xref: /openbmc/linux/drivers/iio/accel/sca3000.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
4   *
5   * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
6   *
7   * See industrialio/accels/sca3000.h for comments.
8   */
9  
10  #include <linux/interrupt.h>
11  #include <linux/fs.h>
12  #include <linux/device.h>
13  #include <linux/slab.h>
14  #include <linux/kernel.h>
15  #include <linux/spi/spi.h>
16  #include <linux/sysfs.h>
17  #include <linux/module.h>
18  #include <linux/uaccess.h>
19  #include <linux/iio/iio.h>
20  #include <linux/iio/sysfs.h>
21  #include <linux/iio/events.h>
22  #include <linux/iio/buffer.h>
23  #include <linux/iio/kfifo_buf.h>
24  
25  #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
26  #define SCA3000_READ_REG(a) ((a) << 2)
27  
28  #define SCA3000_REG_REVID_ADDR				0x00
29  #define   SCA3000_REG_REVID_MAJOR_MASK			GENMASK(8, 4)
30  #define   SCA3000_REG_REVID_MINOR_MASK			GENMASK(3, 0)
31  
32  #define SCA3000_REG_STATUS_ADDR				0x02
33  #define   SCA3000_LOCKED				BIT(5)
34  #define   SCA3000_EEPROM_CS_ERROR			BIT(1)
35  #define   SCA3000_SPI_FRAME_ERROR			BIT(0)
36  
37  /* All reads done using register decrement so no need to directly access LSBs */
38  #define SCA3000_REG_X_MSB_ADDR				0x05
39  #define SCA3000_REG_Y_MSB_ADDR				0x07
40  #define SCA3000_REG_Z_MSB_ADDR				0x09
41  
42  #define SCA3000_REG_RING_OUT_ADDR			0x0f
43  
44  /* Temp read untested - the e05 doesn't have the sensor */
45  #define SCA3000_REG_TEMP_MSB_ADDR			0x13
46  
47  #define SCA3000_REG_MODE_ADDR				0x14
48  #define SCA3000_MODE_PROT_MASK				0x28
49  #define   SCA3000_REG_MODE_RING_BUF_ENABLE		BIT(7)
50  #define   SCA3000_REG_MODE_RING_BUF_8BIT		BIT(6)
51  
52  /*
53   * Free fall detection triggers an interrupt if the acceleration
54   * is below a threshold for equivalent of 25cm drop
55   */
56  #define   SCA3000_REG_MODE_FREE_FALL_DETECT		BIT(4)
57  #define   SCA3000_REG_MODE_MEAS_MODE_NORMAL		0x00
58  #define   SCA3000_REG_MODE_MEAS_MODE_OP_1		0x01
59  #define   SCA3000_REG_MODE_MEAS_MODE_OP_2		0x02
60  
61  /*
62   * In motion detection mode the accelerations are band pass filtered
63   * (approx 1 - 25Hz) and then a programmable threshold used to trigger
64   * and interrupt.
65   */
66  #define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET		0x03
67  #define   SCA3000_REG_MODE_MODE_MASK			0x03
68  
69  #define SCA3000_REG_BUF_COUNT_ADDR			0x15
70  
71  #define SCA3000_REG_INT_STATUS_ADDR			0x16
72  #define   SCA3000_REG_INT_STATUS_THREE_QUARTERS		BIT(7)
73  #define   SCA3000_REG_INT_STATUS_HALF			BIT(6)
74  
75  #define SCA3000_INT_STATUS_FREE_FALL			BIT(3)
76  #define SCA3000_INT_STATUS_Y_TRIGGER			BIT(2)
77  #define SCA3000_INT_STATUS_X_TRIGGER			BIT(1)
78  #define SCA3000_INT_STATUS_Z_TRIGGER			BIT(0)
79  
80  /* Used to allow access to multiplexed registers */
81  #define SCA3000_REG_CTRL_SEL_ADDR			0x18
82  /* Only available for SCA3000-D03 and SCA3000-D01 */
83  #define   SCA3000_REG_CTRL_SEL_I2C_DISABLE		0x01
84  #define   SCA3000_REG_CTRL_SEL_MD_CTRL			0x02
85  #define   SCA3000_REG_CTRL_SEL_MD_Y_TH			0x03
86  #define   SCA3000_REG_CTRL_SEL_MD_X_TH			0x04
87  #define   SCA3000_REG_CTRL_SEL_MD_Z_TH			0x05
88  /*
89   * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
90   * will not function
91   */
92  #define   SCA3000_REG_CTRL_SEL_OUT_CTRL			0x0B
93  
94  #define     SCA3000_REG_OUT_CTRL_PROT_MASK		0xE0
95  #define     SCA3000_REG_OUT_CTRL_BUF_X_EN		0x10
96  #define     SCA3000_REG_OUT_CTRL_BUF_Y_EN		0x08
97  #define     SCA3000_REG_OUT_CTRL_BUF_Z_EN		0x04
98  #define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK		0x03
99  #define     SCA3000_REG_OUT_CTRL_BUF_DIV_4		0x02
100  #define     SCA3000_REG_OUT_CTRL_BUF_DIV_2		0x01
101  
102  
103  /*
104   * Control which motion detector interrupts are on.
105   * For now only OR combinations are supported.
106   */
107  #define SCA3000_MD_CTRL_PROT_MASK			0xC0
108  #define SCA3000_MD_CTRL_OR_Y				BIT(0)
109  #define SCA3000_MD_CTRL_OR_X				BIT(1)
110  #define SCA3000_MD_CTRL_OR_Z				BIT(2)
111  /* Currently unsupported */
112  #define SCA3000_MD_CTRL_AND_Y				BIT(3)
113  #define SCA3000_MD_CTRL_AND_X				BIT(4)
114  #define SCA3000_MD_CTRL_AND_Z				BIT(5)
115  
116  /*
117   * Some control registers of complex access methods requiring this register to
118   * be used to remove a lock.
119   */
120  #define SCA3000_REG_UNLOCK_ADDR				0x1e
121  
122  #define SCA3000_REG_INT_MASK_ADDR			0x21
123  #define   SCA3000_REG_INT_MASK_PROT_MASK		0x1C
124  
125  #define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER	BIT(7)
126  #define   SCA3000_REG_INT_MASK_RING_HALF		BIT(6)
127  
128  #define SCA3000_REG_INT_MASK_ALL_INTS			0x02
129  #define SCA3000_REG_INT_MASK_ACTIVE_HIGH		0x01
130  #define SCA3000_REG_INT_MASK_ACTIVE_LOW			0x00
131  /* Values of multiplexed registers (write to ctrl_data after select) */
132  #define SCA3000_REG_CTRL_DATA_ADDR			0x22
133  
134  /*
135   * Measurement modes available on some sca3000 series chips. Code assumes others
136   * may become available in the future.
137   *
138   * Bypass - Bypass the low-pass filter in the signal channel so as to increase
139   *          signal bandwidth.
140   *
141   * Narrow - Narrow low-pass filtering of the signal channel and half output
142   *          data rate by decimation.
143   *
144   * Wide - Widen low-pass filtering of signal channel to increase bandwidth
145   */
146  #define SCA3000_OP_MODE_BYPASS				0x01
147  #define SCA3000_OP_MODE_NARROW				0x02
148  #define SCA3000_OP_MODE_WIDE				0x04
149  #define SCA3000_MAX_TX 6
150  #define SCA3000_MAX_RX 2
151  
152  /**
153   * struct sca3000_state - device instance state information
154   * @us:			the associated spi device
155   * @info:			chip variant information
156   * @last_timestamp:		the timestamp of the last event
157   * @mo_det_use_count:		reference counter for the motion detection unit
158   * @lock:			lock used to protect elements of sca3000_state
159   *				and the underlying device state.
160   * @tx:			dma-able transmit buffer
161   * @rx:			dma-able receive buffer
162   **/
163  struct sca3000_state {
164  	struct spi_device		*us;
165  	const struct sca3000_chip_info	*info;
166  	s64				last_timestamp;
167  	int				mo_det_use_count;
168  	struct mutex			lock;
169  	/* Can these share a cacheline ? */
170  	u8				rx[384] __aligned(IIO_DMA_MINALIGN);
171  	u8				tx[6] __aligned(IIO_DMA_MINALIGN);
172  };
173  
174  /**
175   * struct sca3000_chip_info - model dependent parameters
176   * @scale:			scale * 10^-6
177   * @temp_output:		some devices have temperature sensors.
178   * @measurement_mode_freq:	normal mode sampling frequency
179   * @measurement_mode_3db_freq:	3db cutoff frequency of the low pass filter for
180   * the normal measurement mode.
181   * @option_mode_1:		first optional mode. Not all models have one
182   * @option_mode_1_freq:		option mode 1 sampling frequency
183   * @option_mode_1_3db_freq:	3db cutoff frequency of the low pass filter for
184   * the first option mode.
185   * @option_mode_2:		second optional mode. Not all chips have one
186   * @option_mode_2_freq:		option mode 2 sampling frequency
187   * @option_mode_2_3db_freq:	3db cutoff frequency of the low pass filter for
188   * the second option mode.
189   * @mot_det_mult_xz:		Bit wise multipliers to calculate the threshold
190   * for motion detection in the x and z axis.
191   * @mot_det_mult_y:		Bit wise multipliers to calculate the threshold
192   * for motion detection in the y axis.
193   *
194   * This structure is used to hold information about the functionality of a given
195   * sca3000 variant.
196   **/
197  struct sca3000_chip_info {
198  	unsigned int		scale;
199  	bool			temp_output;
200  	int			measurement_mode_freq;
201  	int			measurement_mode_3db_freq;
202  	int			option_mode_1;
203  	int			option_mode_1_freq;
204  	int			option_mode_1_3db_freq;
205  	int			option_mode_2;
206  	int			option_mode_2_freq;
207  	int			option_mode_2_3db_freq;
208  	int			mot_det_mult_xz[6];
209  	int			mot_det_mult_y[7];
210  };
211  
212  enum sca3000_variant {
213  	d01,
214  	e02,
215  	e04,
216  	e05,
217  };
218  
219  /*
220   * Note where option modes are not defined, the chip simply does not
221   * support any.
222   * Other chips in the sca3000 series use i2c and are not included here.
223   *
224   * Some of these devices are only listed in the family data sheet and
225   * do not actually appear to be available.
226   */
227  static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
228  	[d01] = {
229  		.scale = 7357,
230  		.temp_output = true,
231  		.measurement_mode_freq = 250,
232  		.measurement_mode_3db_freq = 45,
233  		.option_mode_1 = SCA3000_OP_MODE_BYPASS,
234  		.option_mode_1_freq = 250,
235  		.option_mode_1_3db_freq = 70,
236  		.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
237  		.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
238  	},
239  	[e02] = {
240  		.scale = 9810,
241  		.measurement_mode_freq = 125,
242  		.measurement_mode_3db_freq = 40,
243  		.option_mode_1 = SCA3000_OP_MODE_NARROW,
244  		.option_mode_1_freq = 63,
245  		.option_mode_1_3db_freq = 11,
246  		.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
247  		.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
248  	},
249  	[e04] = {
250  		.scale = 19620,
251  		.measurement_mode_freq = 100,
252  		.measurement_mode_3db_freq = 38,
253  		.option_mode_1 = SCA3000_OP_MODE_NARROW,
254  		.option_mode_1_freq = 50,
255  		.option_mode_1_3db_freq = 9,
256  		.option_mode_2 = SCA3000_OP_MODE_WIDE,
257  		.option_mode_2_freq = 400,
258  		.option_mode_2_3db_freq = 70,
259  		.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
260  		.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
261  	},
262  	[e05] = {
263  		.scale = 61313,
264  		.measurement_mode_freq = 200,
265  		.measurement_mode_3db_freq = 60,
266  		.option_mode_1 = SCA3000_OP_MODE_NARROW,
267  		.option_mode_1_freq = 50,
268  		.option_mode_1_3db_freq = 9,
269  		.option_mode_2 = SCA3000_OP_MODE_WIDE,
270  		.option_mode_2_freq = 400,
271  		.option_mode_2_3db_freq = 75,
272  		.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
273  		.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
274  	},
275  };
276  
sca3000_write_reg(struct sca3000_state * st,u8 address,u8 val)277  static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
278  {
279  	st->tx[0] = SCA3000_WRITE_REG(address);
280  	st->tx[1] = val;
281  	return spi_write(st->us, st->tx, 2);
282  }
283  
sca3000_read_data_short(struct sca3000_state * st,u8 reg_address_high,int len)284  static int sca3000_read_data_short(struct sca3000_state *st,
285  				   u8 reg_address_high,
286  				   int len)
287  {
288  	struct spi_transfer xfer[2] = {
289  		{
290  			.len = 1,
291  			.tx_buf = st->tx,
292  		}, {
293  			.len = len,
294  			.rx_buf = st->rx,
295  		}
296  	};
297  	st->tx[0] = SCA3000_READ_REG(reg_address_high);
298  
299  	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
300  }
301  
302  /**
303   * sca3000_reg_lock_on() - test if the ctrl register lock is on
304   * @st: Driver specific device instance data.
305   *
306   * Lock must be held.
307   **/
sca3000_reg_lock_on(struct sca3000_state * st)308  static int sca3000_reg_lock_on(struct sca3000_state *st)
309  {
310  	int ret;
311  
312  	ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
313  	if (ret < 0)
314  		return ret;
315  
316  	return !(st->rx[0] & SCA3000_LOCKED);
317  }
318  
319  /**
320   * __sca3000_unlock_reg_lock() - unlock the control registers
321   * @st: Driver specific device instance data.
322   *
323   * Note the device does not appear to support doing this in a single transfer.
324   * This should only ever be used as part of ctrl reg read.
325   * Lock must be held before calling this
326   */
__sca3000_unlock_reg_lock(struct sca3000_state * st)327  static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
328  {
329  	struct spi_transfer xfer[3] = {
330  		{
331  			.len = 2,
332  			.cs_change = 1,
333  			.tx_buf = st->tx,
334  		}, {
335  			.len = 2,
336  			.cs_change = 1,
337  			.tx_buf = st->tx + 2,
338  		}, {
339  			.len = 2,
340  			.tx_buf = st->tx + 4,
341  		},
342  	};
343  	st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
344  	st->tx[1] = 0x00;
345  	st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
346  	st->tx[3] = 0x50;
347  	st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
348  	st->tx[5] = 0xA0;
349  
350  	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
351  }
352  
353  /**
354   * sca3000_write_ctrl_reg() - write to a lock protect ctrl register
355   * @st: Driver specific device instance data.
356   * @sel: selects which registers we wish to write to
357   * @val: the value to be written
358   *
359   * Certain control registers are protected against overwriting by the lock
360   * register and use a shared write address. This function allows writing of
361   * these registers.
362   * Lock must be held.
363   */
sca3000_write_ctrl_reg(struct sca3000_state * st,u8 sel,uint8_t val)364  static int sca3000_write_ctrl_reg(struct sca3000_state *st,
365  				  u8 sel,
366  				  uint8_t val)
367  {
368  	int ret;
369  
370  	ret = sca3000_reg_lock_on(st);
371  	if (ret < 0)
372  		goto error_ret;
373  	if (ret) {
374  		ret = __sca3000_unlock_reg_lock(st);
375  		if (ret)
376  			goto error_ret;
377  	}
378  
379  	/* Set the control select register */
380  	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
381  	if (ret)
382  		goto error_ret;
383  
384  	/* Write the actual value into the register */
385  	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
386  
387  error_ret:
388  	return ret;
389  }
390  
391  /**
392   * sca3000_read_ctrl_reg() - read from lock protected control register.
393   * @st: Driver specific device instance data.
394   * @ctrl_reg: Which ctrl register do we want to read.
395   *
396   * Lock must be held.
397   */
sca3000_read_ctrl_reg(struct sca3000_state * st,u8 ctrl_reg)398  static int sca3000_read_ctrl_reg(struct sca3000_state *st,
399  				 u8 ctrl_reg)
400  {
401  	int ret;
402  
403  	ret = sca3000_reg_lock_on(st);
404  	if (ret < 0)
405  		goto error_ret;
406  	if (ret) {
407  		ret = __sca3000_unlock_reg_lock(st);
408  		if (ret)
409  			goto error_ret;
410  	}
411  	/* Set the control select register */
412  	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
413  	if (ret)
414  		goto error_ret;
415  	ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
416  	if (ret)
417  		goto error_ret;
418  	return st->rx[0];
419  error_ret:
420  	return ret;
421  }
422  
423  /**
424   * sca3000_print_rev() - sysfs interface to read the chip revision number
425   * @indio_dev: Device instance specific generic IIO data.
426   * Driver specific device instance data can be obtained via
427   * iio_priv(indio_dev)
428   */
sca3000_print_rev(struct iio_dev * indio_dev)429  static int sca3000_print_rev(struct iio_dev *indio_dev)
430  {
431  	int ret;
432  	struct sca3000_state *st = iio_priv(indio_dev);
433  
434  	mutex_lock(&st->lock);
435  	ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
436  	if (ret < 0)
437  		goto error_ret;
438  	dev_info(&indio_dev->dev,
439  		 "sca3000 revision major=%lu, minor=%lu\n",
440  		 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
441  		 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
442  error_ret:
443  	mutex_unlock(&st->lock);
444  
445  	return ret;
446  }
447  
448  static ssize_t
sca3000_show_available_3db_freqs(struct device * dev,struct device_attribute * attr,char * buf)449  sca3000_show_available_3db_freqs(struct device *dev,
450  				 struct device_attribute *attr,
451  				 char *buf)
452  {
453  	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
454  	struct sca3000_state *st = iio_priv(indio_dev);
455  	int len;
456  
457  	len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
458  	if (st->info->option_mode_1)
459  		len += sprintf(buf + len, " %d",
460  			       st->info->option_mode_1_3db_freq);
461  	if (st->info->option_mode_2)
462  		len += sprintf(buf + len, " %d",
463  			       st->info->option_mode_2_3db_freq);
464  	len += sprintf(buf + len, "\n");
465  
466  	return len;
467  }
468  
469  static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
470  		       S_IRUGO, sca3000_show_available_3db_freqs,
471  		       NULL, 0);
472  
473  static const struct iio_event_spec sca3000_event = {
474  	.type = IIO_EV_TYPE_MAG,
475  	.dir = IIO_EV_DIR_RISING,
476  	.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
477  };
478  
479  /*
480   * Note the hack in the number of bits to pretend we have 2 more than
481   * we do in the fifo.
482   */
483  #define SCA3000_CHAN(index, mod)				\
484  	{							\
485  		.type = IIO_ACCEL,				\
486  		.modified = 1,					\
487  		.channel2 = mod,				\
488  		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
489  		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
490  			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
491  		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
492  		.address = index,				\
493  		.scan_index = index,				\
494  		.scan_type = {					\
495  			.sign = 's',				\
496  			.realbits = 13,				\
497  			.storagebits = 16,			\
498  			.shift = 3,				\
499  			.endianness = IIO_BE,			\
500  		},						\
501  		.event_spec = &sca3000_event,			\
502  		.num_event_specs = 1,				\
503  	}
504  
505  static const struct iio_event_spec sca3000_freefall_event_spec = {
506  	.type = IIO_EV_TYPE_MAG,
507  	.dir = IIO_EV_DIR_FALLING,
508  	.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
509  		BIT(IIO_EV_INFO_PERIOD),
510  };
511  
512  static const struct iio_chan_spec sca3000_channels[] = {
513  	SCA3000_CHAN(0, IIO_MOD_X),
514  	SCA3000_CHAN(1, IIO_MOD_Y),
515  	SCA3000_CHAN(2, IIO_MOD_Z),
516  	{
517  		.type = IIO_ACCEL,
518  		.modified = 1,
519  		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
520  		.scan_index = -1, /* Fake channel */
521  		.event_spec = &sca3000_freefall_event_spec,
522  		.num_event_specs = 1,
523  	},
524  };
525  
526  static const struct iio_chan_spec sca3000_channels_with_temp[] = {
527  	SCA3000_CHAN(0, IIO_MOD_X),
528  	SCA3000_CHAN(1, IIO_MOD_Y),
529  	SCA3000_CHAN(2, IIO_MOD_Z),
530  	{
531  		.type = IIO_TEMP,
532  		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
533  		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
534  			BIT(IIO_CHAN_INFO_OFFSET),
535  		/* No buffer support */
536  		.scan_index = -1,
537  		.scan_type = {
538  			.sign = 'u',
539  			.realbits = 9,
540  			.storagebits = 16,
541  			.shift = 5,
542  			.endianness = IIO_BE,
543  		},
544  	},
545  	{
546  		.type = IIO_ACCEL,
547  		.modified = 1,
548  		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
549  		.scan_index = -1, /* Fake channel */
550  		.event_spec = &sca3000_freefall_event_spec,
551  		.num_event_specs = 1,
552  	},
553  };
554  
555  static u8 sca3000_addresses[3][3] = {
556  	[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
557  	       SCA3000_MD_CTRL_OR_X},
558  	[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
559  	       SCA3000_MD_CTRL_OR_Y},
560  	[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
561  	       SCA3000_MD_CTRL_OR_Z},
562  };
563  
564  /**
565   * __sca3000_get_base_freq() - obtain mode specific base frequency
566   * @st: Private driver specific device instance specific state.
567   * @info: chip type specific information.
568   * @base_freq: Base frequency for the current measurement mode.
569   *
570   * lock must be held
571   */
__sca3000_get_base_freq(struct sca3000_state * st,const struct sca3000_chip_info * info,int * base_freq)572  static inline int __sca3000_get_base_freq(struct sca3000_state *st,
573  					  const struct sca3000_chip_info *info,
574  					  int *base_freq)
575  {
576  	int ret;
577  
578  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
579  	if (ret)
580  		goto error_ret;
581  	switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
582  	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
583  		*base_freq = info->measurement_mode_freq;
584  		break;
585  	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
586  		*base_freq = info->option_mode_1_freq;
587  		break;
588  	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
589  		*base_freq = info->option_mode_2_freq;
590  		break;
591  	default:
592  		ret = -EINVAL;
593  	}
594  error_ret:
595  	return ret;
596  }
597  
598  /**
599   * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
600   * @st: Private driver specific device instance specific state.
601   * @val: The frequency read back.
602   *
603   * lock must be held
604   **/
sca3000_read_raw_samp_freq(struct sca3000_state * st,int * val)605  static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
606  {
607  	int ret;
608  
609  	ret = __sca3000_get_base_freq(st, st->info, val);
610  	if (ret)
611  		return ret;
612  
613  	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
614  	if (ret < 0)
615  		return ret;
616  
617  	if (*val > 0) {
618  		ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
619  		switch (ret) {
620  		case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
621  			*val /= 2;
622  			break;
623  		case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
624  			*val /= 4;
625  			break;
626  		}
627  	}
628  
629  	return 0;
630  }
631  
632  /**
633   * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
634   * @st: Private driver specific device instance specific state.
635   * @val: The frequency desired.
636   *
637   * lock must be held
638   */
sca3000_write_raw_samp_freq(struct sca3000_state * st,int val)639  static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
640  {
641  	int ret, base_freq, ctrlval;
642  
643  	ret = __sca3000_get_base_freq(st, st->info, &base_freq);
644  	if (ret)
645  		return ret;
646  
647  	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
648  	if (ret < 0)
649  		return ret;
650  
651  	ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
652  
653  	if (val == base_freq / 2)
654  		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
655  	if (val == base_freq / 4)
656  		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
657  	else if (val != base_freq)
658  		return -EINVAL;
659  
660  	return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
661  				     ctrlval);
662  }
663  
sca3000_read_3db_freq(struct sca3000_state * st,int * val)664  static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
665  {
666  	int ret;
667  
668  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
669  	if (ret)
670  		return ret;
671  
672  	/* mask bottom 2 bits - only ones that are relevant */
673  	st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
674  	switch (st->rx[0]) {
675  	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
676  		*val = st->info->measurement_mode_3db_freq;
677  		return IIO_VAL_INT;
678  	case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
679  		return -EBUSY;
680  	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
681  		*val = st->info->option_mode_1_3db_freq;
682  		return IIO_VAL_INT;
683  	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
684  		*val = st->info->option_mode_2_3db_freq;
685  		return IIO_VAL_INT;
686  	default:
687  		return -EINVAL;
688  	}
689  }
690  
sca3000_write_3db_freq(struct sca3000_state * st,int val)691  static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
692  {
693  	int ret;
694  	int mode;
695  
696  	if (val == st->info->measurement_mode_3db_freq)
697  		mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
698  	else if (st->info->option_mode_1 &&
699  		 (val == st->info->option_mode_1_3db_freq))
700  		mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
701  	else if (st->info->option_mode_2 &&
702  		 (val == st->info->option_mode_2_3db_freq))
703  		mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
704  	else
705  		return -EINVAL;
706  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
707  	if (ret)
708  		return ret;
709  
710  	st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
711  	st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
712  
713  	return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
714  }
715  
sca3000_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)716  static int sca3000_read_raw(struct iio_dev *indio_dev,
717  			    struct iio_chan_spec const *chan,
718  			    int *val,
719  			    int *val2,
720  			    long mask)
721  {
722  	struct sca3000_state *st = iio_priv(indio_dev);
723  	int ret;
724  	u8 address;
725  
726  	switch (mask) {
727  	case IIO_CHAN_INFO_RAW:
728  		mutex_lock(&st->lock);
729  		if (chan->type == IIO_ACCEL) {
730  			if (st->mo_det_use_count) {
731  				mutex_unlock(&st->lock);
732  				return -EBUSY;
733  			}
734  			address = sca3000_addresses[chan->address][0];
735  			ret = sca3000_read_data_short(st, address, 2);
736  			if (ret < 0) {
737  				mutex_unlock(&st->lock);
738  				return ret;
739  			}
740  			*val = sign_extend32(be16_to_cpup((__be16 *)st->rx) >>
741  					     chan->scan_type.shift,
742  					     chan->scan_type.realbits - 1);
743  		} else {
744  			/* get the temperature when available */
745  			ret = sca3000_read_data_short(st,
746  						      SCA3000_REG_TEMP_MSB_ADDR,
747  						      2);
748  			if (ret < 0) {
749  				mutex_unlock(&st->lock);
750  				return ret;
751  			}
752  			*val = (be16_to_cpup((__be16 *)st->rx) >>
753  				chan->scan_type.shift) &
754  				GENMASK(chan->scan_type.realbits - 1, 0);
755  		}
756  		mutex_unlock(&st->lock);
757  		return IIO_VAL_INT;
758  	case IIO_CHAN_INFO_SCALE:
759  		*val = 0;
760  		if (chan->type == IIO_ACCEL)
761  			*val2 = st->info->scale;
762  		else /* temperature */
763  			*val2 = 555556;
764  		return IIO_VAL_INT_PLUS_MICRO;
765  	case IIO_CHAN_INFO_OFFSET:
766  		*val = -214;
767  		*val2 = 600000;
768  		return IIO_VAL_INT_PLUS_MICRO;
769  	case IIO_CHAN_INFO_SAMP_FREQ:
770  		mutex_lock(&st->lock);
771  		ret = sca3000_read_raw_samp_freq(st, val);
772  		mutex_unlock(&st->lock);
773  		return ret ? ret : IIO_VAL_INT;
774  	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
775  		mutex_lock(&st->lock);
776  		ret = sca3000_read_3db_freq(st, val);
777  		mutex_unlock(&st->lock);
778  		return ret;
779  	default:
780  		return -EINVAL;
781  	}
782  }
783  
sca3000_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)784  static int sca3000_write_raw(struct iio_dev *indio_dev,
785  			     struct iio_chan_spec const *chan,
786  			     int val, int val2, long mask)
787  {
788  	struct sca3000_state *st = iio_priv(indio_dev);
789  	int ret;
790  
791  	switch (mask) {
792  	case IIO_CHAN_INFO_SAMP_FREQ:
793  		if (val2)
794  			return -EINVAL;
795  		mutex_lock(&st->lock);
796  		ret = sca3000_write_raw_samp_freq(st, val);
797  		mutex_unlock(&st->lock);
798  		return ret;
799  	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
800  		if (val2)
801  			return -EINVAL;
802  		mutex_lock(&st->lock);
803  		ret = sca3000_write_3db_freq(st, val);
804  		mutex_unlock(&st->lock);
805  		return ret;
806  	default:
807  		return -EINVAL;
808  	}
809  
810  	return ret;
811  }
812  
813  /**
814   * sca3000_read_av_freq() - sysfs function to get available frequencies
815   * @dev: Device structure for this device.
816   * @attr: Description of the attribute.
817   * @buf: Incoming string
818   *
819   * The later modes are only relevant to the ring buffer - and depend on current
820   * mode. Note that data sheet gives rather wide tolerances for these so integer
821   * division will give good enough answer and not all chips have them specified
822   * at all.
823   **/
sca3000_read_av_freq(struct device * dev,struct device_attribute * attr,char * buf)824  static ssize_t sca3000_read_av_freq(struct device *dev,
825  				    struct device_attribute *attr,
826  				    char *buf)
827  {
828  	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
829  	struct sca3000_state *st = iio_priv(indio_dev);
830  	int len = 0, ret, val;
831  
832  	mutex_lock(&st->lock);
833  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
834  	val = st->rx[0];
835  	mutex_unlock(&st->lock);
836  	if (ret)
837  		goto error_ret;
838  
839  	switch (val & SCA3000_REG_MODE_MODE_MASK) {
840  	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
841  		len += sprintf(buf + len, "%d %d %d\n",
842  			       st->info->measurement_mode_freq,
843  			       st->info->measurement_mode_freq / 2,
844  			       st->info->measurement_mode_freq / 4);
845  		break;
846  	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
847  		len += sprintf(buf + len, "%d %d %d\n",
848  			       st->info->option_mode_1_freq,
849  			       st->info->option_mode_1_freq / 2,
850  			       st->info->option_mode_1_freq / 4);
851  		break;
852  	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
853  		len += sprintf(buf + len, "%d %d %d\n",
854  			       st->info->option_mode_2_freq,
855  			       st->info->option_mode_2_freq / 2,
856  			       st->info->option_mode_2_freq / 4);
857  		break;
858  	}
859  	return len;
860  error_ret:
861  	return ret;
862  }
863  
864  /*
865   * Should only really be registered if ring buffer support is compiled in.
866   * Does no harm however and doing it right would add a fair bit of complexity
867   */
868  static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
869  
870  /*
871   * sca3000_read_event_value() - query of a threshold or period
872   */
sca3000_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)873  static int sca3000_read_event_value(struct iio_dev *indio_dev,
874  				    const struct iio_chan_spec *chan,
875  				    enum iio_event_type type,
876  				    enum iio_event_direction dir,
877  				    enum iio_event_info info,
878  				    int *val, int *val2)
879  {
880  	struct sca3000_state *st = iio_priv(indio_dev);
881  	long ret;
882  	int i;
883  
884  	switch (info) {
885  	case IIO_EV_INFO_VALUE:
886  		mutex_lock(&st->lock);
887  		ret = sca3000_read_ctrl_reg(st,
888  					    sca3000_addresses[chan->address][1]);
889  		mutex_unlock(&st->lock);
890  		if (ret < 0)
891  			return ret;
892  		*val = 0;
893  		if (chan->channel2 == IIO_MOD_Y)
894  			for_each_set_bit(i, &ret,
895  					 ARRAY_SIZE(st->info->mot_det_mult_y))
896  				*val += st->info->mot_det_mult_y[i];
897  		else
898  			for_each_set_bit(i, &ret,
899  					 ARRAY_SIZE(st->info->mot_det_mult_xz))
900  				*val += st->info->mot_det_mult_xz[i];
901  
902  		return IIO_VAL_INT;
903  	case IIO_EV_INFO_PERIOD:
904  		*val = 0;
905  		*val2 = 226000;
906  		return IIO_VAL_INT_PLUS_MICRO;
907  	default:
908  		return -EINVAL;
909  	}
910  }
911  
912  /**
913   * sca3000_write_event_value() - control of threshold and period
914   * @indio_dev: Device instance specific IIO information.
915   * @chan: Description of the channel for which the event is being
916   * configured.
917   * @type: The type of event being configured, here magnitude rising
918   * as everything else is read only.
919   * @dir: Direction of the event (here rising)
920   * @info: What information about the event are we configuring.
921   * Here the threshold only.
922   * @val: Integer part of the value being written..
923   * @val2: Non integer part of the value being written. Here always 0.
924   */
sca3000_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)925  static int sca3000_write_event_value(struct iio_dev *indio_dev,
926  				     const struct iio_chan_spec *chan,
927  				     enum iio_event_type type,
928  				     enum iio_event_direction dir,
929  				     enum iio_event_info info,
930  				     int val, int val2)
931  {
932  	struct sca3000_state *st = iio_priv(indio_dev);
933  	int ret;
934  	int i;
935  	u8 nonlinear = 0;
936  
937  	if (chan->channel2 == IIO_MOD_Y) {
938  		i = ARRAY_SIZE(st->info->mot_det_mult_y);
939  		while (i > 0)
940  			if (val >= st->info->mot_det_mult_y[--i]) {
941  				nonlinear |= (1 << i);
942  				val -= st->info->mot_det_mult_y[i];
943  			}
944  	} else {
945  		i = ARRAY_SIZE(st->info->mot_det_mult_xz);
946  		while (i > 0)
947  			if (val >= st->info->mot_det_mult_xz[--i]) {
948  				nonlinear |= (1 << i);
949  				val -= st->info->mot_det_mult_xz[i];
950  			}
951  	}
952  
953  	mutex_lock(&st->lock);
954  	ret = sca3000_write_ctrl_reg(st,
955  				     sca3000_addresses[chan->address][1],
956  				     nonlinear);
957  	mutex_unlock(&st->lock);
958  
959  	return ret;
960  }
961  
962  static struct attribute *sca3000_attributes[] = {
963  	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
964  	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
965  	NULL,
966  };
967  
968  static const struct attribute_group sca3000_attribute_group = {
969  	.attrs = sca3000_attributes,
970  };
971  
sca3000_read_data(struct sca3000_state * st,u8 reg_address_high,u8 * rx,int len)972  static int sca3000_read_data(struct sca3000_state *st,
973  			     u8 reg_address_high,
974  			     u8 *rx,
975  			     int len)
976  {
977  	int ret;
978  	struct spi_transfer xfer[2] = {
979  		{
980  			.len = 1,
981  			.tx_buf = st->tx,
982  		}, {
983  			.len = len,
984  			.rx_buf = rx,
985  		}
986  	};
987  
988  	st->tx[0] = SCA3000_READ_REG(reg_address_high);
989  	ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
990  	if (ret) {
991  		dev_err(&st->us->dev, "problem reading register\n");
992  		return ret;
993  	}
994  
995  	return 0;
996  }
997  
998  /**
999   * sca3000_ring_int_process() - ring specific interrupt handling.
1000   * @val: Value of the interrupt status register.
1001   * @indio_dev: Device instance specific IIO device structure.
1002   */
sca3000_ring_int_process(u8 val,struct iio_dev * indio_dev)1003  static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
1004  {
1005  	struct sca3000_state *st = iio_priv(indio_dev);
1006  	int ret, i, num_available;
1007  
1008  	mutex_lock(&st->lock);
1009  
1010  	if (val & SCA3000_REG_INT_STATUS_HALF) {
1011  		ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1012  					      1);
1013  		if (ret)
1014  			goto error_ret;
1015  		num_available = st->rx[0];
1016  		/*
1017  		 * num_available is the total number of samples available
1018  		 * i.e. number of time points * number of channels.
1019  		 */
1020  		ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1021  					num_available * 2);
1022  		if (ret)
1023  			goto error_ret;
1024  		for (i = 0; i < num_available / 3; i++) {
1025  			/*
1026  			 * Dirty hack to cover for 11 bit in fifo, 13 bit
1027  			 * direct reading.
1028  			 *
1029  			 * In theory the bottom two bits are undefined.
1030  			 * In reality they appear to always be 0.
1031  			 */
1032  			iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1033  		}
1034  	}
1035  error_ret:
1036  	mutex_unlock(&st->lock);
1037  }
1038  
1039  /**
1040   * sca3000_event_handler() - handling ring and non ring events
1041   * @irq: The irq being handled.
1042   * @private: struct iio_device pointer for the device.
1043   *
1044   * Ring related interrupt handler. Depending on event, push to
1045   * the ring buffer event chrdev or the event one.
1046   *
1047   * This function is complicated by the fact that the devices can signify ring
1048   * and non ring events via the same interrupt line and they can only
1049   * be distinguished via a read of the relevant status register.
1050   */
sca3000_event_handler(int irq,void * private)1051  static irqreturn_t sca3000_event_handler(int irq, void *private)
1052  {
1053  	struct iio_dev *indio_dev = private;
1054  	struct sca3000_state *st = iio_priv(indio_dev);
1055  	int ret, val;
1056  	s64 last_timestamp = iio_get_time_ns(indio_dev);
1057  
1058  	/*
1059  	 * Could lead if badly timed to an extra read of status reg,
1060  	 * but ensures no interrupt is missed.
1061  	 */
1062  	mutex_lock(&st->lock);
1063  	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1064  	val = st->rx[0];
1065  	mutex_unlock(&st->lock);
1066  	if (ret)
1067  		goto done;
1068  
1069  	sca3000_ring_int_process(val, indio_dev);
1070  
1071  	if (val & SCA3000_INT_STATUS_FREE_FALL)
1072  		iio_push_event(indio_dev,
1073  			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1074  						  0,
1075  						  IIO_MOD_X_AND_Y_AND_Z,
1076  						  IIO_EV_TYPE_MAG,
1077  						  IIO_EV_DIR_FALLING),
1078  			       last_timestamp);
1079  
1080  	if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1081  		iio_push_event(indio_dev,
1082  			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1083  						  0,
1084  						  IIO_MOD_Y,
1085  						  IIO_EV_TYPE_MAG,
1086  						  IIO_EV_DIR_RISING),
1087  			       last_timestamp);
1088  
1089  	if (val & SCA3000_INT_STATUS_X_TRIGGER)
1090  		iio_push_event(indio_dev,
1091  			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1092  						  0,
1093  						  IIO_MOD_X,
1094  						  IIO_EV_TYPE_MAG,
1095  						  IIO_EV_DIR_RISING),
1096  			       last_timestamp);
1097  
1098  	if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1099  		iio_push_event(indio_dev,
1100  			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1101  						  0,
1102  						  IIO_MOD_Z,
1103  						  IIO_EV_TYPE_MAG,
1104  						  IIO_EV_DIR_RISING),
1105  			       last_timestamp);
1106  
1107  done:
1108  	return IRQ_HANDLED;
1109  }
1110  
1111  /*
1112   * sca3000_read_event_config() what events are enabled
1113   */
sca3000_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1114  static int sca3000_read_event_config(struct iio_dev *indio_dev,
1115  				     const struct iio_chan_spec *chan,
1116  				     enum iio_event_type type,
1117  				     enum iio_event_direction dir)
1118  {
1119  	struct sca3000_state *st = iio_priv(indio_dev);
1120  	int ret;
1121  	/* read current value of mode register */
1122  	mutex_lock(&st->lock);
1123  
1124  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1125  	if (ret)
1126  		goto error_ret;
1127  
1128  	switch (chan->channel2) {
1129  	case IIO_MOD_X_AND_Y_AND_Z:
1130  		ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1131  		break;
1132  	case IIO_MOD_X:
1133  	case IIO_MOD_Y:
1134  	case IIO_MOD_Z:
1135  		/*
1136  		 * Motion detection mode cannot run at the same time as
1137  		 * acceleration data being read.
1138  		 */
1139  		if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1140  		    != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1141  			ret = 0;
1142  		} else {
1143  			ret = sca3000_read_ctrl_reg(st,
1144  						SCA3000_REG_CTRL_SEL_MD_CTRL);
1145  			if (ret < 0)
1146  				goto error_ret;
1147  			/* only supporting logical or's for now */
1148  			ret = !!(ret & sca3000_addresses[chan->address][2]);
1149  		}
1150  		break;
1151  	default:
1152  		ret = -EINVAL;
1153  	}
1154  
1155  error_ret:
1156  	mutex_unlock(&st->lock);
1157  
1158  	return ret;
1159  }
1160  
sca3000_freefall_set_state(struct iio_dev * indio_dev,int state)1161  static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1162  {
1163  	struct sca3000_state *st = iio_priv(indio_dev);
1164  	int ret;
1165  
1166  	/* read current value of mode register */
1167  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1168  	if (ret)
1169  		return ret;
1170  
1171  	/* if off and should be on */
1172  	if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1173  		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1174  					 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1175  	/* if on and should be off */
1176  	else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1177  		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1178  					 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1179  	else
1180  		return 0;
1181  }
1182  
sca3000_motion_detect_set_state(struct iio_dev * indio_dev,int axis,int state)1183  static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1184  					   int state)
1185  {
1186  	struct sca3000_state *st = iio_priv(indio_dev);
1187  	int ret, ctrlval;
1188  
1189  	/*
1190  	 * First read the motion detector config to find out if
1191  	 * this axis is on
1192  	 */
1193  	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1194  	if (ret < 0)
1195  		return ret;
1196  	ctrlval = ret;
1197  	/* if off and should be on */
1198  	if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1199  		ret = sca3000_write_ctrl_reg(st,
1200  					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1201  					     ctrlval |
1202  					     sca3000_addresses[axis][2]);
1203  		if (ret)
1204  			return ret;
1205  		st->mo_det_use_count++;
1206  	} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1207  		ret = sca3000_write_ctrl_reg(st,
1208  					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1209  					     ctrlval &
1210  					     ~(sca3000_addresses[axis][2]));
1211  		if (ret)
1212  			return ret;
1213  		st->mo_det_use_count--;
1214  	}
1215  
1216  	/* read current value of mode register */
1217  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1218  	if (ret)
1219  		return ret;
1220  	/* if off and should be on */
1221  	if ((st->mo_det_use_count) &&
1222  	    ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1223  	     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1224  		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1225  			(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1226  			| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1227  	/* if on and should be off */
1228  	else if (!(st->mo_det_use_count) &&
1229  		 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1230  		  == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1231  		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1232  			st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1233  	else
1234  		return 0;
1235  }
1236  
1237  /**
1238   * sca3000_write_event_config() - simple on off control for motion detector
1239   * @indio_dev: IIO device instance specific structure. Data specific to this
1240   * particular driver may be accessed via iio_priv(indio_dev).
1241   * @chan: Description of the channel whose event we are configuring.
1242   * @type: The type of event.
1243   * @dir: The direction of the event.
1244   * @state: Desired state of event being configured.
1245   *
1246   * This is a per axis control, but enabling any will result in the
1247   * motion detector unit being enabled.
1248   * N.B. enabling motion detector stops normal data acquisition.
1249   * There is a complexity in knowing which mode to return to when
1250   * this mode is disabled.  Currently normal mode is assumed.
1251   **/
sca3000_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)1252  static int sca3000_write_event_config(struct iio_dev *indio_dev,
1253  				      const struct iio_chan_spec *chan,
1254  				      enum iio_event_type type,
1255  				      enum iio_event_direction dir,
1256  				      int state)
1257  {
1258  	struct sca3000_state *st = iio_priv(indio_dev);
1259  	int ret;
1260  
1261  	mutex_lock(&st->lock);
1262  	switch (chan->channel2) {
1263  	case IIO_MOD_X_AND_Y_AND_Z:
1264  		ret = sca3000_freefall_set_state(indio_dev, state);
1265  		break;
1266  
1267  	case IIO_MOD_X:
1268  	case IIO_MOD_Y:
1269  	case IIO_MOD_Z:
1270  		ret = sca3000_motion_detect_set_state(indio_dev,
1271  						      chan->address,
1272  						      state);
1273  		break;
1274  	default:
1275  		ret = -EINVAL;
1276  		break;
1277  	}
1278  	mutex_unlock(&st->lock);
1279  
1280  	return ret;
1281  }
1282  
1283  static inline
__sca3000_hw_ring_state_set(struct iio_dev * indio_dev,bool state)1284  int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1285  {
1286  	struct sca3000_state *st = iio_priv(indio_dev);
1287  	int ret;
1288  
1289  	mutex_lock(&st->lock);
1290  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1291  	if (ret)
1292  		goto error_ret;
1293  	if (state) {
1294  		dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1295  		ret = sca3000_write_reg(st,
1296  			SCA3000_REG_MODE_ADDR,
1297  			(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1298  	} else
1299  		ret = sca3000_write_reg(st,
1300  			SCA3000_REG_MODE_ADDR,
1301  			(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1302  error_ret:
1303  	mutex_unlock(&st->lock);
1304  
1305  	return ret;
1306  }
1307  
1308  /**
1309   * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1310   * @indio_dev: structure representing the IIO device. Device instance
1311   * specific state can be accessed via iio_priv(indio_dev).
1312   *
1313   * Very simple enable function as the chip will allows normal reads
1314   * during ring buffer operation so as long as it is indeed running
1315   * before we notify the core, the precise ordering does not matter.
1316   */
sca3000_hw_ring_preenable(struct iio_dev * indio_dev)1317  static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1318  {
1319  	int ret;
1320  	struct sca3000_state *st = iio_priv(indio_dev);
1321  
1322  	mutex_lock(&st->lock);
1323  
1324  	/* Enable the 50% full interrupt */
1325  	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1326  	if (ret)
1327  		goto error_unlock;
1328  	ret = sca3000_write_reg(st,
1329  				SCA3000_REG_INT_MASK_ADDR,
1330  				st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1331  	if (ret)
1332  		goto error_unlock;
1333  
1334  	mutex_unlock(&st->lock);
1335  
1336  	return __sca3000_hw_ring_state_set(indio_dev, 1);
1337  
1338  error_unlock:
1339  	mutex_unlock(&st->lock);
1340  
1341  	return ret;
1342  }
1343  
sca3000_hw_ring_postdisable(struct iio_dev * indio_dev)1344  static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1345  {
1346  	int ret;
1347  	struct sca3000_state *st = iio_priv(indio_dev);
1348  
1349  	ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1350  	if (ret)
1351  		return ret;
1352  
1353  	/* Disable the 50% full interrupt */
1354  	mutex_lock(&st->lock);
1355  
1356  	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1357  	if (ret)
1358  		goto unlock;
1359  	ret = sca3000_write_reg(st,
1360  				SCA3000_REG_INT_MASK_ADDR,
1361  				st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1362  unlock:
1363  	mutex_unlock(&st->lock);
1364  	return ret;
1365  }
1366  
1367  static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1368  	.preenable = &sca3000_hw_ring_preenable,
1369  	.postdisable = &sca3000_hw_ring_postdisable,
1370  };
1371  
1372  /**
1373   * sca3000_clean_setup() - get the device into a predictable state
1374   * @st: Device instance specific private data structure
1375   *
1376   * Devices use flash memory to store many of the register values
1377   * and hence can come up in somewhat unpredictable states.
1378   * Hence reset everything on driver load.
1379   */
sca3000_clean_setup(struct sca3000_state * st)1380  static int sca3000_clean_setup(struct sca3000_state *st)
1381  {
1382  	int ret;
1383  
1384  	mutex_lock(&st->lock);
1385  	/* Ensure all interrupts have been acknowledged */
1386  	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1387  	if (ret)
1388  		goto error_ret;
1389  
1390  	/* Turn off all motion detection channels */
1391  	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1392  	if (ret < 0)
1393  		goto error_ret;
1394  	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1395  				     ret & SCA3000_MD_CTRL_PROT_MASK);
1396  	if (ret)
1397  		goto error_ret;
1398  
1399  	/* Disable ring buffer */
1400  	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1401  	if (ret < 0)
1402  		goto error_ret;
1403  	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1404  				     (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1405  				     | SCA3000_REG_OUT_CTRL_BUF_X_EN
1406  				     | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1407  				     | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1408  				     | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1409  	if (ret)
1410  		goto error_ret;
1411  	/* Enable interrupts, relevant to mode and set up as active low */
1412  	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1413  	if (ret)
1414  		goto error_ret;
1415  	ret = sca3000_write_reg(st,
1416  				SCA3000_REG_INT_MASK_ADDR,
1417  				(ret & SCA3000_REG_INT_MASK_PROT_MASK)
1418  				| SCA3000_REG_INT_MASK_ACTIVE_LOW);
1419  	if (ret)
1420  		goto error_ret;
1421  	/*
1422  	 * Select normal measurement mode, free fall off, ring off
1423  	 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1424  	 * as that occurs in one of the example on the datasheet
1425  	 */
1426  	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1427  	if (ret)
1428  		goto error_ret;
1429  	ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1430  				(st->rx[0] & SCA3000_MODE_PROT_MASK));
1431  
1432  error_ret:
1433  	mutex_unlock(&st->lock);
1434  	return ret;
1435  }
1436  
1437  static const struct iio_info sca3000_info = {
1438  	.attrs = &sca3000_attribute_group,
1439  	.read_raw = &sca3000_read_raw,
1440  	.write_raw = &sca3000_write_raw,
1441  	.read_event_value = &sca3000_read_event_value,
1442  	.write_event_value = &sca3000_write_event_value,
1443  	.read_event_config = &sca3000_read_event_config,
1444  	.write_event_config = &sca3000_write_event_config,
1445  };
1446  
sca3000_probe(struct spi_device * spi)1447  static int sca3000_probe(struct spi_device *spi)
1448  {
1449  	int ret;
1450  	struct sca3000_state *st;
1451  	struct iio_dev *indio_dev;
1452  
1453  	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1454  	if (!indio_dev)
1455  		return -ENOMEM;
1456  
1457  	st = iio_priv(indio_dev);
1458  	spi_set_drvdata(spi, indio_dev);
1459  	st->us = spi;
1460  	mutex_init(&st->lock);
1461  	st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1462  					      ->driver_data];
1463  
1464  	indio_dev->name = spi_get_device_id(spi)->name;
1465  	indio_dev->info = &sca3000_info;
1466  	if (st->info->temp_output) {
1467  		indio_dev->channels = sca3000_channels_with_temp;
1468  		indio_dev->num_channels =
1469  			ARRAY_SIZE(sca3000_channels_with_temp);
1470  	} else {
1471  		indio_dev->channels = sca3000_channels;
1472  		indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1473  	}
1474  	indio_dev->modes = INDIO_DIRECT_MODE;
1475  
1476  	ret = devm_iio_kfifo_buffer_setup(&spi->dev, indio_dev,
1477  					  &sca3000_ring_setup_ops);
1478  	if (ret)
1479  		return ret;
1480  
1481  	if (spi->irq) {
1482  		ret = request_threaded_irq(spi->irq,
1483  					   NULL,
1484  					   &sca3000_event_handler,
1485  					   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1486  					   "sca3000",
1487  					   indio_dev);
1488  		if (ret)
1489  			return ret;
1490  	}
1491  	ret = sca3000_clean_setup(st);
1492  	if (ret)
1493  		goto error_free_irq;
1494  
1495  	ret = sca3000_print_rev(indio_dev);
1496  	if (ret)
1497  		goto error_free_irq;
1498  
1499  	return iio_device_register(indio_dev);
1500  
1501  error_free_irq:
1502  	if (spi->irq)
1503  		free_irq(spi->irq, indio_dev);
1504  
1505  	return ret;
1506  }
1507  
sca3000_stop_all_interrupts(struct sca3000_state * st)1508  static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1509  {
1510  	int ret;
1511  
1512  	mutex_lock(&st->lock);
1513  	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1514  	if (ret)
1515  		goto error_ret;
1516  	ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1517  				(st->rx[0] &
1518  				 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1519  				   SCA3000_REG_INT_MASK_RING_HALF |
1520  				   SCA3000_REG_INT_MASK_ALL_INTS)));
1521  error_ret:
1522  	mutex_unlock(&st->lock);
1523  	return ret;
1524  }
1525  
sca3000_remove(struct spi_device * spi)1526  static void sca3000_remove(struct spi_device *spi)
1527  {
1528  	struct iio_dev *indio_dev = spi_get_drvdata(spi);
1529  	struct sca3000_state *st = iio_priv(indio_dev);
1530  
1531  	iio_device_unregister(indio_dev);
1532  
1533  	/* Must ensure no interrupts can be generated after this! */
1534  	sca3000_stop_all_interrupts(st);
1535  	if (spi->irq)
1536  		free_irq(spi->irq, indio_dev);
1537  }
1538  
1539  static const struct spi_device_id sca3000_id[] = {
1540  	{"sca3000_d01", d01},
1541  	{"sca3000_e02", e02},
1542  	{"sca3000_e04", e04},
1543  	{"sca3000_e05", e05},
1544  	{}
1545  };
1546  MODULE_DEVICE_TABLE(spi, sca3000_id);
1547  
1548  static struct spi_driver sca3000_driver = {
1549  	.driver = {
1550  		.name = "sca3000",
1551  	},
1552  	.probe = sca3000_probe,
1553  	.remove = sca3000_remove,
1554  	.id_table = sca3000_id,
1555  };
1556  module_spi_driver(sca3000_driver);
1557  
1558  MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1559  MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1560  MODULE_LICENSE("GPL v2");
1561