xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/mvm/nvm.c (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1  // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2  /*
3   * Copyright (C) 2012-2014, 2018-2019, 2021 Intel Corporation
4   * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5   * Copyright (C) 2016-2017 Intel Deutschland GmbH
6   */
7  #include <linux/firmware.h>
8  #include <linux/rtnetlink.h>
9  #include "iwl-trans.h"
10  #include "iwl-csr.h"
11  #include "mvm.h"
12  #include "iwl-eeprom-parse.h"
13  #include "iwl-eeprom-read.h"
14  #include "iwl-nvm-parse.h"
15  #include "iwl-prph.h"
16  #include "fw/acpi.h"
17  
18  /* Default NVM size to read */
19  #define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
20  
21  #define NVM_WRITE_OPCODE 1
22  #define NVM_READ_OPCODE 0
23  
24  /* load nvm chunk response */
25  enum {
26  	READ_NVM_CHUNK_SUCCEED = 0,
27  	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
28  };
29  
30  /*
31   * prepare the NVM host command w/ the pointers to the nvm buffer
32   * and send it to fw
33   */
iwl_nvm_write_chunk(struct iwl_mvm * mvm,u16 section,u16 offset,u16 length,const u8 * data)34  static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
35  			       u16 offset, u16 length, const u8 *data)
36  {
37  	struct iwl_nvm_access_cmd nvm_access_cmd = {
38  		.offset = cpu_to_le16(offset),
39  		.length = cpu_to_le16(length),
40  		.type = cpu_to_le16(section),
41  		.op_code = NVM_WRITE_OPCODE,
42  	};
43  	struct iwl_host_cmd cmd = {
44  		.id = NVM_ACCESS_CMD,
45  		.len = { sizeof(struct iwl_nvm_access_cmd), length },
46  		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
47  		.data = { &nvm_access_cmd, data },
48  		/* data may come from vmalloc, so use _DUP */
49  		.dataflags = { 0, IWL_HCMD_DFL_DUP },
50  	};
51  	struct iwl_rx_packet *pkt;
52  	struct iwl_nvm_access_resp *nvm_resp;
53  	int ret;
54  
55  	ret = iwl_mvm_send_cmd(mvm, &cmd);
56  	if (ret)
57  		return ret;
58  
59  	pkt = cmd.resp_pkt;
60  	/* Extract & check NVM write response */
61  	nvm_resp = (void *)pkt->data;
62  	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
63  		IWL_ERR(mvm,
64  			"NVM access write command failed for section %u (status = 0x%x)\n",
65  			section, le16_to_cpu(nvm_resp->status));
66  		ret = -EIO;
67  	}
68  
69  	iwl_free_resp(&cmd);
70  	return ret;
71  }
72  
iwl_nvm_read_chunk(struct iwl_mvm * mvm,u16 section,u16 offset,u16 length,u8 * data)73  static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
74  			      u16 offset, u16 length, u8 *data)
75  {
76  	struct iwl_nvm_access_cmd nvm_access_cmd = {
77  		.offset = cpu_to_le16(offset),
78  		.length = cpu_to_le16(length),
79  		.type = cpu_to_le16(section),
80  		.op_code = NVM_READ_OPCODE,
81  	};
82  	struct iwl_nvm_access_resp *nvm_resp;
83  	struct iwl_rx_packet *pkt;
84  	struct iwl_host_cmd cmd = {
85  		.id = NVM_ACCESS_CMD,
86  		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
87  		.data = { &nvm_access_cmd, },
88  	};
89  	int ret, bytes_read, offset_read;
90  	u8 *resp_data;
91  
92  	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
93  
94  	ret = iwl_mvm_send_cmd(mvm, &cmd);
95  	if (ret)
96  		return ret;
97  
98  	pkt = cmd.resp_pkt;
99  
100  	/* Extract NVM response */
101  	nvm_resp = (void *)pkt->data;
102  	ret = le16_to_cpu(nvm_resp->status);
103  	bytes_read = le16_to_cpu(nvm_resp->length);
104  	offset_read = le16_to_cpu(nvm_resp->offset);
105  	resp_data = nvm_resp->data;
106  	if (ret) {
107  		if ((offset != 0) &&
108  		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
109  			/*
110  			 * meaning of NOT_VALID_ADDRESS:
111  			 * driver try to read chunk from address that is
112  			 * multiple of 2K and got an error since addr is empty.
113  			 * meaning of (offset != 0): driver already
114  			 * read valid data from another chunk so this case
115  			 * is not an error.
116  			 */
117  			IWL_DEBUG_EEPROM(mvm->trans->dev,
118  					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
119  					 offset);
120  			ret = 0;
121  		} else {
122  			IWL_DEBUG_EEPROM(mvm->trans->dev,
123  					 "NVM access command failed with status %d (device: %s)\n",
124  					 ret, mvm->trans->name);
125  			ret = -ENODATA;
126  		}
127  		goto exit;
128  	}
129  
130  	if (offset_read != offset) {
131  		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
132  			offset_read);
133  		ret = -EINVAL;
134  		goto exit;
135  	}
136  
137  	/* Write data to NVM */
138  	memcpy(data + offset, resp_data, bytes_read);
139  	ret = bytes_read;
140  
141  exit:
142  	iwl_free_resp(&cmd);
143  	return ret;
144  }
145  
iwl_nvm_write_section(struct iwl_mvm * mvm,u16 section,const u8 * data,u16 length)146  static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
147  				 const u8 *data, u16 length)
148  {
149  	int offset = 0;
150  
151  	/* copy data in chunks of 2k (and remainder if any) */
152  
153  	while (offset < length) {
154  		int chunk_size, ret;
155  
156  		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
157  				 length - offset);
158  
159  		ret = iwl_nvm_write_chunk(mvm, section, offset,
160  					  chunk_size, data + offset);
161  		if (ret < 0)
162  			return ret;
163  
164  		offset += chunk_size;
165  	}
166  
167  	return 0;
168  }
169  
170  /*
171   * Reads an NVM section completely.
172   * NICs prior to 7000 family doesn't have a real NVM, but just read
173   * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
174   * by uCode, we need to manually check in this case that we don't
175   * overflow and try to read more than the EEPROM size.
176   * For 7000 family NICs, we supply the maximal size we can read, and
177   * the uCode fills the response with as much data as we can,
178   * without overflowing, so no check is needed.
179   */
iwl_nvm_read_section(struct iwl_mvm * mvm,u16 section,u8 * data,u32 size_read)180  static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
181  				u8 *data, u32 size_read)
182  {
183  	u16 length, offset = 0;
184  	int ret;
185  
186  	/* Set nvm section read length */
187  	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
188  
189  	ret = length;
190  
191  	/* Read the NVM until exhausted (reading less than requested) */
192  	while (ret == length) {
193  		/* Check no memory assumptions fail and cause an overflow */
194  		if ((size_read + offset + length) >
195  		    mvm->trans->trans_cfg->base_params->eeprom_size) {
196  			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
197  			return -ENOBUFS;
198  		}
199  
200  		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
201  		if (ret < 0) {
202  			IWL_DEBUG_EEPROM(mvm->trans->dev,
203  					 "Cannot read NVM from section %d offset %d, length %d\n",
204  					 section, offset, length);
205  			return ret;
206  		}
207  		offset += ret;
208  	}
209  
210  	iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
211  
212  	IWL_DEBUG_EEPROM(mvm->trans->dev,
213  			 "NVM section %d read completed\n", section);
214  	return offset;
215  }
216  
217  static struct iwl_nvm_data *
iwl_parse_nvm_sections(struct iwl_mvm * mvm)218  iwl_parse_nvm_sections(struct iwl_mvm *mvm)
219  {
220  	struct iwl_nvm_section *sections = mvm->nvm_sections;
221  	const __be16 *hw;
222  	const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
223  	int regulatory_type;
224  
225  	/* Checking for required sections */
226  	if (mvm->trans->cfg->nvm_type == IWL_NVM) {
227  		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
228  		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
229  			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
230  			return NULL;
231  		}
232  	} else {
233  		if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
234  			regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
235  		else
236  			regulatory_type = NVM_SECTION_TYPE_REGULATORY;
237  
238  		/* SW and REGULATORY sections are mandatory */
239  		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
240  		    !mvm->nvm_sections[regulatory_type].data) {
241  			IWL_ERR(mvm,
242  				"Can't parse empty family 8000 OTP/NVM sections\n");
243  			return NULL;
244  		}
245  		/* MAC_OVERRIDE or at least HW section must exist */
246  		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
247  		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
248  			IWL_ERR(mvm,
249  				"Can't parse mac_address, empty sections\n");
250  			return NULL;
251  		}
252  
253  		/* PHY_SKU section is mandatory in B0 */
254  		if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
255  		    !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
256  			IWL_ERR(mvm,
257  				"Can't parse phy_sku in B0, empty sections\n");
258  			return NULL;
259  		}
260  	}
261  
262  	hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
263  	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
264  	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
265  	mac_override =
266  		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
267  	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
268  
269  	regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
270  		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
271  		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
272  
273  	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
274  				  regulatory, mac_override, phy_sku,
275  				  mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant);
276  }
277  
278  /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
iwl_mvm_load_nvm_to_nic(struct iwl_mvm * mvm)279  int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
280  {
281  	int i, ret = 0;
282  	struct iwl_nvm_section *sections = mvm->nvm_sections;
283  
284  	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
285  
286  	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
287  		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
288  			continue;
289  		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
290  					    sections[i].length);
291  		if (ret < 0) {
292  			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
293  			break;
294  		}
295  	}
296  	return ret;
297  }
298  
iwl_nvm_init(struct iwl_mvm * mvm)299  int iwl_nvm_init(struct iwl_mvm *mvm)
300  {
301  	int ret, section;
302  	u32 size_read = 0;
303  	u8 *nvm_buffer, *temp;
304  	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
305  
306  	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
307  		return -EINVAL;
308  
309  	/* load NVM values from nic */
310  	/* Read From FW NVM */
311  	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
312  
313  	nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
314  			     GFP_KERNEL);
315  	if (!nvm_buffer)
316  		return -ENOMEM;
317  	for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
318  		/* we override the constness for initial read */
319  		ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
320  					   size_read);
321  		if (ret == -ENODATA) {
322  			ret = 0;
323  			continue;
324  		}
325  		if (ret < 0)
326  			break;
327  		size_read += ret;
328  		temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
329  		if (!temp) {
330  			ret = -ENOMEM;
331  			break;
332  		}
333  
334  		iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
335  
336  		mvm->nvm_sections[section].data = temp;
337  		mvm->nvm_sections[section].length = ret;
338  
339  #ifdef CONFIG_IWLWIFI_DEBUGFS
340  		switch (section) {
341  		case NVM_SECTION_TYPE_SW:
342  			mvm->nvm_sw_blob.data = temp;
343  			mvm->nvm_sw_blob.size  = ret;
344  			break;
345  		case NVM_SECTION_TYPE_CALIBRATION:
346  			mvm->nvm_calib_blob.data = temp;
347  			mvm->nvm_calib_blob.size  = ret;
348  			break;
349  		case NVM_SECTION_TYPE_PRODUCTION:
350  			mvm->nvm_prod_blob.data = temp;
351  			mvm->nvm_prod_blob.size  = ret;
352  			break;
353  		case NVM_SECTION_TYPE_PHY_SKU:
354  			mvm->nvm_phy_sku_blob.data = temp;
355  			mvm->nvm_phy_sku_blob.size  = ret;
356  			break;
357  		case NVM_SECTION_TYPE_REGULATORY_SDP:
358  		case NVM_SECTION_TYPE_REGULATORY:
359  			mvm->nvm_reg_blob.data = temp;
360  			mvm->nvm_reg_blob.size  = ret;
361  			break;
362  		default:
363  			if (section == mvm->cfg->nvm_hw_section_num) {
364  				mvm->nvm_hw_blob.data = temp;
365  				mvm->nvm_hw_blob.size = ret;
366  				break;
367  			}
368  		}
369  #endif
370  	}
371  	if (!size_read)
372  		IWL_ERR(mvm, "OTP is blank\n");
373  	kfree(nvm_buffer);
374  
375  	/* Only if PNVM selected in the mod param - load external NVM  */
376  	if (mvm->nvm_file_name) {
377  		/* read External NVM file from the mod param */
378  		ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
379  					    mvm->nvm_sections);
380  		if (ret) {
381  			mvm->nvm_file_name = nvm_file_C;
382  
383  			if ((ret == -EFAULT || ret == -ENOENT) &&
384  			    mvm->nvm_file_name) {
385  				/* in case nvm file was failed try again */
386  				ret = iwl_read_external_nvm(mvm->trans,
387  							    mvm->nvm_file_name,
388  							    mvm->nvm_sections);
389  				if (ret)
390  					return ret;
391  			} else {
392  				return ret;
393  			}
394  		}
395  	}
396  
397  	/* parse the relevant nvm sections */
398  	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
399  	if (!mvm->nvm_data)
400  		return -ENODATA;
401  	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
402  			 mvm->nvm_data->nvm_version);
403  
404  	return ret < 0 ? ret : 0;
405  }
406  
407  struct iwl_mcc_update_resp_v8 *
iwl_mvm_update_mcc(struct iwl_mvm * mvm,const char * alpha2,enum iwl_mcc_source src_id)408  iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
409  		   enum iwl_mcc_source src_id)
410  {
411  	struct iwl_mcc_update_cmd mcc_update_cmd = {
412  		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
413  		.source_id = (u8)src_id,
414  	};
415  	struct iwl_mcc_update_resp_v8 *resp_cp;
416  	struct iwl_rx_packet *pkt;
417  	struct iwl_host_cmd cmd = {
418  		.id = MCC_UPDATE_CMD,
419  		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
420  		.data = { &mcc_update_cmd },
421  	};
422  
423  	int ret, resp_ver;
424  	u32 status;
425  	int resp_len, n_channels;
426  	u16 mcc;
427  
428  	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
429  		return ERR_PTR(-EOPNOTSUPP);
430  
431  	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
432  
433  	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
434  		      alpha2[0], alpha2[1], src_id);
435  
436  	ret = iwl_mvm_send_cmd(mvm, &cmd);
437  	if (ret)
438  		return ERR_PTR(ret);
439  
440  	pkt = cmd.resp_pkt;
441  
442  	resp_ver = iwl_fw_lookup_notif_ver(mvm->fw, IWL_ALWAYS_LONG_GROUP,
443  					   MCC_UPDATE_CMD, 0);
444  
445  	/* Extract MCC response */
446  	if (resp_ver >= 8) {
447  		struct iwl_mcc_update_resp_v8 *mcc_resp_v8 = (void *)pkt->data;
448  
449  		n_channels =  __le32_to_cpu(mcc_resp_v8->n_channels);
450  		if (iwl_rx_packet_payload_len(pkt) !=
451  		    struct_size(mcc_resp_v8, channels, n_channels)) {
452  			resp_cp = ERR_PTR(-EINVAL);
453  			goto exit;
454  		}
455  		resp_len = struct_size(resp_cp, channels, n_channels);
456  		resp_cp = kzalloc(resp_len, GFP_KERNEL);
457  		if (!resp_cp) {
458  			resp_cp = ERR_PTR(-ENOMEM);
459  			goto exit;
460  		}
461  		resp_cp->status = mcc_resp_v8->status;
462  		resp_cp->mcc = mcc_resp_v8->mcc;
463  		resp_cp->cap = mcc_resp_v8->cap;
464  		resp_cp->source_id = mcc_resp_v8->source_id;
465  		resp_cp->time = mcc_resp_v8->time;
466  		resp_cp->geo_info = mcc_resp_v8->geo_info;
467  		resp_cp->n_channels = mcc_resp_v8->n_channels;
468  		memcpy(resp_cp->channels, mcc_resp_v8->channels,
469  		       n_channels * sizeof(__le32));
470  	} else if (fw_has_capa(&mvm->fw->ucode_capa,
471  			       IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
472  		struct iwl_mcc_update_resp_v4 *mcc_resp_v4 = (void *)pkt->data;
473  
474  		n_channels =  __le32_to_cpu(mcc_resp_v4->n_channels);
475  		if (iwl_rx_packet_payload_len(pkt) !=
476  		    struct_size(mcc_resp_v4, channels, n_channels)) {
477  			resp_cp = ERR_PTR(-EINVAL);
478  			goto exit;
479  		}
480  		resp_len = struct_size(resp_cp, channels, n_channels);
481  		resp_cp = kzalloc(resp_len, GFP_KERNEL);
482  		if (!resp_cp) {
483  			resp_cp = ERR_PTR(-ENOMEM);
484  			goto exit;
485  		}
486  
487  		resp_cp->status = mcc_resp_v4->status;
488  		resp_cp->mcc = mcc_resp_v4->mcc;
489  		resp_cp->cap = cpu_to_le32(le16_to_cpu(mcc_resp_v4->cap));
490  		resp_cp->source_id = mcc_resp_v4->source_id;
491  		resp_cp->time = mcc_resp_v4->time;
492  		resp_cp->geo_info = mcc_resp_v4->geo_info;
493  		resp_cp->n_channels = mcc_resp_v4->n_channels;
494  		memcpy(resp_cp->channels, mcc_resp_v4->channels,
495  		       n_channels * sizeof(__le32));
496  	} else {
497  		struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
498  
499  		n_channels =  __le32_to_cpu(mcc_resp_v3->n_channels);
500  		if (iwl_rx_packet_payload_len(pkt) !=
501  		    struct_size(mcc_resp_v3, channels, n_channels)) {
502  			resp_cp = ERR_PTR(-EINVAL);
503  			goto exit;
504  		}
505  		resp_len = struct_size(resp_cp, channels, n_channels);
506  		resp_cp = kzalloc(resp_len, GFP_KERNEL);
507  		if (!resp_cp) {
508  			resp_cp = ERR_PTR(-ENOMEM);
509  			goto exit;
510  		}
511  
512  		resp_cp->status = mcc_resp_v3->status;
513  		resp_cp->mcc = mcc_resp_v3->mcc;
514  		resp_cp->cap = cpu_to_le32(mcc_resp_v3->cap);
515  		resp_cp->source_id = mcc_resp_v3->source_id;
516  		resp_cp->time = mcc_resp_v3->time;
517  		resp_cp->geo_info = mcc_resp_v3->geo_info;
518  		resp_cp->n_channels = mcc_resp_v3->n_channels;
519  		memcpy(resp_cp->channels, mcc_resp_v3->channels,
520  		       n_channels * sizeof(__le32));
521  	}
522  
523  	status = le32_to_cpu(resp_cp->status);
524  
525  	mcc = le16_to_cpu(resp_cp->mcc);
526  
527  	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
528  	if (mcc == 0) {
529  		mcc = 0x3030;  /* "00" - world */
530  		resp_cp->mcc = cpu_to_le16(mcc);
531  	}
532  
533  	IWL_DEBUG_LAR(mvm,
534  		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
535  		      status, mcc, mcc >> 8, mcc & 0xff, n_channels);
536  
537  exit:
538  	iwl_free_resp(&cmd);
539  	return resp_cp;
540  }
541  
iwl_mvm_init_mcc(struct iwl_mvm * mvm)542  int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
543  {
544  	bool tlv_lar;
545  	bool nvm_lar;
546  	int retval;
547  	struct ieee80211_regdomain *regd;
548  	char mcc[3];
549  
550  	if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
551  		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
552  				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
553  		nvm_lar = mvm->nvm_data->lar_enabled;
554  		if (tlv_lar != nvm_lar)
555  			IWL_INFO(mvm,
556  				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
557  				 tlv_lar ? "enabled" : "disabled",
558  				 nvm_lar ? "enabled" : "disabled");
559  	}
560  
561  	if (!iwl_mvm_is_lar_supported(mvm))
562  		return 0;
563  
564  	/*
565  	 * try to replay the last set MCC to FW. If it doesn't exist,
566  	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
567  	 */
568  	retval = iwl_mvm_init_fw_regd(mvm);
569  	if (retval != -ENOENT)
570  		return retval;
571  
572  	/*
573  	 * Driver regulatory hint for initial update, this also informs the
574  	 * firmware we support wifi location updates.
575  	 * Disallow scans that might crash the FW while the LAR regdomain
576  	 * is not set.
577  	 */
578  	mvm->lar_regdom_set = false;
579  
580  	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
581  	if (IS_ERR_OR_NULL(regd))
582  		return -EIO;
583  
584  	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
585  	    !iwl_acpi_get_mcc(mvm->dev, mcc)) {
586  		kfree(regd);
587  		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
588  					     MCC_SOURCE_BIOS, NULL);
589  		if (IS_ERR_OR_NULL(regd))
590  			return -EIO;
591  	}
592  
593  	retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
594  	kfree(regd);
595  	return retval;
596  }
597  
iwl_mvm_rx_chub_update_mcc(struct iwl_mvm * mvm,struct iwl_rx_cmd_buffer * rxb)598  void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
599  				struct iwl_rx_cmd_buffer *rxb)
600  {
601  	struct iwl_rx_packet *pkt = rxb_addr(rxb);
602  	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
603  	enum iwl_mcc_source src;
604  	char mcc[3];
605  	struct ieee80211_regdomain *regd;
606  	int wgds_tbl_idx;
607  
608  	lockdep_assert_held(&mvm->mutex);
609  
610  	if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
611  		IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
612  		return;
613  	}
614  
615  	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
616  		return;
617  
618  	mcc[0] = le16_to_cpu(notif->mcc) >> 8;
619  	mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
620  	mcc[2] = '\0';
621  	src = notif->source_id;
622  
623  	IWL_DEBUG_LAR(mvm,
624  		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
625  		      mcc, src);
626  	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
627  	if (IS_ERR_OR_NULL(regd))
628  		return;
629  
630  	wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
631  	if (wgds_tbl_idx < 1)
632  		IWL_DEBUG_INFO(mvm,
633  			       "SAR WGDS is disabled or error received (%d)\n",
634  			       wgds_tbl_idx);
635  	else
636  		IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
637  			       wgds_tbl_idx);
638  
639  	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
640  	kfree(regd);
641  }
642