1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * IBM PowerPC Virtual I/O Infrastructure Support.
4 *
5 * Copyright (c) 2003,2008 IBM Corp.
6 * Dave Engebretsen engebret@us.ibm.com
7 * Santiago Leon santil@us.ibm.com
8 * Hollis Blanchard <hollisb@us.ibm.com>
9 * Stephen Rothwell
10 * Robert Jennings <rcjenn@us.ibm.com>
11 */
12
13 #include <linux/cpu.h>
14 #include <linux/types.h>
15 #include <linux/delay.h>
16 #include <linux/stat.h>
17 #include <linux/device.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/console.h>
21 #include <linux/export.h>
22 #include <linux/mm.h>
23 #include <linux/dma-map-ops.h>
24 #include <linux/kobject.h>
25 #include <linux/kexec.h>
26 #include <linux/of_irq.h>
27
28 #include <asm/iommu.h>
29 #include <asm/dma.h>
30 #include <asm/vio.h>
31 #include <asm/prom.h>
32 #include <asm/firmware.h>
33 #include <asm/tce.h>
34 #include <asm/page.h>
35 #include <asm/hvcall.h>
36 #include <asm/machdep.h>
37
38 static struct vio_dev vio_bus_device = { /* fake "parent" device */
39 .name = "vio",
40 .type = "",
41 .dev.init_name = "vio",
42 .dev.bus = &vio_bus_type,
43 };
44
45 #ifdef CONFIG_PPC_SMLPAR
46 /**
47 * vio_cmo_pool - A pool of IO memory for CMO use
48 *
49 * @size: The size of the pool in bytes
50 * @free: The amount of free memory in the pool
51 */
52 struct vio_cmo_pool {
53 size_t size;
54 size_t free;
55 };
56
57 /* How many ms to delay queued balance work */
58 #define VIO_CMO_BALANCE_DELAY 100
59
60 /* Portion out IO memory to CMO devices by this chunk size */
61 #define VIO_CMO_BALANCE_CHUNK 131072
62
63 /**
64 * vio_cmo_dev_entry - A device that is CMO-enabled and requires entitlement
65 *
66 * @vio_dev: struct vio_dev pointer
67 * @list: pointer to other devices on bus that are being tracked
68 */
69 struct vio_cmo_dev_entry {
70 struct vio_dev *viodev;
71 struct list_head list;
72 };
73
74 /**
75 * vio_cmo - VIO bus accounting structure for CMO entitlement
76 *
77 * @lock: spinlock for entire structure
78 * @balance_q: work queue for balancing system entitlement
79 * @device_list: list of CMO-enabled devices requiring entitlement
80 * @entitled: total system entitlement in bytes
81 * @reserve: pool of memory from which devices reserve entitlement, incl. spare
82 * @excess: pool of excess entitlement not needed for device reserves or spare
83 * @spare: IO memory for device hotplug functionality
84 * @min: minimum necessary for system operation
85 * @desired: desired memory for system operation
86 * @curr: bytes currently allocated
87 * @high: high water mark for IO data usage
88 */
89 static struct vio_cmo {
90 spinlock_t lock;
91 struct delayed_work balance_q;
92 struct list_head device_list;
93 size_t entitled;
94 struct vio_cmo_pool reserve;
95 struct vio_cmo_pool excess;
96 size_t spare;
97 size_t min;
98 size_t desired;
99 size_t curr;
100 size_t high;
101 } vio_cmo;
102
103 /**
104 * vio_cmo_OF_devices - Count the number of OF devices that have DMA windows
105 */
vio_cmo_num_OF_devs(void)106 static int vio_cmo_num_OF_devs(void)
107 {
108 struct device_node *node_vroot;
109 int count = 0;
110
111 /*
112 * Count the number of vdevice entries with an
113 * ibm,my-dma-window OF property
114 */
115 node_vroot = of_find_node_by_name(NULL, "vdevice");
116 if (node_vroot) {
117 struct device_node *of_node;
118 struct property *prop;
119
120 for_each_child_of_node(node_vroot, of_node) {
121 prop = of_find_property(of_node, "ibm,my-dma-window",
122 NULL);
123 if (prop)
124 count++;
125 }
126 }
127 of_node_put(node_vroot);
128 return count;
129 }
130
131 /**
132 * vio_cmo_alloc - allocate IO memory for CMO-enable devices
133 *
134 * @viodev: VIO device requesting IO memory
135 * @size: size of allocation requested
136 *
137 * Allocations come from memory reserved for the devices and any excess
138 * IO memory available to all devices. The spare pool used to service
139 * hotplug must be equal to %VIO_CMO_MIN_ENT for the excess pool to be
140 * made available.
141 *
142 * Return codes:
143 * 0 for successful allocation and -ENOMEM for a failure
144 */
vio_cmo_alloc(struct vio_dev * viodev,size_t size)145 static inline int vio_cmo_alloc(struct vio_dev *viodev, size_t size)
146 {
147 unsigned long flags;
148 size_t reserve_free = 0;
149 size_t excess_free = 0;
150 int ret = -ENOMEM;
151
152 spin_lock_irqsave(&vio_cmo.lock, flags);
153
154 /* Determine the amount of free entitlement available in reserve */
155 if (viodev->cmo.entitled > viodev->cmo.allocated)
156 reserve_free = viodev->cmo.entitled - viodev->cmo.allocated;
157
158 /* If spare is not fulfilled, the excess pool can not be used. */
159 if (vio_cmo.spare >= VIO_CMO_MIN_ENT)
160 excess_free = vio_cmo.excess.free;
161
162 /* The request can be satisfied */
163 if ((reserve_free + excess_free) >= size) {
164 vio_cmo.curr += size;
165 if (vio_cmo.curr > vio_cmo.high)
166 vio_cmo.high = vio_cmo.curr;
167 viodev->cmo.allocated += size;
168 size -= min(reserve_free, size);
169 vio_cmo.excess.free -= size;
170 ret = 0;
171 }
172
173 spin_unlock_irqrestore(&vio_cmo.lock, flags);
174 return ret;
175 }
176
177 /**
178 * vio_cmo_dealloc - deallocate IO memory from CMO-enable devices
179 * @viodev: VIO device freeing IO memory
180 * @size: size of deallocation
181 *
182 * IO memory is freed by the device back to the correct memory pools.
183 * The spare pool is replenished first from either memory pool, then
184 * the reserve pool is used to reduce device entitlement, the excess
185 * pool is used to increase the reserve pool toward the desired entitlement
186 * target, and then the remaining memory is returned to the pools.
187 *
188 */
vio_cmo_dealloc(struct vio_dev * viodev,size_t size)189 static inline void vio_cmo_dealloc(struct vio_dev *viodev, size_t size)
190 {
191 unsigned long flags;
192 size_t spare_needed = 0;
193 size_t excess_freed = 0;
194 size_t reserve_freed = size;
195 size_t tmp;
196 int balance = 0;
197
198 spin_lock_irqsave(&vio_cmo.lock, flags);
199 vio_cmo.curr -= size;
200
201 /* Amount of memory freed from the excess pool */
202 if (viodev->cmo.allocated > viodev->cmo.entitled) {
203 excess_freed = min(reserve_freed, (viodev->cmo.allocated -
204 viodev->cmo.entitled));
205 reserve_freed -= excess_freed;
206 }
207
208 /* Remove allocation from device */
209 viodev->cmo.allocated -= (reserve_freed + excess_freed);
210
211 /* Spare is a subset of the reserve pool, replenish it first. */
212 spare_needed = VIO_CMO_MIN_ENT - vio_cmo.spare;
213
214 /*
215 * Replenish the spare in the reserve pool from the excess pool.
216 * This moves entitlement into the reserve pool.
217 */
218 if (spare_needed && excess_freed) {
219 tmp = min(excess_freed, spare_needed);
220 vio_cmo.excess.size -= tmp;
221 vio_cmo.reserve.size += tmp;
222 vio_cmo.spare += tmp;
223 excess_freed -= tmp;
224 spare_needed -= tmp;
225 balance = 1;
226 }
227
228 /*
229 * Replenish the spare in the reserve pool from the reserve pool.
230 * This removes entitlement from the device down to VIO_CMO_MIN_ENT,
231 * if needed, and gives it to the spare pool. The amount of used
232 * memory in this pool does not change.
233 */
234 if (spare_needed && reserve_freed) {
235 tmp = min3(spare_needed, reserve_freed, (viodev->cmo.entitled - VIO_CMO_MIN_ENT));
236
237 vio_cmo.spare += tmp;
238 viodev->cmo.entitled -= tmp;
239 reserve_freed -= tmp;
240 spare_needed -= tmp;
241 balance = 1;
242 }
243
244 /*
245 * Increase the reserve pool until the desired allocation is met.
246 * Move an allocation freed from the excess pool into the reserve
247 * pool and schedule a balance operation.
248 */
249 if (excess_freed && (vio_cmo.desired > vio_cmo.reserve.size)) {
250 tmp = min(excess_freed, (vio_cmo.desired - vio_cmo.reserve.size));
251
252 vio_cmo.excess.size -= tmp;
253 vio_cmo.reserve.size += tmp;
254 excess_freed -= tmp;
255 balance = 1;
256 }
257
258 /* Return memory from the excess pool to that pool */
259 if (excess_freed)
260 vio_cmo.excess.free += excess_freed;
261
262 if (balance)
263 schedule_delayed_work(&vio_cmo.balance_q, VIO_CMO_BALANCE_DELAY);
264 spin_unlock_irqrestore(&vio_cmo.lock, flags);
265 }
266
267 /**
268 * vio_cmo_entitlement_update - Manage system entitlement changes
269 *
270 * @new_entitlement: new system entitlement to attempt to accommodate
271 *
272 * Increases in entitlement will be used to fulfill the spare entitlement
273 * and the rest is given to the excess pool. Decreases, if they are
274 * possible, come from the excess pool and from unused device entitlement
275 *
276 * Returns: 0 on success, -ENOMEM when change can not be made
277 */
vio_cmo_entitlement_update(size_t new_entitlement)278 int vio_cmo_entitlement_update(size_t new_entitlement)
279 {
280 struct vio_dev *viodev;
281 struct vio_cmo_dev_entry *dev_ent;
282 unsigned long flags;
283 size_t avail, delta, tmp;
284
285 spin_lock_irqsave(&vio_cmo.lock, flags);
286
287 /* Entitlement increases */
288 if (new_entitlement > vio_cmo.entitled) {
289 delta = new_entitlement - vio_cmo.entitled;
290
291 /* Fulfill spare allocation */
292 if (vio_cmo.spare < VIO_CMO_MIN_ENT) {
293 tmp = min(delta, (VIO_CMO_MIN_ENT - vio_cmo.spare));
294 vio_cmo.spare += tmp;
295 vio_cmo.reserve.size += tmp;
296 delta -= tmp;
297 }
298
299 /* Remaining new allocation goes to the excess pool */
300 vio_cmo.entitled += delta;
301 vio_cmo.excess.size += delta;
302 vio_cmo.excess.free += delta;
303
304 goto out;
305 }
306
307 /* Entitlement decreases */
308 delta = vio_cmo.entitled - new_entitlement;
309 avail = vio_cmo.excess.free;
310
311 /*
312 * Need to check how much unused entitlement each device can
313 * sacrifice to fulfill entitlement change.
314 */
315 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) {
316 if (avail >= delta)
317 break;
318
319 viodev = dev_ent->viodev;
320 if ((viodev->cmo.entitled > viodev->cmo.allocated) &&
321 (viodev->cmo.entitled > VIO_CMO_MIN_ENT))
322 avail += viodev->cmo.entitled -
323 max_t(size_t, viodev->cmo.allocated,
324 VIO_CMO_MIN_ENT);
325 }
326
327 if (delta <= avail) {
328 vio_cmo.entitled -= delta;
329
330 /* Take entitlement from the excess pool first */
331 tmp = min(vio_cmo.excess.free, delta);
332 vio_cmo.excess.size -= tmp;
333 vio_cmo.excess.free -= tmp;
334 delta -= tmp;
335
336 /*
337 * Remove all but VIO_CMO_MIN_ENT bytes from devices
338 * until entitlement change is served
339 */
340 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) {
341 if (!delta)
342 break;
343
344 viodev = dev_ent->viodev;
345 tmp = 0;
346 if ((viodev->cmo.entitled > viodev->cmo.allocated) &&
347 (viodev->cmo.entitled > VIO_CMO_MIN_ENT))
348 tmp = viodev->cmo.entitled -
349 max_t(size_t, viodev->cmo.allocated,
350 VIO_CMO_MIN_ENT);
351 viodev->cmo.entitled -= min(tmp, delta);
352 delta -= min(tmp, delta);
353 }
354 } else {
355 spin_unlock_irqrestore(&vio_cmo.lock, flags);
356 return -ENOMEM;
357 }
358
359 out:
360 schedule_delayed_work(&vio_cmo.balance_q, 0);
361 spin_unlock_irqrestore(&vio_cmo.lock, flags);
362 return 0;
363 }
364
365 /**
366 * vio_cmo_balance - Balance entitlement among devices
367 *
368 * @work: work queue structure for this operation
369 *
370 * Any system entitlement above the minimum needed for devices, or
371 * already allocated to devices, can be distributed to the devices.
372 * The list of devices is iterated through to recalculate the desired
373 * entitlement level and to determine how much entitlement above the
374 * minimum entitlement is allocated to devices.
375 *
376 * Small chunks of the available entitlement are given to devices until
377 * their requirements are fulfilled or there is no entitlement left to give.
378 * Upon completion sizes of the reserve and excess pools are calculated.
379 *
380 * The system minimum entitlement level is also recalculated here.
381 * Entitlement will be reserved for devices even after vio_bus_remove to
382 * accommodate reloading the driver. The OF tree is walked to count the
383 * number of devices present and this will remove entitlement for devices
384 * that have actually left the system after having vio_bus_remove called.
385 */
vio_cmo_balance(struct work_struct * work)386 static void vio_cmo_balance(struct work_struct *work)
387 {
388 struct vio_cmo *cmo;
389 struct vio_dev *viodev;
390 struct vio_cmo_dev_entry *dev_ent;
391 unsigned long flags;
392 size_t avail = 0, level, chunk, need;
393 int devcount = 0, fulfilled;
394
395 cmo = container_of(work, struct vio_cmo, balance_q.work);
396
397 spin_lock_irqsave(&vio_cmo.lock, flags);
398
399 /* Calculate minimum entitlement and fulfill spare */
400 cmo->min = vio_cmo_num_OF_devs() * VIO_CMO_MIN_ENT;
401 BUG_ON(cmo->min > cmo->entitled);
402 cmo->spare = min_t(size_t, VIO_CMO_MIN_ENT, (cmo->entitled - cmo->min));
403 cmo->min += cmo->spare;
404 cmo->desired = cmo->min;
405
406 /*
407 * Determine how much entitlement is available and reset device
408 * entitlements
409 */
410 avail = cmo->entitled - cmo->spare;
411 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) {
412 viodev = dev_ent->viodev;
413 devcount++;
414 viodev->cmo.entitled = VIO_CMO_MIN_ENT;
415 cmo->desired += (viodev->cmo.desired - VIO_CMO_MIN_ENT);
416 avail -= max_t(size_t, viodev->cmo.allocated, VIO_CMO_MIN_ENT);
417 }
418
419 /*
420 * Having provided each device with the minimum entitlement, loop
421 * over the devices portioning out the remaining entitlement
422 * until there is nothing left.
423 */
424 level = VIO_CMO_MIN_ENT;
425 while (avail) {
426 fulfilled = 0;
427 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) {
428 viodev = dev_ent->viodev;
429
430 if (viodev->cmo.desired <= level) {
431 fulfilled++;
432 continue;
433 }
434
435 /*
436 * Give the device up to VIO_CMO_BALANCE_CHUNK
437 * bytes of entitlement, but do not exceed the
438 * desired level of entitlement for the device.
439 */
440 chunk = min_t(size_t, avail, VIO_CMO_BALANCE_CHUNK);
441 chunk = min(chunk, (viodev->cmo.desired -
442 viodev->cmo.entitled));
443 viodev->cmo.entitled += chunk;
444
445 /*
446 * If the memory for this entitlement increase was
447 * already allocated to the device it does not come
448 * from the available pool being portioned out.
449 */
450 need = max(viodev->cmo.allocated, viodev->cmo.entitled)-
451 max(viodev->cmo.allocated, level);
452 avail -= need;
453
454 }
455 if (fulfilled == devcount)
456 break;
457 level += VIO_CMO_BALANCE_CHUNK;
458 }
459
460 /* Calculate new reserve and excess pool sizes */
461 cmo->reserve.size = cmo->min;
462 cmo->excess.free = 0;
463 cmo->excess.size = 0;
464 need = 0;
465 list_for_each_entry(dev_ent, &vio_cmo.device_list, list) {
466 viodev = dev_ent->viodev;
467 /* Calculated reserve size above the minimum entitlement */
468 if (viodev->cmo.entitled)
469 cmo->reserve.size += (viodev->cmo.entitled -
470 VIO_CMO_MIN_ENT);
471 /* Calculated used excess entitlement */
472 if (viodev->cmo.allocated > viodev->cmo.entitled)
473 need += viodev->cmo.allocated - viodev->cmo.entitled;
474 }
475 cmo->excess.size = cmo->entitled - cmo->reserve.size;
476 cmo->excess.free = cmo->excess.size - need;
477
478 cancel_delayed_work(to_delayed_work(work));
479 spin_unlock_irqrestore(&vio_cmo.lock, flags);
480 }
481
vio_dma_iommu_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)482 static void *vio_dma_iommu_alloc_coherent(struct device *dev, size_t size,
483 dma_addr_t *dma_handle, gfp_t flag,
484 unsigned long attrs)
485 {
486 struct vio_dev *viodev = to_vio_dev(dev);
487 void *ret;
488
489 if (vio_cmo_alloc(viodev, roundup(size, PAGE_SIZE))) {
490 atomic_inc(&viodev->cmo.allocs_failed);
491 return NULL;
492 }
493
494 ret = iommu_alloc_coherent(dev, get_iommu_table_base(dev), size,
495 dma_handle, dev->coherent_dma_mask, flag,
496 dev_to_node(dev));
497 if (unlikely(ret == NULL)) {
498 vio_cmo_dealloc(viodev, roundup(size, PAGE_SIZE));
499 atomic_inc(&viodev->cmo.allocs_failed);
500 }
501
502 return ret;
503 }
504
vio_dma_iommu_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)505 static void vio_dma_iommu_free_coherent(struct device *dev, size_t size,
506 void *vaddr, dma_addr_t dma_handle,
507 unsigned long attrs)
508 {
509 struct vio_dev *viodev = to_vio_dev(dev);
510
511 iommu_free_coherent(get_iommu_table_base(dev), size, vaddr, dma_handle);
512 vio_cmo_dealloc(viodev, roundup(size, PAGE_SIZE));
513 }
514
vio_dma_iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction,unsigned long attrs)515 static dma_addr_t vio_dma_iommu_map_page(struct device *dev, struct page *page,
516 unsigned long offset, size_t size,
517 enum dma_data_direction direction,
518 unsigned long attrs)
519 {
520 struct vio_dev *viodev = to_vio_dev(dev);
521 struct iommu_table *tbl = get_iommu_table_base(dev);
522 dma_addr_t ret = DMA_MAPPING_ERROR;
523
524 if (vio_cmo_alloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl))))
525 goto out_fail;
526 ret = iommu_map_page(dev, tbl, page, offset, size, dma_get_mask(dev),
527 direction, attrs);
528 if (unlikely(ret == DMA_MAPPING_ERROR))
529 goto out_deallocate;
530 return ret;
531
532 out_deallocate:
533 vio_cmo_dealloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl)));
534 out_fail:
535 atomic_inc(&viodev->cmo.allocs_failed);
536 return DMA_MAPPING_ERROR;
537 }
538
vio_dma_iommu_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction,unsigned long attrs)539 static void vio_dma_iommu_unmap_page(struct device *dev, dma_addr_t dma_handle,
540 size_t size,
541 enum dma_data_direction direction,
542 unsigned long attrs)
543 {
544 struct vio_dev *viodev = to_vio_dev(dev);
545 struct iommu_table *tbl = get_iommu_table_base(dev);
546
547 iommu_unmap_page(tbl, dma_handle, size, direction, attrs);
548 vio_cmo_dealloc(viodev, roundup(size, IOMMU_PAGE_SIZE(tbl)));
549 }
550
vio_dma_iommu_map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,unsigned long attrs)551 static int vio_dma_iommu_map_sg(struct device *dev, struct scatterlist *sglist,
552 int nelems, enum dma_data_direction direction,
553 unsigned long attrs)
554 {
555 struct vio_dev *viodev = to_vio_dev(dev);
556 struct iommu_table *tbl = get_iommu_table_base(dev);
557 struct scatterlist *sgl;
558 int ret, count;
559 size_t alloc_size = 0;
560
561 for_each_sg(sglist, sgl, nelems, count)
562 alloc_size += roundup(sgl->length, IOMMU_PAGE_SIZE(tbl));
563
564 ret = vio_cmo_alloc(viodev, alloc_size);
565 if (ret)
566 goto out_fail;
567 ret = ppc_iommu_map_sg(dev, tbl, sglist, nelems, dma_get_mask(dev),
568 direction, attrs);
569 if (unlikely(!ret))
570 goto out_deallocate;
571
572 for_each_sg(sglist, sgl, ret, count)
573 alloc_size -= roundup(sgl->dma_length, IOMMU_PAGE_SIZE(tbl));
574 if (alloc_size)
575 vio_cmo_dealloc(viodev, alloc_size);
576 return ret;
577
578 out_deallocate:
579 vio_cmo_dealloc(viodev, alloc_size);
580 out_fail:
581 atomic_inc(&viodev->cmo.allocs_failed);
582 return ret;
583 }
584
vio_dma_iommu_unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,unsigned long attrs)585 static void vio_dma_iommu_unmap_sg(struct device *dev,
586 struct scatterlist *sglist, int nelems,
587 enum dma_data_direction direction,
588 unsigned long attrs)
589 {
590 struct vio_dev *viodev = to_vio_dev(dev);
591 struct iommu_table *tbl = get_iommu_table_base(dev);
592 struct scatterlist *sgl;
593 size_t alloc_size = 0;
594 int count;
595
596 for_each_sg(sglist, sgl, nelems, count)
597 alloc_size += roundup(sgl->dma_length, IOMMU_PAGE_SIZE(tbl));
598
599 ppc_iommu_unmap_sg(tbl, sglist, nelems, direction, attrs);
600 vio_cmo_dealloc(viodev, alloc_size);
601 }
602
603 static const struct dma_map_ops vio_dma_mapping_ops = {
604 .alloc = vio_dma_iommu_alloc_coherent,
605 .free = vio_dma_iommu_free_coherent,
606 .map_sg = vio_dma_iommu_map_sg,
607 .unmap_sg = vio_dma_iommu_unmap_sg,
608 .map_page = vio_dma_iommu_map_page,
609 .unmap_page = vio_dma_iommu_unmap_page,
610 .dma_supported = dma_iommu_dma_supported,
611 .get_required_mask = dma_iommu_get_required_mask,
612 .mmap = dma_common_mmap,
613 .get_sgtable = dma_common_get_sgtable,
614 .alloc_pages = dma_common_alloc_pages,
615 .free_pages = dma_common_free_pages,
616 };
617
618 /**
619 * vio_cmo_set_dev_desired - Set desired entitlement for a device
620 *
621 * @viodev: struct vio_dev for device to alter
622 * @desired: new desired entitlement level in bytes
623 *
624 * For use by devices to request a change to their entitlement at runtime or
625 * through sysfs. The desired entitlement level is changed and a balancing
626 * of system resources is scheduled to run in the future.
627 */
vio_cmo_set_dev_desired(struct vio_dev * viodev,size_t desired)628 void vio_cmo_set_dev_desired(struct vio_dev *viodev, size_t desired)
629 {
630 unsigned long flags;
631 struct vio_cmo_dev_entry *dev_ent;
632 int found = 0;
633
634 if (!firmware_has_feature(FW_FEATURE_CMO))
635 return;
636
637 spin_lock_irqsave(&vio_cmo.lock, flags);
638 if (desired < VIO_CMO_MIN_ENT)
639 desired = VIO_CMO_MIN_ENT;
640
641 /*
642 * Changes will not be made for devices not in the device list.
643 * If it is not in the device list, then no driver is loaded
644 * for the device and it can not receive entitlement.
645 */
646 list_for_each_entry(dev_ent, &vio_cmo.device_list, list)
647 if (viodev == dev_ent->viodev) {
648 found = 1;
649 break;
650 }
651 if (!found) {
652 spin_unlock_irqrestore(&vio_cmo.lock, flags);
653 return;
654 }
655
656 /* Increase/decrease in desired device entitlement */
657 if (desired >= viodev->cmo.desired) {
658 /* Just bump the bus and device values prior to a balance*/
659 vio_cmo.desired += desired - viodev->cmo.desired;
660 viodev->cmo.desired = desired;
661 } else {
662 /* Decrease bus and device values for desired entitlement */
663 vio_cmo.desired -= viodev->cmo.desired - desired;
664 viodev->cmo.desired = desired;
665 /*
666 * If less entitlement is desired than current entitlement, move
667 * any reserve memory in the change region to the excess pool.
668 */
669 if (viodev->cmo.entitled > desired) {
670 vio_cmo.reserve.size -= viodev->cmo.entitled - desired;
671 vio_cmo.excess.size += viodev->cmo.entitled - desired;
672 /*
673 * If entitlement moving from the reserve pool to the
674 * excess pool is currently unused, add to the excess
675 * free counter.
676 */
677 if (viodev->cmo.allocated < viodev->cmo.entitled)
678 vio_cmo.excess.free += viodev->cmo.entitled -
679 max(viodev->cmo.allocated, desired);
680 viodev->cmo.entitled = desired;
681 }
682 }
683 schedule_delayed_work(&vio_cmo.balance_q, 0);
684 spin_unlock_irqrestore(&vio_cmo.lock, flags);
685 }
686
687 /**
688 * vio_cmo_bus_probe - Handle CMO specific bus probe activities
689 *
690 * @viodev - Pointer to struct vio_dev for device
691 *
692 * Determine the devices IO memory entitlement needs, attempting
693 * to satisfy the system minimum entitlement at first and scheduling
694 * a balance operation to take care of the rest at a later time.
695 *
696 * Returns: 0 on success, -EINVAL when device doesn't support CMO, and
697 * -ENOMEM when entitlement is not available for device or
698 * device entry.
699 *
700 */
vio_cmo_bus_probe(struct vio_dev * viodev)701 static int vio_cmo_bus_probe(struct vio_dev *viodev)
702 {
703 struct vio_cmo_dev_entry *dev_ent;
704 struct device *dev = &viodev->dev;
705 struct iommu_table *tbl;
706 struct vio_driver *viodrv = to_vio_driver(dev->driver);
707 unsigned long flags;
708 size_t size;
709 bool dma_capable = false;
710
711 tbl = get_iommu_table_base(dev);
712
713 /* A device requires entitlement if it has a DMA window property */
714 switch (viodev->family) {
715 case VDEVICE:
716 if (of_get_property(viodev->dev.of_node,
717 "ibm,my-dma-window", NULL))
718 dma_capable = true;
719 break;
720 case PFO:
721 dma_capable = false;
722 break;
723 default:
724 dev_warn(dev, "unknown device family: %d\n", viodev->family);
725 BUG();
726 break;
727 }
728
729 /* Configure entitlement for the device. */
730 if (dma_capable) {
731 /* Check that the driver is CMO enabled and get desired DMA */
732 if (!viodrv->get_desired_dma) {
733 dev_err(dev, "%s: device driver does not support CMO\n",
734 __func__);
735 return -EINVAL;
736 }
737
738 viodev->cmo.desired =
739 IOMMU_PAGE_ALIGN(viodrv->get_desired_dma(viodev), tbl);
740 if (viodev->cmo.desired < VIO_CMO_MIN_ENT)
741 viodev->cmo.desired = VIO_CMO_MIN_ENT;
742 size = VIO_CMO_MIN_ENT;
743
744 dev_ent = kmalloc(sizeof(struct vio_cmo_dev_entry),
745 GFP_KERNEL);
746 if (!dev_ent)
747 return -ENOMEM;
748
749 dev_ent->viodev = viodev;
750 spin_lock_irqsave(&vio_cmo.lock, flags);
751 list_add(&dev_ent->list, &vio_cmo.device_list);
752 } else {
753 viodev->cmo.desired = 0;
754 size = 0;
755 spin_lock_irqsave(&vio_cmo.lock, flags);
756 }
757
758 /*
759 * If the needs for vio_cmo.min have not changed since they
760 * were last set, the number of devices in the OF tree has
761 * been constant and the IO memory for this is already in
762 * the reserve pool.
763 */
764 if (vio_cmo.min == ((vio_cmo_num_OF_devs() + 1) *
765 VIO_CMO_MIN_ENT)) {
766 /* Updated desired entitlement if device requires it */
767 if (size)
768 vio_cmo.desired += (viodev->cmo.desired -
769 VIO_CMO_MIN_ENT);
770 } else {
771 size_t tmp;
772
773 tmp = vio_cmo.spare + vio_cmo.excess.free;
774 if (tmp < size) {
775 dev_err(dev, "%s: insufficient free "
776 "entitlement to add device. "
777 "Need %lu, have %lu\n", __func__,
778 size, (vio_cmo.spare + tmp));
779 spin_unlock_irqrestore(&vio_cmo.lock, flags);
780 return -ENOMEM;
781 }
782
783 /* Use excess pool first to fulfill request */
784 tmp = min(size, vio_cmo.excess.free);
785 vio_cmo.excess.free -= tmp;
786 vio_cmo.excess.size -= tmp;
787 vio_cmo.reserve.size += tmp;
788
789 /* Use spare if excess pool was insufficient */
790 vio_cmo.spare -= size - tmp;
791
792 /* Update bus accounting */
793 vio_cmo.min += size;
794 vio_cmo.desired += viodev->cmo.desired;
795 }
796 spin_unlock_irqrestore(&vio_cmo.lock, flags);
797 return 0;
798 }
799
800 /**
801 * vio_cmo_bus_remove - Handle CMO specific bus removal activities
802 *
803 * @viodev - Pointer to struct vio_dev for device
804 *
805 * Remove the device from the cmo device list. The minimum entitlement
806 * will be reserved for the device as long as it is in the system. The
807 * rest of the entitlement the device had been allocated will be returned
808 * to the system.
809 */
vio_cmo_bus_remove(struct vio_dev * viodev)810 static void vio_cmo_bus_remove(struct vio_dev *viodev)
811 {
812 struct vio_cmo_dev_entry *dev_ent;
813 unsigned long flags;
814 size_t tmp;
815
816 spin_lock_irqsave(&vio_cmo.lock, flags);
817 if (viodev->cmo.allocated) {
818 dev_err(&viodev->dev, "%s: device had %lu bytes of IO "
819 "allocated after remove operation.\n",
820 __func__, viodev->cmo.allocated);
821 BUG();
822 }
823
824 /*
825 * Remove the device from the device list being maintained for
826 * CMO enabled devices.
827 */
828 list_for_each_entry(dev_ent, &vio_cmo.device_list, list)
829 if (viodev == dev_ent->viodev) {
830 list_del(&dev_ent->list);
831 kfree(dev_ent);
832 break;
833 }
834
835 /*
836 * Devices may not require any entitlement and they do not need
837 * to be processed. Otherwise, return the device's entitlement
838 * back to the pools.
839 */
840 if (viodev->cmo.entitled) {
841 /*
842 * This device has not yet left the OF tree, it's
843 * minimum entitlement remains in vio_cmo.min and
844 * vio_cmo.desired
845 */
846 vio_cmo.desired -= (viodev->cmo.desired - VIO_CMO_MIN_ENT);
847
848 /*
849 * Save min allocation for device in reserve as long
850 * as it exists in OF tree as determined by later
851 * balance operation
852 */
853 viodev->cmo.entitled -= VIO_CMO_MIN_ENT;
854
855 /* Replenish spare from freed reserve pool */
856 if (viodev->cmo.entitled && (vio_cmo.spare < VIO_CMO_MIN_ENT)) {
857 tmp = min(viodev->cmo.entitled, (VIO_CMO_MIN_ENT -
858 vio_cmo.spare));
859 vio_cmo.spare += tmp;
860 viodev->cmo.entitled -= tmp;
861 }
862
863 /* Remaining reserve goes to excess pool */
864 vio_cmo.excess.size += viodev->cmo.entitled;
865 vio_cmo.excess.free += viodev->cmo.entitled;
866 vio_cmo.reserve.size -= viodev->cmo.entitled;
867
868 /*
869 * Until the device is removed it will keep a
870 * minimum entitlement; this will guarantee that
871 * a module unload/load will result in a success.
872 */
873 viodev->cmo.entitled = VIO_CMO_MIN_ENT;
874 viodev->cmo.desired = VIO_CMO_MIN_ENT;
875 atomic_set(&viodev->cmo.allocs_failed, 0);
876 }
877
878 spin_unlock_irqrestore(&vio_cmo.lock, flags);
879 }
880
vio_cmo_set_dma_ops(struct vio_dev * viodev)881 static void vio_cmo_set_dma_ops(struct vio_dev *viodev)
882 {
883 set_dma_ops(&viodev->dev, &vio_dma_mapping_ops);
884 }
885
886 /**
887 * vio_cmo_bus_init - CMO entitlement initialization at bus init time
888 *
889 * Set up the reserve and excess entitlement pools based on available
890 * system entitlement and the number of devices in the OF tree that
891 * require entitlement in the reserve pool.
892 */
vio_cmo_bus_init(void)893 static void vio_cmo_bus_init(void)
894 {
895 struct hvcall_mpp_data mpp_data;
896 int err;
897
898 memset(&vio_cmo, 0, sizeof(struct vio_cmo));
899 spin_lock_init(&vio_cmo.lock);
900 INIT_LIST_HEAD(&vio_cmo.device_list);
901 INIT_DELAYED_WORK(&vio_cmo.balance_q, vio_cmo_balance);
902
903 /* Get current system entitlement */
904 err = h_get_mpp(&mpp_data);
905
906 /*
907 * On failure, continue with entitlement set to 0, will panic()
908 * later when spare is reserved.
909 */
910 if (err != H_SUCCESS) {
911 printk(KERN_ERR "%s: unable to determine system IO "\
912 "entitlement. (%d)\n", __func__, err);
913 vio_cmo.entitled = 0;
914 } else {
915 vio_cmo.entitled = mpp_data.entitled_mem;
916 }
917
918 /* Set reservation and check against entitlement */
919 vio_cmo.spare = VIO_CMO_MIN_ENT;
920 vio_cmo.reserve.size = vio_cmo.spare;
921 vio_cmo.reserve.size += (vio_cmo_num_OF_devs() *
922 VIO_CMO_MIN_ENT);
923 if (vio_cmo.reserve.size > vio_cmo.entitled) {
924 printk(KERN_ERR "%s: insufficient system entitlement\n",
925 __func__);
926 panic("%s: Insufficient system entitlement", __func__);
927 }
928
929 /* Set the remaining accounting variables */
930 vio_cmo.excess.size = vio_cmo.entitled - vio_cmo.reserve.size;
931 vio_cmo.excess.free = vio_cmo.excess.size;
932 vio_cmo.min = vio_cmo.reserve.size;
933 vio_cmo.desired = vio_cmo.reserve.size;
934 }
935
936 /* sysfs device functions and data structures for CMO */
937
938 #define viodev_cmo_rd_attr(name) \
939 static ssize_t cmo_##name##_show(struct device *dev, \
940 struct device_attribute *attr, \
941 char *buf) \
942 { \
943 return sprintf(buf, "%lu\n", to_vio_dev(dev)->cmo.name); \
944 }
945
cmo_allocs_failed_show(struct device * dev,struct device_attribute * attr,char * buf)946 static ssize_t cmo_allocs_failed_show(struct device *dev,
947 struct device_attribute *attr, char *buf)
948 {
949 struct vio_dev *viodev = to_vio_dev(dev);
950 return sprintf(buf, "%d\n", atomic_read(&viodev->cmo.allocs_failed));
951 }
952
cmo_allocs_failed_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)953 static ssize_t cmo_allocs_failed_store(struct device *dev,
954 struct device_attribute *attr, const char *buf, size_t count)
955 {
956 struct vio_dev *viodev = to_vio_dev(dev);
957 atomic_set(&viodev->cmo.allocs_failed, 0);
958 return count;
959 }
960
cmo_desired_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)961 static ssize_t cmo_desired_store(struct device *dev,
962 struct device_attribute *attr, const char *buf, size_t count)
963 {
964 struct vio_dev *viodev = to_vio_dev(dev);
965 size_t new_desired;
966 int ret;
967
968 ret = kstrtoul(buf, 10, &new_desired);
969 if (ret)
970 return ret;
971
972 vio_cmo_set_dev_desired(viodev, new_desired);
973 return count;
974 }
975
976 viodev_cmo_rd_attr(desired);
977 viodev_cmo_rd_attr(entitled);
978 viodev_cmo_rd_attr(allocated);
979
980 static ssize_t name_show(struct device *, struct device_attribute *, char *);
981 static ssize_t devspec_show(struct device *, struct device_attribute *, char *);
982 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
983 char *buf);
984
985 static struct device_attribute dev_attr_name;
986 static struct device_attribute dev_attr_devspec;
987 static struct device_attribute dev_attr_modalias;
988
989 static DEVICE_ATTR_RO(cmo_entitled);
990 static DEVICE_ATTR_RO(cmo_allocated);
991 static DEVICE_ATTR_RW(cmo_desired);
992 static DEVICE_ATTR_RW(cmo_allocs_failed);
993
994 static struct attribute *vio_cmo_dev_attrs[] = {
995 &dev_attr_name.attr,
996 &dev_attr_devspec.attr,
997 &dev_attr_modalias.attr,
998 &dev_attr_cmo_entitled.attr,
999 &dev_attr_cmo_allocated.attr,
1000 &dev_attr_cmo_desired.attr,
1001 &dev_attr_cmo_allocs_failed.attr,
1002 NULL,
1003 };
1004 ATTRIBUTE_GROUPS(vio_cmo_dev);
1005
1006 /* sysfs bus functions and data structures for CMO */
1007
1008 #define viobus_cmo_rd_attr(name) \
1009 static ssize_t cmo_bus_##name##_show(const struct bus_type *bt, char *buf) \
1010 { \
1011 return sprintf(buf, "%lu\n", vio_cmo.name); \
1012 } \
1013 static struct bus_attribute bus_attr_cmo_bus_##name = \
1014 __ATTR(cmo_##name, S_IRUGO, cmo_bus_##name##_show, NULL)
1015
1016 #define viobus_cmo_pool_rd_attr(name, var) \
1017 static ssize_t \
1018 cmo_##name##_##var##_show(const struct bus_type *bt, char *buf) \
1019 { \
1020 return sprintf(buf, "%lu\n", vio_cmo.name.var); \
1021 } \
1022 static BUS_ATTR_RO(cmo_##name##_##var)
1023
1024 viobus_cmo_rd_attr(entitled);
1025 viobus_cmo_rd_attr(spare);
1026 viobus_cmo_rd_attr(min);
1027 viobus_cmo_rd_attr(desired);
1028 viobus_cmo_rd_attr(curr);
1029 viobus_cmo_pool_rd_attr(reserve, size);
1030 viobus_cmo_pool_rd_attr(excess, size);
1031 viobus_cmo_pool_rd_attr(excess, free);
1032
cmo_high_show(const struct bus_type * bt,char * buf)1033 static ssize_t cmo_high_show(const struct bus_type *bt, char *buf)
1034 {
1035 return sprintf(buf, "%lu\n", vio_cmo.high);
1036 }
1037
cmo_high_store(const struct bus_type * bt,const char * buf,size_t count)1038 static ssize_t cmo_high_store(const struct bus_type *bt, const char *buf,
1039 size_t count)
1040 {
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&vio_cmo.lock, flags);
1044 vio_cmo.high = vio_cmo.curr;
1045 spin_unlock_irqrestore(&vio_cmo.lock, flags);
1046
1047 return count;
1048 }
1049 static BUS_ATTR_RW(cmo_high);
1050
1051 static struct attribute *vio_bus_attrs[] = {
1052 &bus_attr_cmo_bus_entitled.attr,
1053 &bus_attr_cmo_bus_spare.attr,
1054 &bus_attr_cmo_bus_min.attr,
1055 &bus_attr_cmo_bus_desired.attr,
1056 &bus_attr_cmo_bus_curr.attr,
1057 &bus_attr_cmo_high.attr,
1058 &bus_attr_cmo_reserve_size.attr,
1059 &bus_attr_cmo_excess_size.attr,
1060 &bus_attr_cmo_excess_free.attr,
1061 NULL,
1062 };
1063 ATTRIBUTE_GROUPS(vio_bus);
1064
vio_cmo_sysfs_init(void)1065 static void __init vio_cmo_sysfs_init(void)
1066 {
1067 vio_bus_type.dev_groups = vio_cmo_dev_groups;
1068 vio_bus_type.bus_groups = vio_bus_groups;
1069 }
1070 #else /* CONFIG_PPC_SMLPAR */
vio_cmo_entitlement_update(size_t new_entitlement)1071 int vio_cmo_entitlement_update(size_t new_entitlement) { return 0; }
vio_cmo_set_dev_desired(struct vio_dev * viodev,size_t desired)1072 void vio_cmo_set_dev_desired(struct vio_dev *viodev, size_t desired) {}
vio_cmo_bus_probe(struct vio_dev * viodev)1073 static int vio_cmo_bus_probe(struct vio_dev *viodev) { return 0; }
vio_cmo_bus_remove(struct vio_dev * viodev)1074 static void vio_cmo_bus_remove(struct vio_dev *viodev) {}
vio_cmo_set_dma_ops(struct vio_dev * viodev)1075 static void vio_cmo_set_dma_ops(struct vio_dev *viodev) {}
vio_cmo_bus_init(void)1076 static void vio_cmo_bus_init(void) {}
vio_cmo_sysfs_init(void)1077 static void __init vio_cmo_sysfs_init(void) { }
1078 #endif /* CONFIG_PPC_SMLPAR */
1079 EXPORT_SYMBOL(vio_cmo_entitlement_update);
1080 EXPORT_SYMBOL(vio_cmo_set_dev_desired);
1081
1082
1083 /*
1084 * Platform Facilities Option (PFO) support
1085 */
1086
1087 /**
1088 * vio_h_cop_sync - Perform a synchronous PFO co-processor operation
1089 *
1090 * @vdev - Pointer to a struct vio_dev for device
1091 * @op - Pointer to a struct vio_pfo_op for the operation parameters
1092 *
1093 * Calls the hypervisor to synchronously perform the PFO operation
1094 * described in @op. In the case of a busy response from the hypervisor,
1095 * the operation will be re-submitted indefinitely unless a non-zero timeout
1096 * is specified or an error occurs. The timeout places a limit on when to
1097 * stop re-submitting a operation, the total time can be exceeded if an
1098 * operation is in progress.
1099 *
1100 * If op->hcall_ret is not NULL, this will be set to the return from the
1101 * last h_cop_op call or it will be 0 if an error not involving the h_call
1102 * was encountered.
1103 *
1104 * Returns:
1105 * 0 on success,
1106 * -EINVAL if the h_call fails due to an invalid parameter,
1107 * -E2BIG if the h_call can not be performed synchronously,
1108 * -EBUSY if a timeout is specified and has elapsed,
1109 * -EACCES if the memory area for data/status has been rescinded, or
1110 * -EPERM if a hardware fault has been indicated
1111 */
vio_h_cop_sync(struct vio_dev * vdev,struct vio_pfo_op * op)1112 int vio_h_cop_sync(struct vio_dev *vdev, struct vio_pfo_op *op)
1113 {
1114 struct device *dev = &vdev->dev;
1115 unsigned long deadline = 0;
1116 long hret = 0;
1117 int ret = 0;
1118
1119 if (op->timeout)
1120 deadline = jiffies + msecs_to_jiffies(op->timeout);
1121
1122 while (true) {
1123 hret = plpar_hcall_norets(H_COP, op->flags,
1124 vdev->resource_id,
1125 op->in, op->inlen, op->out,
1126 op->outlen, op->csbcpb);
1127
1128 if (hret == H_SUCCESS ||
1129 (hret != H_NOT_ENOUGH_RESOURCES &&
1130 hret != H_BUSY && hret != H_RESOURCE) ||
1131 (op->timeout && time_after(deadline, jiffies)))
1132 break;
1133
1134 dev_dbg(dev, "%s: hcall ret(%ld), retrying.\n", __func__, hret);
1135 }
1136
1137 switch (hret) {
1138 case H_SUCCESS:
1139 ret = 0;
1140 break;
1141 case H_OP_MODE:
1142 case H_TOO_BIG:
1143 ret = -E2BIG;
1144 break;
1145 case H_RESCINDED:
1146 ret = -EACCES;
1147 break;
1148 case H_HARDWARE:
1149 ret = -EPERM;
1150 break;
1151 case H_NOT_ENOUGH_RESOURCES:
1152 case H_RESOURCE:
1153 case H_BUSY:
1154 ret = -EBUSY;
1155 break;
1156 default:
1157 ret = -EINVAL;
1158 break;
1159 }
1160
1161 if (ret)
1162 dev_dbg(dev, "%s: Sync h_cop_op failure (ret:%d) (hret:%ld)\n",
1163 __func__, ret, hret);
1164
1165 op->hcall_err = hret;
1166 return ret;
1167 }
1168 EXPORT_SYMBOL(vio_h_cop_sync);
1169
vio_build_iommu_table(struct vio_dev * dev)1170 static struct iommu_table *vio_build_iommu_table(struct vio_dev *dev)
1171 {
1172 const __be32 *dma_window;
1173 struct iommu_table *tbl;
1174 unsigned long offset, size;
1175
1176 dma_window = of_get_property(dev->dev.of_node,
1177 "ibm,my-dma-window", NULL);
1178 if (!dma_window)
1179 return NULL;
1180
1181 tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
1182 if (tbl == NULL)
1183 return NULL;
1184
1185 kref_init(&tbl->it_kref);
1186
1187 of_parse_dma_window(dev->dev.of_node, dma_window,
1188 &tbl->it_index, &offset, &size);
1189
1190 /* TCE table size - measured in tce entries */
1191 tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K;
1192 tbl->it_size = size >> tbl->it_page_shift;
1193 /* offset for VIO should always be 0 */
1194 tbl->it_offset = offset >> tbl->it_page_shift;
1195 tbl->it_busno = 0;
1196 tbl->it_type = TCE_VB;
1197 tbl->it_blocksize = 16;
1198
1199 if (firmware_has_feature(FW_FEATURE_LPAR))
1200 tbl->it_ops = &iommu_table_lpar_multi_ops;
1201 else
1202 tbl->it_ops = &iommu_table_pseries_ops;
1203
1204 return iommu_init_table(tbl, -1, 0, 0);
1205 }
1206
1207 /**
1208 * vio_match_device: - Tell if a VIO device has a matching
1209 * VIO device id structure.
1210 * @ids: array of VIO device id structures to search in
1211 * @dev: the VIO device structure to match against
1212 *
1213 * Used by a driver to check whether a VIO device present in the
1214 * system is in its list of supported devices. Returns the matching
1215 * vio_device_id structure or NULL if there is no match.
1216 */
vio_match_device(const struct vio_device_id * ids,const struct vio_dev * dev)1217 static const struct vio_device_id *vio_match_device(
1218 const struct vio_device_id *ids, const struct vio_dev *dev)
1219 {
1220 while (ids->type[0] != '\0') {
1221 if ((strncmp(dev->type, ids->type, strlen(ids->type)) == 0) &&
1222 of_device_is_compatible(dev->dev.of_node,
1223 ids->compat))
1224 return ids;
1225 ids++;
1226 }
1227 return NULL;
1228 }
1229
1230 /*
1231 * Convert from struct device to struct vio_dev and pass to driver.
1232 * dev->driver has already been set by generic code because vio_bus_match
1233 * succeeded.
1234 */
vio_bus_probe(struct device * dev)1235 static int vio_bus_probe(struct device *dev)
1236 {
1237 struct vio_dev *viodev = to_vio_dev(dev);
1238 struct vio_driver *viodrv = to_vio_driver(dev->driver);
1239 const struct vio_device_id *id;
1240 int error = -ENODEV;
1241
1242 if (!viodrv->probe)
1243 return error;
1244
1245 id = vio_match_device(viodrv->id_table, viodev);
1246 if (id) {
1247 memset(&viodev->cmo, 0, sizeof(viodev->cmo));
1248 if (firmware_has_feature(FW_FEATURE_CMO)) {
1249 error = vio_cmo_bus_probe(viodev);
1250 if (error)
1251 return error;
1252 }
1253 error = viodrv->probe(viodev, id);
1254 if (error && firmware_has_feature(FW_FEATURE_CMO))
1255 vio_cmo_bus_remove(viodev);
1256 }
1257
1258 return error;
1259 }
1260
1261 /* convert from struct device to struct vio_dev and pass to driver. */
vio_bus_remove(struct device * dev)1262 static void vio_bus_remove(struct device *dev)
1263 {
1264 struct vio_dev *viodev = to_vio_dev(dev);
1265 struct vio_driver *viodrv = to_vio_driver(dev->driver);
1266 struct device *devptr;
1267
1268 /*
1269 * Hold a reference to the device after the remove function is called
1270 * to allow for CMO accounting cleanup for the device.
1271 */
1272 devptr = get_device(dev);
1273
1274 if (viodrv->remove)
1275 viodrv->remove(viodev);
1276
1277 if (firmware_has_feature(FW_FEATURE_CMO))
1278 vio_cmo_bus_remove(viodev);
1279
1280 put_device(devptr);
1281 }
1282
vio_bus_shutdown(struct device * dev)1283 static void vio_bus_shutdown(struct device *dev)
1284 {
1285 struct vio_dev *viodev = to_vio_dev(dev);
1286 struct vio_driver *viodrv;
1287
1288 if (dev->driver) {
1289 viodrv = to_vio_driver(dev->driver);
1290 if (viodrv->shutdown)
1291 viodrv->shutdown(viodev);
1292 else if (kexec_in_progress)
1293 vio_bus_remove(dev);
1294 }
1295 }
1296
1297 /**
1298 * vio_register_driver: - Register a new vio driver
1299 * @viodrv: The vio_driver structure to be registered.
1300 */
__vio_register_driver(struct vio_driver * viodrv,struct module * owner,const char * mod_name)1301 int __vio_register_driver(struct vio_driver *viodrv, struct module *owner,
1302 const char *mod_name)
1303 {
1304 // vio_bus_type is only initialised for pseries
1305 if (!machine_is(pseries))
1306 return -ENODEV;
1307
1308 pr_debug("%s: driver %s registering\n", __func__, viodrv->name);
1309
1310 /* fill in 'struct driver' fields */
1311 viodrv->driver.name = viodrv->name;
1312 viodrv->driver.pm = viodrv->pm;
1313 viodrv->driver.bus = &vio_bus_type;
1314 viodrv->driver.owner = owner;
1315 viodrv->driver.mod_name = mod_name;
1316
1317 return driver_register(&viodrv->driver);
1318 }
1319 EXPORT_SYMBOL(__vio_register_driver);
1320
1321 /**
1322 * vio_unregister_driver - Remove registration of vio driver.
1323 * @viodrv: The vio_driver struct to be removed form registration
1324 */
vio_unregister_driver(struct vio_driver * viodrv)1325 void vio_unregister_driver(struct vio_driver *viodrv)
1326 {
1327 driver_unregister(&viodrv->driver);
1328 }
1329 EXPORT_SYMBOL(vio_unregister_driver);
1330
1331 /* vio_dev refcount hit 0 */
vio_dev_release(struct device * dev)1332 static void vio_dev_release(struct device *dev)
1333 {
1334 struct iommu_table *tbl = get_iommu_table_base(dev);
1335
1336 if (tbl)
1337 iommu_tce_table_put(tbl);
1338 of_node_put(dev->of_node);
1339 kfree(to_vio_dev(dev));
1340 }
1341
1342 /**
1343 * vio_register_device_node: - Register a new vio device.
1344 * @of_node: The OF node for this device.
1345 *
1346 * Creates and initializes a vio_dev structure from the data in
1347 * of_node and adds it to the list of virtual devices.
1348 * Returns a pointer to the created vio_dev or NULL if node has
1349 * NULL device_type or compatible fields.
1350 */
vio_register_device_node(struct device_node * of_node)1351 struct vio_dev *vio_register_device_node(struct device_node *of_node)
1352 {
1353 struct vio_dev *viodev;
1354 struct device_node *parent_node;
1355 const __be32 *prop;
1356 enum vio_dev_family family;
1357
1358 /*
1359 * Determine if this node is a under the /vdevice node or under the
1360 * /ibm,platform-facilities node. This decides the device's family.
1361 */
1362 parent_node = of_get_parent(of_node);
1363 if (parent_node) {
1364 if (of_node_is_type(parent_node, "ibm,platform-facilities"))
1365 family = PFO;
1366 else if (of_node_is_type(parent_node, "vdevice"))
1367 family = VDEVICE;
1368 else {
1369 pr_warn("%s: parent(%pOF) of %pOFn not recognized.\n",
1370 __func__,
1371 parent_node,
1372 of_node);
1373 of_node_put(parent_node);
1374 return NULL;
1375 }
1376 of_node_put(parent_node);
1377 } else {
1378 pr_warn("%s: could not determine the parent of node %pOFn.\n",
1379 __func__, of_node);
1380 return NULL;
1381 }
1382
1383 if (family == PFO) {
1384 if (of_property_read_bool(of_node, "interrupt-controller")) {
1385 pr_debug("%s: Skipping the interrupt controller %pOFn.\n",
1386 __func__, of_node);
1387 return NULL;
1388 }
1389 }
1390
1391 /* allocate a vio_dev for this node */
1392 viodev = kzalloc(sizeof(struct vio_dev), GFP_KERNEL);
1393 if (viodev == NULL) {
1394 pr_warn("%s: allocation failure for VIO device.\n", __func__);
1395 return NULL;
1396 }
1397
1398 /* we need the 'device_type' property, in order to match with drivers */
1399 viodev->family = family;
1400 if (viodev->family == VDEVICE) {
1401 unsigned int unit_address;
1402
1403 viodev->type = of_node_get_device_type(of_node);
1404 if (!viodev->type) {
1405 pr_warn("%s: node %pOFn is missing the 'device_type' "
1406 "property.\n", __func__, of_node);
1407 goto out;
1408 }
1409
1410 prop = of_get_property(of_node, "reg", NULL);
1411 if (prop == NULL) {
1412 pr_warn("%s: node %pOFn missing 'reg'\n",
1413 __func__, of_node);
1414 goto out;
1415 }
1416 unit_address = of_read_number(prop, 1);
1417 dev_set_name(&viodev->dev, "%x", unit_address);
1418 viodev->irq = irq_of_parse_and_map(of_node, 0);
1419 viodev->unit_address = unit_address;
1420 } else {
1421 /* PFO devices need their resource_id for submitting COP_OPs
1422 * This is an optional field for devices, but is required when
1423 * performing synchronous ops */
1424 prop = of_get_property(of_node, "ibm,resource-id", NULL);
1425 if (prop != NULL)
1426 viodev->resource_id = of_read_number(prop, 1);
1427
1428 dev_set_name(&viodev->dev, "%pOFn", of_node);
1429 viodev->type = dev_name(&viodev->dev);
1430 viodev->irq = 0;
1431 }
1432
1433 viodev->name = of_node->name;
1434 viodev->dev.of_node = of_node_get(of_node);
1435
1436 set_dev_node(&viodev->dev, of_node_to_nid(of_node));
1437
1438 /* init generic 'struct device' fields: */
1439 viodev->dev.parent = &vio_bus_device.dev;
1440 viodev->dev.bus = &vio_bus_type;
1441 viodev->dev.release = vio_dev_release;
1442
1443 if (of_property_present(viodev->dev.of_node, "ibm,my-dma-window")) {
1444 if (firmware_has_feature(FW_FEATURE_CMO))
1445 vio_cmo_set_dma_ops(viodev);
1446 else
1447 set_dma_ops(&viodev->dev, &dma_iommu_ops);
1448
1449 set_iommu_table_base(&viodev->dev,
1450 vio_build_iommu_table(viodev));
1451
1452 /* needed to ensure proper operation of coherent allocations
1453 * later, in case driver doesn't set it explicitly */
1454 viodev->dev.coherent_dma_mask = DMA_BIT_MASK(64);
1455 viodev->dev.dma_mask = &viodev->dev.coherent_dma_mask;
1456 }
1457
1458 /* register with generic device framework */
1459 if (device_register(&viodev->dev)) {
1460 printk(KERN_ERR "%s: failed to register device %s\n",
1461 __func__, dev_name(&viodev->dev));
1462 put_device(&viodev->dev);
1463 return NULL;
1464 }
1465
1466 return viodev;
1467
1468 out: /* Use this exit point for any return prior to device_register */
1469 kfree(viodev);
1470
1471 return NULL;
1472 }
1473 EXPORT_SYMBOL(vio_register_device_node);
1474
1475 /*
1476 * vio_bus_scan_for_devices - Scan OF and register each child device
1477 * @root_name - OF node name for the root of the subtree to search.
1478 * This must be non-NULL
1479 *
1480 * Starting from the root node provide, register the device node for
1481 * each child beneath the root.
1482 */
vio_bus_scan_register_devices(char * root_name)1483 static void __init vio_bus_scan_register_devices(char *root_name)
1484 {
1485 struct device_node *node_root, *node_child;
1486
1487 if (!root_name)
1488 return;
1489
1490 node_root = of_find_node_by_name(NULL, root_name);
1491 if (node_root) {
1492
1493 /*
1494 * Create struct vio_devices for each virtual device in
1495 * the device tree. Drivers will associate with them later.
1496 */
1497 node_child = of_get_next_child(node_root, NULL);
1498 while (node_child) {
1499 vio_register_device_node(node_child);
1500 node_child = of_get_next_child(node_root, node_child);
1501 }
1502 of_node_put(node_root);
1503 }
1504 }
1505
1506 /**
1507 * vio_bus_init: - Initialize the virtual IO bus
1508 */
vio_bus_init(void)1509 static int __init vio_bus_init(void)
1510 {
1511 int err;
1512
1513 if (firmware_has_feature(FW_FEATURE_CMO))
1514 vio_cmo_sysfs_init();
1515
1516 err = bus_register(&vio_bus_type);
1517 if (err) {
1518 printk(KERN_ERR "failed to register VIO bus\n");
1519 return err;
1520 }
1521
1522 /*
1523 * The fake parent of all vio devices, just to give us
1524 * a nice directory
1525 */
1526 err = device_register(&vio_bus_device.dev);
1527 if (err) {
1528 printk(KERN_WARNING "%s: device_register returned %i\n",
1529 __func__, err);
1530 return err;
1531 }
1532
1533 if (firmware_has_feature(FW_FEATURE_CMO))
1534 vio_cmo_bus_init();
1535
1536 return 0;
1537 }
1538 machine_postcore_initcall(pseries, vio_bus_init);
1539
vio_device_init(void)1540 static int __init vio_device_init(void)
1541 {
1542 vio_bus_scan_register_devices("vdevice");
1543 vio_bus_scan_register_devices("ibm,platform-facilities");
1544
1545 return 0;
1546 }
1547 machine_device_initcall(pseries, vio_device_init);
1548
name_show(struct device * dev,struct device_attribute * attr,char * buf)1549 static ssize_t name_show(struct device *dev,
1550 struct device_attribute *attr, char *buf)
1551 {
1552 return sprintf(buf, "%s\n", to_vio_dev(dev)->name);
1553 }
1554 static DEVICE_ATTR_RO(name);
1555
devspec_show(struct device * dev,struct device_attribute * attr,char * buf)1556 static ssize_t devspec_show(struct device *dev,
1557 struct device_attribute *attr, char *buf)
1558 {
1559 struct device_node *of_node = dev->of_node;
1560
1561 return sprintf(buf, "%pOF\n", of_node);
1562 }
1563 static DEVICE_ATTR_RO(devspec);
1564
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)1565 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
1566 char *buf)
1567 {
1568 const struct vio_dev *vio_dev = to_vio_dev(dev);
1569 struct device_node *dn;
1570 const char *cp;
1571
1572 dn = dev->of_node;
1573 if (!dn) {
1574 strcpy(buf, "\n");
1575 return strlen(buf);
1576 }
1577 cp = of_get_property(dn, "compatible", NULL);
1578 if (!cp) {
1579 strcpy(buf, "\n");
1580 return strlen(buf);
1581 }
1582
1583 return sprintf(buf, "vio:T%sS%s\n", vio_dev->type, cp);
1584 }
1585 static DEVICE_ATTR_RO(modalias);
1586
1587 static struct attribute *vio_dev_attrs[] = {
1588 &dev_attr_name.attr,
1589 &dev_attr_devspec.attr,
1590 &dev_attr_modalias.attr,
1591 NULL,
1592 };
1593 ATTRIBUTE_GROUPS(vio_dev);
1594
vio_unregister_device(struct vio_dev * viodev)1595 void vio_unregister_device(struct vio_dev *viodev)
1596 {
1597 device_unregister(&viodev->dev);
1598 if (viodev->family == VDEVICE)
1599 irq_dispose_mapping(viodev->irq);
1600 }
1601 EXPORT_SYMBOL(vio_unregister_device);
1602
vio_bus_match(struct device * dev,struct device_driver * drv)1603 static int vio_bus_match(struct device *dev, struct device_driver *drv)
1604 {
1605 const struct vio_dev *vio_dev = to_vio_dev(dev);
1606 struct vio_driver *vio_drv = to_vio_driver(drv);
1607 const struct vio_device_id *ids = vio_drv->id_table;
1608
1609 return (ids != NULL) && (vio_match_device(ids, vio_dev) != NULL);
1610 }
1611
vio_hotplug(const struct device * dev,struct kobj_uevent_env * env)1612 static int vio_hotplug(const struct device *dev, struct kobj_uevent_env *env)
1613 {
1614 const struct vio_dev *vio_dev = to_vio_dev(dev);
1615 const struct device_node *dn;
1616 const char *cp;
1617
1618 dn = dev->of_node;
1619 if (!dn)
1620 return -ENODEV;
1621 cp = of_get_property(dn, "compatible", NULL);
1622 if (!cp)
1623 return -ENODEV;
1624
1625 add_uevent_var(env, "MODALIAS=vio:T%sS%s", vio_dev->type, cp);
1626 return 0;
1627 }
1628
1629 struct bus_type vio_bus_type = {
1630 .name = "vio",
1631 .dev_groups = vio_dev_groups,
1632 .uevent = vio_hotplug,
1633 .match = vio_bus_match,
1634 .probe = vio_bus_probe,
1635 .remove = vio_bus_remove,
1636 .shutdown = vio_bus_shutdown,
1637 };
1638
1639 /**
1640 * vio_get_attribute: - get attribute for virtual device
1641 * @vdev: The vio device to get property.
1642 * @which: The property/attribute to be extracted.
1643 * @length: Pointer to length of returned data size (unused if NULL).
1644 *
1645 * Calls prom.c's of_get_property() to return the value of the
1646 * attribute specified by @which
1647 */
vio_get_attribute(struct vio_dev * vdev,char * which,int * length)1648 const void *vio_get_attribute(struct vio_dev *vdev, char *which, int *length)
1649 {
1650 return of_get_property(vdev->dev.of_node, which, length);
1651 }
1652 EXPORT_SYMBOL(vio_get_attribute);
1653
1654 /* vio_find_name() - internal because only vio.c knows how we formatted the
1655 * kobject name
1656 */
vio_find_name(const char * name)1657 static struct vio_dev *vio_find_name(const char *name)
1658 {
1659 struct device *found;
1660
1661 found = bus_find_device_by_name(&vio_bus_type, NULL, name);
1662 if (!found)
1663 return NULL;
1664
1665 return to_vio_dev(found);
1666 }
1667
1668 /**
1669 * vio_find_node - find an already-registered vio_dev
1670 * @vnode: device_node of the virtual device we're looking for
1671 *
1672 * Takes a reference to the embedded struct device which needs to be dropped
1673 * after use.
1674 */
vio_find_node(struct device_node * vnode)1675 struct vio_dev *vio_find_node(struct device_node *vnode)
1676 {
1677 char kobj_name[20];
1678 struct device_node *vnode_parent;
1679
1680 vnode_parent = of_get_parent(vnode);
1681 if (!vnode_parent)
1682 return NULL;
1683
1684 /* construct the kobject name from the device node */
1685 if (of_node_is_type(vnode_parent, "vdevice")) {
1686 const __be32 *prop;
1687
1688 prop = of_get_property(vnode, "reg", NULL);
1689 if (!prop)
1690 goto out;
1691 snprintf(kobj_name, sizeof(kobj_name), "%x",
1692 (uint32_t)of_read_number(prop, 1));
1693 } else if (of_node_is_type(vnode_parent, "ibm,platform-facilities"))
1694 snprintf(kobj_name, sizeof(kobj_name), "%pOFn", vnode);
1695 else
1696 goto out;
1697
1698 of_node_put(vnode_parent);
1699 return vio_find_name(kobj_name);
1700 out:
1701 of_node_put(vnode_parent);
1702 return NULL;
1703 }
1704 EXPORT_SYMBOL(vio_find_node);
1705
vio_enable_interrupts(struct vio_dev * dev)1706 int vio_enable_interrupts(struct vio_dev *dev)
1707 {
1708 int rc = h_vio_signal(dev->unit_address, VIO_IRQ_ENABLE);
1709 if (rc != H_SUCCESS)
1710 printk(KERN_ERR "vio: Error 0x%x enabling interrupts\n", rc);
1711 return rc;
1712 }
1713 EXPORT_SYMBOL(vio_enable_interrupts);
1714
vio_disable_interrupts(struct vio_dev * dev)1715 int vio_disable_interrupts(struct vio_dev *dev)
1716 {
1717 int rc = h_vio_signal(dev->unit_address, VIO_IRQ_DISABLE);
1718 if (rc != H_SUCCESS)
1719 printk(KERN_ERR "vio: Error 0x%x disabling interrupts\n", rc);
1720 return rc;
1721 }
1722 EXPORT_SYMBOL(vio_disable_interrupts);
1723
vio_init(void)1724 static int __init vio_init(void)
1725 {
1726 dma_debug_add_bus(&vio_bus_type);
1727 return 0;
1728 }
1729 machine_fs_initcall(pseries, vio_init);
1730