1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED 6
26 #define BACKREF_FOUND_NOT_SHARED 7
27
28 struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 u64 num_bytes;
32 struct extent_inode_elem *next;
33 };
34
check_extent_in_eb(struct btrfs_backref_walk_ctx * ctx,const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,struct extent_inode_elem ** eie)35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 const struct btrfs_key *key,
37 const struct extent_buffer *eb,
38 const struct btrfs_file_extent_item *fi,
39 struct extent_inode_elem **eie)
40 {
41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 u64 offset = key->offset;
43 struct extent_inode_elem *e;
44 const u64 *root_ids;
45 int root_count;
46 bool cached;
47
48 if (!ctx->ignore_extent_item_pos &&
49 !btrfs_file_extent_compression(eb, fi) &&
50 !btrfs_file_extent_encryption(eb, fi) &&
51 !btrfs_file_extent_other_encoding(eb, fi)) {
52 u64 data_offset;
53
54 data_offset = btrfs_file_extent_offset(eb, fi);
55
56 if (ctx->extent_item_pos < data_offset ||
57 ctx->extent_item_pos >= data_offset + data_len)
58 return 1;
59 offset += ctx->extent_item_pos - data_offset;
60 }
61
62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 goto add_inode_elem;
64
65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 &root_count);
67 if (!cached)
68 goto add_inode_elem;
69
70 for (int i = 0; i < root_count; i++) {
71 int ret;
72
73 ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 data_len, root_ids[i],
75 ctx->user_ctx);
76 if (ret)
77 return ret;
78 }
79
80 add_inode_elem:
81 e = kmalloc(sizeof(*e), GFP_NOFS);
82 if (!e)
83 return -ENOMEM;
84
85 e->next = *eie;
86 e->inum = key->objectid;
87 e->offset = offset;
88 e->num_bytes = data_len;
89 *eie = e;
90
91 return 0;
92 }
93
free_inode_elem_list(struct extent_inode_elem * eie)94 static void free_inode_elem_list(struct extent_inode_elem *eie)
95 {
96 struct extent_inode_elem *eie_next;
97
98 for (; eie; eie = eie_next) {
99 eie_next = eie->next;
100 kfree(eie);
101 }
102 }
103
find_extent_in_eb(struct btrfs_backref_walk_ctx * ctx,const struct extent_buffer * eb,struct extent_inode_elem ** eie)104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 const struct extent_buffer *eb,
106 struct extent_inode_elem **eie)
107 {
108 u64 disk_byte;
109 struct btrfs_key key;
110 struct btrfs_file_extent_item *fi;
111 int slot;
112 int nritems;
113 int extent_type;
114 int ret;
115
116 /*
117 * from the shared data ref, we only have the leaf but we need
118 * the key. thus, we must look into all items and see that we
119 * find one (some) with a reference to our extent item.
120 */
121 nritems = btrfs_header_nritems(eb);
122 for (slot = 0; slot < nritems; ++slot) {
123 btrfs_item_key_to_cpu(eb, &key, slot);
124 if (key.type != BTRFS_EXTENT_DATA_KEY)
125 continue;
126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 extent_type = btrfs_file_extent_type(eb, fi);
128 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 continue;
130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132 if (disk_byte != ctx->bytenr)
133 continue;
134
135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 return ret;
138 }
139
140 return 0;
141 }
142
143 struct preftree {
144 struct rb_root_cached root;
145 unsigned int count;
146 };
147
148 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
149
150 struct preftrees {
151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 struct preftree indirect_missing_keys;
154 };
155
156 /*
157 * Checks for a shared extent during backref search.
158 *
159 * The share_count tracks prelim_refs (direct and indirect) having a
160 * ref->count >0:
161 * - incremented when a ref->count transitions to >0
162 * - decremented when a ref->count transitions to <1
163 */
164 struct share_check {
165 struct btrfs_backref_share_check_ctx *ctx;
166 struct btrfs_root *root;
167 u64 inum;
168 u64 data_bytenr;
169 u64 data_extent_gen;
170 /*
171 * Counts number of inodes that refer to an extent (different inodes in
172 * the same root or different roots) that we could find. The sharedness
173 * check typically stops once this counter gets greater than 1, so it
174 * may not reflect the total number of inodes.
175 */
176 int share_count;
177 /*
178 * The number of times we found our inode refers to the data extent we
179 * are determining the sharedness. In other words, how many file extent
180 * items we could find for our inode that point to our target data
181 * extent. The value we get here after finishing the extent sharedness
182 * check may be smaller than reality, but if it ends up being greater
183 * than 1, then we know for sure the inode has multiple file extent
184 * items that point to our inode, and we can safely assume it's useful
185 * to cache the sharedness check result.
186 */
187 int self_ref_count;
188 bool have_delayed_delete_refs;
189 };
190
extent_is_shared(struct share_check * sc)191 static inline int extent_is_shared(struct share_check *sc)
192 {
193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194 }
195
196 static struct kmem_cache *btrfs_prelim_ref_cache;
197
btrfs_prelim_ref_init(void)198 int __init btrfs_prelim_ref_init(void)
199 {
200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201 sizeof(struct prelim_ref),
202 0,
203 SLAB_MEM_SPREAD,
204 NULL);
205 if (!btrfs_prelim_ref_cache)
206 return -ENOMEM;
207 return 0;
208 }
209
btrfs_prelim_ref_exit(void)210 void __cold btrfs_prelim_ref_exit(void)
211 {
212 kmem_cache_destroy(btrfs_prelim_ref_cache);
213 }
214
free_pref(struct prelim_ref * ref)215 static void free_pref(struct prelim_ref *ref)
216 {
217 kmem_cache_free(btrfs_prelim_ref_cache, ref);
218 }
219
220 /*
221 * Return 0 when both refs are for the same block (and can be merged).
222 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
223 * indicates a 'higher' block.
224 */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)225 static int prelim_ref_compare(struct prelim_ref *ref1,
226 struct prelim_ref *ref2)
227 {
228 if (ref1->level < ref2->level)
229 return -1;
230 if (ref1->level > ref2->level)
231 return 1;
232 if (ref1->root_id < ref2->root_id)
233 return -1;
234 if (ref1->root_id > ref2->root_id)
235 return 1;
236 if (ref1->key_for_search.type < ref2->key_for_search.type)
237 return -1;
238 if (ref1->key_for_search.type > ref2->key_for_search.type)
239 return 1;
240 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
241 return -1;
242 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
243 return 1;
244 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
245 return -1;
246 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
247 return 1;
248 if (ref1->parent < ref2->parent)
249 return -1;
250 if (ref1->parent > ref2->parent)
251 return 1;
252
253 return 0;
254 }
255
update_share_count(struct share_check * sc,int oldcount,int newcount,struct prelim_ref * newref)256 static void update_share_count(struct share_check *sc, int oldcount,
257 int newcount, struct prelim_ref *newref)
258 {
259 if ((!sc) || (oldcount == 0 && newcount < 1))
260 return;
261
262 if (oldcount > 0 && newcount < 1)
263 sc->share_count--;
264 else if (oldcount < 1 && newcount > 0)
265 sc->share_count++;
266
267 if (newref->root_id == sc->root->root_key.objectid &&
268 newref->wanted_disk_byte == sc->data_bytenr &&
269 newref->key_for_search.objectid == sc->inum)
270 sc->self_ref_count += newref->count;
271 }
272
273 /*
274 * Add @newref to the @root rbtree, merging identical refs.
275 *
276 * Callers should assume that newref has been freed after calling.
277 */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)278 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
279 struct preftree *preftree,
280 struct prelim_ref *newref,
281 struct share_check *sc)
282 {
283 struct rb_root_cached *root;
284 struct rb_node **p;
285 struct rb_node *parent = NULL;
286 struct prelim_ref *ref;
287 int result;
288 bool leftmost = true;
289
290 root = &preftree->root;
291 p = &root->rb_root.rb_node;
292
293 while (*p) {
294 parent = *p;
295 ref = rb_entry(parent, struct prelim_ref, rbnode);
296 result = prelim_ref_compare(ref, newref);
297 if (result < 0) {
298 p = &(*p)->rb_left;
299 } else if (result > 0) {
300 p = &(*p)->rb_right;
301 leftmost = false;
302 } else {
303 /* Identical refs, merge them and free @newref */
304 struct extent_inode_elem *eie = ref->inode_list;
305
306 while (eie && eie->next)
307 eie = eie->next;
308
309 if (!eie)
310 ref->inode_list = newref->inode_list;
311 else
312 eie->next = newref->inode_list;
313 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
314 preftree->count);
315 /*
316 * A delayed ref can have newref->count < 0.
317 * The ref->count is updated to follow any
318 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
319 */
320 update_share_count(sc, ref->count,
321 ref->count + newref->count, newref);
322 ref->count += newref->count;
323 free_pref(newref);
324 return;
325 }
326 }
327
328 update_share_count(sc, 0, newref->count, newref);
329 preftree->count++;
330 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
331 rb_link_node(&newref->rbnode, parent, p);
332 rb_insert_color_cached(&newref->rbnode, root, leftmost);
333 }
334
335 /*
336 * Release the entire tree. We don't care about internal consistency so
337 * just free everything and then reset the tree root.
338 */
prelim_release(struct preftree * preftree)339 static void prelim_release(struct preftree *preftree)
340 {
341 struct prelim_ref *ref, *next_ref;
342
343 rbtree_postorder_for_each_entry_safe(ref, next_ref,
344 &preftree->root.rb_root, rbnode) {
345 free_inode_elem_list(ref->inode_list);
346 free_pref(ref);
347 }
348
349 preftree->root = RB_ROOT_CACHED;
350 preftree->count = 0;
351 }
352
353 /*
354 * the rules for all callers of this function are:
355 * - obtaining the parent is the goal
356 * - if you add a key, you must know that it is a correct key
357 * - if you cannot add the parent or a correct key, then we will look into the
358 * block later to set a correct key
359 *
360 * delayed refs
361 * ============
362 * backref type | shared | indirect | shared | indirect
363 * information | tree | tree | data | data
364 * --------------------+--------+----------+--------+----------
365 * parent logical | y | - | - | -
366 * key to resolve | - | y | y | y
367 * tree block logical | - | - | - | -
368 * root for resolving | y | y | y | y
369 *
370 * - column 1: we've the parent -> done
371 * - column 2, 3, 4: we use the key to find the parent
372 *
373 * on disk refs (inline or keyed)
374 * ==============================
375 * backref type | shared | indirect | shared | indirect
376 * information | tree | tree | data | data
377 * --------------------+--------+----------+--------+----------
378 * parent logical | y | - | y | -
379 * key to resolve | - | - | - | y
380 * tree block logical | y | y | y | y
381 * root for resolving | - | y | y | y
382 *
383 * - column 1, 3: we've the parent -> done
384 * - column 2: we take the first key from the block to find the parent
385 * (see add_missing_keys)
386 * - column 4: we use the key to find the parent
387 *
388 * additional information that's available but not required to find the parent
389 * block might help in merging entries to gain some speed.
390 */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)391 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
392 struct preftree *preftree, u64 root_id,
393 const struct btrfs_key *key, int level, u64 parent,
394 u64 wanted_disk_byte, int count,
395 struct share_check *sc, gfp_t gfp_mask)
396 {
397 struct prelim_ref *ref;
398
399 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
400 return 0;
401
402 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
403 if (!ref)
404 return -ENOMEM;
405
406 ref->root_id = root_id;
407 if (key)
408 ref->key_for_search = *key;
409 else
410 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
411
412 ref->inode_list = NULL;
413 ref->level = level;
414 ref->count = count;
415 ref->parent = parent;
416 ref->wanted_disk_byte = wanted_disk_byte;
417 prelim_ref_insert(fs_info, preftree, ref, sc);
418 return extent_is_shared(sc);
419 }
420
421 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)422 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
423 struct preftrees *preftrees, int level, u64 parent,
424 u64 wanted_disk_byte, int count,
425 struct share_check *sc, gfp_t gfp_mask)
426 {
427 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
428 parent, wanted_disk_byte, count, sc, gfp_mask);
429 }
430
431 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)432 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
433 struct preftrees *preftrees, u64 root_id,
434 const struct btrfs_key *key, int level,
435 u64 wanted_disk_byte, int count,
436 struct share_check *sc, gfp_t gfp_mask)
437 {
438 struct preftree *tree = &preftrees->indirect;
439
440 if (!key)
441 tree = &preftrees->indirect_missing_keys;
442 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
443 wanted_disk_byte, count, sc, gfp_mask);
444 }
445
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)446 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
447 {
448 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
449 struct rb_node *parent = NULL;
450 struct prelim_ref *ref = NULL;
451 struct prelim_ref target = {};
452 int result;
453
454 target.parent = bytenr;
455
456 while (*p) {
457 parent = *p;
458 ref = rb_entry(parent, struct prelim_ref, rbnode);
459 result = prelim_ref_compare(ref, &target);
460
461 if (result < 0)
462 p = &(*p)->rb_left;
463 else if (result > 0)
464 p = &(*p)->rb_right;
465 else
466 return 1;
467 }
468 return 0;
469 }
470
add_all_parents(struct btrfs_backref_walk_ctx * ctx,struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level)471 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
472 struct btrfs_root *root, struct btrfs_path *path,
473 struct ulist *parents,
474 struct preftrees *preftrees, struct prelim_ref *ref,
475 int level)
476 {
477 int ret = 0;
478 int slot;
479 struct extent_buffer *eb;
480 struct btrfs_key key;
481 struct btrfs_key *key_for_search = &ref->key_for_search;
482 struct btrfs_file_extent_item *fi;
483 struct extent_inode_elem *eie = NULL, *old = NULL;
484 u64 disk_byte;
485 u64 wanted_disk_byte = ref->wanted_disk_byte;
486 u64 count = 0;
487 u64 data_offset;
488 u8 type;
489
490 if (level != 0) {
491 eb = path->nodes[level];
492 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
493 if (ret < 0)
494 return ret;
495 return 0;
496 }
497
498 /*
499 * 1. We normally enter this function with the path already pointing to
500 * the first item to check. But sometimes, we may enter it with
501 * slot == nritems.
502 * 2. We are searching for normal backref but bytenr of this leaf
503 * matches shared data backref
504 * 3. The leaf owner is not equal to the root we are searching
505 *
506 * For these cases, go to the next leaf before we continue.
507 */
508 eb = path->nodes[0];
509 if (path->slots[0] >= btrfs_header_nritems(eb) ||
510 is_shared_data_backref(preftrees, eb->start) ||
511 ref->root_id != btrfs_header_owner(eb)) {
512 if (ctx->time_seq == BTRFS_SEQ_LAST)
513 ret = btrfs_next_leaf(root, path);
514 else
515 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
516 }
517
518 while (!ret && count < ref->count) {
519 eb = path->nodes[0];
520 slot = path->slots[0];
521
522 btrfs_item_key_to_cpu(eb, &key, slot);
523
524 if (key.objectid != key_for_search->objectid ||
525 key.type != BTRFS_EXTENT_DATA_KEY)
526 break;
527
528 /*
529 * We are searching for normal backref but bytenr of this leaf
530 * matches shared data backref, OR
531 * the leaf owner is not equal to the root we are searching for
532 */
533 if (slot == 0 &&
534 (is_shared_data_backref(preftrees, eb->start) ||
535 ref->root_id != btrfs_header_owner(eb))) {
536 if (ctx->time_seq == BTRFS_SEQ_LAST)
537 ret = btrfs_next_leaf(root, path);
538 else
539 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
540 continue;
541 }
542 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
543 type = btrfs_file_extent_type(eb, fi);
544 if (type == BTRFS_FILE_EXTENT_INLINE)
545 goto next;
546 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
547 data_offset = btrfs_file_extent_offset(eb, fi);
548
549 if (disk_byte == wanted_disk_byte) {
550 eie = NULL;
551 old = NULL;
552 if (ref->key_for_search.offset == key.offset - data_offset)
553 count++;
554 else
555 goto next;
556 if (!ctx->skip_inode_ref_list) {
557 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
558 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
559 ret < 0)
560 break;
561 }
562 if (ret > 0)
563 goto next;
564 ret = ulist_add_merge_ptr(parents, eb->start,
565 eie, (void **)&old, GFP_NOFS);
566 if (ret < 0)
567 break;
568 if (!ret && !ctx->skip_inode_ref_list) {
569 while (old->next)
570 old = old->next;
571 old->next = eie;
572 }
573 eie = NULL;
574 }
575 next:
576 if (ctx->time_seq == BTRFS_SEQ_LAST)
577 ret = btrfs_next_item(root, path);
578 else
579 ret = btrfs_next_old_item(root, path, ctx->time_seq);
580 }
581
582 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
583 free_inode_elem_list(eie);
584 else if (ret > 0)
585 ret = 0;
586
587 return ret;
588 }
589
590 /*
591 * resolve an indirect backref in the form (root_id, key, level)
592 * to a logical address
593 */
resolve_indirect_ref(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents)594 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
595 struct btrfs_path *path,
596 struct preftrees *preftrees,
597 struct prelim_ref *ref, struct ulist *parents)
598 {
599 struct btrfs_root *root;
600 struct extent_buffer *eb;
601 int ret = 0;
602 int root_level;
603 int level = ref->level;
604 struct btrfs_key search_key = ref->key_for_search;
605
606 /*
607 * If we're search_commit_root we could possibly be holding locks on
608 * other tree nodes. This happens when qgroups does backref walks when
609 * adding new delayed refs. To deal with this we need to look in cache
610 * for the root, and if we don't find it then we need to search the
611 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
612 * here.
613 */
614 if (path->search_commit_root)
615 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
616 else
617 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
618 if (IS_ERR(root)) {
619 ret = PTR_ERR(root);
620 goto out_free;
621 }
622
623 if (!path->search_commit_root &&
624 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
625 ret = -ENOENT;
626 goto out;
627 }
628
629 if (btrfs_is_testing(ctx->fs_info)) {
630 ret = -ENOENT;
631 goto out;
632 }
633
634 if (path->search_commit_root)
635 root_level = btrfs_header_level(root->commit_root);
636 else if (ctx->time_seq == BTRFS_SEQ_LAST)
637 root_level = btrfs_header_level(root->node);
638 else
639 root_level = btrfs_old_root_level(root, ctx->time_seq);
640
641 if (root_level + 1 == level)
642 goto out;
643
644 /*
645 * We can often find data backrefs with an offset that is too large
646 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
647 * subtracting a file's offset with the data offset of its
648 * corresponding extent data item. This can happen for example in the
649 * clone ioctl.
650 *
651 * So if we detect such case we set the search key's offset to zero to
652 * make sure we will find the matching file extent item at
653 * add_all_parents(), otherwise we will miss it because the offset
654 * taken form the backref is much larger then the offset of the file
655 * extent item. This can make us scan a very large number of file
656 * extent items, but at least it will not make us miss any.
657 *
658 * This is an ugly workaround for a behaviour that should have never
659 * existed, but it does and a fix for the clone ioctl would touch a lot
660 * of places, cause backwards incompatibility and would not fix the
661 * problem for extents cloned with older kernels.
662 */
663 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
664 search_key.offset >= LLONG_MAX)
665 search_key.offset = 0;
666 path->lowest_level = level;
667 if (ctx->time_seq == BTRFS_SEQ_LAST)
668 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
669 else
670 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
671
672 btrfs_debug(ctx->fs_info,
673 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
674 ref->root_id, level, ref->count, ret,
675 ref->key_for_search.objectid, ref->key_for_search.type,
676 ref->key_for_search.offset);
677 if (ret < 0)
678 goto out;
679
680 eb = path->nodes[level];
681 while (!eb) {
682 if (WARN_ON(!level)) {
683 ret = 1;
684 goto out;
685 }
686 level--;
687 eb = path->nodes[level];
688 }
689
690 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
691 out:
692 btrfs_put_root(root);
693 out_free:
694 path->lowest_level = 0;
695 btrfs_release_path(path);
696 return ret;
697 }
698
699 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)700 unode_aux_to_inode_list(struct ulist_node *node)
701 {
702 if (!node)
703 return NULL;
704 return (struct extent_inode_elem *)(uintptr_t)node->aux;
705 }
706
free_leaf_list(struct ulist * ulist)707 static void free_leaf_list(struct ulist *ulist)
708 {
709 struct ulist_node *node;
710 struct ulist_iterator uiter;
711
712 ULIST_ITER_INIT(&uiter);
713 while ((node = ulist_next(ulist, &uiter)))
714 free_inode_elem_list(unode_aux_to_inode_list(node));
715
716 ulist_free(ulist);
717 }
718
719 /*
720 * We maintain three separate rbtrees: one for direct refs, one for
721 * indirect refs which have a key, and one for indirect refs which do not
722 * have a key. Each tree does merge on insertion.
723 *
724 * Once all of the references are located, we iterate over the tree of
725 * indirect refs with missing keys. An appropriate key is located and
726 * the ref is moved onto the tree for indirect refs. After all missing
727 * keys are thus located, we iterate over the indirect ref tree, resolve
728 * each reference, and then insert the resolved reference onto the
729 * direct tree (merging there too).
730 *
731 * New backrefs (i.e., for parent nodes) are added to the appropriate
732 * rbtree as they are encountered. The new backrefs are subsequently
733 * resolved as above.
734 */
resolve_indirect_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,struct preftrees * preftrees,struct share_check * sc)735 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
736 struct btrfs_path *path,
737 struct preftrees *preftrees,
738 struct share_check *sc)
739 {
740 int err;
741 int ret = 0;
742 struct ulist *parents;
743 struct ulist_node *node;
744 struct ulist_iterator uiter;
745 struct rb_node *rnode;
746
747 parents = ulist_alloc(GFP_NOFS);
748 if (!parents)
749 return -ENOMEM;
750
751 /*
752 * We could trade memory usage for performance here by iterating
753 * the tree, allocating new refs for each insertion, and then
754 * freeing the entire indirect tree when we're done. In some test
755 * cases, the tree can grow quite large (~200k objects).
756 */
757 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
758 struct prelim_ref *ref;
759
760 ref = rb_entry(rnode, struct prelim_ref, rbnode);
761 if (WARN(ref->parent,
762 "BUG: direct ref found in indirect tree")) {
763 ret = -EINVAL;
764 goto out;
765 }
766
767 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
768 preftrees->indirect.count--;
769
770 if (ref->count == 0) {
771 free_pref(ref);
772 continue;
773 }
774
775 if (sc && ref->root_id != sc->root->root_key.objectid) {
776 free_pref(ref);
777 ret = BACKREF_FOUND_SHARED;
778 goto out;
779 }
780 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
781 /*
782 * we can only tolerate ENOENT,otherwise,we should catch error
783 * and return directly.
784 */
785 if (err == -ENOENT) {
786 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
787 NULL);
788 continue;
789 } else if (err) {
790 free_pref(ref);
791 ret = err;
792 goto out;
793 }
794
795 /* we put the first parent into the ref at hand */
796 ULIST_ITER_INIT(&uiter);
797 node = ulist_next(parents, &uiter);
798 ref->parent = node ? node->val : 0;
799 ref->inode_list = unode_aux_to_inode_list(node);
800
801 /* Add a prelim_ref(s) for any other parent(s). */
802 while ((node = ulist_next(parents, &uiter))) {
803 struct prelim_ref *new_ref;
804
805 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
806 GFP_NOFS);
807 if (!new_ref) {
808 free_pref(ref);
809 ret = -ENOMEM;
810 goto out;
811 }
812 memcpy(new_ref, ref, sizeof(*ref));
813 new_ref->parent = node->val;
814 new_ref->inode_list = unode_aux_to_inode_list(node);
815 prelim_ref_insert(ctx->fs_info, &preftrees->direct,
816 new_ref, NULL);
817 }
818
819 /*
820 * Now it's a direct ref, put it in the direct tree. We must
821 * do this last because the ref could be merged/freed here.
822 */
823 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
824
825 ulist_reinit(parents);
826 cond_resched();
827 }
828 out:
829 /*
830 * We may have inode lists attached to refs in the parents ulist, so we
831 * must free them before freeing the ulist and its refs.
832 */
833 free_leaf_list(parents);
834 return ret;
835 }
836
837 /*
838 * read tree blocks and add keys where required.
839 */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)840 static int add_missing_keys(struct btrfs_fs_info *fs_info,
841 struct preftrees *preftrees, bool lock)
842 {
843 struct prelim_ref *ref;
844 struct extent_buffer *eb;
845 struct preftree *tree = &preftrees->indirect_missing_keys;
846 struct rb_node *node;
847
848 while ((node = rb_first_cached(&tree->root))) {
849 struct btrfs_tree_parent_check check = { 0 };
850
851 ref = rb_entry(node, struct prelim_ref, rbnode);
852 rb_erase_cached(node, &tree->root);
853
854 BUG_ON(ref->parent); /* should not be a direct ref */
855 BUG_ON(ref->key_for_search.type);
856 BUG_ON(!ref->wanted_disk_byte);
857
858 check.level = ref->level - 1;
859 check.owner_root = ref->root_id;
860
861 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
862 if (IS_ERR(eb)) {
863 free_pref(ref);
864 return PTR_ERR(eb);
865 }
866 if (!extent_buffer_uptodate(eb)) {
867 free_pref(ref);
868 free_extent_buffer(eb);
869 return -EIO;
870 }
871
872 if (lock)
873 btrfs_tree_read_lock(eb);
874 if (btrfs_header_level(eb) == 0)
875 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
876 else
877 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
878 if (lock)
879 btrfs_tree_read_unlock(eb);
880 free_extent_buffer(eb);
881 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
882 cond_resched();
883 }
884 return 0;
885 }
886
887 /*
888 * add all currently queued delayed refs from this head whose seq nr is
889 * smaller or equal that seq to the list
890 */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)891 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
892 struct btrfs_delayed_ref_head *head, u64 seq,
893 struct preftrees *preftrees, struct share_check *sc)
894 {
895 struct btrfs_delayed_ref_node *node;
896 struct btrfs_key key;
897 struct rb_node *n;
898 int count;
899 int ret = 0;
900
901 spin_lock(&head->lock);
902 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
903 node = rb_entry(n, struct btrfs_delayed_ref_node,
904 ref_node);
905 if (node->seq > seq)
906 continue;
907
908 switch (node->action) {
909 case BTRFS_ADD_DELAYED_EXTENT:
910 case BTRFS_UPDATE_DELAYED_HEAD:
911 WARN_ON(1);
912 continue;
913 case BTRFS_ADD_DELAYED_REF:
914 count = node->ref_mod;
915 break;
916 case BTRFS_DROP_DELAYED_REF:
917 count = node->ref_mod * -1;
918 break;
919 default:
920 BUG();
921 }
922 switch (node->type) {
923 case BTRFS_TREE_BLOCK_REF_KEY: {
924 /* NORMAL INDIRECT METADATA backref */
925 struct btrfs_delayed_tree_ref *ref;
926 struct btrfs_key *key_ptr = NULL;
927
928 if (head->extent_op && head->extent_op->update_key) {
929 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
930 key_ptr = &key;
931 }
932
933 ref = btrfs_delayed_node_to_tree_ref(node);
934 ret = add_indirect_ref(fs_info, preftrees, ref->root,
935 key_ptr, ref->level + 1,
936 node->bytenr, count, sc,
937 GFP_ATOMIC);
938 break;
939 }
940 case BTRFS_SHARED_BLOCK_REF_KEY: {
941 /* SHARED DIRECT METADATA backref */
942 struct btrfs_delayed_tree_ref *ref;
943
944 ref = btrfs_delayed_node_to_tree_ref(node);
945
946 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
947 ref->parent, node->bytenr, count,
948 sc, GFP_ATOMIC);
949 break;
950 }
951 case BTRFS_EXTENT_DATA_REF_KEY: {
952 /* NORMAL INDIRECT DATA backref */
953 struct btrfs_delayed_data_ref *ref;
954 ref = btrfs_delayed_node_to_data_ref(node);
955
956 key.objectid = ref->objectid;
957 key.type = BTRFS_EXTENT_DATA_KEY;
958 key.offset = ref->offset;
959
960 /*
961 * If we have a share check context and a reference for
962 * another inode, we can't exit immediately. This is
963 * because even if this is a BTRFS_ADD_DELAYED_REF
964 * reference we may find next a BTRFS_DROP_DELAYED_REF
965 * which cancels out this ADD reference.
966 *
967 * If this is a DROP reference and there was no previous
968 * ADD reference, then we need to signal that when we
969 * process references from the extent tree (through
970 * add_inline_refs() and add_keyed_refs()), we should
971 * not exit early if we find a reference for another
972 * inode, because one of the delayed DROP references
973 * may cancel that reference in the extent tree.
974 */
975 if (sc && count < 0)
976 sc->have_delayed_delete_refs = true;
977
978 ret = add_indirect_ref(fs_info, preftrees, ref->root,
979 &key, 0, node->bytenr, count, sc,
980 GFP_ATOMIC);
981 break;
982 }
983 case BTRFS_SHARED_DATA_REF_KEY: {
984 /* SHARED DIRECT FULL backref */
985 struct btrfs_delayed_data_ref *ref;
986
987 ref = btrfs_delayed_node_to_data_ref(node);
988
989 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
990 node->bytenr, count, sc,
991 GFP_ATOMIC);
992 break;
993 }
994 default:
995 WARN_ON(1);
996 }
997 /*
998 * We must ignore BACKREF_FOUND_SHARED until all delayed
999 * refs have been checked.
1000 */
1001 if (ret && (ret != BACKREF_FOUND_SHARED))
1002 break;
1003 }
1004 if (!ret)
1005 ret = extent_is_shared(sc);
1006
1007 spin_unlock(&head->lock);
1008 return ret;
1009 }
1010
1011 /*
1012 * add all inline backrefs for bytenr to the list
1013 *
1014 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1015 */
add_inline_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,int * info_level,struct preftrees * preftrees,struct share_check * sc)1016 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1017 struct btrfs_path *path,
1018 int *info_level, struct preftrees *preftrees,
1019 struct share_check *sc)
1020 {
1021 int ret = 0;
1022 int slot;
1023 struct extent_buffer *leaf;
1024 struct btrfs_key key;
1025 struct btrfs_key found_key;
1026 unsigned long ptr;
1027 unsigned long end;
1028 struct btrfs_extent_item *ei;
1029 u64 flags;
1030 u64 item_size;
1031
1032 /*
1033 * enumerate all inline refs
1034 */
1035 leaf = path->nodes[0];
1036 slot = path->slots[0];
1037
1038 item_size = btrfs_item_size(leaf, slot);
1039 BUG_ON(item_size < sizeof(*ei));
1040
1041 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1042
1043 if (ctx->check_extent_item) {
1044 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1045 if (ret)
1046 return ret;
1047 }
1048
1049 flags = btrfs_extent_flags(leaf, ei);
1050 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1051
1052 ptr = (unsigned long)(ei + 1);
1053 end = (unsigned long)ei + item_size;
1054
1055 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1056 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1057 struct btrfs_tree_block_info *info;
1058
1059 info = (struct btrfs_tree_block_info *)ptr;
1060 *info_level = btrfs_tree_block_level(leaf, info);
1061 ptr += sizeof(struct btrfs_tree_block_info);
1062 BUG_ON(ptr > end);
1063 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1064 *info_level = found_key.offset;
1065 } else {
1066 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1067 }
1068
1069 while (ptr < end) {
1070 struct btrfs_extent_inline_ref *iref;
1071 u64 offset;
1072 int type;
1073
1074 iref = (struct btrfs_extent_inline_ref *)ptr;
1075 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1076 BTRFS_REF_TYPE_ANY);
1077 if (type == BTRFS_REF_TYPE_INVALID)
1078 return -EUCLEAN;
1079
1080 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1081
1082 switch (type) {
1083 case BTRFS_SHARED_BLOCK_REF_KEY:
1084 ret = add_direct_ref(ctx->fs_info, preftrees,
1085 *info_level + 1, offset,
1086 ctx->bytenr, 1, NULL, GFP_NOFS);
1087 break;
1088 case BTRFS_SHARED_DATA_REF_KEY: {
1089 struct btrfs_shared_data_ref *sdref;
1090 int count;
1091
1092 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1093 count = btrfs_shared_data_ref_count(leaf, sdref);
1094
1095 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1096 ctx->bytenr, count, sc, GFP_NOFS);
1097 break;
1098 }
1099 case BTRFS_TREE_BLOCK_REF_KEY:
1100 ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1101 NULL, *info_level + 1,
1102 ctx->bytenr, 1, NULL, GFP_NOFS);
1103 break;
1104 case BTRFS_EXTENT_DATA_REF_KEY: {
1105 struct btrfs_extent_data_ref *dref;
1106 int count;
1107 u64 root;
1108
1109 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1110 count = btrfs_extent_data_ref_count(leaf, dref);
1111 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1112 dref);
1113 key.type = BTRFS_EXTENT_DATA_KEY;
1114 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1115
1116 if (sc && key.objectid != sc->inum &&
1117 !sc->have_delayed_delete_refs) {
1118 ret = BACKREF_FOUND_SHARED;
1119 break;
1120 }
1121
1122 root = btrfs_extent_data_ref_root(leaf, dref);
1123
1124 if (!ctx->skip_data_ref ||
1125 !ctx->skip_data_ref(root, key.objectid, key.offset,
1126 ctx->user_ctx))
1127 ret = add_indirect_ref(ctx->fs_info, preftrees,
1128 root, &key, 0, ctx->bytenr,
1129 count, sc, GFP_NOFS);
1130 break;
1131 }
1132 default:
1133 WARN_ON(1);
1134 }
1135 if (ret)
1136 return ret;
1137 ptr += btrfs_extent_inline_ref_size(type);
1138 }
1139
1140 return 0;
1141 }
1142
1143 /*
1144 * add all non-inline backrefs for bytenr to the list
1145 *
1146 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1147 */
add_keyed_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_root * extent_root,struct btrfs_path * path,int info_level,struct preftrees * preftrees,struct share_check * sc)1148 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1149 struct btrfs_root *extent_root,
1150 struct btrfs_path *path,
1151 int info_level, struct preftrees *preftrees,
1152 struct share_check *sc)
1153 {
1154 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1155 int ret;
1156 int slot;
1157 struct extent_buffer *leaf;
1158 struct btrfs_key key;
1159
1160 while (1) {
1161 ret = btrfs_next_item(extent_root, path);
1162 if (ret < 0)
1163 break;
1164 if (ret) {
1165 ret = 0;
1166 break;
1167 }
1168
1169 slot = path->slots[0];
1170 leaf = path->nodes[0];
1171 btrfs_item_key_to_cpu(leaf, &key, slot);
1172
1173 if (key.objectid != ctx->bytenr)
1174 break;
1175 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1176 continue;
1177 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1178 break;
1179
1180 switch (key.type) {
1181 case BTRFS_SHARED_BLOCK_REF_KEY:
1182 /* SHARED DIRECT METADATA backref */
1183 ret = add_direct_ref(fs_info, preftrees,
1184 info_level + 1, key.offset,
1185 ctx->bytenr, 1, NULL, GFP_NOFS);
1186 break;
1187 case BTRFS_SHARED_DATA_REF_KEY: {
1188 /* SHARED DIRECT FULL backref */
1189 struct btrfs_shared_data_ref *sdref;
1190 int count;
1191
1192 sdref = btrfs_item_ptr(leaf, slot,
1193 struct btrfs_shared_data_ref);
1194 count = btrfs_shared_data_ref_count(leaf, sdref);
1195 ret = add_direct_ref(fs_info, preftrees, 0,
1196 key.offset, ctx->bytenr, count,
1197 sc, GFP_NOFS);
1198 break;
1199 }
1200 case BTRFS_TREE_BLOCK_REF_KEY:
1201 /* NORMAL INDIRECT METADATA backref */
1202 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1203 NULL, info_level + 1, ctx->bytenr,
1204 1, NULL, GFP_NOFS);
1205 break;
1206 case BTRFS_EXTENT_DATA_REF_KEY: {
1207 /* NORMAL INDIRECT DATA backref */
1208 struct btrfs_extent_data_ref *dref;
1209 int count;
1210 u64 root;
1211
1212 dref = btrfs_item_ptr(leaf, slot,
1213 struct btrfs_extent_data_ref);
1214 count = btrfs_extent_data_ref_count(leaf, dref);
1215 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1216 dref);
1217 key.type = BTRFS_EXTENT_DATA_KEY;
1218 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1219
1220 if (sc && key.objectid != sc->inum &&
1221 !sc->have_delayed_delete_refs) {
1222 ret = BACKREF_FOUND_SHARED;
1223 break;
1224 }
1225
1226 root = btrfs_extent_data_ref_root(leaf, dref);
1227
1228 if (!ctx->skip_data_ref ||
1229 !ctx->skip_data_ref(root, key.objectid, key.offset,
1230 ctx->user_ctx))
1231 ret = add_indirect_ref(fs_info, preftrees, root,
1232 &key, 0, ctx->bytenr,
1233 count, sc, GFP_NOFS);
1234 break;
1235 }
1236 default:
1237 WARN_ON(1);
1238 }
1239 if (ret)
1240 return ret;
1241
1242 }
1243
1244 return ret;
1245 }
1246
1247 /*
1248 * The caller has joined a transaction or is holding a read lock on the
1249 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1250 * snapshot field changing while updating or checking the cache.
1251 */
lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx * ctx,struct btrfs_root * root,u64 bytenr,int level,bool * is_shared)1252 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1253 struct btrfs_root *root,
1254 u64 bytenr, int level, bool *is_shared)
1255 {
1256 const struct btrfs_fs_info *fs_info = root->fs_info;
1257 struct btrfs_backref_shared_cache_entry *entry;
1258
1259 if (!current->journal_info)
1260 lockdep_assert_held(&fs_info->commit_root_sem);
1261
1262 if (!ctx->use_path_cache)
1263 return false;
1264
1265 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1266 return false;
1267
1268 /*
1269 * Level -1 is used for the data extent, which is not reliable to cache
1270 * because its reference count can increase or decrease without us
1271 * realizing. We cache results only for extent buffers that lead from
1272 * the root node down to the leaf with the file extent item.
1273 */
1274 ASSERT(level >= 0);
1275
1276 entry = &ctx->path_cache_entries[level];
1277
1278 /* Unused cache entry or being used for some other extent buffer. */
1279 if (entry->bytenr != bytenr)
1280 return false;
1281
1282 /*
1283 * We cached a false result, but the last snapshot generation of the
1284 * root changed, so we now have a snapshot. Don't trust the result.
1285 */
1286 if (!entry->is_shared &&
1287 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1288 return false;
1289
1290 /*
1291 * If we cached a true result and the last generation used for dropping
1292 * a root changed, we can not trust the result, because the dropped root
1293 * could be a snapshot sharing this extent buffer.
1294 */
1295 if (entry->is_shared &&
1296 entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1297 return false;
1298
1299 *is_shared = entry->is_shared;
1300 /*
1301 * If the node at this level is shared, than all nodes below are also
1302 * shared. Currently some of the nodes below may be marked as not shared
1303 * because we have just switched from one leaf to another, and switched
1304 * also other nodes above the leaf and below the current level, so mark
1305 * them as shared.
1306 */
1307 if (*is_shared) {
1308 for (int i = 0; i < level; i++) {
1309 ctx->path_cache_entries[i].is_shared = true;
1310 ctx->path_cache_entries[i].gen = entry->gen;
1311 }
1312 }
1313
1314 return true;
1315 }
1316
1317 /*
1318 * The caller has joined a transaction or is holding a read lock on the
1319 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1320 * snapshot field changing while updating or checking the cache.
1321 */
store_backref_shared_cache(struct btrfs_backref_share_check_ctx * ctx,struct btrfs_root * root,u64 bytenr,int level,bool is_shared)1322 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1323 struct btrfs_root *root,
1324 u64 bytenr, int level, bool is_shared)
1325 {
1326 const struct btrfs_fs_info *fs_info = root->fs_info;
1327 struct btrfs_backref_shared_cache_entry *entry;
1328 u64 gen;
1329
1330 if (!current->journal_info)
1331 lockdep_assert_held(&fs_info->commit_root_sem);
1332
1333 if (!ctx->use_path_cache)
1334 return;
1335
1336 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1337 return;
1338
1339 /*
1340 * Level -1 is used for the data extent, which is not reliable to cache
1341 * because its reference count can increase or decrease without us
1342 * realizing. We cache results only for extent buffers that lead from
1343 * the root node down to the leaf with the file extent item.
1344 */
1345 ASSERT(level >= 0);
1346
1347 if (is_shared)
1348 gen = btrfs_get_last_root_drop_gen(fs_info);
1349 else
1350 gen = btrfs_root_last_snapshot(&root->root_item);
1351
1352 entry = &ctx->path_cache_entries[level];
1353 entry->bytenr = bytenr;
1354 entry->is_shared = is_shared;
1355 entry->gen = gen;
1356
1357 /*
1358 * If we found an extent buffer is shared, set the cache result for all
1359 * extent buffers below it to true. As nodes in the path are COWed,
1360 * their sharedness is moved to their children, and if a leaf is COWed,
1361 * then the sharedness of a data extent becomes direct, the refcount of
1362 * data extent is increased in the extent item at the extent tree.
1363 */
1364 if (is_shared) {
1365 for (int i = 0; i < level; i++) {
1366 entry = &ctx->path_cache_entries[i];
1367 entry->is_shared = is_shared;
1368 entry->gen = gen;
1369 }
1370 }
1371 }
1372
1373 /*
1374 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1375 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1376 * indirect refs to their parent bytenr.
1377 * When roots are found, they're added to the roots list
1378 *
1379 * @ctx: Backref walking context object, must be not NULL.
1380 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1381 * shared extent is detected.
1382 *
1383 * Otherwise this returns 0 for success and <0 for an error.
1384 *
1385 * FIXME some caching might speed things up
1386 */
find_parent_nodes(struct btrfs_backref_walk_ctx * ctx,struct share_check * sc)1387 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1388 struct share_check *sc)
1389 {
1390 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1391 struct btrfs_key key;
1392 struct btrfs_path *path;
1393 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1394 struct btrfs_delayed_ref_head *head;
1395 int info_level = 0;
1396 int ret;
1397 struct prelim_ref *ref;
1398 struct rb_node *node;
1399 struct extent_inode_elem *eie = NULL;
1400 struct preftrees preftrees = {
1401 .direct = PREFTREE_INIT,
1402 .indirect = PREFTREE_INIT,
1403 .indirect_missing_keys = PREFTREE_INIT
1404 };
1405
1406 /* Roots ulist is not needed when using a sharedness check context. */
1407 if (sc)
1408 ASSERT(ctx->roots == NULL);
1409
1410 key.objectid = ctx->bytenr;
1411 key.offset = (u64)-1;
1412 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1413 key.type = BTRFS_METADATA_ITEM_KEY;
1414 else
1415 key.type = BTRFS_EXTENT_ITEM_KEY;
1416
1417 path = btrfs_alloc_path();
1418 if (!path)
1419 return -ENOMEM;
1420 if (!ctx->trans) {
1421 path->search_commit_root = 1;
1422 path->skip_locking = 1;
1423 }
1424
1425 if (ctx->time_seq == BTRFS_SEQ_LAST)
1426 path->skip_locking = 1;
1427
1428 again:
1429 head = NULL;
1430
1431 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1432 if (ret < 0)
1433 goto out;
1434 if (ret == 0) {
1435 /* This shouldn't happen, indicates a bug or fs corruption. */
1436 ASSERT(ret != 0);
1437 ret = -EUCLEAN;
1438 goto out;
1439 }
1440
1441 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1442 ctx->time_seq != BTRFS_SEQ_LAST) {
1443 /*
1444 * We have a specific time_seq we care about and trans which
1445 * means we have the path lock, we need to grab the ref head and
1446 * lock it so we have a consistent view of the refs at the given
1447 * time.
1448 */
1449 delayed_refs = &ctx->trans->transaction->delayed_refs;
1450 spin_lock(&delayed_refs->lock);
1451 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1452 if (head) {
1453 if (!mutex_trylock(&head->mutex)) {
1454 refcount_inc(&head->refs);
1455 spin_unlock(&delayed_refs->lock);
1456
1457 btrfs_release_path(path);
1458
1459 /*
1460 * Mutex was contended, block until it's
1461 * released and try again
1462 */
1463 mutex_lock(&head->mutex);
1464 mutex_unlock(&head->mutex);
1465 btrfs_put_delayed_ref_head(head);
1466 goto again;
1467 }
1468 spin_unlock(&delayed_refs->lock);
1469 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1470 &preftrees, sc);
1471 mutex_unlock(&head->mutex);
1472 if (ret)
1473 goto out;
1474 } else {
1475 spin_unlock(&delayed_refs->lock);
1476 }
1477 }
1478
1479 if (path->slots[0]) {
1480 struct extent_buffer *leaf;
1481 int slot;
1482
1483 path->slots[0]--;
1484 leaf = path->nodes[0];
1485 slot = path->slots[0];
1486 btrfs_item_key_to_cpu(leaf, &key, slot);
1487 if (key.objectid == ctx->bytenr &&
1488 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1489 key.type == BTRFS_METADATA_ITEM_KEY)) {
1490 ret = add_inline_refs(ctx, path, &info_level,
1491 &preftrees, sc);
1492 if (ret)
1493 goto out;
1494 ret = add_keyed_refs(ctx, root, path, info_level,
1495 &preftrees, sc);
1496 if (ret)
1497 goto out;
1498 }
1499 }
1500
1501 /*
1502 * If we have a share context and we reached here, it means the extent
1503 * is not directly shared (no multiple reference items for it),
1504 * otherwise we would have exited earlier with a return value of
1505 * BACKREF_FOUND_SHARED after processing delayed references or while
1506 * processing inline or keyed references from the extent tree.
1507 * The extent may however be indirectly shared through shared subtrees
1508 * as a result from creating snapshots, so we determine below what is
1509 * its parent node, in case we are dealing with a metadata extent, or
1510 * what's the leaf (or leaves), from a fs tree, that has a file extent
1511 * item pointing to it in case we are dealing with a data extent.
1512 */
1513 ASSERT(extent_is_shared(sc) == 0);
1514
1515 /*
1516 * If we are here for a data extent and we have a share_check structure
1517 * it means the data extent is not directly shared (does not have
1518 * multiple reference items), so we have to check if a path in the fs
1519 * tree (going from the root node down to the leaf that has the file
1520 * extent item pointing to the data extent) is shared, that is, if any
1521 * of the extent buffers in the path is referenced by other trees.
1522 */
1523 if (sc && ctx->bytenr == sc->data_bytenr) {
1524 /*
1525 * If our data extent is from a generation more recent than the
1526 * last generation used to snapshot the root, then we know that
1527 * it can not be shared through subtrees, so we can skip
1528 * resolving indirect references, there's no point in
1529 * determining the extent buffers for the path from the fs tree
1530 * root node down to the leaf that has the file extent item that
1531 * points to the data extent.
1532 */
1533 if (sc->data_extent_gen >
1534 btrfs_root_last_snapshot(&sc->root->root_item)) {
1535 ret = BACKREF_FOUND_NOT_SHARED;
1536 goto out;
1537 }
1538
1539 /*
1540 * If we are only determining if a data extent is shared or not
1541 * and the corresponding file extent item is located in the same
1542 * leaf as the previous file extent item, we can skip resolving
1543 * indirect references for a data extent, since the fs tree path
1544 * is the same (same leaf, so same path). We skip as long as the
1545 * cached result for the leaf is valid and only if there's only
1546 * one file extent item pointing to the data extent, because in
1547 * the case of multiple file extent items, they may be located
1548 * in different leaves and therefore we have multiple paths.
1549 */
1550 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1551 sc->self_ref_count == 1) {
1552 bool cached;
1553 bool is_shared;
1554
1555 cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1556 sc->ctx->curr_leaf_bytenr,
1557 0, &is_shared);
1558 if (cached) {
1559 if (is_shared)
1560 ret = BACKREF_FOUND_SHARED;
1561 else
1562 ret = BACKREF_FOUND_NOT_SHARED;
1563 goto out;
1564 }
1565 }
1566 }
1567
1568 btrfs_release_path(path);
1569
1570 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1571 if (ret)
1572 goto out;
1573
1574 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1575
1576 ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1577 if (ret)
1578 goto out;
1579
1580 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1581
1582 /*
1583 * This walks the tree of merged and resolved refs. Tree blocks are
1584 * read in as needed. Unique entries are added to the ulist, and
1585 * the list of found roots is updated.
1586 *
1587 * We release the entire tree in one go before returning.
1588 */
1589 node = rb_first_cached(&preftrees.direct.root);
1590 while (node) {
1591 ref = rb_entry(node, struct prelim_ref, rbnode);
1592 node = rb_next(&ref->rbnode);
1593 /*
1594 * ref->count < 0 can happen here if there are delayed
1595 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1596 * prelim_ref_insert() relies on this when merging
1597 * identical refs to keep the overall count correct.
1598 * prelim_ref_insert() will merge only those refs
1599 * which compare identically. Any refs having
1600 * e.g. different offsets would not be merged,
1601 * and would retain their original ref->count < 0.
1602 */
1603 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1604 /* no parent == root of tree */
1605 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1606 if (ret < 0)
1607 goto out;
1608 }
1609 if (ref->count && ref->parent) {
1610 if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1611 ref->level == 0) {
1612 struct btrfs_tree_parent_check check = { 0 };
1613 struct extent_buffer *eb;
1614
1615 check.level = ref->level;
1616
1617 eb = read_tree_block(ctx->fs_info, ref->parent,
1618 &check);
1619 if (IS_ERR(eb)) {
1620 ret = PTR_ERR(eb);
1621 goto out;
1622 }
1623 if (!extent_buffer_uptodate(eb)) {
1624 free_extent_buffer(eb);
1625 ret = -EIO;
1626 goto out;
1627 }
1628
1629 if (!path->skip_locking)
1630 btrfs_tree_read_lock(eb);
1631 ret = find_extent_in_eb(ctx, eb, &eie);
1632 if (!path->skip_locking)
1633 btrfs_tree_read_unlock(eb);
1634 free_extent_buffer(eb);
1635 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1636 ret < 0)
1637 goto out;
1638 ref->inode_list = eie;
1639 /*
1640 * We transferred the list ownership to the ref,
1641 * so set to NULL to avoid a double free in case
1642 * an error happens after this.
1643 */
1644 eie = NULL;
1645 }
1646 ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1647 ref->inode_list,
1648 (void **)&eie, GFP_NOFS);
1649 if (ret < 0)
1650 goto out;
1651 if (!ret && !ctx->skip_inode_ref_list) {
1652 /*
1653 * We've recorded that parent, so we must extend
1654 * its inode list here.
1655 *
1656 * However if there was corruption we may not
1657 * have found an eie, return an error in this
1658 * case.
1659 */
1660 ASSERT(eie);
1661 if (!eie) {
1662 ret = -EUCLEAN;
1663 goto out;
1664 }
1665 while (eie->next)
1666 eie = eie->next;
1667 eie->next = ref->inode_list;
1668 }
1669 eie = NULL;
1670 /*
1671 * We have transferred the inode list ownership from
1672 * this ref to the ref we added to the 'refs' ulist.
1673 * So set this ref's inode list to NULL to avoid
1674 * use-after-free when our caller uses it or double
1675 * frees in case an error happens before we return.
1676 */
1677 ref->inode_list = NULL;
1678 }
1679 cond_resched();
1680 }
1681
1682 out:
1683 btrfs_free_path(path);
1684
1685 prelim_release(&preftrees.direct);
1686 prelim_release(&preftrees.indirect);
1687 prelim_release(&preftrees.indirect_missing_keys);
1688
1689 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1690 free_inode_elem_list(eie);
1691 return ret;
1692 }
1693
1694 /*
1695 * Finds all leaves with a reference to the specified combination of
1696 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1697 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1698 * function. The caller should free the ulist with free_leaf_list() if
1699 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1700 * enough.
1701 *
1702 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1703 */
btrfs_find_all_leafs(struct btrfs_backref_walk_ctx * ctx)1704 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1705 {
1706 int ret;
1707
1708 ASSERT(ctx->refs == NULL);
1709
1710 ctx->refs = ulist_alloc(GFP_NOFS);
1711 if (!ctx->refs)
1712 return -ENOMEM;
1713
1714 ret = find_parent_nodes(ctx, NULL);
1715 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1716 (ret < 0 && ret != -ENOENT)) {
1717 free_leaf_list(ctx->refs);
1718 ctx->refs = NULL;
1719 return ret;
1720 }
1721
1722 return 0;
1723 }
1724
1725 /*
1726 * Walk all backrefs for a given extent to find all roots that reference this
1727 * extent. Walking a backref means finding all extents that reference this
1728 * extent and in turn walk the backrefs of those, too. Naturally this is a
1729 * recursive process, but here it is implemented in an iterative fashion: We
1730 * find all referencing extents for the extent in question and put them on a
1731 * list. In turn, we find all referencing extents for those, further appending
1732 * to the list. The way we iterate the list allows adding more elements after
1733 * the current while iterating. The process stops when we reach the end of the
1734 * list.
1735 *
1736 * Found roots are added to @ctx->roots, which is allocated by this function if
1737 * it points to NULL, in which case the caller is responsible for freeing it
1738 * after it's not needed anymore.
1739 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1740 * ulist to do temporary work, and frees it before returning.
1741 *
1742 * Returns 0 on success, < 0 on error.
1743 */
btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx * ctx)1744 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1745 {
1746 const u64 orig_bytenr = ctx->bytenr;
1747 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1748 bool roots_ulist_allocated = false;
1749 struct ulist_iterator uiter;
1750 int ret = 0;
1751
1752 ASSERT(ctx->refs == NULL);
1753
1754 ctx->refs = ulist_alloc(GFP_NOFS);
1755 if (!ctx->refs)
1756 return -ENOMEM;
1757
1758 if (!ctx->roots) {
1759 ctx->roots = ulist_alloc(GFP_NOFS);
1760 if (!ctx->roots) {
1761 ulist_free(ctx->refs);
1762 ctx->refs = NULL;
1763 return -ENOMEM;
1764 }
1765 roots_ulist_allocated = true;
1766 }
1767
1768 ctx->skip_inode_ref_list = true;
1769
1770 ULIST_ITER_INIT(&uiter);
1771 while (1) {
1772 struct ulist_node *node;
1773
1774 ret = find_parent_nodes(ctx, NULL);
1775 if (ret < 0 && ret != -ENOENT) {
1776 if (roots_ulist_allocated) {
1777 ulist_free(ctx->roots);
1778 ctx->roots = NULL;
1779 }
1780 break;
1781 }
1782 ret = 0;
1783 node = ulist_next(ctx->refs, &uiter);
1784 if (!node)
1785 break;
1786 ctx->bytenr = node->val;
1787 cond_resched();
1788 }
1789
1790 ulist_free(ctx->refs);
1791 ctx->refs = NULL;
1792 ctx->bytenr = orig_bytenr;
1793 ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1794
1795 return ret;
1796 }
1797
btrfs_find_all_roots(struct btrfs_backref_walk_ctx * ctx,bool skip_commit_root_sem)1798 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1799 bool skip_commit_root_sem)
1800 {
1801 int ret;
1802
1803 if (!ctx->trans && !skip_commit_root_sem)
1804 down_read(&ctx->fs_info->commit_root_sem);
1805 ret = btrfs_find_all_roots_safe(ctx);
1806 if (!ctx->trans && !skip_commit_root_sem)
1807 up_read(&ctx->fs_info->commit_root_sem);
1808 return ret;
1809 }
1810
btrfs_alloc_backref_share_check_ctx(void)1811 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1812 {
1813 struct btrfs_backref_share_check_ctx *ctx;
1814
1815 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1816 if (!ctx)
1817 return NULL;
1818
1819 ulist_init(&ctx->refs);
1820
1821 return ctx;
1822 }
1823
btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx * ctx)1824 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1825 {
1826 if (!ctx)
1827 return;
1828
1829 ulist_release(&ctx->refs);
1830 kfree(ctx);
1831 }
1832
1833 /*
1834 * Check if a data extent is shared or not.
1835 *
1836 * @inode: The inode whose extent we are checking.
1837 * @bytenr: Logical bytenr of the extent we are checking.
1838 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1839 * not known.
1840 * @ctx: A backref sharedness check context.
1841 *
1842 * btrfs_is_data_extent_shared uses the backref walking code but will short
1843 * circuit as soon as it finds a root or inode that doesn't match the
1844 * one passed in. This provides a significant performance benefit for
1845 * callers (such as fiemap) which want to know whether the extent is
1846 * shared but do not need a ref count.
1847 *
1848 * This attempts to attach to the running transaction in order to account for
1849 * delayed refs, but continues on even when no running transaction exists.
1850 *
1851 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1852 */
btrfs_is_data_extent_shared(struct btrfs_inode * inode,u64 bytenr,u64 extent_gen,struct btrfs_backref_share_check_ctx * ctx)1853 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1854 u64 extent_gen,
1855 struct btrfs_backref_share_check_ctx *ctx)
1856 {
1857 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1858 struct btrfs_root *root = inode->root;
1859 struct btrfs_fs_info *fs_info = root->fs_info;
1860 struct btrfs_trans_handle *trans;
1861 struct ulist_iterator uiter;
1862 struct ulist_node *node;
1863 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1864 int ret = 0;
1865 struct share_check shared = {
1866 .ctx = ctx,
1867 .root = root,
1868 .inum = btrfs_ino(inode),
1869 .data_bytenr = bytenr,
1870 .data_extent_gen = extent_gen,
1871 .share_count = 0,
1872 .self_ref_count = 0,
1873 .have_delayed_delete_refs = false,
1874 };
1875 int level;
1876 bool leaf_cached;
1877 bool leaf_is_shared;
1878
1879 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1880 if (ctx->prev_extents_cache[i].bytenr == bytenr)
1881 return ctx->prev_extents_cache[i].is_shared;
1882 }
1883
1884 ulist_init(&ctx->refs);
1885
1886 trans = btrfs_join_transaction_nostart(root);
1887 if (IS_ERR(trans)) {
1888 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1889 ret = PTR_ERR(trans);
1890 goto out;
1891 }
1892 trans = NULL;
1893 down_read(&fs_info->commit_root_sem);
1894 } else {
1895 btrfs_get_tree_mod_seq(fs_info, &elem);
1896 walk_ctx.time_seq = elem.seq;
1897 }
1898
1899 ctx->use_path_cache = true;
1900
1901 /*
1902 * We may have previously determined that the current leaf is shared.
1903 * If it is, then we have a data extent that is shared due to a shared
1904 * subtree (caused by snapshotting) and we don't need to check for data
1905 * backrefs. If the leaf is not shared, then we must do backref walking
1906 * to determine if the data extent is shared through reflinks.
1907 */
1908 leaf_cached = lookup_backref_shared_cache(ctx, root,
1909 ctx->curr_leaf_bytenr, 0,
1910 &leaf_is_shared);
1911 if (leaf_cached && leaf_is_shared) {
1912 ret = 1;
1913 goto out_trans;
1914 }
1915
1916 walk_ctx.skip_inode_ref_list = true;
1917 walk_ctx.trans = trans;
1918 walk_ctx.fs_info = fs_info;
1919 walk_ctx.refs = &ctx->refs;
1920
1921 /* -1 means we are in the bytenr of the data extent. */
1922 level = -1;
1923 ULIST_ITER_INIT(&uiter);
1924 while (1) {
1925 const unsigned long prev_ref_count = ctx->refs.nnodes;
1926
1927 walk_ctx.bytenr = bytenr;
1928 ret = find_parent_nodes(&walk_ctx, &shared);
1929 if (ret == BACKREF_FOUND_SHARED ||
1930 ret == BACKREF_FOUND_NOT_SHARED) {
1931 /* If shared must return 1, otherwise return 0. */
1932 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1933 if (level >= 0)
1934 store_backref_shared_cache(ctx, root, bytenr,
1935 level, ret == 1);
1936 break;
1937 }
1938 if (ret < 0 && ret != -ENOENT)
1939 break;
1940 ret = 0;
1941
1942 /*
1943 * More than one extent buffer (bytenr) may have been added to
1944 * the ctx->refs ulist, in which case we have to check multiple
1945 * tree paths in case the first one is not shared, so we can not
1946 * use the path cache which is made for a single path. Multiple
1947 * extent buffers at the current level happen when:
1948 *
1949 * 1) level -1, the data extent: If our data extent was not
1950 * directly shared (without multiple reference items), then
1951 * it might have a single reference item with a count > 1 for
1952 * the same offset, which means there are 2 (or more) file
1953 * extent items that point to the data extent - this happens
1954 * when a file extent item needs to be split and then one
1955 * item gets moved to another leaf due to a b+tree leaf split
1956 * when inserting some item. In this case the file extent
1957 * items may be located in different leaves and therefore
1958 * some of the leaves may be referenced through shared
1959 * subtrees while others are not. Since our extent buffer
1960 * cache only works for a single path (by far the most common
1961 * case and simpler to deal with), we can not use it if we
1962 * have multiple leaves (which implies multiple paths).
1963 *
1964 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1965 * and indirect references on a b+tree node/leaf, so we have
1966 * to check multiple paths, and the extent buffer (the
1967 * current bytenr) may be shared or not. One example is
1968 * during relocation as we may get a shared tree block ref
1969 * (direct ref) and a non-shared tree block ref (indirect
1970 * ref) for the same node/leaf.
1971 */
1972 if ((ctx->refs.nnodes - prev_ref_count) > 1)
1973 ctx->use_path_cache = false;
1974
1975 if (level >= 0)
1976 store_backref_shared_cache(ctx, root, bytenr,
1977 level, false);
1978 node = ulist_next(&ctx->refs, &uiter);
1979 if (!node)
1980 break;
1981 bytenr = node->val;
1982 if (ctx->use_path_cache) {
1983 bool is_shared;
1984 bool cached;
1985
1986 level++;
1987 cached = lookup_backref_shared_cache(ctx, root, bytenr,
1988 level, &is_shared);
1989 if (cached) {
1990 ret = (is_shared ? 1 : 0);
1991 break;
1992 }
1993 }
1994 shared.share_count = 0;
1995 shared.have_delayed_delete_refs = false;
1996 cond_resched();
1997 }
1998
1999 /*
2000 * If the path cache is disabled, then it means at some tree level we
2001 * got multiple parents due to a mix of direct and indirect backrefs or
2002 * multiple leaves with file extent items pointing to the same data
2003 * extent. We have to invalidate the cache and cache only the sharedness
2004 * result for the levels where we got only one node/reference.
2005 */
2006 if (!ctx->use_path_cache) {
2007 int i = 0;
2008
2009 level--;
2010 if (ret >= 0 && level >= 0) {
2011 bytenr = ctx->path_cache_entries[level].bytenr;
2012 ctx->use_path_cache = true;
2013 store_backref_shared_cache(ctx, root, bytenr, level, ret);
2014 i = level + 1;
2015 }
2016
2017 for ( ; i < BTRFS_MAX_LEVEL; i++)
2018 ctx->path_cache_entries[i].bytenr = 0;
2019 }
2020
2021 /*
2022 * Cache the sharedness result for the data extent if we know our inode
2023 * has more than 1 file extent item that refers to the data extent.
2024 */
2025 if (ret >= 0 && shared.self_ref_count > 1) {
2026 int slot = ctx->prev_extents_cache_slot;
2027
2028 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2029 ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2030
2031 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2032 ctx->prev_extents_cache_slot = slot;
2033 }
2034
2035 out_trans:
2036 if (trans) {
2037 btrfs_put_tree_mod_seq(fs_info, &elem);
2038 btrfs_end_transaction(trans);
2039 } else {
2040 up_read(&fs_info->commit_root_sem);
2041 }
2042 out:
2043 ulist_release(&ctx->refs);
2044 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2045
2046 return ret;
2047 }
2048
btrfs_find_one_extref(struct btrfs_root * root,u64 inode_objectid,u64 start_off,struct btrfs_path * path,struct btrfs_inode_extref ** ret_extref,u64 * found_off)2049 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2050 u64 start_off, struct btrfs_path *path,
2051 struct btrfs_inode_extref **ret_extref,
2052 u64 *found_off)
2053 {
2054 int ret, slot;
2055 struct btrfs_key key;
2056 struct btrfs_key found_key;
2057 struct btrfs_inode_extref *extref;
2058 const struct extent_buffer *leaf;
2059 unsigned long ptr;
2060
2061 key.objectid = inode_objectid;
2062 key.type = BTRFS_INODE_EXTREF_KEY;
2063 key.offset = start_off;
2064
2065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2066 if (ret < 0)
2067 return ret;
2068
2069 while (1) {
2070 leaf = path->nodes[0];
2071 slot = path->slots[0];
2072 if (slot >= btrfs_header_nritems(leaf)) {
2073 /*
2074 * If the item at offset is not found,
2075 * btrfs_search_slot will point us to the slot
2076 * where it should be inserted. In our case
2077 * that will be the slot directly before the
2078 * next INODE_REF_KEY_V2 item. In the case
2079 * that we're pointing to the last slot in a
2080 * leaf, we must move one leaf over.
2081 */
2082 ret = btrfs_next_leaf(root, path);
2083 if (ret) {
2084 if (ret >= 1)
2085 ret = -ENOENT;
2086 break;
2087 }
2088 continue;
2089 }
2090
2091 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2092
2093 /*
2094 * Check that we're still looking at an extended ref key for
2095 * this particular objectid. If we have different
2096 * objectid or type then there are no more to be found
2097 * in the tree and we can exit.
2098 */
2099 ret = -ENOENT;
2100 if (found_key.objectid != inode_objectid)
2101 break;
2102 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2103 break;
2104
2105 ret = 0;
2106 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2107 extref = (struct btrfs_inode_extref *)ptr;
2108 *ret_extref = extref;
2109 if (found_off)
2110 *found_off = found_key.offset;
2111 break;
2112 }
2113
2114 return ret;
2115 }
2116
2117 /*
2118 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2119 * Elements of the path are separated by '/' and the path is guaranteed to be
2120 * 0-terminated. the path is only given within the current file system.
2121 * Therefore, it never starts with a '/'. the caller is responsible to provide
2122 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2123 * the start point of the resulting string is returned. this pointer is within
2124 * dest, normally.
2125 * in case the path buffer would overflow, the pointer is decremented further
2126 * as if output was written to the buffer, though no more output is actually
2127 * generated. that way, the caller can determine how much space would be
2128 * required for the path to fit into the buffer. in that case, the returned
2129 * value will be smaller than dest. callers must check this!
2130 */
btrfs_ref_to_path(struct btrfs_root * fs_root,struct btrfs_path * path,u32 name_len,unsigned long name_off,struct extent_buffer * eb_in,u64 parent,char * dest,u32 size)2131 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2132 u32 name_len, unsigned long name_off,
2133 struct extent_buffer *eb_in, u64 parent,
2134 char *dest, u32 size)
2135 {
2136 int slot;
2137 u64 next_inum;
2138 int ret;
2139 s64 bytes_left = ((s64)size) - 1;
2140 struct extent_buffer *eb = eb_in;
2141 struct btrfs_key found_key;
2142 struct btrfs_inode_ref *iref;
2143
2144 if (bytes_left >= 0)
2145 dest[bytes_left] = '\0';
2146
2147 while (1) {
2148 bytes_left -= name_len;
2149 if (bytes_left >= 0)
2150 read_extent_buffer(eb, dest + bytes_left,
2151 name_off, name_len);
2152 if (eb != eb_in) {
2153 if (!path->skip_locking)
2154 btrfs_tree_read_unlock(eb);
2155 free_extent_buffer(eb);
2156 }
2157 ret = btrfs_find_item(fs_root, path, parent, 0,
2158 BTRFS_INODE_REF_KEY, &found_key);
2159 if (ret > 0)
2160 ret = -ENOENT;
2161 if (ret)
2162 break;
2163
2164 next_inum = found_key.offset;
2165
2166 /* regular exit ahead */
2167 if (parent == next_inum)
2168 break;
2169
2170 slot = path->slots[0];
2171 eb = path->nodes[0];
2172 /* make sure we can use eb after releasing the path */
2173 if (eb != eb_in) {
2174 path->nodes[0] = NULL;
2175 path->locks[0] = 0;
2176 }
2177 btrfs_release_path(path);
2178 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2179
2180 name_len = btrfs_inode_ref_name_len(eb, iref);
2181 name_off = (unsigned long)(iref + 1);
2182
2183 parent = next_inum;
2184 --bytes_left;
2185 if (bytes_left >= 0)
2186 dest[bytes_left] = '/';
2187 }
2188
2189 btrfs_release_path(path);
2190
2191 if (ret)
2192 return ERR_PTR(ret);
2193
2194 return dest + bytes_left;
2195 }
2196
2197 /*
2198 * this makes the path point to (logical EXTENT_ITEM *)
2199 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2200 * tree blocks and <0 on error.
2201 */
extent_from_logical(struct btrfs_fs_info * fs_info,u64 logical,struct btrfs_path * path,struct btrfs_key * found_key,u64 * flags_ret)2202 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2203 struct btrfs_path *path, struct btrfs_key *found_key,
2204 u64 *flags_ret)
2205 {
2206 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2207 int ret;
2208 u64 flags;
2209 u64 size = 0;
2210 u32 item_size;
2211 const struct extent_buffer *eb;
2212 struct btrfs_extent_item *ei;
2213 struct btrfs_key key;
2214
2215 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2216 key.type = BTRFS_METADATA_ITEM_KEY;
2217 else
2218 key.type = BTRFS_EXTENT_ITEM_KEY;
2219 key.objectid = logical;
2220 key.offset = (u64)-1;
2221
2222 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2223 if (ret < 0)
2224 return ret;
2225
2226 ret = btrfs_previous_extent_item(extent_root, path, 0);
2227 if (ret) {
2228 if (ret > 0)
2229 ret = -ENOENT;
2230 return ret;
2231 }
2232 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2233 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2234 size = fs_info->nodesize;
2235 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2236 size = found_key->offset;
2237
2238 if (found_key->objectid > logical ||
2239 found_key->objectid + size <= logical) {
2240 btrfs_debug(fs_info,
2241 "logical %llu is not within any extent", logical);
2242 return -ENOENT;
2243 }
2244
2245 eb = path->nodes[0];
2246 item_size = btrfs_item_size(eb, path->slots[0]);
2247 BUG_ON(item_size < sizeof(*ei));
2248
2249 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2250 flags = btrfs_extent_flags(eb, ei);
2251
2252 btrfs_debug(fs_info,
2253 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2254 logical, logical - found_key->objectid, found_key->objectid,
2255 found_key->offset, flags, item_size);
2256
2257 WARN_ON(!flags_ret);
2258 if (flags_ret) {
2259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2260 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2261 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2262 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2263 else
2264 BUG();
2265 return 0;
2266 }
2267
2268 return -EIO;
2269 }
2270
2271 /*
2272 * helper function to iterate extent inline refs. ptr must point to a 0 value
2273 * for the first call and may be modified. it is used to track state.
2274 * if more refs exist, 0 is returned and the next call to
2275 * get_extent_inline_ref must pass the modified ptr parameter to get the
2276 * next ref. after the last ref was processed, 1 is returned.
2277 * returns <0 on error
2278 */
get_extent_inline_ref(unsigned long * ptr,const struct extent_buffer * eb,const struct btrfs_key * key,const struct btrfs_extent_item * ei,u32 item_size,struct btrfs_extent_inline_ref ** out_eiref,int * out_type)2279 static int get_extent_inline_ref(unsigned long *ptr,
2280 const struct extent_buffer *eb,
2281 const struct btrfs_key *key,
2282 const struct btrfs_extent_item *ei,
2283 u32 item_size,
2284 struct btrfs_extent_inline_ref **out_eiref,
2285 int *out_type)
2286 {
2287 unsigned long end;
2288 u64 flags;
2289 struct btrfs_tree_block_info *info;
2290
2291 if (!*ptr) {
2292 /* first call */
2293 flags = btrfs_extent_flags(eb, ei);
2294 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2295 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2296 /* a skinny metadata extent */
2297 *out_eiref =
2298 (struct btrfs_extent_inline_ref *)(ei + 1);
2299 } else {
2300 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2301 info = (struct btrfs_tree_block_info *)(ei + 1);
2302 *out_eiref =
2303 (struct btrfs_extent_inline_ref *)(info + 1);
2304 }
2305 } else {
2306 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2307 }
2308 *ptr = (unsigned long)*out_eiref;
2309 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2310 return -ENOENT;
2311 }
2312
2313 end = (unsigned long)ei + item_size;
2314 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2315 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2316 BTRFS_REF_TYPE_ANY);
2317 if (*out_type == BTRFS_REF_TYPE_INVALID)
2318 return -EUCLEAN;
2319
2320 *ptr += btrfs_extent_inline_ref_size(*out_type);
2321 WARN_ON(*ptr > end);
2322 if (*ptr == end)
2323 return 1; /* last */
2324
2325 return 0;
2326 }
2327
2328 /*
2329 * reads the tree block backref for an extent. tree level and root are returned
2330 * through out_level and out_root. ptr must point to a 0 value for the first
2331 * call and may be modified (see get_extent_inline_ref comment).
2332 * returns 0 if data was provided, 1 if there was no more data to provide or
2333 * <0 on error.
2334 */
tree_backref_for_extent(unsigned long * ptr,struct extent_buffer * eb,struct btrfs_key * key,struct btrfs_extent_item * ei,u32 item_size,u64 * out_root,u8 * out_level)2335 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2336 struct btrfs_key *key, struct btrfs_extent_item *ei,
2337 u32 item_size, u64 *out_root, u8 *out_level)
2338 {
2339 int ret;
2340 int type;
2341 struct btrfs_extent_inline_ref *eiref;
2342
2343 if (*ptr == (unsigned long)-1)
2344 return 1;
2345
2346 while (1) {
2347 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2348 &eiref, &type);
2349 if (ret < 0)
2350 return ret;
2351
2352 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2353 type == BTRFS_SHARED_BLOCK_REF_KEY)
2354 break;
2355
2356 if (ret == 1)
2357 return 1;
2358 }
2359
2360 /* we can treat both ref types equally here */
2361 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2362
2363 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2364 struct btrfs_tree_block_info *info;
2365
2366 info = (struct btrfs_tree_block_info *)(ei + 1);
2367 *out_level = btrfs_tree_block_level(eb, info);
2368 } else {
2369 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2370 *out_level = (u8)key->offset;
2371 }
2372
2373 if (ret == 1)
2374 *ptr = (unsigned long)-1;
2375
2376 return 0;
2377 }
2378
iterate_leaf_refs(struct btrfs_fs_info * fs_info,struct extent_inode_elem * inode_list,u64 root,u64 extent_item_objectid,iterate_extent_inodes_t * iterate,void * ctx)2379 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2380 struct extent_inode_elem *inode_list,
2381 u64 root, u64 extent_item_objectid,
2382 iterate_extent_inodes_t *iterate, void *ctx)
2383 {
2384 struct extent_inode_elem *eie;
2385 int ret = 0;
2386
2387 for (eie = inode_list; eie; eie = eie->next) {
2388 btrfs_debug(fs_info,
2389 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2390 extent_item_objectid, eie->inum,
2391 eie->offset, root);
2392 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2393 if (ret) {
2394 btrfs_debug(fs_info,
2395 "stopping iteration for %llu due to ret=%d",
2396 extent_item_objectid, ret);
2397 break;
2398 }
2399 }
2400
2401 return ret;
2402 }
2403
2404 /*
2405 * calls iterate() for every inode that references the extent identified by
2406 * the given parameters.
2407 * when the iterator function returns a non-zero value, iteration stops.
2408 */
iterate_extent_inodes(struct btrfs_backref_walk_ctx * ctx,bool search_commit_root,iterate_extent_inodes_t * iterate,void * user_ctx)2409 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2410 bool search_commit_root,
2411 iterate_extent_inodes_t *iterate, void *user_ctx)
2412 {
2413 int ret;
2414 struct ulist *refs;
2415 struct ulist_node *ref_node;
2416 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2417 struct ulist_iterator ref_uiter;
2418
2419 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2420 ctx->bytenr);
2421
2422 ASSERT(ctx->trans == NULL);
2423 ASSERT(ctx->roots == NULL);
2424
2425 if (!search_commit_root) {
2426 struct btrfs_trans_handle *trans;
2427
2428 trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2429 if (IS_ERR(trans)) {
2430 if (PTR_ERR(trans) != -ENOENT &&
2431 PTR_ERR(trans) != -EROFS)
2432 return PTR_ERR(trans);
2433 trans = NULL;
2434 }
2435 ctx->trans = trans;
2436 }
2437
2438 if (ctx->trans) {
2439 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2440 ctx->time_seq = seq_elem.seq;
2441 } else {
2442 down_read(&ctx->fs_info->commit_root_sem);
2443 }
2444
2445 ret = btrfs_find_all_leafs(ctx);
2446 if (ret)
2447 goto out;
2448 refs = ctx->refs;
2449 ctx->refs = NULL;
2450
2451 ULIST_ITER_INIT(&ref_uiter);
2452 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2453 const u64 leaf_bytenr = ref_node->val;
2454 struct ulist_node *root_node;
2455 struct ulist_iterator root_uiter;
2456 struct extent_inode_elem *inode_list;
2457
2458 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2459
2460 if (ctx->cache_lookup) {
2461 const u64 *root_ids;
2462 int root_count;
2463 bool cached;
2464
2465 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2466 &root_ids, &root_count);
2467 if (cached) {
2468 for (int i = 0; i < root_count; i++) {
2469 ret = iterate_leaf_refs(ctx->fs_info,
2470 inode_list,
2471 root_ids[i],
2472 leaf_bytenr,
2473 iterate,
2474 user_ctx);
2475 if (ret)
2476 break;
2477 }
2478 continue;
2479 }
2480 }
2481
2482 if (!ctx->roots) {
2483 ctx->roots = ulist_alloc(GFP_NOFS);
2484 if (!ctx->roots) {
2485 ret = -ENOMEM;
2486 break;
2487 }
2488 }
2489
2490 ctx->bytenr = leaf_bytenr;
2491 ret = btrfs_find_all_roots_safe(ctx);
2492 if (ret)
2493 break;
2494
2495 if (ctx->cache_store)
2496 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2497
2498 ULIST_ITER_INIT(&root_uiter);
2499 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2500 btrfs_debug(ctx->fs_info,
2501 "root %llu references leaf %llu, data list %#llx",
2502 root_node->val, ref_node->val,
2503 ref_node->aux);
2504 ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2505 root_node->val, ctx->bytenr,
2506 iterate, user_ctx);
2507 }
2508 ulist_reinit(ctx->roots);
2509 }
2510
2511 free_leaf_list(refs);
2512 out:
2513 if (ctx->trans) {
2514 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2515 btrfs_end_transaction(ctx->trans);
2516 ctx->trans = NULL;
2517 } else {
2518 up_read(&ctx->fs_info->commit_root_sem);
2519 }
2520
2521 ulist_free(ctx->roots);
2522 ctx->roots = NULL;
2523
2524 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2525 ret = 0;
2526
2527 return ret;
2528 }
2529
build_ino_list(u64 inum,u64 offset,u64 num_bytes,u64 root,void * ctx)2530 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2531 {
2532 struct btrfs_data_container *inodes = ctx;
2533 const size_t c = 3 * sizeof(u64);
2534
2535 if (inodes->bytes_left >= c) {
2536 inodes->bytes_left -= c;
2537 inodes->val[inodes->elem_cnt] = inum;
2538 inodes->val[inodes->elem_cnt + 1] = offset;
2539 inodes->val[inodes->elem_cnt + 2] = root;
2540 inodes->elem_cnt += 3;
2541 } else {
2542 inodes->bytes_missing += c - inodes->bytes_left;
2543 inodes->bytes_left = 0;
2544 inodes->elem_missed += 3;
2545 }
2546
2547 return 0;
2548 }
2549
iterate_inodes_from_logical(u64 logical,struct btrfs_fs_info * fs_info,struct btrfs_path * path,void * ctx,bool ignore_offset)2550 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2551 struct btrfs_path *path,
2552 void *ctx, bool ignore_offset)
2553 {
2554 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2555 int ret;
2556 u64 flags = 0;
2557 struct btrfs_key found_key;
2558 int search_commit_root = path->search_commit_root;
2559
2560 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561 btrfs_release_path(path);
2562 if (ret < 0)
2563 return ret;
2564 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565 return -EINVAL;
2566
2567 walk_ctx.bytenr = found_key.objectid;
2568 if (ignore_offset)
2569 walk_ctx.ignore_extent_item_pos = true;
2570 else
2571 walk_ctx.extent_item_pos = logical - found_key.objectid;
2572 walk_ctx.fs_info = fs_info;
2573
2574 return iterate_extent_inodes(&walk_ctx, search_commit_root,
2575 build_ino_list, ctx);
2576 }
2577
2578 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2579 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2580
iterate_inode_refs(u64 inum,struct inode_fs_paths * ipath)2581 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2582 {
2583 int ret = 0;
2584 int slot;
2585 u32 cur;
2586 u32 len;
2587 u32 name_len;
2588 u64 parent = 0;
2589 int found = 0;
2590 struct btrfs_root *fs_root = ipath->fs_root;
2591 struct btrfs_path *path = ipath->btrfs_path;
2592 struct extent_buffer *eb;
2593 struct btrfs_inode_ref *iref;
2594 struct btrfs_key found_key;
2595
2596 while (!ret) {
2597 ret = btrfs_find_item(fs_root, path, inum,
2598 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2599 &found_key);
2600
2601 if (ret < 0)
2602 break;
2603 if (ret) {
2604 ret = found ? 0 : -ENOENT;
2605 break;
2606 }
2607 ++found;
2608
2609 parent = found_key.offset;
2610 slot = path->slots[0];
2611 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2612 if (!eb) {
2613 ret = -ENOMEM;
2614 break;
2615 }
2616 btrfs_release_path(path);
2617
2618 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2619
2620 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2621 name_len = btrfs_inode_ref_name_len(eb, iref);
2622 /* path must be released before calling iterate()! */
2623 btrfs_debug(fs_root->fs_info,
2624 "following ref at offset %u for inode %llu in tree %llu",
2625 cur, found_key.objectid,
2626 fs_root->root_key.objectid);
2627 ret = inode_to_path(parent, name_len,
2628 (unsigned long)(iref + 1), eb, ipath);
2629 if (ret)
2630 break;
2631 len = sizeof(*iref) + name_len;
2632 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2633 }
2634 free_extent_buffer(eb);
2635 }
2636
2637 btrfs_release_path(path);
2638
2639 return ret;
2640 }
2641
iterate_inode_extrefs(u64 inum,struct inode_fs_paths * ipath)2642 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2643 {
2644 int ret;
2645 int slot;
2646 u64 offset = 0;
2647 u64 parent;
2648 int found = 0;
2649 struct btrfs_root *fs_root = ipath->fs_root;
2650 struct btrfs_path *path = ipath->btrfs_path;
2651 struct extent_buffer *eb;
2652 struct btrfs_inode_extref *extref;
2653 u32 item_size;
2654 u32 cur_offset;
2655 unsigned long ptr;
2656
2657 while (1) {
2658 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2659 &offset);
2660 if (ret < 0)
2661 break;
2662 if (ret) {
2663 ret = found ? 0 : -ENOENT;
2664 break;
2665 }
2666 ++found;
2667
2668 slot = path->slots[0];
2669 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2670 if (!eb) {
2671 ret = -ENOMEM;
2672 break;
2673 }
2674 btrfs_release_path(path);
2675
2676 item_size = btrfs_item_size(eb, slot);
2677 ptr = btrfs_item_ptr_offset(eb, slot);
2678 cur_offset = 0;
2679
2680 while (cur_offset < item_size) {
2681 u32 name_len;
2682
2683 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2684 parent = btrfs_inode_extref_parent(eb, extref);
2685 name_len = btrfs_inode_extref_name_len(eb, extref);
2686 ret = inode_to_path(parent, name_len,
2687 (unsigned long)&extref->name, eb, ipath);
2688 if (ret)
2689 break;
2690
2691 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2692 cur_offset += sizeof(*extref);
2693 }
2694 free_extent_buffer(eb);
2695
2696 offset++;
2697 }
2698
2699 btrfs_release_path(path);
2700
2701 return ret;
2702 }
2703
2704 /*
2705 * returns 0 if the path could be dumped (probably truncated)
2706 * returns <0 in case of an error
2707 */
inode_to_path(u64 inum,u32 name_len,unsigned long name_off,struct extent_buffer * eb,struct inode_fs_paths * ipath)2708 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2709 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2710 {
2711 char *fspath;
2712 char *fspath_min;
2713 int i = ipath->fspath->elem_cnt;
2714 const int s_ptr = sizeof(char *);
2715 u32 bytes_left;
2716
2717 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2718 ipath->fspath->bytes_left - s_ptr : 0;
2719
2720 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2721 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2722 name_off, eb, inum, fspath_min, bytes_left);
2723 if (IS_ERR(fspath))
2724 return PTR_ERR(fspath);
2725
2726 if (fspath > fspath_min) {
2727 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2728 ++ipath->fspath->elem_cnt;
2729 ipath->fspath->bytes_left = fspath - fspath_min;
2730 } else {
2731 ++ipath->fspath->elem_missed;
2732 ipath->fspath->bytes_missing += fspath_min - fspath;
2733 ipath->fspath->bytes_left = 0;
2734 }
2735
2736 return 0;
2737 }
2738
2739 /*
2740 * this dumps all file system paths to the inode into the ipath struct, provided
2741 * is has been created large enough. each path is zero-terminated and accessed
2742 * from ipath->fspath->val[i].
2743 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2744 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2745 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2746 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2747 * have been needed to return all paths.
2748 */
paths_from_inode(u64 inum,struct inode_fs_paths * ipath)2749 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2750 {
2751 int ret;
2752 int found_refs = 0;
2753
2754 ret = iterate_inode_refs(inum, ipath);
2755 if (!ret)
2756 ++found_refs;
2757 else if (ret != -ENOENT)
2758 return ret;
2759
2760 ret = iterate_inode_extrefs(inum, ipath);
2761 if (ret == -ENOENT && found_refs)
2762 return 0;
2763
2764 return ret;
2765 }
2766
init_data_container(u32 total_bytes)2767 struct btrfs_data_container *init_data_container(u32 total_bytes)
2768 {
2769 struct btrfs_data_container *data;
2770 size_t alloc_bytes;
2771
2772 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2773 data = kvzalloc(alloc_bytes, GFP_KERNEL);
2774 if (!data)
2775 return ERR_PTR(-ENOMEM);
2776
2777 if (total_bytes >= sizeof(*data))
2778 data->bytes_left = total_bytes - sizeof(*data);
2779 else
2780 data->bytes_missing = sizeof(*data) - total_bytes;
2781
2782 return data;
2783 }
2784
2785 /*
2786 * allocates space to return multiple file system paths for an inode.
2787 * total_bytes to allocate are passed, note that space usable for actual path
2788 * information will be total_bytes - sizeof(struct inode_fs_paths).
2789 * the returned pointer must be freed with free_ipath() in the end.
2790 */
init_ipath(s32 total_bytes,struct btrfs_root * fs_root,struct btrfs_path * path)2791 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2792 struct btrfs_path *path)
2793 {
2794 struct inode_fs_paths *ifp;
2795 struct btrfs_data_container *fspath;
2796
2797 fspath = init_data_container(total_bytes);
2798 if (IS_ERR(fspath))
2799 return ERR_CAST(fspath);
2800
2801 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2802 if (!ifp) {
2803 kvfree(fspath);
2804 return ERR_PTR(-ENOMEM);
2805 }
2806
2807 ifp->btrfs_path = path;
2808 ifp->fspath = fspath;
2809 ifp->fs_root = fs_root;
2810
2811 return ifp;
2812 }
2813
free_ipath(struct inode_fs_paths * ipath)2814 void free_ipath(struct inode_fs_paths *ipath)
2815 {
2816 if (!ipath)
2817 return;
2818 kvfree(ipath->fspath);
2819 kfree(ipath);
2820 }
2821
btrfs_backref_iter_alloc(struct btrfs_fs_info * fs_info)2822 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2823 {
2824 struct btrfs_backref_iter *ret;
2825
2826 ret = kzalloc(sizeof(*ret), GFP_NOFS);
2827 if (!ret)
2828 return NULL;
2829
2830 ret->path = btrfs_alloc_path();
2831 if (!ret->path) {
2832 kfree(ret);
2833 return NULL;
2834 }
2835
2836 /* Current backref iterator only supports iteration in commit root */
2837 ret->path->search_commit_root = 1;
2838 ret->path->skip_locking = 1;
2839 ret->fs_info = fs_info;
2840
2841 return ret;
2842 }
2843
btrfs_backref_iter_start(struct btrfs_backref_iter * iter,u64 bytenr)2844 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2845 {
2846 struct btrfs_fs_info *fs_info = iter->fs_info;
2847 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2848 struct btrfs_path *path = iter->path;
2849 struct btrfs_extent_item *ei;
2850 struct btrfs_key key;
2851 int ret;
2852
2853 key.objectid = bytenr;
2854 key.type = BTRFS_METADATA_ITEM_KEY;
2855 key.offset = (u64)-1;
2856 iter->bytenr = bytenr;
2857
2858 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2859 if (ret < 0)
2860 return ret;
2861 if (ret == 0) {
2862 ret = -EUCLEAN;
2863 goto release;
2864 }
2865 if (path->slots[0] == 0) {
2866 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2867 ret = -EUCLEAN;
2868 goto release;
2869 }
2870 path->slots[0]--;
2871
2872 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2873 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2874 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2875 ret = -ENOENT;
2876 goto release;
2877 }
2878 memcpy(&iter->cur_key, &key, sizeof(key));
2879 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2880 path->slots[0]);
2881 iter->end_ptr = (u32)(iter->item_ptr +
2882 btrfs_item_size(path->nodes[0], path->slots[0]));
2883 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2884 struct btrfs_extent_item);
2885
2886 /*
2887 * Only support iteration on tree backref yet.
2888 *
2889 * This is an extra precaution for non skinny-metadata, where
2890 * EXTENT_ITEM is also used for tree blocks, that we can only use
2891 * extent flags to determine if it's a tree block.
2892 */
2893 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2894 ret = -ENOTSUPP;
2895 goto release;
2896 }
2897 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2898
2899 /* If there is no inline backref, go search for keyed backref */
2900 if (iter->cur_ptr >= iter->end_ptr) {
2901 ret = btrfs_next_item(extent_root, path);
2902
2903 /* No inline nor keyed ref */
2904 if (ret > 0) {
2905 ret = -ENOENT;
2906 goto release;
2907 }
2908 if (ret < 0)
2909 goto release;
2910
2911 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2912 path->slots[0]);
2913 if (iter->cur_key.objectid != bytenr ||
2914 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2915 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2916 ret = -ENOENT;
2917 goto release;
2918 }
2919 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2920 path->slots[0]);
2921 iter->item_ptr = iter->cur_ptr;
2922 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2923 path->nodes[0], path->slots[0]));
2924 }
2925
2926 return 0;
2927 release:
2928 btrfs_backref_iter_release(iter);
2929 return ret;
2930 }
2931
2932 /*
2933 * Go to the next backref item of current bytenr, can be either inlined or
2934 * keyed.
2935 *
2936 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2937 *
2938 * Return 0 if we get next backref without problem.
2939 * Return >0 if there is no extra backref for this bytenr.
2940 * Return <0 if there is something wrong happened.
2941 */
btrfs_backref_iter_next(struct btrfs_backref_iter * iter)2942 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2943 {
2944 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2945 struct btrfs_root *extent_root;
2946 struct btrfs_path *path = iter->path;
2947 struct btrfs_extent_inline_ref *iref;
2948 int ret;
2949 u32 size;
2950
2951 if (btrfs_backref_iter_is_inline_ref(iter)) {
2952 /* We're still inside the inline refs */
2953 ASSERT(iter->cur_ptr < iter->end_ptr);
2954
2955 if (btrfs_backref_has_tree_block_info(iter)) {
2956 /* First tree block info */
2957 size = sizeof(struct btrfs_tree_block_info);
2958 } else {
2959 /* Use inline ref type to determine the size */
2960 int type;
2961
2962 iref = (struct btrfs_extent_inline_ref *)
2963 ((unsigned long)iter->cur_ptr);
2964 type = btrfs_extent_inline_ref_type(eb, iref);
2965
2966 size = btrfs_extent_inline_ref_size(type);
2967 }
2968 iter->cur_ptr += size;
2969 if (iter->cur_ptr < iter->end_ptr)
2970 return 0;
2971
2972 /* All inline items iterated, fall through */
2973 }
2974
2975 /* We're at keyed items, there is no inline item, go to the next one */
2976 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2977 ret = btrfs_next_item(extent_root, iter->path);
2978 if (ret)
2979 return ret;
2980
2981 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2982 if (iter->cur_key.objectid != iter->bytenr ||
2983 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2984 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2985 return 1;
2986 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2987 path->slots[0]);
2988 iter->cur_ptr = iter->item_ptr;
2989 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2990 path->slots[0]);
2991 return 0;
2992 }
2993
btrfs_backref_init_cache(struct btrfs_fs_info * fs_info,struct btrfs_backref_cache * cache,int is_reloc)2994 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2995 struct btrfs_backref_cache *cache, int is_reloc)
2996 {
2997 int i;
2998
2999 cache->rb_root = RB_ROOT;
3000 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3001 INIT_LIST_HEAD(&cache->pending[i]);
3002 INIT_LIST_HEAD(&cache->changed);
3003 INIT_LIST_HEAD(&cache->detached);
3004 INIT_LIST_HEAD(&cache->leaves);
3005 INIT_LIST_HEAD(&cache->pending_edge);
3006 INIT_LIST_HEAD(&cache->useless_node);
3007 cache->fs_info = fs_info;
3008 cache->is_reloc = is_reloc;
3009 }
3010
btrfs_backref_alloc_node(struct btrfs_backref_cache * cache,u64 bytenr,int level)3011 struct btrfs_backref_node *btrfs_backref_alloc_node(
3012 struct btrfs_backref_cache *cache, u64 bytenr, int level)
3013 {
3014 struct btrfs_backref_node *node;
3015
3016 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3017 node = kzalloc(sizeof(*node), GFP_NOFS);
3018 if (!node)
3019 return node;
3020
3021 INIT_LIST_HEAD(&node->list);
3022 INIT_LIST_HEAD(&node->upper);
3023 INIT_LIST_HEAD(&node->lower);
3024 RB_CLEAR_NODE(&node->rb_node);
3025 cache->nr_nodes++;
3026 node->level = level;
3027 node->bytenr = bytenr;
3028
3029 return node;
3030 }
3031
btrfs_backref_alloc_edge(struct btrfs_backref_cache * cache)3032 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3033 struct btrfs_backref_cache *cache)
3034 {
3035 struct btrfs_backref_edge *edge;
3036
3037 edge = kzalloc(sizeof(*edge), GFP_NOFS);
3038 if (edge)
3039 cache->nr_edges++;
3040 return edge;
3041 }
3042
3043 /*
3044 * Drop the backref node from cache, also cleaning up all its
3045 * upper edges and any uncached nodes in the path.
3046 *
3047 * This cleanup happens bottom up, thus the node should either
3048 * be the lowest node in the cache or a detached node.
3049 */
btrfs_backref_cleanup_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3050 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3051 struct btrfs_backref_node *node)
3052 {
3053 struct btrfs_backref_node *upper;
3054 struct btrfs_backref_edge *edge;
3055
3056 if (!node)
3057 return;
3058
3059 BUG_ON(!node->lowest && !node->detached);
3060 while (!list_empty(&node->upper)) {
3061 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3062 list[LOWER]);
3063 upper = edge->node[UPPER];
3064 list_del(&edge->list[LOWER]);
3065 list_del(&edge->list[UPPER]);
3066 btrfs_backref_free_edge(cache, edge);
3067
3068 /*
3069 * Add the node to leaf node list if no other child block
3070 * cached.
3071 */
3072 if (list_empty(&upper->lower)) {
3073 list_add_tail(&upper->lower, &cache->leaves);
3074 upper->lowest = 1;
3075 }
3076 }
3077
3078 btrfs_backref_drop_node(cache, node);
3079 }
3080
3081 /*
3082 * Release all nodes/edges from current cache
3083 */
btrfs_backref_release_cache(struct btrfs_backref_cache * cache)3084 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3085 {
3086 struct btrfs_backref_node *node;
3087 int i;
3088
3089 while (!list_empty(&cache->detached)) {
3090 node = list_entry(cache->detached.next,
3091 struct btrfs_backref_node, list);
3092 btrfs_backref_cleanup_node(cache, node);
3093 }
3094
3095 while (!list_empty(&cache->leaves)) {
3096 node = list_entry(cache->leaves.next,
3097 struct btrfs_backref_node, lower);
3098 btrfs_backref_cleanup_node(cache, node);
3099 }
3100
3101 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3102 while (!list_empty(&cache->pending[i])) {
3103 node = list_first_entry(&cache->pending[i],
3104 struct btrfs_backref_node,
3105 list);
3106 btrfs_backref_cleanup_node(cache, node);
3107 }
3108 }
3109 ASSERT(list_empty(&cache->pending_edge));
3110 ASSERT(list_empty(&cache->useless_node));
3111 ASSERT(list_empty(&cache->changed));
3112 ASSERT(list_empty(&cache->detached));
3113 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3114 ASSERT(!cache->nr_nodes);
3115 ASSERT(!cache->nr_edges);
3116 }
3117
3118 /*
3119 * Handle direct tree backref
3120 *
3121 * Direct tree backref means, the backref item shows its parent bytenr
3122 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3123 *
3124 * @ref_key: The converted backref key.
3125 * For keyed backref, it's the item key.
3126 * For inlined backref, objectid is the bytenr,
3127 * type is btrfs_inline_ref_type, offset is
3128 * btrfs_inline_ref_offset.
3129 */
handle_direct_tree_backref(struct btrfs_backref_cache * cache,struct btrfs_key * ref_key,struct btrfs_backref_node * cur)3130 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3131 struct btrfs_key *ref_key,
3132 struct btrfs_backref_node *cur)
3133 {
3134 struct btrfs_backref_edge *edge;
3135 struct btrfs_backref_node *upper;
3136 struct rb_node *rb_node;
3137
3138 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3139
3140 /* Only reloc root uses backref pointing to itself */
3141 if (ref_key->objectid == ref_key->offset) {
3142 struct btrfs_root *root;
3143
3144 cur->is_reloc_root = 1;
3145 /* Only reloc backref cache cares about a specific root */
3146 if (cache->is_reloc) {
3147 root = find_reloc_root(cache->fs_info, cur->bytenr);
3148 if (!root)
3149 return -ENOENT;
3150 cur->root = root;
3151 } else {
3152 /*
3153 * For generic purpose backref cache, reloc root node
3154 * is useless.
3155 */
3156 list_add(&cur->list, &cache->useless_node);
3157 }
3158 return 0;
3159 }
3160
3161 edge = btrfs_backref_alloc_edge(cache);
3162 if (!edge)
3163 return -ENOMEM;
3164
3165 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3166 if (!rb_node) {
3167 /* Parent node not yet cached */
3168 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3169 cur->level + 1);
3170 if (!upper) {
3171 btrfs_backref_free_edge(cache, edge);
3172 return -ENOMEM;
3173 }
3174
3175 /*
3176 * Backrefs for the upper level block isn't cached, add the
3177 * block to pending list
3178 */
3179 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3180 } else {
3181 /* Parent node already cached */
3182 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3183 ASSERT(upper->checked);
3184 INIT_LIST_HEAD(&edge->list[UPPER]);
3185 }
3186 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3187 return 0;
3188 }
3189
3190 /*
3191 * Handle indirect tree backref
3192 *
3193 * Indirect tree backref means, we only know which tree the node belongs to.
3194 * We still need to do a tree search to find out the parents. This is for
3195 * TREE_BLOCK_REF backref (keyed or inlined).
3196 *
3197 * @trans: Transaction handle.
3198 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
3199 * @tree_key: The first key of this tree block.
3200 * @path: A clean (released) path, to avoid allocating path every time
3201 * the function get called.
3202 */
handle_indirect_tree_backref(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_key * ref_key,struct btrfs_key * tree_key,struct btrfs_backref_node * cur)3203 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3204 struct btrfs_backref_cache *cache,
3205 struct btrfs_path *path,
3206 struct btrfs_key *ref_key,
3207 struct btrfs_key *tree_key,
3208 struct btrfs_backref_node *cur)
3209 {
3210 struct btrfs_fs_info *fs_info = cache->fs_info;
3211 struct btrfs_backref_node *upper;
3212 struct btrfs_backref_node *lower;
3213 struct btrfs_backref_edge *edge;
3214 struct extent_buffer *eb;
3215 struct btrfs_root *root;
3216 struct rb_node *rb_node;
3217 int level;
3218 bool need_check = true;
3219 int ret;
3220
3221 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3222 if (IS_ERR(root))
3223 return PTR_ERR(root);
3224 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3225 cur->cowonly = 1;
3226
3227 if (btrfs_root_level(&root->root_item) == cur->level) {
3228 /* Tree root */
3229 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3230 /*
3231 * For reloc backref cache, we may ignore reloc root. But for
3232 * general purpose backref cache, we can't rely on
3233 * btrfs_should_ignore_reloc_root() as it may conflict with
3234 * current running relocation and lead to missing root.
3235 *
3236 * For general purpose backref cache, reloc root detection is
3237 * completely relying on direct backref (key->offset is parent
3238 * bytenr), thus only do such check for reloc cache.
3239 */
3240 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3241 btrfs_put_root(root);
3242 list_add(&cur->list, &cache->useless_node);
3243 } else {
3244 cur->root = root;
3245 }
3246 return 0;
3247 }
3248
3249 level = cur->level + 1;
3250
3251 /* Search the tree to find parent blocks referring to the block */
3252 path->search_commit_root = 1;
3253 path->skip_locking = 1;
3254 path->lowest_level = level;
3255 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3256 path->lowest_level = 0;
3257 if (ret < 0) {
3258 btrfs_put_root(root);
3259 return ret;
3260 }
3261 if (ret > 0 && path->slots[level] > 0)
3262 path->slots[level]--;
3263
3264 eb = path->nodes[level];
3265 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3266 btrfs_err(fs_info,
3267 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3268 cur->bytenr, level - 1, root->root_key.objectid,
3269 tree_key->objectid, tree_key->type, tree_key->offset);
3270 btrfs_put_root(root);
3271 ret = -ENOENT;
3272 goto out;
3273 }
3274 lower = cur;
3275
3276 /* Add all nodes and edges in the path */
3277 for (; level < BTRFS_MAX_LEVEL; level++) {
3278 if (!path->nodes[level]) {
3279 ASSERT(btrfs_root_bytenr(&root->root_item) ==
3280 lower->bytenr);
3281 /* Same as previous should_ignore_reloc_root() call */
3282 if (btrfs_should_ignore_reloc_root(root) &&
3283 cache->is_reloc) {
3284 btrfs_put_root(root);
3285 list_add(&lower->list, &cache->useless_node);
3286 } else {
3287 lower->root = root;
3288 }
3289 break;
3290 }
3291
3292 edge = btrfs_backref_alloc_edge(cache);
3293 if (!edge) {
3294 btrfs_put_root(root);
3295 ret = -ENOMEM;
3296 goto out;
3297 }
3298
3299 eb = path->nodes[level];
3300 rb_node = rb_simple_search(&cache->rb_root, eb->start);
3301 if (!rb_node) {
3302 upper = btrfs_backref_alloc_node(cache, eb->start,
3303 lower->level + 1);
3304 if (!upper) {
3305 btrfs_put_root(root);
3306 btrfs_backref_free_edge(cache, edge);
3307 ret = -ENOMEM;
3308 goto out;
3309 }
3310 upper->owner = btrfs_header_owner(eb);
3311 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3312 upper->cowonly = 1;
3313
3314 /*
3315 * If we know the block isn't shared we can avoid
3316 * checking its backrefs.
3317 */
3318 if (btrfs_block_can_be_shared(trans, root, eb))
3319 upper->checked = 0;
3320 else
3321 upper->checked = 1;
3322
3323 /*
3324 * Add the block to pending list if we need to check its
3325 * backrefs, we only do this once while walking up a
3326 * tree as we will catch anything else later on.
3327 */
3328 if (!upper->checked && need_check) {
3329 need_check = false;
3330 list_add_tail(&edge->list[UPPER],
3331 &cache->pending_edge);
3332 } else {
3333 if (upper->checked)
3334 need_check = true;
3335 INIT_LIST_HEAD(&edge->list[UPPER]);
3336 }
3337 } else {
3338 upper = rb_entry(rb_node, struct btrfs_backref_node,
3339 rb_node);
3340 ASSERT(upper->checked);
3341 INIT_LIST_HEAD(&edge->list[UPPER]);
3342 if (!upper->owner)
3343 upper->owner = btrfs_header_owner(eb);
3344 }
3345 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3346
3347 if (rb_node) {
3348 btrfs_put_root(root);
3349 break;
3350 }
3351 lower = upper;
3352 upper = NULL;
3353 }
3354 out:
3355 btrfs_release_path(path);
3356 return ret;
3357 }
3358
3359 /*
3360 * Add backref node @cur into @cache.
3361 *
3362 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3363 * links aren't yet bi-directional. Needs to finish such links.
3364 * Use btrfs_backref_finish_upper_links() to finish such linkage.
3365 *
3366 * @trans: Transaction handle.
3367 * @path: Released path for indirect tree backref lookup
3368 * @iter: Released backref iter for extent tree search
3369 * @node_key: The first key of the tree block
3370 */
btrfs_backref_add_tree_node(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_backref_iter * iter,struct btrfs_key * node_key,struct btrfs_backref_node * cur)3371 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3372 struct btrfs_backref_cache *cache,
3373 struct btrfs_path *path,
3374 struct btrfs_backref_iter *iter,
3375 struct btrfs_key *node_key,
3376 struct btrfs_backref_node *cur)
3377 {
3378 struct btrfs_backref_edge *edge;
3379 struct btrfs_backref_node *exist;
3380 int ret;
3381
3382 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3383 if (ret < 0)
3384 return ret;
3385 /*
3386 * We skip the first btrfs_tree_block_info, as we don't use the key
3387 * stored in it, but fetch it from the tree block
3388 */
3389 if (btrfs_backref_has_tree_block_info(iter)) {
3390 ret = btrfs_backref_iter_next(iter);
3391 if (ret < 0)
3392 goto out;
3393 /* No extra backref? This means the tree block is corrupted */
3394 if (ret > 0) {
3395 ret = -EUCLEAN;
3396 goto out;
3397 }
3398 }
3399 WARN_ON(cur->checked);
3400 if (!list_empty(&cur->upper)) {
3401 /*
3402 * The backref was added previously when processing backref of
3403 * type BTRFS_TREE_BLOCK_REF_KEY
3404 */
3405 ASSERT(list_is_singular(&cur->upper));
3406 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3407 list[LOWER]);
3408 ASSERT(list_empty(&edge->list[UPPER]));
3409 exist = edge->node[UPPER];
3410 /*
3411 * Add the upper level block to pending list if we need check
3412 * its backrefs
3413 */
3414 if (!exist->checked)
3415 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3416 } else {
3417 exist = NULL;
3418 }
3419
3420 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3421 struct extent_buffer *eb;
3422 struct btrfs_key key;
3423 int type;
3424
3425 cond_resched();
3426 eb = btrfs_backref_get_eb(iter);
3427
3428 key.objectid = iter->bytenr;
3429 if (btrfs_backref_iter_is_inline_ref(iter)) {
3430 struct btrfs_extent_inline_ref *iref;
3431
3432 /* Update key for inline backref */
3433 iref = (struct btrfs_extent_inline_ref *)
3434 ((unsigned long)iter->cur_ptr);
3435 type = btrfs_get_extent_inline_ref_type(eb, iref,
3436 BTRFS_REF_TYPE_BLOCK);
3437 if (type == BTRFS_REF_TYPE_INVALID) {
3438 ret = -EUCLEAN;
3439 goto out;
3440 }
3441 key.type = type;
3442 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3443 } else {
3444 key.type = iter->cur_key.type;
3445 key.offset = iter->cur_key.offset;
3446 }
3447
3448 /*
3449 * Parent node found and matches current inline ref, no need to
3450 * rebuild this node for this inline ref
3451 */
3452 if (exist &&
3453 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3454 exist->owner == key.offset) ||
3455 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3456 exist->bytenr == key.offset))) {
3457 exist = NULL;
3458 continue;
3459 }
3460
3461 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3462 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3463 ret = handle_direct_tree_backref(cache, &key, cur);
3464 if (ret < 0)
3465 goto out;
3466 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3467 /*
3468 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3469 * offset means the root objectid. We need to search
3470 * the tree to get its parent bytenr.
3471 */
3472 ret = handle_indirect_tree_backref(trans, cache, path,
3473 &key, node_key, cur);
3474 if (ret < 0)
3475 goto out;
3476 }
3477 /*
3478 * Unrecognized tree backref items (if it can pass tree-checker)
3479 * would be ignored.
3480 */
3481 }
3482 ret = 0;
3483 cur->checked = 1;
3484 WARN_ON(exist);
3485 out:
3486 btrfs_backref_iter_release(iter);
3487 return ret;
3488 }
3489
3490 /*
3491 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3492 */
btrfs_backref_finish_upper_links(struct btrfs_backref_cache * cache,struct btrfs_backref_node * start)3493 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3494 struct btrfs_backref_node *start)
3495 {
3496 struct list_head *useless_node = &cache->useless_node;
3497 struct btrfs_backref_edge *edge;
3498 struct rb_node *rb_node;
3499 LIST_HEAD(pending_edge);
3500
3501 ASSERT(start->checked);
3502
3503 /* Insert this node to cache if it's not COW-only */
3504 if (!start->cowonly) {
3505 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3506 &start->rb_node);
3507 if (rb_node)
3508 btrfs_backref_panic(cache->fs_info, start->bytenr,
3509 -EEXIST);
3510 list_add_tail(&start->lower, &cache->leaves);
3511 }
3512
3513 /*
3514 * Use breadth first search to iterate all related edges.
3515 *
3516 * The starting points are all the edges of this node
3517 */
3518 list_for_each_entry(edge, &start->upper, list[LOWER])
3519 list_add_tail(&edge->list[UPPER], &pending_edge);
3520
3521 while (!list_empty(&pending_edge)) {
3522 struct btrfs_backref_node *upper;
3523 struct btrfs_backref_node *lower;
3524
3525 edge = list_first_entry(&pending_edge,
3526 struct btrfs_backref_edge, list[UPPER]);
3527 list_del_init(&edge->list[UPPER]);
3528 upper = edge->node[UPPER];
3529 lower = edge->node[LOWER];
3530
3531 /* Parent is detached, no need to keep any edges */
3532 if (upper->detached) {
3533 list_del(&edge->list[LOWER]);
3534 btrfs_backref_free_edge(cache, edge);
3535
3536 /* Lower node is orphan, queue for cleanup */
3537 if (list_empty(&lower->upper))
3538 list_add(&lower->list, useless_node);
3539 continue;
3540 }
3541
3542 /*
3543 * All new nodes added in current build_backref_tree() haven't
3544 * been linked to the cache rb tree.
3545 * So if we have upper->rb_node populated, this means a cache
3546 * hit. We only need to link the edge, as @upper and all its
3547 * parents have already been linked.
3548 */
3549 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3550 if (upper->lowest) {
3551 list_del_init(&upper->lower);
3552 upper->lowest = 0;
3553 }
3554
3555 list_add_tail(&edge->list[UPPER], &upper->lower);
3556 continue;
3557 }
3558
3559 /* Sanity check, we shouldn't have any unchecked nodes */
3560 if (!upper->checked) {
3561 ASSERT(0);
3562 return -EUCLEAN;
3563 }
3564
3565 /* Sanity check, COW-only node has non-COW-only parent */
3566 if (start->cowonly != upper->cowonly) {
3567 ASSERT(0);
3568 return -EUCLEAN;
3569 }
3570
3571 /* Only cache non-COW-only (subvolume trees) tree blocks */
3572 if (!upper->cowonly) {
3573 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3574 &upper->rb_node);
3575 if (rb_node) {
3576 btrfs_backref_panic(cache->fs_info,
3577 upper->bytenr, -EEXIST);
3578 return -EUCLEAN;
3579 }
3580 }
3581
3582 list_add_tail(&edge->list[UPPER], &upper->lower);
3583
3584 /*
3585 * Also queue all the parent edges of this uncached node
3586 * to finish the upper linkage
3587 */
3588 list_for_each_entry(edge, &upper->upper, list[LOWER])
3589 list_add_tail(&edge->list[UPPER], &pending_edge);
3590 }
3591 return 0;
3592 }
3593
btrfs_backref_error_cleanup(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3594 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3595 struct btrfs_backref_node *node)
3596 {
3597 struct btrfs_backref_node *lower;
3598 struct btrfs_backref_node *upper;
3599 struct btrfs_backref_edge *edge;
3600
3601 while (!list_empty(&cache->useless_node)) {
3602 lower = list_first_entry(&cache->useless_node,
3603 struct btrfs_backref_node, list);
3604 list_del_init(&lower->list);
3605 }
3606 while (!list_empty(&cache->pending_edge)) {
3607 edge = list_first_entry(&cache->pending_edge,
3608 struct btrfs_backref_edge, list[UPPER]);
3609 list_del(&edge->list[UPPER]);
3610 list_del(&edge->list[LOWER]);
3611 lower = edge->node[LOWER];
3612 upper = edge->node[UPPER];
3613 btrfs_backref_free_edge(cache, edge);
3614
3615 /*
3616 * Lower is no longer linked to any upper backref nodes and
3617 * isn't in the cache, we can free it ourselves.
3618 */
3619 if (list_empty(&lower->upper) &&
3620 RB_EMPTY_NODE(&lower->rb_node))
3621 list_add(&lower->list, &cache->useless_node);
3622
3623 if (!RB_EMPTY_NODE(&upper->rb_node))
3624 continue;
3625
3626 /* Add this guy's upper edges to the list to process */
3627 list_for_each_entry(edge, &upper->upper, list[LOWER])
3628 list_add_tail(&edge->list[UPPER],
3629 &cache->pending_edge);
3630 if (list_empty(&upper->upper))
3631 list_add(&upper->list, &cache->useless_node);
3632 }
3633
3634 while (!list_empty(&cache->useless_node)) {
3635 lower = list_first_entry(&cache->useless_node,
3636 struct btrfs_backref_node, list);
3637 list_del_init(&lower->list);
3638 if (lower == node)
3639 node = NULL;
3640 btrfs_backref_drop_node(cache, lower);
3641 }
3642
3643 btrfs_backref_cleanup_node(cache, node);
3644 ASSERT(list_empty(&cache->useless_node) &&
3645 list_empty(&cache->pending_edge));
3646 }
3647