  		blk_sync_queue(ctrl->admin_q);
4701  }
4702  EXPORT_SYMBOL_GPL(nvme_sync_queues);
4703  
nvme_ctrl_from_file(struct file * file)4704  struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4705  {
4706  	if (file->f_op != &nvme_dev_fops)
4707  		return NULL;
4708  	return file->private_data;
4709  }
4710  EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4711  
4712  /*
4713   * Check we didn't inadvertently grow the command structure sizes:
4714   */
_nvme_check_size(void)4715  static inline void _nvme_check_size(void)
4716  {
4717  	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4718  	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4719  	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4720  	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4721  	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4722  	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4723  	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4724  	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4725  	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4726  	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4727  	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4728  	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4729  	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4730  	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4731  			NVME_IDENTIFY_DATA_SIZE);
4732  	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4733  	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4734  	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4735  	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4736  	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4737  	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4738  	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4739  	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4740  	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4741  }
4742  
4743  
nvme_core_init(void)4744  static int __init nvme_core_init(void)
4745  {
4746  	int result = -ENOMEM;
4747  
4748  	_nvme_check_size();
4749  
4750  	nvme_wq = alloc_workqueue("nvme-wq",
4751  			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4752  	if (!nvme_wq)
4753  		goto out;
4754  
4755  	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4756  			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4757  	if (!nvme_reset_wq)
4758  		goto destroy_wq;
4759  
4760  	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4761  			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4762  	if (!nvme_delete_wq)
4763  		goto destroy_reset_wq;
4764  
4765  	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4766  			NVME_MINORS, "nvme");
4767  	if (result < 0)
4768  		goto destroy_delete_wq;
4769  
4770  	nvme_class = class_create("nvme");
4771  	if (IS_ERR(nvme_class)) {
4772  		result = PTR_ERR(nvme_class);
4773  		goto unregister_chrdev;
4774  	}
4775  	nvme_class->dev_uevent = nvme_class_uevent;
4776  
4777  	nvme_subsys_class = class_create("nvme-subsystem");
4778  	if (IS_ERR(nvme_subsys_class)) {
4779  		result = PTR_ERR(nvme_subsys_class);
4780  		goto destroy_class;
4781  	}
4782  
4783  	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4784  				     "nvme-generic");
4785  	if (result < 0)
4786  		goto destroy_subsys_class;
4787  
4788  	nvme_ns_chr_class = class_create("nvme-generic");
4789  	if (IS_ERR(nvme_ns_chr_class)) {
4790  		result = PTR_ERR(nvme_ns_chr_class);
4791  		goto unregister_generic_ns;
4792  	}
4793  
4794  	result = nvme_init_auth();
4795  	if (result)
4796  		goto destroy_ns_chr;
4797  	return 0;
4798  
4799  destroy_ns_chr:
4800  	class_destroy(nvme_ns_chr_class);
4801  unregister_generic_ns:
4802  	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4803  destroy_subsys_class:
4804  	class_destroy(nvme_subsys_class);
4805  destroy_class:
4806  	class_destroy(nvme_class);
4807  unregister_chrdev:
4808  	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4809  destroy_delete_wq:
4810  	destroy_workqueue(nvme_delete_wq);
4811  destroy_reset_wq:
4812  	destroy_workqueue(nvme_reset_wq);
4813  destroy_wq:
4814  	destroy_workqueue(nvme_wq);
4815  out:
4816  	return result;
4817  }
4818  
nvme_core_exit(void)4819  static void __exit nvme_core_exit(void)
4820  {
4821  	nvme_exit_auth();
4822  	class_destroy(nvme_ns_chr_class);
4823  	class_destroy(nvme_subsys_class);
4824  	class_destroy(nvme_class);
4825  	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4826  	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4827  	destroy_workqueue(nvme_delete_wq);
4828  	destroy_workqueue(nvme_reset_wq);
4829  	destroy_workqueue(nvme_wq);
4830  	ida_destroy(&nvme_ns_chr_minor_ida);
4831  	ida_destroy(&nvme_instance_ida);
4832  }
4833  
4834  MODULE_LICENSE("GPL");
4835  MODULE_VERSION("1.0");
4836  module_init(nvme_core_init);
4837  module_exit(nvme_core_exit);
4838