1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
4 *
5 * Interrupt architecture for the GIC:
6 *
7 * o There is one Interrupt Distributor, which receives interrupts
8 * from system devices and sends them to the Interrupt Controllers.
9 *
10 * o There is one CPU Interface per CPU, which sends interrupts sent
11 * by the Distributor, and interrupts generated locally, to the
12 * associated CPU. The base address of the CPU interface is usually
13 * aliased so that the same address points to different chips depending
14 * on the CPU it is accessed from.
15 *
16 * Note that IRQs 0-31 are special - they are local to each CPU.
17 * As such, the enable set/clear, pending set/clear and active bit
18 * registers are banked per-cpu for these sources.
19 */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/kstrtox.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/list.h>
26 #include <linux/smp.h>
27 #include <linux/cpu.h>
28 #include <linux/cpu_pm.h>
29 #include <linux/cpumask.h>
30 #include <linux/io.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/acpi.h>
35 #include <linux/irqdomain.h>
36 #include <linux/interrupt.h>
37 #include <linux/percpu.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/irqchip.h>
41 #include <linux/irqchip/chained_irq.h>
42 #include <linux/irqchip/arm-gic.h>
43
44 #include <asm/cputype.h>
45 #include <asm/irq.h>
46 #include <asm/exception.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49
50 #include "irq-gic-common.h"
51
52 #ifdef CONFIG_ARM64
53 #include <asm/cpufeature.h>
54
gic_check_cpu_features(void)55 static void gic_check_cpu_features(void)
56 {
57 WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_GIC_CPUIF_SYSREGS),
58 TAINT_CPU_OUT_OF_SPEC,
59 "GICv3 system registers enabled, broken firmware!\n");
60 }
61 #else
62 #define gic_check_cpu_features() do { } while(0)
63 #endif
64
65 union gic_base {
66 void __iomem *common_base;
67 void __percpu * __iomem *percpu_base;
68 };
69
70 struct gic_chip_data {
71 union gic_base dist_base;
72 union gic_base cpu_base;
73 void __iomem *raw_dist_base;
74 void __iomem *raw_cpu_base;
75 u32 percpu_offset;
76 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
77 u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
78 u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
79 u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
80 u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
81 u32 __percpu *saved_ppi_enable;
82 u32 __percpu *saved_ppi_active;
83 u32 __percpu *saved_ppi_conf;
84 #endif
85 struct irq_domain *domain;
86 unsigned int gic_irqs;
87 };
88
89 #ifdef CONFIG_BL_SWITCHER
90
91 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
92
93 #define gic_lock_irqsave(f) \
94 raw_spin_lock_irqsave(&cpu_map_lock, (f))
95 #define gic_unlock_irqrestore(f) \
96 raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
97
98 #define gic_lock() raw_spin_lock(&cpu_map_lock)
99 #define gic_unlock() raw_spin_unlock(&cpu_map_lock)
100
101 #else
102
103 #define gic_lock_irqsave(f) do { (void)(f); } while(0)
104 #define gic_unlock_irqrestore(f) do { (void)(f); } while(0)
105
106 #define gic_lock() do { } while(0)
107 #define gic_unlock() do { } while(0)
108
109 #endif
110
111 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access);
112
113 /*
114 * The GIC mapping of CPU interfaces does not necessarily match
115 * the logical CPU numbering. Let's use a mapping as returned
116 * by the GIC itself.
117 */
118 #define NR_GIC_CPU_IF 8
119 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
120
121 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
122
123 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
124
125 static struct gic_kvm_info gic_v2_kvm_info __initdata;
126
127 static DEFINE_PER_CPU(u32, sgi_intid);
128
129 #ifdef CONFIG_GIC_NON_BANKED
130 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
131
enable_frankengic(void)132 static void enable_frankengic(void)
133 {
134 static_branch_enable(&frankengic_key);
135 }
136
__get_base(union gic_base * base)137 static inline void __iomem *__get_base(union gic_base *base)
138 {
139 if (static_branch_unlikely(&frankengic_key))
140 return raw_cpu_read(*base->percpu_base);
141
142 return base->common_base;
143 }
144
145 #define gic_data_dist_base(d) __get_base(&(d)->dist_base)
146 #define gic_data_cpu_base(d) __get_base(&(d)->cpu_base)
147 #else
148 #define gic_data_dist_base(d) ((d)->dist_base.common_base)
149 #define gic_data_cpu_base(d) ((d)->cpu_base.common_base)
150 #define enable_frankengic() do { } while(0)
151 #endif
152
gic_dist_base(struct irq_data * d)153 static inline void __iomem *gic_dist_base(struct irq_data *d)
154 {
155 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
156 return gic_data_dist_base(gic_data);
157 }
158
gic_cpu_base(struct irq_data * d)159 static inline void __iomem *gic_cpu_base(struct irq_data *d)
160 {
161 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
162 return gic_data_cpu_base(gic_data);
163 }
164
gic_irq(struct irq_data * d)165 static inline unsigned int gic_irq(struct irq_data *d)
166 {
167 return d->hwirq;
168 }
169
cascading_gic_irq(struct irq_data * d)170 static inline bool cascading_gic_irq(struct irq_data *d)
171 {
172 void *data = irq_data_get_irq_handler_data(d);
173
174 /*
175 * If handler_data is set, this is a cascading interrupt, and
176 * it cannot possibly be forwarded.
177 */
178 return data != NULL;
179 }
180
181 /*
182 * Routines to acknowledge, disable and enable interrupts
183 */
gic_poke_irq(struct irq_data * d,u32 offset)184 static void gic_poke_irq(struct irq_data *d, u32 offset)
185 {
186 u32 mask = 1 << (gic_irq(d) % 32);
187 writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
188 }
189
gic_peek_irq(struct irq_data * d,u32 offset)190 static int gic_peek_irq(struct irq_data *d, u32 offset)
191 {
192 u32 mask = 1 << (gic_irq(d) % 32);
193 return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
194 }
195
gic_mask_irq(struct irq_data * d)196 static void gic_mask_irq(struct irq_data *d)
197 {
198 gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
199 }
200
gic_eoimode1_mask_irq(struct irq_data * d)201 static void gic_eoimode1_mask_irq(struct irq_data *d)
202 {
203 gic_mask_irq(d);
204 /*
205 * When masking a forwarded interrupt, make sure it is
206 * deactivated as well.
207 *
208 * This ensures that an interrupt that is getting
209 * disabled/masked will not get "stuck", because there is
210 * noone to deactivate it (guest is being terminated).
211 */
212 if (irqd_is_forwarded_to_vcpu(d))
213 gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
214 }
215
gic_unmask_irq(struct irq_data * d)216 static void gic_unmask_irq(struct irq_data *d)
217 {
218 gic_poke_irq(d, GIC_DIST_ENABLE_SET);
219 }
220
gic_eoi_irq(struct irq_data * d)221 static void gic_eoi_irq(struct irq_data *d)
222 {
223 u32 hwirq = gic_irq(d);
224
225 if (hwirq < 16)
226 hwirq = this_cpu_read(sgi_intid);
227
228 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
229 }
230
gic_eoimode1_eoi_irq(struct irq_data * d)231 static void gic_eoimode1_eoi_irq(struct irq_data *d)
232 {
233 u32 hwirq = gic_irq(d);
234
235 /* Do not deactivate an IRQ forwarded to a vcpu. */
236 if (irqd_is_forwarded_to_vcpu(d))
237 return;
238
239 if (hwirq < 16)
240 hwirq = this_cpu_read(sgi_intid);
241
242 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
243 }
244
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)245 static int gic_irq_set_irqchip_state(struct irq_data *d,
246 enum irqchip_irq_state which, bool val)
247 {
248 u32 reg;
249
250 switch (which) {
251 case IRQCHIP_STATE_PENDING:
252 reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
253 break;
254
255 case IRQCHIP_STATE_ACTIVE:
256 reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
257 break;
258
259 case IRQCHIP_STATE_MASKED:
260 reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
261 break;
262
263 default:
264 return -EINVAL;
265 }
266
267 gic_poke_irq(d, reg);
268 return 0;
269 }
270
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)271 static int gic_irq_get_irqchip_state(struct irq_data *d,
272 enum irqchip_irq_state which, bool *val)
273 {
274 switch (which) {
275 case IRQCHIP_STATE_PENDING:
276 *val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
277 break;
278
279 case IRQCHIP_STATE_ACTIVE:
280 *val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
281 break;
282
283 case IRQCHIP_STATE_MASKED:
284 *val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
285 break;
286
287 default:
288 return -EINVAL;
289 }
290
291 return 0;
292 }
293
gic_set_type(struct irq_data * d,unsigned int type)294 static int gic_set_type(struct irq_data *d, unsigned int type)
295 {
296 void __iomem *base = gic_dist_base(d);
297 unsigned int gicirq = gic_irq(d);
298 int ret;
299
300 /* Interrupt configuration for SGIs can't be changed */
301 if (gicirq < 16)
302 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
303
304 /* SPIs have restrictions on the supported types */
305 if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
306 type != IRQ_TYPE_EDGE_RISING)
307 return -EINVAL;
308
309 ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
310 if (ret && gicirq < 32) {
311 /* Misconfigured PPIs are usually not fatal */
312 pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
313 ret = 0;
314 }
315
316 return ret;
317 }
318
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)319 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
320 {
321 /* Only interrupts on the primary GIC can be forwarded to a vcpu. */
322 if (cascading_gic_irq(d) || gic_irq(d) < 16)
323 return -EINVAL;
324
325 if (vcpu)
326 irqd_set_forwarded_to_vcpu(d);
327 else
328 irqd_clr_forwarded_to_vcpu(d);
329 return 0;
330 }
331
gic_retrigger(struct irq_data * data)332 static int gic_retrigger(struct irq_data *data)
333 {
334 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
335 }
336
gic_handle_irq(struct pt_regs * regs)337 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
338 {
339 u32 irqstat, irqnr;
340 struct gic_chip_data *gic = &gic_data[0];
341 void __iomem *cpu_base = gic_data_cpu_base(gic);
342
343 do {
344 irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
345 irqnr = irqstat & GICC_IAR_INT_ID_MASK;
346
347 if (unlikely(irqnr >= 1020))
348 break;
349
350 if (static_branch_likely(&supports_deactivate_key))
351 writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
352 isb();
353
354 /*
355 * Ensure any shared data written by the CPU sending the IPI
356 * is read after we've read the ACK register on the GIC.
357 *
358 * Pairs with the write barrier in gic_ipi_send_mask
359 */
360 if (irqnr <= 15) {
361 smp_rmb();
362
363 /*
364 * The GIC encodes the source CPU in GICC_IAR,
365 * leading to the deactivation to fail if not
366 * written back as is to GICC_EOI. Stash the INTID
367 * away for gic_eoi_irq() to write back. This only
368 * works because we don't nest SGIs...
369 */
370 this_cpu_write(sgi_intid, irqstat);
371 }
372
373 generic_handle_domain_irq(gic->domain, irqnr);
374 } while (1);
375 }
376
gic_handle_cascade_irq(struct irq_desc * desc)377 static void gic_handle_cascade_irq(struct irq_desc *desc)
378 {
379 struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
380 struct irq_chip *chip = irq_desc_get_chip(desc);
381 unsigned int gic_irq;
382 unsigned long status;
383 int ret;
384
385 chained_irq_enter(chip, desc);
386
387 status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
388
389 gic_irq = (status & GICC_IAR_INT_ID_MASK);
390 if (gic_irq == GICC_INT_SPURIOUS)
391 goto out;
392
393 isb();
394 ret = generic_handle_domain_irq(chip_data->domain, gic_irq);
395 if (unlikely(ret))
396 handle_bad_irq(desc);
397 out:
398 chained_irq_exit(chip, desc);
399 }
400
gic_irq_print_chip(struct irq_data * d,struct seq_file * p)401 static void gic_irq_print_chip(struct irq_data *d, struct seq_file *p)
402 {
403 struct gic_chip_data *gic = irq_data_get_irq_chip_data(d);
404
405 if (gic->domain->pm_dev)
406 seq_printf(p, gic->domain->pm_dev->of_node->name);
407 else
408 seq_printf(p, "GIC-%d", (int)(gic - &gic_data[0]));
409 }
410
gic_cascade_irq(unsigned int gic_nr,unsigned int irq)411 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
412 {
413 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
414 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
415 &gic_data[gic_nr]);
416 }
417
gic_get_cpumask(struct gic_chip_data * gic)418 static u8 gic_get_cpumask(struct gic_chip_data *gic)
419 {
420 void __iomem *base = gic_data_dist_base(gic);
421 u32 mask, i;
422
423 for (i = mask = 0; i < 32; i += 4) {
424 mask = readl_relaxed(base + GIC_DIST_TARGET + i);
425 mask |= mask >> 16;
426 mask |= mask >> 8;
427 if (mask)
428 break;
429 }
430
431 if (!mask && num_possible_cpus() > 1)
432 pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
433
434 return mask;
435 }
436
gic_check_gicv2(void __iomem * base)437 static bool gic_check_gicv2(void __iomem *base)
438 {
439 u32 val = readl_relaxed(base + GIC_CPU_IDENT);
440 return (val & 0xff0fff) == 0x02043B;
441 }
442
gic_cpu_if_up(struct gic_chip_data * gic)443 static void gic_cpu_if_up(struct gic_chip_data *gic)
444 {
445 void __iomem *cpu_base = gic_data_cpu_base(gic);
446 u32 bypass = 0;
447 u32 mode = 0;
448 int i;
449
450 if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
451 mode = GIC_CPU_CTRL_EOImodeNS;
452
453 if (gic_check_gicv2(cpu_base))
454 for (i = 0; i < 4; i++)
455 writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
456
457 /*
458 * Preserve bypass disable bits to be written back later
459 */
460 bypass = readl(cpu_base + GIC_CPU_CTRL);
461 bypass &= GICC_DIS_BYPASS_MASK;
462
463 writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
464 }
465
466
gic_dist_init(struct gic_chip_data * gic)467 static void gic_dist_init(struct gic_chip_data *gic)
468 {
469 unsigned int i;
470 u32 cpumask;
471 unsigned int gic_irqs = gic->gic_irqs;
472 void __iomem *base = gic_data_dist_base(gic);
473
474 writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
475
476 /*
477 * Set all global interrupts to this CPU only.
478 */
479 cpumask = gic_get_cpumask(gic);
480 cpumask |= cpumask << 8;
481 cpumask |= cpumask << 16;
482 for (i = 32; i < gic_irqs; i += 4)
483 writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
484
485 gic_dist_config(base, gic_irqs, NULL);
486
487 writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
488 }
489
gic_cpu_init(struct gic_chip_data * gic)490 static int gic_cpu_init(struct gic_chip_data *gic)
491 {
492 void __iomem *dist_base = gic_data_dist_base(gic);
493 void __iomem *base = gic_data_cpu_base(gic);
494 unsigned int cpu_mask, cpu = smp_processor_id();
495 int i;
496
497 /*
498 * Setting up the CPU map is only relevant for the primary GIC
499 * because any nested/secondary GICs do not directly interface
500 * with the CPU(s).
501 */
502 if (gic == &gic_data[0]) {
503 /*
504 * Get what the GIC says our CPU mask is.
505 */
506 if (WARN_ON(cpu >= NR_GIC_CPU_IF))
507 return -EINVAL;
508
509 gic_check_cpu_features();
510 cpu_mask = gic_get_cpumask(gic);
511 gic_cpu_map[cpu] = cpu_mask;
512
513 /*
514 * Clear our mask from the other map entries in case they're
515 * still undefined.
516 */
517 for (i = 0; i < NR_GIC_CPU_IF; i++)
518 if (i != cpu)
519 gic_cpu_map[i] &= ~cpu_mask;
520 }
521
522 gic_cpu_config(dist_base, 32, NULL);
523
524 writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
525 gic_cpu_if_up(gic);
526
527 return 0;
528 }
529
gic_cpu_if_down(unsigned int gic_nr)530 int gic_cpu_if_down(unsigned int gic_nr)
531 {
532 void __iomem *cpu_base;
533 u32 val = 0;
534
535 if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
536 return -EINVAL;
537
538 cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
539 val = readl(cpu_base + GIC_CPU_CTRL);
540 val &= ~GICC_ENABLE;
541 writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
542
543 return 0;
544 }
545
546 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
547 /*
548 * Saves the GIC distributor registers during suspend or idle. Must be called
549 * with interrupts disabled but before powering down the GIC. After calling
550 * this function, no interrupts will be delivered by the GIC, and another
551 * platform-specific wakeup source must be enabled.
552 */
gic_dist_save(struct gic_chip_data * gic)553 void gic_dist_save(struct gic_chip_data *gic)
554 {
555 unsigned int gic_irqs;
556 void __iomem *dist_base;
557 int i;
558
559 if (WARN_ON(!gic))
560 return;
561
562 gic_irqs = gic->gic_irqs;
563 dist_base = gic_data_dist_base(gic);
564
565 if (!dist_base)
566 return;
567
568 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
569 gic->saved_spi_conf[i] =
570 readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
571
572 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
573 gic->saved_spi_target[i] =
574 readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
575
576 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
577 gic->saved_spi_enable[i] =
578 readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
579
580 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
581 gic->saved_spi_active[i] =
582 readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
583 }
584
585 /*
586 * Restores the GIC distributor registers during resume or when coming out of
587 * idle. Must be called before enabling interrupts. If a level interrupt
588 * that occurred while the GIC was suspended is still present, it will be
589 * handled normally, but any edge interrupts that occurred will not be seen by
590 * the GIC and need to be handled by the platform-specific wakeup source.
591 */
gic_dist_restore(struct gic_chip_data * gic)592 void gic_dist_restore(struct gic_chip_data *gic)
593 {
594 unsigned int gic_irqs;
595 unsigned int i;
596 void __iomem *dist_base;
597
598 if (WARN_ON(!gic))
599 return;
600
601 gic_irqs = gic->gic_irqs;
602 dist_base = gic_data_dist_base(gic);
603
604 if (!dist_base)
605 return;
606
607 writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
608
609 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
610 writel_relaxed(gic->saved_spi_conf[i],
611 dist_base + GIC_DIST_CONFIG + i * 4);
612
613 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
614 writel_relaxed(GICD_INT_DEF_PRI_X4,
615 dist_base + GIC_DIST_PRI + i * 4);
616
617 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
618 writel_relaxed(gic->saved_spi_target[i],
619 dist_base + GIC_DIST_TARGET + i * 4);
620
621 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
622 writel_relaxed(GICD_INT_EN_CLR_X32,
623 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
624 writel_relaxed(gic->saved_spi_enable[i],
625 dist_base + GIC_DIST_ENABLE_SET + i * 4);
626 }
627
628 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
629 writel_relaxed(GICD_INT_EN_CLR_X32,
630 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
631 writel_relaxed(gic->saved_spi_active[i],
632 dist_base + GIC_DIST_ACTIVE_SET + i * 4);
633 }
634
635 writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
636 }
637
gic_cpu_save(struct gic_chip_data * gic)638 void gic_cpu_save(struct gic_chip_data *gic)
639 {
640 int i;
641 u32 *ptr;
642 void __iomem *dist_base;
643 void __iomem *cpu_base;
644
645 if (WARN_ON(!gic))
646 return;
647
648 dist_base = gic_data_dist_base(gic);
649 cpu_base = gic_data_cpu_base(gic);
650
651 if (!dist_base || !cpu_base)
652 return;
653
654 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
655 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
656 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
657
658 ptr = raw_cpu_ptr(gic->saved_ppi_active);
659 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
660 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
661
662 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
663 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
664 ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
665
666 }
667
gic_cpu_restore(struct gic_chip_data * gic)668 void gic_cpu_restore(struct gic_chip_data *gic)
669 {
670 int i;
671 u32 *ptr;
672 void __iomem *dist_base;
673 void __iomem *cpu_base;
674
675 if (WARN_ON(!gic))
676 return;
677
678 dist_base = gic_data_dist_base(gic);
679 cpu_base = gic_data_cpu_base(gic);
680
681 if (!dist_base || !cpu_base)
682 return;
683
684 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
685 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
686 writel_relaxed(GICD_INT_EN_CLR_X32,
687 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
688 writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
689 }
690
691 ptr = raw_cpu_ptr(gic->saved_ppi_active);
692 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
693 writel_relaxed(GICD_INT_EN_CLR_X32,
694 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
695 writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
696 }
697
698 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
699 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
700 writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
701
702 for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
703 writel_relaxed(GICD_INT_DEF_PRI_X4,
704 dist_base + GIC_DIST_PRI + i * 4);
705
706 writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
707 gic_cpu_if_up(gic);
708 }
709
gic_notifier(struct notifier_block * self,unsigned long cmd,void * v)710 static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
711 {
712 int i;
713
714 for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
715 switch (cmd) {
716 case CPU_PM_ENTER:
717 gic_cpu_save(&gic_data[i]);
718 break;
719 case CPU_PM_ENTER_FAILED:
720 case CPU_PM_EXIT:
721 gic_cpu_restore(&gic_data[i]);
722 break;
723 case CPU_CLUSTER_PM_ENTER:
724 gic_dist_save(&gic_data[i]);
725 break;
726 case CPU_CLUSTER_PM_ENTER_FAILED:
727 case CPU_CLUSTER_PM_EXIT:
728 gic_dist_restore(&gic_data[i]);
729 break;
730 }
731 }
732
733 return NOTIFY_OK;
734 }
735
736 static struct notifier_block gic_notifier_block = {
737 .notifier_call = gic_notifier,
738 };
739
gic_pm_init(struct gic_chip_data * gic)740 static int gic_pm_init(struct gic_chip_data *gic)
741 {
742 gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
743 sizeof(u32));
744 if (WARN_ON(!gic->saved_ppi_enable))
745 return -ENOMEM;
746
747 gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
748 sizeof(u32));
749 if (WARN_ON(!gic->saved_ppi_active))
750 goto free_ppi_enable;
751
752 gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
753 sizeof(u32));
754 if (WARN_ON(!gic->saved_ppi_conf))
755 goto free_ppi_active;
756
757 if (gic == &gic_data[0])
758 cpu_pm_register_notifier(&gic_notifier_block);
759
760 return 0;
761
762 free_ppi_active:
763 free_percpu(gic->saved_ppi_active);
764 free_ppi_enable:
765 free_percpu(gic->saved_ppi_enable);
766
767 return -ENOMEM;
768 }
769 #else
gic_pm_init(struct gic_chip_data * gic)770 static int gic_pm_init(struct gic_chip_data *gic)
771 {
772 return 0;
773 }
774 #endif
775
776 #ifdef CONFIG_SMP
rmw_writeb(u8 bval,void __iomem * addr)777 static void rmw_writeb(u8 bval, void __iomem *addr)
778 {
779 static DEFINE_RAW_SPINLOCK(rmw_lock);
780 unsigned long offset = (unsigned long)addr & 3UL;
781 unsigned long shift = offset * 8;
782 unsigned long flags;
783 u32 val;
784
785 raw_spin_lock_irqsave(&rmw_lock, flags);
786
787 addr -= offset;
788 val = readl_relaxed(addr);
789 val &= ~GENMASK(shift + 7, shift);
790 val |= bval << shift;
791 writel_relaxed(val, addr);
792
793 raw_spin_unlock_irqrestore(&rmw_lock, flags);
794 }
795
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)796 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
797 bool force)
798 {
799 void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
800 struct gic_chip_data *gic = irq_data_get_irq_chip_data(d);
801 unsigned int cpu;
802
803 if (unlikely(gic != &gic_data[0]))
804 return -EINVAL;
805
806 if (!force)
807 cpu = cpumask_any_and(mask_val, cpu_online_mask);
808 else
809 cpu = cpumask_first(mask_val);
810
811 if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
812 return -EINVAL;
813
814 if (static_branch_unlikely(&needs_rmw_access))
815 rmw_writeb(gic_cpu_map[cpu], reg);
816 else
817 writeb_relaxed(gic_cpu_map[cpu], reg);
818 irq_data_update_effective_affinity(d, cpumask_of(cpu));
819
820 return IRQ_SET_MASK_OK_DONE;
821 }
822
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)823 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
824 {
825 int cpu;
826 unsigned long flags, map = 0;
827
828 if (unlikely(nr_cpu_ids == 1)) {
829 /* Only one CPU? let's do a self-IPI... */
830 writel_relaxed(2 << 24 | d->hwirq,
831 gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
832 return;
833 }
834
835 gic_lock_irqsave(flags);
836
837 /* Convert our logical CPU mask into a physical one. */
838 for_each_cpu(cpu, mask)
839 map |= gic_cpu_map[cpu];
840
841 /*
842 * Ensure that stores to Normal memory are visible to the
843 * other CPUs before they observe us issuing the IPI.
844 */
845 dmb(ishst);
846
847 /* this always happens on GIC0 */
848 writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
849
850 gic_unlock_irqrestore(flags);
851 }
852
gic_starting_cpu(unsigned int cpu)853 static int gic_starting_cpu(unsigned int cpu)
854 {
855 gic_cpu_init(&gic_data[0]);
856 return 0;
857 }
858
gic_smp_init(void)859 static __init void gic_smp_init(void)
860 {
861 struct irq_fwspec sgi_fwspec = {
862 .fwnode = gic_data[0].domain->fwnode,
863 .param_count = 1,
864 };
865 int base_sgi;
866
867 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
868 "irqchip/arm/gic:starting",
869 gic_starting_cpu, NULL);
870
871 base_sgi = irq_domain_alloc_irqs(gic_data[0].domain, 8, NUMA_NO_NODE, &sgi_fwspec);
872 if (WARN_ON(base_sgi <= 0))
873 return;
874
875 set_smp_ipi_range(base_sgi, 8);
876 }
877 #else
878 #define gic_smp_init() do { } while(0)
879 #define gic_set_affinity NULL
880 #define gic_ipi_send_mask NULL
881 #endif
882
883 static const struct irq_chip gic_chip = {
884 .irq_mask = gic_mask_irq,
885 .irq_unmask = gic_unmask_irq,
886 .irq_eoi = gic_eoi_irq,
887 .irq_set_type = gic_set_type,
888 .irq_retrigger = gic_retrigger,
889 .irq_set_affinity = gic_set_affinity,
890 .ipi_send_mask = gic_ipi_send_mask,
891 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
892 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
893 .irq_print_chip = gic_irq_print_chip,
894 .flags = IRQCHIP_SET_TYPE_MASKED |
895 IRQCHIP_SKIP_SET_WAKE |
896 IRQCHIP_MASK_ON_SUSPEND,
897 };
898
899 static const struct irq_chip gic_chip_mode1 = {
900 .name = "GICv2",
901 .irq_mask = gic_eoimode1_mask_irq,
902 .irq_unmask = gic_unmask_irq,
903 .irq_eoi = gic_eoimode1_eoi_irq,
904 .irq_set_type = gic_set_type,
905 .irq_retrigger = gic_retrigger,
906 .irq_set_affinity = gic_set_affinity,
907 .ipi_send_mask = gic_ipi_send_mask,
908 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
909 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
910 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
911 .flags = IRQCHIP_SET_TYPE_MASKED |
912 IRQCHIP_SKIP_SET_WAKE |
913 IRQCHIP_MASK_ON_SUSPEND,
914 };
915
916 #ifdef CONFIG_BL_SWITCHER
917 /*
918 * gic_send_sgi - send a SGI directly to given CPU interface number
919 *
920 * cpu_id: the ID for the destination CPU interface
921 * irq: the IPI number to send a SGI for
922 */
gic_send_sgi(unsigned int cpu_id,unsigned int irq)923 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
924 {
925 BUG_ON(cpu_id >= NR_GIC_CPU_IF);
926 cpu_id = 1 << cpu_id;
927 /* this always happens on GIC0 */
928 writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
929 }
930
931 /*
932 * gic_get_cpu_id - get the CPU interface ID for the specified CPU
933 *
934 * @cpu: the logical CPU number to get the GIC ID for.
935 *
936 * Return the CPU interface ID for the given logical CPU number,
937 * or -1 if the CPU number is too large or the interface ID is
938 * unknown (more than one bit set).
939 */
gic_get_cpu_id(unsigned int cpu)940 int gic_get_cpu_id(unsigned int cpu)
941 {
942 unsigned int cpu_bit;
943
944 if (cpu >= NR_GIC_CPU_IF)
945 return -1;
946 cpu_bit = gic_cpu_map[cpu];
947 if (cpu_bit & (cpu_bit - 1))
948 return -1;
949 return __ffs(cpu_bit);
950 }
951
952 /*
953 * gic_migrate_target - migrate IRQs to another CPU interface
954 *
955 * @new_cpu_id: the CPU target ID to migrate IRQs to
956 *
957 * Migrate all peripheral interrupts with a target matching the current CPU
958 * to the interface corresponding to @new_cpu_id. The CPU interface mapping
959 * is also updated. Targets to other CPU interfaces are unchanged.
960 * This must be called with IRQs locally disabled.
961 */
gic_migrate_target(unsigned int new_cpu_id)962 void gic_migrate_target(unsigned int new_cpu_id)
963 {
964 unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
965 void __iomem *dist_base;
966 int i, ror_val, cpu = smp_processor_id();
967 u32 val, cur_target_mask, active_mask;
968
969 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
970
971 dist_base = gic_data_dist_base(&gic_data[gic_nr]);
972 if (!dist_base)
973 return;
974 gic_irqs = gic_data[gic_nr].gic_irqs;
975
976 cur_cpu_id = __ffs(gic_cpu_map[cpu]);
977 cur_target_mask = 0x01010101 << cur_cpu_id;
978 ror_val = (cur_cpu_id - new_cpu_id) & 31;
979
980 gic_lock();
981
982 /* Update the target interface for this logical CPU */
983 gic_cpu_map[cpu] = 1 << new_cpu_id;
984
985 /*
986 * Find all the peripheral interrupts targeting the current
987 * CPU interface and migrate them to the new CPU interface.
988 * We skip DIST_TARGET 0 to 7 as they are read-only.
989 */
990 for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
991 val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
992 active_mask = val & cur_target_mask;
993 if (active_mask) {
994 val &= ~active_mask;
995 val |= ror32(active_mask, ror_val);
996 writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
997 }
998 }
999
1000 gic_unlock();
1001
1002 /*
1003 * Now let's migrate and clear any potential SGIs that might be
1004 * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET
1005 * is a banked register, we can only forward the SGI using
1006 * GIC_DIST_SOFTINT. The original SGI source is lost but Linux
1007 * doesn't use that information anyway.
1008 *
1009 * For the same reason we do not adjust SGI source information
1010 * for previously sent SGIs by us to other CPUs either.
1011 */
1012 for (i = 0; i < 16; i += 4) {
1013 int j;
1014 val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
1015 if (!val)
1016 continue;
1017 writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
1018 for (j = i; j < i + 4; j++) {
1019 if (val & 0xff)
1020 writel_relaxed((1 << (new_cpu_id + 16)) | j,
1021 dist_base + GIC_DIST_SOFTINT);
1022 val >>= 8;
1023 }
1024 }
1025 }
1026
1027 /*
1028 * gic_get_sgir_physaddr - get the physical address for the SGI register
1029 *
1030 * Return the physical address of the SGI register to be used
1031 * by some early assembly code when the kernel is not yet available.
1032 */
1033 static unsigned long gic_dist_physaddr;
1034
gic_get_sgir_physaddr(void)1035 unsigned long gic_get_sgir_physaddr(void)
1036 {
1037 if (!gic_dist_physaddr)
1038 return 0;
1039 return gic_dist_physaddr + GIC_DIST_SOFTINT;
1040 }
1041
gic_init_physaddr(struct device_node * node)1042 static void __init gic_init_physaddr(struct device_node *node)
1043 {
1044 struct resource res;
1045 if (of_address_to_resource(node, 0, &res) == 0) {
1046 gic_dist_physaddr = res.start;
1047 pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
1048 }
1049 }
1050
1051 #else
1052 #define gic_init_physaddr(node) do { } while (0)
1053 #endif
1054
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1055 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1056 irq_hw_number_t hw)
1057 {
1058 struct gic_chip_data *gic = d->host_data;
1059 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1060 const struct irq_chip *chip;
1061
1062 chip = (static_branch_likely(&supports_deactivate_key) &&
1063 gic == &gic_data[0]) ? &gic_chip_mode1 : &gic_chip;
1064
1065 switch (hw) {
1066 case 0 ... 31:
1067 irq_set_percpu_devid(irq);
1068 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1069 handle_percpu_devid_irq, NULL, NULL);
1070 break;
1071 default:
1072 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1073 handle_fasteoi_irq, NULL, NULL);
1074 irq_set_probe(irq);
1075 irqd_set_single_target(irqd);
1076 break;
1077 }
1078
1079 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1080 irqd_set_handle_enforce_irqctx(irqd);
1081 return 0;
1082 }
1083
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1084 static int gic_irq_domain_translate(struct irq_domain *d,
1085 struct irq_fwspec *fwspec,
1086 unsigned long *hwirq,
1087 unsigned int *type)
1088 {
1089 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1090 *hwirq = fwspec->param[0];
1091 *type = IRQ_TYPE_EDGE_RISING;
1092 return 0;
1093 }
1094
1095 if (is_of_node(fwspec->fwnode)) {
1096 if (fwspec->param_count < 3)
1097 return -EINVAL;
1098
1099 switch (fwspec->param[0]) {
1100 case 0: /* SPI */
1101 *hwirq = fwspec->param[1] + 32;
1102 break;
1103 case 1: /* PPI */
1104 *hwirq = fwspec->param[1] + 16;
1105 break;
1106 default:
1107 return -EINVAL;
1108 }
1109
1110 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1111
1112 /* Make it clear that broken DTs are... broken */
1113 WARN(*type == IRQ_TYPE_NONE,
1114 "HW irq %ld has invalid type\n", *hwirq);
1115 return 0;
1116 }
1117
1118 if (is_fwnode_irqchip(fwspec->fwnode)) {
1119 if(fwspec->param_count != 2)
1120 return -EINVAL;
1121
1122 if (fwspec->param[0] < 16) {
1123 pr_err(FW_BUG "Illegal GSI%d translation request\n",
1124 fwspec->param[0]);
1125 return -EINVAL;
1126 }
1127
1128 *hwirq = fwspec->param[0];
1129 *type = fwspec->param[1];
1130
1131 WARN(*type == IRQ_TYPE_NONE,
1132 "HW irq %ld has invalid type\n", *hwirq);
1133 return 0;
1134 }
1135
1136 return -EINVAL;
1137 }
1138
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1139 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1140 unsigned int nr_irqs, void *arg)
1141 {
1142 int i, ret;
1143 irq_hw_number_t hwirq;
1144 unsigned int type = IRQ_TYPE_NONE;
1145 struct irq_fwspec *fwspec = arg;
1146
1147 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1148 if (ret)
1149 return ret;
1150
1151 for (i = 0; i < nr_irqs; i++) {
1152 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1153 if (ret)
1154 return ret;
1155 }
1156
1157 return 0;
1158 }
1159
1160 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1161 .translate = gic_irq_domain_translate,
1162 .alloc = gic_irq_domain_alloc,
1163 .free = irq_domain_free_irqs_top,
1164 };
1165
gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1166 static int gic_init_bases(struct gic_chip_data *gic,
1167 struct fwnode_handle *handle)
1168 {
1169 int gic_irqs, ret;
1170
1171 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1172 /* Frankein-GIC without banked registers... */
1173 unsigned int cpu;
1174
1175 gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1176 gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1177 if (WARN_ON(!gic->dist_base.percpu_base ||
1178 !gic->cpu_base.percpu_base)) {
1179 ret = -ENOMEM;
1180 goto error;
1181 }
1182
1183 for_each_possible_cpu(cpu) {
1184 u32 mpidr = cpu_logical_map(cpu);
1185 u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1186 unsigned long offset = gic->percpu_offset * core_id;
1187 *per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1188 gic->raw_dist_base + offset;
1189 *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1190 gic->raw_cpu_base + offset;
1191 }
1192
1193 enable_frankengic();
1194 } else {
1195 /* Normal, sane GIC... */
1196 WARN(gic->percpu_offset,
1197 "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1198 gic->percpu_offset);
1199 gic->dist_base.common_base = gic->raw_dist_base;
1200 gic->cpu_base.common_base = gic->raw_cpu_base;
1201 }
1202
1203 /*
1204 * Find out how many interrupts are supported.
1205 * The GIC only supports up to 1020 interrupt sources.
1206 */
1207 gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1208 gic_irqs = (gic_irqs + 1) * 32;
1209 if (gic_irqs > 1020)
1210 gic_irqs = 1020;
1211 gic->gic_irqs = gic_irqs;
1212
1213 gic->domain = irq_domain_create_linear(handle, gic_irqs,
1214 &gic_irq_domain_hierarchy_ops,
1215 gic);
1216 if (WARN_ON(!gic->domain)) {
1217 ret = -ENODEV;
1218 goto error;
1219 }
1220
1221 gic_dist_init(gic);
1222 ret = gic_cpu_init(gic);
1223 if (ret)
1224 goto error;
1225
1226 ret = gic_pm_init(gic);
1227 if (ret)
1228 goto error;
1229
1230 return 0;
1231
1232 error:
1233 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1234 free_percpu(gic->dist_base.percpu_base);
1235 free_percpu(gic->cpu_base.percpu_base);
1236 }
1237
1238 return ret;
1239 }
1240
__gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1241 static int __init __gic_init_bases(struct gic_chip_data *gic,
1242 struct fwnode_handle *handle)
1243 {
1244 int i, ret;
1245
1246 if (WARN_ON(!gic || gic->domain))
1247 return -EINVAL;
1248
1249 if (gic == &gic_data[0]) {
1250 /*
1251 * Initialize the CPU interface map to all CPUs.
1252 * It will be refined as each CPU probes its ID.
1253 * This is only necessary for the primary GIC.
1254 */
1255 for (i = 0; i < NR_GIC_CPU_IF; i++)
1256 gic_cpu_map[i] = 0xff;
1257
1258 set_handle_irq(gic_handle_irq);
1259 if (static_branch_likely(&supports_deactivate_key))
1260 pr_info("GIC: Using split EOI/Deactivate mode\n");
1261 }
1262
1263 ret = gic_init_bases(gic, handle);
1264 if (gic == &gic_data[0])
1265 gic_smp_init();
1266
1267 return ret;
1268 }
1269
gic_teardown(struct gic_chip_data * gic)1270 static void gic_teardown(struct gic_chip_data *gic)
1271 {
1272 if (WARN_ON(!gic))
1273 return;
1274
1275 if (gic->raw_dist_base)
1276 iounmap(gic->raw_dist_base);
1277 if (gic->raw_cpu_base)
1278 iounmap(gic->raw_cpu_base);
1279 }
1280
1281 static int gic_cnt __initdata;
1282 static bool gicv2_force_probe;
1283
gicv2_force_probe_cfg(char * buf)1284 static int __init gicv2_force_probe_cfg(char *buf)
1285 {
1286 return kstrtobool(buf, &gicv2_force_probe);
1287 }
1288 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1289
gic_check_eoimode(struct device_node * node,void __iomem ** base)1290 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1291 {
1292 struct resource cpuif_res;
1293
1294 of_address_to_resource(node, 1, &cpuif_res);
1295
1296 if (!is_hyp_mode_available())
1297 return false;
1298 if (resource_size(&cpuif_res) < SZ_8K) {
1299 void __iomem *alt;
1300 /*
1301 * Check for a stupid firmware that only exposes the
1302 * first page of a GICv2.
1303 */
1304 if (!gic_check_gicv2(*base))
1305 return false;
1306
1307 if (!gicv2_force_probe) {
1308 pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1309 return false;
1310 }
1311
1312 alt = ioremap(cpuif_res.start, SZ_8K);
1313 if (!alt)
1314 return false;
1315 if (!gic_check_gicv2(alt + SZ_4K)) {
1316 /*
1317 * The first page was that of a GICv2, and
1318 * the second was *something*. Let's trust it
1319 * to be a GICv2, and update the mapping.
1320 */
1321 pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1322 &cpuif_res.start);
1323 iounmap(*base);
1324 *base = alt;
1325 return true;
1326 }
1327
1328 /*
1329 * We detected *two* initial GICv2 pages in a
1330 * row. Could be a GICv2 aliased over two 64kB
1331 * pages. Update the resource, map the iospace, and
1332 * pray.
1333 */
1334 iounmap(alt);
1335 alt = ioremap(cpuif_res.start, SZ_128K);
1336 if (!alt)
1337 return false;
1338 pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1339 &cpuif_res.start);
1340 cpuif_res.end = cpuif_res.start + SZ_128K -1;
1341 iounmap(*base);
1342 *base = alt;
1343 }
1344 if (resource_size(&cpuif_res) == SZ_128K) {
1345 /*
1346 * Verify that we have the first 4kB of a GICv2
1347 * aliased over the first 64kB by checking the
1348 * GICC_IIDR register on both ends.
1349 */
1350 if (!gic_check_gicv2(*base) ||
1351 !gic_check_gicv2(*base + 0xf000))
1352 return false;
1353
1354 /*
1355 * Move the base up by 60kB, so that we have a 8kB
1356 * contiguous region, which allows us to use GICC_DIR
1357 * at its normal offset. Please pass me that bucket.
1358 */
1359 *base += 0xf000;
1360 cpuif_res.start += 0xf000;
1361 pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1362 &cpuif_res.start);
1363 }
1364
1365 return true;
1366 }
1367
gic_enable_rmw_access(void * data)1368 static bool gic_enable_rmw_access(void *data)
1369 {
1370 /*
1371 * The EMEV2 class of machines has a broken interconnect, and
1372 * locks up on accesses that are less than 32bit. So far, only
1373 * the affinity setting requires it.
1374 */
1375 if (of_machine_is_compatible("renesas,emev2")) {
1376 static_branch_enable(&needs_rmw_access);
1377 return true;
1378 }
1379
1380 return false;
1381 }
1382
1383 static const struct gic_quirk gic_quirks[] = {
1384 {
1385 .desc = "broken byte access",
1386 .compatible = "arm,pl390",
1387 .init = gic_enable_rmw_access,
1388 },
1389 { },
1390 };
1391
gic_of_setup(struct gic_chip_data * gic,struct device_node * node)1392 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1393 {
1394 if (!gic || !node)
1395 return -EINVAL;
1396
1397 gic->raw_dist_base = of_iomap(node, 0);
1398 if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1399 goto error;
1400
1401 gic->raw_cpu_base = of_iomap(node, 1);
1402 if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1403 goto error;
1404
1405 if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1406 gic->percpu_offset = 0;
1407
1408 gic_enable_of_quirks(node, gic_quirks, gic);
1409
1410 return 0;
1411
1412 error:
1413 gic_teardown(gic);
1414
1415 return -ENOMEM;
1416 }
1417
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1418 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1419 {
1420 int ret;
1421
1422 if (!dev || !dev->of_node || !gic || !irq)
1423 return -EINVAL;
1424
1425 *gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1426 if (!*gic)
1427 return -ENOMEM;
1428
1429 ret = gic_of_setup(*gic, dev->of_node);
1430 if (ret)
1431 return ret;
1432
1433 ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1434 if (ret) {
1435 gic_teardown(*gic);
1436 return ret;
1437 }
1438
1439 irq_domain_set_pm_device((*gic)->domain, dev);
1440 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1441
1442 return 0;
1443 }
1444
gic_of_setup_kvm_info(struct device_node * node)1445 static void __init gic_of_setup_kvm_info(struct device_node *node)
1446 {
1447 int ret;
1448 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1449 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1450
1451 gic_v2_kvm_info.type = GIC_V2;
1452
1453 gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1454 if (!gic_v2_kvm_info.maint_irq)
1455 return;
1456
1457 ret = of_address_to_resource(node, 2, vctrl_res);
1458 if (ret)
1459 return;
1460
1461 ret = of_address_to_resource(node, 3, vcpu_res);
1462 if (ret)
1463 return;
1464
1465 if (static_branch_likely(&supports_deactivate_key))
1466 vgic_set_kvm_info(&gic_v2_kvm_info);
1467 }
1468
1469 int __init
gic_of_init(struct device_node * node,struct device_node * parent)1470 gic_of_init(struct device_node *node, struct device_node *parent)
1471 {
1472 struct gic_chip_data *gic;
1473 int irq, ret;
1474
1475 if (WARN_ON(!node))
1476 return -ENODEV;
1477
1478 if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1479 return -EINVAL;
1480
1481 gic = &gic_data[gic_cnt];
1482
1483 ret = gic_of_setup(gic, node);
1484 if (ret)
1485 return ret;
1486
1487 /*
1488 * Disable split EOI/Deactivate if either HYP is not available
1489 * or the CPU interface is too small.
1490 */
1491 if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1492 static_branch_disable(&supports_deactivate_key);
1493
1494 ret = __gic_init_bases(gic, &node->fwnode);
1495 if (ret) {
1496 gic_teardown(gic);
1497 return ret;
1498 }
1499
1500 if (!gic_cnt) {
1501 gic_init_physaddr(node);
1502 gic_of_setup_kvm_info(node);
1503 }
1504
1505 if (parent) {
1506 irq = irq_of_parse_and_map(node, 0);
1507 gic_cascade_irq(gic_cnt, irq);
1508 }
1509
1510 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1511 gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1512
1513 gic_cnt++;
1514 return 0;
1515 }
1516 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1517 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1518 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1519 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1520 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1521 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1522 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1523 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1524 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1525
1526 #ifdef CONFIG_ACPI
1527 static struct
1528 {
1529 phys_addr_t cpu_phys_base;
1530 u32 maint_irq;
1531 int maint_irq_mode;
1532 phys_addr_t vctrl_base;
1533 phys_addr_t vcpu_base;
1534 } acpi_data __initdata;
1535
1536 static int __init
gic_acpi_parse_madt_cpu(union acpi_subtable_headers * header,const unsigned long end)1537 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1538 const unsigned long end)
1539 {
1540 struct acpi_madt_generic_interrupt *processor;
1541 phys_addr_t gic_cpu_base;
1542 static int cpu_base_assigned;
1543
1544 processor = (struct acpi_madt_generic_interrupt *)header;
1545
1546 if (BAD_MADT_GICC_ENTRY(processor, end))
1547 return -EINVAL;
1548
1549 /*
1550 * There is no support for non-banked GICv1/2 register in ACPI spec.
1551 * All CPU interface addresses have to be the same.
1552 */
1553 gic_cpu_base = processor->base_address;
1554 if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1555 return -EINVAL;
1556
1557 acpi_data.cpu_phys_base = gic_cpu_base;
1558 acpi_data.maint_irq = processor->vgic_interrupt;
1559 acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1560 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1561 acpi_data.vctrl_base = processor->gich_base_address;
1562 acpi_data.vcpu_base = processor->gicv_base_address;
1563
1564 cpu_base_assigned = 1;
1565 return 0;
1566 }
1567
1568 /* The things you have to do to just *count* something... */
acpi_dummy_func(union acpi_subtable_headers * header,const unsigned long end)1569 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1570 const unsigned long end)
1571 {
1572 return 0;
1573 }
1574
acpi_gic_redist_is_present(void)1575 static bool __init acpi_gic_redist_is_present(void)
1576 {
1577 return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1578 acpi_dummy_func, 0) > 0;
1579 }
1580
gic_validate_dist(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)1581 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1582 struct acpi_probe_entry *ape)
1583 {
1584 struct acpi_madt_generic_distributor *dist;
1585 dist = (struct acpi_madt_generic_distributor *)header;
1586
1587 return (dist->version == ape->driver_data &&
1588 (dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1589 !acpi_gic_redist_is_present()));
1590 }
1591
1592 #define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K)
1593 #define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K)
1594 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
1595 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
1596
gic_acpi_setup_kvm_info(void)1597 static void __init gic_acpi_setup_kvm_info(void)
1598 {
1599 int irq;
1600 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1601 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1602
1603 gic_v2_kvm_info.type = GIC_V2;
1604
1605 if (!acpi_data.vctrl_base)
1606 return;
1607
1608 vctrl_res->flags = IORESOURCE_MEM;
1609 vctrl_res->start = acpi_data.vctrl_base;
1610 vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1611
1612 if (!acpi_data.vcpu_base)
1613 return;
1614
1615 vcpu_res->flags = IORESOURCE_MEM;
1616 vcpu_res->start = acpi_data.vcpu_base;
1617 vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1618
1619 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1620 acpi_data.maint_irq_mode,
1621 ACPI_ACTIVE_HIGH);
1622 if (irq <= 0)
1623 return;
1624
1625 gic_v2_kvm_info.maint_irq = irq;
1626
1627 vgic_set_kvm_info(&gic_v2_kvm_info);
1628 }
1629
1630 static struct fwnode_handle *gsi_domain_handle;
1631
gic_v2_get_gsi_domain_id(u32 gsi)1632 static struct fwnode_handle *gic_v2_get_gsi_domain_id(u32 gsi)
1633 {
1634 return gsi_domain_handle;
1635 }
1636
gic_v2_acpi_init(union acpi_subtable_headers * header,const unsigned long end)1637 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1638 const unsigned long end)
1639 {
1640 struct acpi_madt_generic_distributor *dist;
1641 struct gic_chip_data *gic = &gic_data[0];
1642 int count, ret;
1643
1644 /* Collect CPU base addresses */
1645 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1646 gic_acpi_parse_madt_cpu, 0);
1647 if (count <= 0) {
1648 pr_err("No valid GICC entries exist\n");
1649 return -EINVAL;
1650 }
1651
1652 gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1653 if (!gic->raw_cpu_base) {
1654 pr_err("Unable to map GICC registers\n");
1655 return -ENOMEM;
1656 }
1657
1658 dist = (struct acpi_madt_generic_distributor *)header;
1659 gic->raw_dist_base = ioremap(dist->base_address,
1660 ACPI_GICV2_DIST_MEM_SIZE);
1661 if (!gic->raw_dist_base) {
1662 pr_err("Unable to map GICD registers\n");
1663 gic_teardown(gic);
1664 return -ENOMEM;
1665 }
1666
1667 /*
1668 * Disable split EOI/Deactivate if HYP is not available. ACPI
1669 * guarantees that we'll always have a GICv2, so the CPU
1670 * interface will always be the right size.
1671 */
1672 if (!is_hyp_mode_available())
1673 static_branch_disable(&supports_deactivate_key);
1674
1675 /*
1676 * Initialize GIC instance zero (no multi-GIC support).
1677 */
1678 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1679 if (!gsi_domain_handle) {
1680 pr_err("Unable to allocate domain handle\n");
1681 gic_teardown(gic);
1682 return -ENOMEM;
1683 }
1684
1685 ret = __gic_init_bases(gic, gsi_domain_handle);
1686 if (ret) {
1687 pr_err("Failed to initialise GIC\n");
1688 irq_domain_free_fwnode(gsi_domain_handle);
1689 gic_teardown(gic);
1690 return ret;
1691 }
1692
1693 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v2_get_gsi_domain_id);
1694
1695 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1696 gicv2m_init(NULL, gic_data[0].domain);
1697
1698 if (static_branch_likely(&supports_deactivate_key))
1699 gic_acpi_setup_kvm_info();
1700
1701 return 0;
1702 }
1703 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1704 gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1705 gic_v2_acpi_init);
1706 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1707 gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1708 gic_v2_acpi_init);
1709 #endif
1710