xref: /openbmc/linux/drivers/mtd/nand/raw/lpc32xx_mlc.c (revision 5ee9cd065836e5934710ca35653bce7905add20b)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Driver for NAND MLC Controller in LPC32xx
4   *
5   * Author: Roland Stigge <stigge@antcom.de>
6   *
7   * Copyright © 2011 WORK Microwave GmbH
8   * Copyright © 2011, 2012 Roland Stigge
9   *
10   * NAND Flash Controller Operation:
11   * - Read: Auto Decode
12   * - Write: Auto Encode
13   * - Tested Page Sizes: 2048, 4096
14   */
15  
16  #include <linux/slab.h>
17  #include <linux/module.h>
18  #include <linux/platform_device.h>
19  #include <linux/mtd/mtd.h>
20  #include <linux/mtd/rawnand.h>
21  #include <linux/mtd/partitions.h>
22  #include <linux/clk.h>
23  #include <linux/err.h>
24  #include <linux/delay.h>
25  #include <linux/completion.h>
26  #include <linux/interrupt.h>
27  #include <linux/of.h>
28  #include <linux/gpio/consumer.h>
29  #include <linux/mtd/lpc32xx_mlc.h>
30  #include <linux/io.h>
31  #include <linux/mm.h>
32  #include <linux/dma-mapping.h>
33  #include <linux/dmaengine.h>
34  
35  #define DRV_NAME "lpc32xx_mlc"
36  
37  /**********************************************************************
38  * MLC NAND controller register offsets
39  **********************************************************************/
40  
41  #define MLC_BUFF(x)			(x + 0x00000)
42  #define MLC_DATA(x)			(x + 0x08000)
43  #define MLC_CMD(x)			(x + 0x10000)
44  #define MLC_ADDR(x)			(x + 0x10004)
45  #define MLC_ECC_ENC_REG(x)		(x + 0x10008)
46  #define MLC_ECC_DEC_REG(x)		(x + 0x1000C)
47  #define MLC_ECC_AUTO_ENC_REG(x)		(x + 0x10010)
48  #define MLC_ECC_AUTO_DEC_REG(x)		(x + 0x10014)
49  #define MLC_RPR(x)			(x + 0x10018)
50  #define MLC_WPR(x)			(x + 0x1001C)
51  #define MLC_RUBP(x)			(x + 0x10020)
52  #define MLC_ROBP(x)			(x + 0x10024)
53  #define MLC_SW_WP_ADD_LOW(x)		(x + 0x10028)
54  #define MLC_SW_WP_ADD_HIG(x)		(x + 0x1002C)
55  #define MLC_ICR(x)			(x + 0x10030)
56  #define MLC_TIME_REG(x)			(x + 0x10034)
57  #define MLC_IRQ_MR(x)			(x + 0x10038)
58  #define MLC_IRQ_SR(x)			(x + 0x1003C)
59  #define MLC_LOCK_PR(x)			(x + 0x10044)
60  #define MLC_ISR(x)			(x + 0x10048)
61  #define MLC_CEH(x)			(x + 0x1004C)
62  
63  /**********************************************************************
64  * MLC_CMD bit definitions
65  **********************************************************************/
66  #define MLCCMD_RESET			0xFF
67  
68  /**********************************************************************
69  * MLC_ICR bit definitions
70  **********************************************************************/
71  #define MLCICR_WPROT			(1 << 3)
72  #define MLCICR_LARGEBLOCK		(1 << 2)
73  #define MLCICR_LONGADDR			(1 << 1)
74  #define MLCICR_16BIT			(1 << 0)  /* unsupported by LPC32x0! */
75  
76  /**********************************************************************
77  * MLC_TIME_REG bit definitions
78  **********************************************************************/
79  #define MLCTIMEREG_TCEA_DELAY(n)	(((n) & 0x03) << 24)
80  #define MLCTIMEREG_BUSY_DELAY(n)	(((n) & 0x1F) << 19)
81  #define MLCTIMEREG_NAND_TA(n)		(((n) & 0x07) << 16)
82  #define MLCTIMEREG_RD_HIGH(n)		(((n) & 0x0F) << 12)
83  #define MLCTIMEREG_RD_LOW(n)		(((n) & 0x0F) << 8)
84  #define MLCTIMEREG_WR_HIGH(n)		(((n) & 0x0F) << 4)
85  #define MLCTIMEREG_WR_LOW(n)		(((n) & 0x0F) << 0)
86  
87  /**********************************************************************
88  * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
89  **********************************************************************/
90  #define MLCIRQ_NAND_READY		(1 << 5)
91  #define MLCIRQ_CONTROLLER_READY		(1 << 4)
92  #define MLCIRQ_DECODE_FAILURE		(1 << 3)
93  #define MLCIRQ_DECODE_ERROR		(1 << 2)
94  #define MLCIRQ_ECC_READY		(1 << 1)
95  #define MLCIRQ_WRPROT_FAULT		(1 << 0)
96  
97  /**********************************************************************
98  * MLC_LOCK_PR bit definitions
99  **********************************************************************/
100  #define MLCLOCKPR_MAGIC			0xA25E
101  
102  /**********************************************************************
103  * MLC_ISR bit definitions
104  **********************************************************************/
105  #define MLCISR_DECODER_FAILURE		(1 << 6)
106  #define MLCISR_ERRORS			((1 << 4) | (1 << 5))
107  #define MLCISR_ERRORS_DETECTED		(1 << 3)
108  #define MLCISR_ECC_READY		(1 << 2)
109  #define MLCISR_CONTROLLER_READY		(1 << 1)
110  #define MLCISR_NAND_READY		(1 << 0)
111  
112  /**********************************************************************
113  * MLC_CEH bit definitions
114  **********************************************************************/
115  #define MLCCEH_NORMAL			(1 << 0)
116  
117  struct lpc32xx_nand_cfg_mlc {
118  	uint32_t tcea_delay;
119  	uint32_t busy_delay;
120  	uint32_t nand_ta;
121  	uint32_t rd_high;
122  	uint32_t rd_low;
123  	uint32_t wr_high;
124  	uint32_t wr_low;
125  	struct mtd_partition *parts;
126  	unsigned num_parts;
127  };
128  
lpc32xx_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)129  static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
130  				 struct mtd_oob_region *oobregion)
131  {
132  	struct nand_chip *nand_chip = mtd_to_nand(mtd);
133  
134  	if (section >= nand_chip->ecc.steps)
135  		return -ERANGE;
136  
137  	oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
138  	oobregion->length = nand_chip->ecc.bytes;
139  
140  	return 0;
141  }
142  
lpc32xx_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)143  static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
144  				  struct mtd_oob_region *oobregion)
145  {
146  	struct nand_chip *nand_chip = mtd_to_nand(mtd);
147  
148  	if (section >= nand_chip->ecc.steps)
149  		return -ERANGE;
150  
151  	oobregion->offset = 16 * section;
152  	oobregion->length = 16 - nand_chip->ecc.bytes;
153  
154  	return 0;
155  }
156  
157  static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
158  	.ecc = lpc32xx_ooblayout_ecc,
159  	.free = lpc32xx_ooblayout_free,
160  };
161  
162  static struct nand_bbt_descr lpc32xx_nand_bbt = {
163  	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
164  		   NAND_BBT_WRITE,
165  	.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
166  };
167  
168  static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
169  	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
170  		   NAND_BBT_WRITE,
171  	.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
172  };
173  
174  struct lpc32xx_nand_host {
175  	struct platform_device	*pdev;
176  	struct nand_chip	nand_chip;
177  	struct lpc32xx_mlc_platform_data *pdata;
178  	struct clk		*clk;
179  	struct gpio_desc	*wp_gpio;
180  	void __iomem		*io_base;
181  	int			irq;
182  	struct lpc32xx_nand_cfg_mlc	*ncfg;
183  	struct completion       comp_nand;
184  	struct completion       comp_controller;
185  	uint32_t llptr;
186  	/*
187  	 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
188  	 */
189  	dma_addr_t		oob_buf_phy;
190  	/*
191  	 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
192  	 */
193  	uint8_t			*oob_buf;
194  	/* Physical address of DMA base address */
195  	dma_addr_t		io_base_phy;
196  
197  	struct completion	comp_dma;
198  	struct dma_chan		*dma_chan;
199  	struct dma_slave_config	dma_slave_config;
200  	struct scatterlist	sgl;
201  	uint8_t			*dma_buf;
202  	uint8_t			*dummy_buf;
203  	int			mlcsubpages; /* number of 512bytes-subpages */
204  };
205  
206  /*
207   * Activate/Deactivate DMA Operation:
208   *
209   * Using the PL080 DMA Controller for transferring the 512 byte subpages
210   * instead of doing readl() / writel() in a loop slows it down significantly.
211   * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
212   *
213   * - readl() of 128 x 32 bits in a loop: ~20us
214   * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
215   * - DMA read of 512 bytes (32 bit, no bursts): ~100us
216   *
217   * This applies to the transfer itself. In the DMA case: only the
218   * wait_for_completion() (DMA setup _not_ included).
219   *
220   * Note that the 512 bytes subpage transfer is done directly from/to a
221   * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
222   * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
223   * controller transferring data between its internal buffer to/from the NAND
224   * chip.)
225   *
226   * Therefore, using the PL080 DMA is disabled by default, for now.
227   *
228   */
229  static int use_dma;
230  
lpc32xx_nand_setup(struct lpc32xx_nand_host * host)231  static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
232  {
233  	uint32_t clkrate, tmp;
234  
235  	/* Reset MLC controller */
236  	writel(MLCCMD_RESET, MLC_CMD(host->io_base));
237  	udelay(1000);
238  
239  	/* Get base clock for MLC block */
240  	clkrate = clk_get_rate(host->clk);
241  	if (clkrate == 0)
242  		clkrate = 104000000;
243  
244  	/* Unlock MLC_ICR
245  	 * (among others, will be locked again automatically) */
246  	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
247  
248  	/* Configure MLC Controller: Large Block, 5 Byte Address */
249  	tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
250  	writel(tmp, MLC_ICR(host->io_base));
251  
252  	/* Unlock MLC_TIME_REG
253  	 * (among others, will be locked again automatically) */
254  	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
255  
256  	/* Compute clock setup values, see LPC and NAND manual */
257  	tmp = 0;
258  	tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
259  	tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
260  	tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
261  	tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
262  	tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
263  	tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
264  	tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
265  	writel(tmp, MLC_TIME_REG(host->io_base));
266  
267  	/* Enable IRQ for CONTROLLER_READY and NAND_READY */
268  	writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
269  			MLC_IRQ_MR(host->io_base));
270  
271  	/* Normal nCE operation: nCE controlled by controller */
272  	writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
273  }
274  
275  /*
276   * Hardware specific access to control lines
277   */
lpc32xx_nand_cmd_ctrl(struct nand_chip * nand_chip,int cmd,unsigned int ctrl)278  static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
279  				  unsigned int ctrl)
280  {
281  	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
282  
283  	if (cmd != NAND_CMD_NONE) {
284  		if (ctrl & NAND_CLE)
285  			writel(cmd, MLC_CMD(host->io_base));
286  		else
287  			writel(cmd, MLC_ADDR(host->io_base));
288  	}
289  }
290  
291  /*
292   * Read Device Ready (NAND device _and_ controller ready)
293   */
lpc32xx_nand_device_ready(struct nand_chip * nand_chip)294  static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
295  {
296  	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
297  
298  	if ((readb(MLC_ISR(host->io_base)) &
299  	     (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
300  	    (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
301  		return  1;
302  
303  	return 0;
304  }
305  
lpc3xxx_nand_irq(int irq,void * data)306  static irqreturn_t lpc3xxx_nand_irq(int irq, void *data)
307  {
308  	struct lpc32xx_nand_host *host = data;
309  	uint8_t sr;
310  
311  	/* Clear interrupt flag by reading status */
312  	sr = readb(MLC_IRQ_SR(host->io_base));
313  	if (sr & MLCIRQ_NAND_READY)
314  		complete(&host->comp_nand);
315  	if (sr & MLCIRQ_CONTROLLER_READY)
316  		complete(&host->comp_controller);
317  
318  	return IRQ_HANDLED;
319  }
320  
lpc32xx_waitfunc_nand(struct nand_chip * chip)321  static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
322  {
323  	struct mtd_info *mtd = nand_to_mtd(chip);
324  	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
325  
326  	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
327  		goto exit;
328  
329  	wait_for_completion(&host->comp_nand);
330  
331  	while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
332  		/* Seems to be delayed sometimes by controller */
333  		dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
334  		cpu_relax();
335  	}
336  
337  exit:
338  	return NAND_STATUS_READY;
339  }
340  
lpc32xx_waitfunc_controller(struct nand_chip * chip)341  static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
342  {
343  	struct mtd_info *mtd = nand_to_mtd(chip);
344  	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
345  
346  	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
347  		goto exit;
348  
349  	wait_for_completion(&host->comp_controller);
350  
351  	while (!(readb(MLC_ISR(host->io_base)) &
352  		 MLCISR_CONTROLLER_READY)) {
353  		dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
354  		cpu_relax();
355  	}
356  
357  exit:
358  	return NAND_STATUS_READY;
359  }
360  
lpc32xx_waitfunc(struct nand_chip * chip)361  static int lpc32xx_waitfunc(struct nand_chip *chip)
362  {
363  	lpc32xx_waitfunc_nand(chip);
364  	lpc32xx_waitfunc_controller(chip);
365  
366  	return NAND_STATUS_READY;
367  }
368  
369  /*
370   * Enable NAND write protect
371   */
lpc32xx_wp_enable(struct lpc32xx_nand_host * host)372  static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
373  {
374  	if (host->wp_gpio)
375  		gpiod_set_value_cansleep(host->wp_gpio, 1);
376  }
377  
378  /*
379   * Disable NAND write protect
380   */
lpc32xx_wp_disable(struct lpc32xx_nand_host * host)381  static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
382  {
383  	if (host->wp_gpio)
384  		gpiod_set_value_cansleep(host->wp_gpio, 0);
385  }
386  
lpc32xx_dma_complete_func(void * completion)387  static void lpc32xx_dma_complete_func(void *completion)
388  {
389  	complete(completion);
390  }
391  
lpc32xx_xmit_dma(struct mtd_info * mtd,void * mem,int len,enum dma_transfer_direction dir)392  static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
393  			    enum dma_transfer_direction dir)
394  {
395  	struct nand_chip *chip = mtd_to_nand(mtd);
396  	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
397  	struct dma_async_tx_descriptor *desc;
398  	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
399  	int res;
400  
401  	sg_init_one(&host->sgl, mem, len);
402  
403  	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
404  			 DMA_BIDIRECTIONAL);
405  	if (res != 1) {
406  		dev_err(mtd->dev.parent, "Failed to map sg list\n");
407  		return -ENXIO;
408  	}
409  	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
410  				       flags);
411  	if (!desc) {
412  		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
413  		goto out1;
414  	}
415  
416  	init_completion(&host->comp_dma);
417  	desc->callback = lpc32xx_dma_complete_func;
418  	desc->callback_param = &host->comp_dma;
419  
420  	dmaengine_submit(desc);
421  	dma_async_issue_pending(host->dma_chan);
422  
423  	wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
424  
425  	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
426  		     DMA_BIDIRECTIONAL);
427  	return 0;
428  out1:
429  	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
430  		     DMA_BIDIRECTIONAL);
431  	return -ENXIO;
432  }
433  
lpc32xx_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)434  static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
435  			     int oob_required, int page)
436  {
437  	struct mtd_info *mtd = nand_to_mtd(chip);
438  	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
439  	int i, j;
440  	uint8_t *oobbuf = chip->oob_poi;
441  	uint32_t mlc_isr;
442  	int res;
443  	uint8_t *dma_buf;
444  	bool dma_mapped;
445  
446  	if ((void *)buf <= high_memory) {
447  		dma_buf = buf;
448  		dma_mapped = true;
449  	} else {
450  		dma_buf = host->dma_buf;
451  		dma_mapped = false;
452  	}
453  
454  	/* Writing Command and Address */
455  	nand_read_page_op(chip, page, 0, NULL, 0);
456  
457  	/* For all sub-pages */
458  	for (i = 0; i < host->mlcsubpages; i++) {
459  		/* Start Auto Decode Command */
460  		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
461  
462  		/* Wait for Controller Ready */
463  		lpc32xx_waitfunc_controller(chip);
464  
465  		/* Check ECC Error status */
466  		mlc_isr = readl(MLC_ISR(host->io_base));
467  		if (mlc_isr & MLCISR_DECODER_FAILURE) {
468  			mtd->ecc_stats.failed++;
469  			dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
470  		} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
471  			mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
472  		}
473  
474  		/* Read 512 + 16 Bytes */
475  		if (use_dma) {
476  			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
477  					       DMA_DEV_TO_MEM);
478  			if (res)
479  				return res;
480  		} else {
481  			for (j = 0; j < (512 >> 2); j++) {
482  				*((uint32_t *)(buf)) =
483  					readl(MLC_BUFF(host->io_base));
484  				buf += 4;
485  			}
486  		}
487  		for (j = 0; j < (16 >> 2); j++) {
488  			*((uint32_t *)(oobbuf)) =
489  				readl(MLC_BUFF(host->io_base));
490  			oobbuf += 4;
491  		}
492  	}
493  
494  	if (use_dma && !dma_mapped)
495  		memcpy(buf, dma_buf, mtd->writesize);
496  
497  	return 0;
498  }
499  
lpc32xx_write_page_lowlevel(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)500  static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
501  				       const uint8_t *buf, int oob_required,
502  				       int page)
503  {
504  	struct mtd_info *mtd = nand_to_mtd(chip);
505  	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
506  	const uint8_t *oobbuf = chip->oob_poi;
507  	uint8_t *dma_buf = (uint8_t *)buf;
508  	int res;
509  	int i, j;
510  
511  	if (use_dma && (void *)buf >= high_memory) {
512  		dma_buf = host->dma_buf;
513  		memcpy(dma_buf, buf, mtd->writesize);
514  	}
515  
516  	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
517  
518  	for (i = 0; i < host->mlcsubpages; i++) {
519  		/* Start Encode */
520  		writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
521  
522  		/* Write 512 + 6 Bytes to Buffer */
523  		if (use_dma) {
524  			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
525  					       DMA_MEM_TO_DEV);
526  			if (res)
527  				return res;
528  		} else {
529  			for (j = 0; j < (512 >> 2); j++) {
530  				writel(*((uint32_t *)(buf)),
531  				       MLC_BUFF(host->io_base));
532  				buf += 4;
533  			}
534  		}
535  		writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
536  		oobbuf += 4;
537  		writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
538  		oobbuf += 12;
539  
540  		/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
541  		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
542  
543  		/* Wait for Controller Ready */
544  		lpc32xx_waitfunc_controller(chip);
545  	}
546  
547  	return nand_prog_page_end_op(chip);
548  }
549  
lpc32xx_read_oob(struct nand_chip * chip,int page)550  static int lpc32xx_read_oob(struct nand_chip *chip, int page)
551  {
552  	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
553  
554  	/* Read whole page - necessary with MLC controller! */
555  	lpc32xx_read_page(chip, host->dummy_buf, 1, page);
556  
557  	return 0;
558  }
559  
lpc32xx_write_oob(struct nand_chip * chip,int page)560  static int lpc32xx_write_oob(struct nand_chip *chip, int page)
561  {
562  	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
563  	return 0;
564  }
565  
566  /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
lpc32xx_ecc_enable(struct nand_chip * chip,int mode)567  static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
568  {
569  	/* Always enabled! */
570  }
571  
lpc32xx_dma_setup(struct lpc32xx_nand_host * host)572  static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
573  {
574  	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
575  	dma_cap_mask_t mask;
576  
577  	if (!host->pdata || !host->pdata->dma_filter) {
578  		dev_err(mtd->dev.parent, "no DMA platform data\n");
579  		return -ENOENT;
580  	}
581  
582  	dma_cap_zero(mask);
583  	dma_cap_set(DMA_SLAVE, mask);
584  	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
585  					     "nand-mlc");
586  	if (!host->dma_chan) {
587  		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
588  		return -EBUSY;
589  	}
590  
591  	/*
592  	 * Set direction to a sensible value even if the dmaengine driver
593  	 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
594  	 * driver criticizes it as "alien transfer direction".
595  	 */
596  	host->dma_slave_config.direction = DMA_DEV_TO_MEM;
597  	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
598  	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599  	host->dma_slave_config.src_maxburst = 128;
600  	host->dma_slave_config.dst_maxburst = 128;
601  	/* DMA controller does flow control: */
602  	host->dma_slave_config.device_fc = false;
603  	host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
604  	host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
605  	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
606  		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
607  		goto out1;
608  	}
609  
610  	return 0;
611  out1:
612  	dma_release_channel(host->dma_chan);
613  	return -ENXIO;
614  }
615  
lpc32xx_parse_dt(struct device * dev)616  static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
617  {
618  	struct lpc32xx_nand_cfg_mlc *ncfg;
619  	struct device_node *np = dev->of_node;
620  
621  	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
622  	if (!ncfg)
623  		return NULL;
624  
625  	of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
626  	of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
627  	of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
628  	of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
629  	of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
630  	of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
631  	of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
632  
633  	if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
634  	    !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
635  	    !ncfg->wr_low) {
636  		dev_err(dev, "chip parameters not specified correctly\n");
637  		return NULL;
638  	}
639  
640  	return ncfg;
641  }
642  
lpc32xx_nand_attach_chip(struct nand_chip * chip)643  static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
644  {
645  	struct mtd_info *mtd = nand_to_mtd(chip);
646  	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
647  	struct device *dev = &host->pdev->dev;
648  
649  	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
650  		return 0;
651  
652  	host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
653  	if (!host->dma_buf)
654  		return -ENOMEM;
655  
656  	host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
657  	if (!host->dummy_buf)
658  		return -ENOMEM;
659  
660  	chip->ecc.size = 512;
661  	chip->ecc.hwctl = lpc32xx_ecc_enable;
662  	chip->ecc.read_page_raw = lpc32xx_read_page;
663  	chip->ecc.read_page = lpc32xx_read_page;
664  	chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
665  	chip->ecc.write_page = lpc32xx_write_page_lowlevel;
666  	chip->ecc.write_oob = lpc32xx_write_oob;
667  	chip->ecc.read_oob = lpc32xx_read_oob;
668  	chip->ecc.strength = 4;
669  	chip->ecc.bytes = 10;
670  
671  	mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
672  	host->mlcsubpages = mtd->writesize / 512;
673  
674  	return 0;
675  }
676  
677  static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
678  	.attach_chip = lpc32xx_nand_attach_chip,
679  };
680  
681  /*
682   * Probe for NAND controller
683   */
lpc32xx_nand_probe(struct platform_device * pdev)684  static int lpc32xx_nand_probe(struct platform_device *pdev)
685  {
686  	struct lpc32xx_nand_host *host;
687  	struct mtd_info *mtd;
688  	struct nand_chip *nand_chip;
689  	struct resource *rc;
690  	int res;
691  
692  	/* Allocate memory for the device structure (and zero it) */
693  	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
694  	if (!host)
695  		return -ENOMEM;
696  
697  	host->pdev = pdev;
698  
699  	host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc);
700  	if (IS_ERR(host->io_base))
701  		return PTR_ERR(host->io_base);
702  
703  	host->io_base_phy = rc->start;
704  
705  	nand_chip = &host->nand_chip;
706  	mtd = nand_to_mtd(nand_chip);
707  	if (pdev->dev.of_node)
708  		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
709  	if (!host->ncfg) {
710  		dev_err(&pdev->dev,
711  			"Missing or bad NAND config from device tree\n");
712  		return -ENOENT;
713  	}
714  
715  	/* Start with WP disabled, if available */
716  	host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW);
717  	res = PTR_ERR_OR_ZERO(host->wp_gpio);
718  	if (res) {
719  		if (res != -EPROBE_DEFER)
720  			dev_err(&pdev->dev, "WP GPIO is not available: %d\n",
721  				res);
722  		return res;
723  	}
724  
725  	gpiod_set_consumer_name(host->wp_gpio, "NAND WP");
726  
727  	host->pdata = dev_get_platdata(&pdev->dev);
728  
729  	/* link the private data structures */
730  	nand_set_controller_data(nand_chip, host);
731  	nand_set_flash_node(nand_chip, pdev->dev.of_node);
732  	mtd->dev.parent = &pdev->dev;
733  
734  	/* Get NAND clock */
735  	host->clk = clk_get(&pdev->dev, NULL);
736  	if (IS_ERR(host->clk)) {
737  		dev_err(&pdev->dev, "Clock initialization failure\n");
738  		res = -ENOENT;
739  		goto free_gpio;
740  	}
741  	res = clk_prepare_enable(host->clk);
742  	if (res)
743  		goto put_clk;
744  
745  	nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
746  	nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
747  	nand_chip->legacy.chip_delay = 25; /* us */
748  	nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
749  	nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
750  
751  	/* Init NAND controller */
752  	lpc32xx_nand_setup(host);
753  
754  	platform_set_drvdata(pdev, host);
755  
756  	/* Initialize function pointers */
757  	nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
758  
759  	nand_chip->options = NAND_NO_SUBPAGE_WRITE;
760  	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
761  	nand_chip->bbt_td = &lpc32xx_nand_bbt;
762  	nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
763  
764  	if (use_dma) {
765  		res = lpc32xx_dma_setup(host);
766  		if (res) {
767  			res = -EIO;
768  			goto unprepare_clk;
769  		}
770  	}
771  
772  	/* initially clear interrupt status */
773  	readb(MLC_IRQ_SR(host->io_base));
774  
775  	init_completion(&host->comp_nand);
776  	init_completion(&host->comp_controller);
777  
778  	host->irq = platform_get_irq(pdev, 0);
779  	if (host->irq < 0) {
780  		res = -EINVAL;
781  		goto release_dma_chan;
782  	}
783  
784  	if (request_irq(host->irq, &lpc3xxx_nand_irq,
785  			IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
786  		dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
787  		res = -ENXIO;
788  		goto release_dma_chan;
789  	}
790  
791  	/*
792  	 * Scan to find existence of the device and get the type of NAND device:
793  	 * SMALL block or LARGE block.
794  	 */
795  	nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
796  	res = nand_scan(nand_chip, 1);
797  	if (res)
798  		goto free_irq;
799  
800  	mtd->name = DRV_NAME;
801  
802  	res = mtd_device_register(mtd, host->ncfg->parts,
803  				  host->ncfg->num_parts);
804  	if (res)
805  		goto cleanup_nand;
806  
807  	return 0;
808  
809  cleanup_nand:
810  	nand_cleanup(nand_chip);
811  free_irq:
812  	free_irq(host->irq, host);
813  release_dma_chan:
814  	if (use_dma)
815  		dma_release_channel(host->dma_chan);
816  unprepare_clk:
817  	clk_disable_unprepare(host->clk);
818  put_clk:
819  	clk_put(host->clk);
820  free_gpio:
821  	lpc32xx_wp_enable(host);
822  	gpiod_put(host->wp_gpio);
823  
824  	return res;
825  }
826  
827  /*
828   * Remove NAND device
829   */
lpc32xx_nand_remove(struct platform_device * pdev)830  static void lpc32xx_nand_remove(struct platform_device *pdev)
831  {
832  	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
833  	struct nand_chip *chip = &host->nand_chip;
834  	int ret;
835  
836  	ret = mtd_device_unregister(nand_to_mtd(chip));
837  	WARN_ON(ret);
838  	nand_cleanup(chip);
839  
840  	free_irq(host->irq, host);
841  	if (use_dma)
842  		dma_release_channel(host->dma_chan);
843  
844  	clk_disable_unprepare(host->clk);
845  	clk_put(host->clk);
846  
847  	lpc32xx_wp_enable(host);
848  	gpiod_put(host->wp_gpio);
849  }
850  
lpc32xx_nand_resume(struct platform_device * pdev)851  static int lpc32xx_nand_resume(struct platform_device *pdev)
852  {
853  	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
854  	int ret;
855  
856  	/* Re-enable NAND clock */
857  	ret = clk_prepare_enable(host->clk);
858  	if (ret)
859  		return ret;
860  
861  	/* Fresh init of NAND controller */
862  	lpc32xx_nand_setup(host);
863  
864  	/* Disable write protect */
865  	lpc32xx_wp_disable(host);
866  
867  	return 0;
868  }
869  
lpc32xx_nand_suspend(struct platform_device * pdev,pm_message_t pm)870  static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
871  {
872  	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
873  
874  	/* Enable write protect for safety */
875  	lpc32xx_wp_enable(host);
876  
877  	/* Disable clock */
878  	clk_disable_unprepare(host->clk);
879  	return 0;
880  }
881  
882  static const struct of_device_id lpc32xx_nand_match[] = {
883  	{ .compatible = "nxp,lpc3220-mlc" },
884  	{ /* sentinel */ },
885  };
886  MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
887  
888  static struct platform_driver lpc32xx_nand_driver = {
889  	.probe		= lpc32xx_nand_probe,
890  	.remove_new	= lpc32xx_nand_remove,
891  	.resume		= pm_ptr(lpc32xx_nand_resume),
892  	.suspend	= pm_ptr(lpc32xx_nand_suspend),
893  	.driver		= {
894  		.name	= DRV_NAME,
895  		.of_match_table = lpc32xx_nand_match,
896  	},
897  };
898  
899  module_platform_driver(lpc32xx_nand_driver);
900  
901  MODULE_LICENSE("GPL");
902  MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
903  MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
904