xref: /openbmc/linux/drivers/gpu/drm/hisilicon/kirin/dw_drm_dsi.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * DesignWare MIPI DSI Host Controller v1.02 driver
4   *
5   * Copyright (c) 2016 Linaro Limited.
6   * Copyright (c) 2014-2016 HiSilicon Limited.
7   *
8   * Author:
9   *	Xinliang Liu <z.liuxinliang@hisilicon.com>
10   *	Xinliang Liu <xinliang.liu@linaro.org>
11   *	Xinwei Kong <kong.kongxinwei@hisilicon.com>
12   */
13  
14  #include <linux/clk.h>
15  #include <linux/component.h>
16  #include <linux/delay.h>
17  #include <linux/mod_devicetable.h>
18  #include <linux/module.h>
19  #include <linux/platform_device.h>
20  
21  #include <drm/drm_atomic_helper.h>
22  #include <drm/drm_bridge.h>
23  #include <drm/drm_device.h>
24  #include <drm/drm_mipi_dsi.h>
25  #include <drm/drm_of.h>
26  #include <drm/drm_print.h>
27  #include <drm/drm_probe_helper.h>
28  #include <drm/drm_simple_kms_helper.h>
29  
30  #include "dw_dsi_reg.h"
31  
32  #define MAX_TX_ESC_CLK		10
33  #define ROUND(x, y)		((x) / (y) + \
34  				((x) % (y) * 10 / (y) >= 5 ? 1 : 0))
35  #define PHY_REF_CLK_RATE	19200000
36  #define PHY_REF_CLK_PERIOD_PS	(1000000000 / (PHY_REF_CLK_RATE / 1000))
37  
38  #define encoder_to_dsi(encoder) \
39  	container_of(encoder, struct dw_dsi, encoder)
40  #define host_to_dsi(host) \
41  	container_of(host, struct dw_dsi, host)
42  
43  struct mipi_phy_params {
44  	u32 clk_t_lpx;
45  	u32 clk_t_hs_prepare;
46  	u32 clk_t_hs_zero;
47  	u32 clk_t_hs_trial;
48  	u32 clk_t_wakeup;
49  	u32 data_t_lpx;
50  	u32 data_t_hs_prepare;
51  	u32 data_t_hs_zero;
52  	u32 data_t_hs_trial;
53  	u32 data_t_ta_go;
54  	u32 data_t_ta_get;
55  	u32 data_t_wakeup;
56  	u32 hstx_ckg_sel;
57  	u32 pll_fbd_div5f;
58  	u32 pll_fbd_div1f;
59  	u32 pll_fbd_2p;
60  	u32 pll_enbwt;
61  	u32 pll_fbd_p;
62  	u32 pll_fbd_s;
63  	u32 pll_pre_div1p;
64  	u32 pll_pre_p;
65  	u32 pll_vco_750M;
66  	u32 pll_lpf_rs;
67  	u32 pll_lpf_cs;
68  	u32 clklp2hs_time;
69  	u32 clkhs2lp_time;
70  	u32 lp2hs_time;
71  	u32 hs2lp_time;
72  	u32 clk_to_data_delay;
73  	u32 data_to_clk_delay;
74  	u32 lane_byte_clk_kHz;
75  	u32 clk_division;
76  };
77  
78  struct dsi_hw_ctx {
79  	void __iomem *base;
80  	struct clk *pclk;
81  };
82  
83  struct dw_dsi {
84  	struct drm_encoder encoder;
85  	struct device *dev;
86  	struct mipi_dsi_host host;
87  	struct drm_display_mode cur_mode;
88  	struct dsi_hw_ctx *ctx;
89  	struct mipi_phy_params phy;
90  
91  	u32 lanes;
92  	enum mipi_dsi_pixel_format format;
93  	unsigned long mode_flags;
94  	bool enable;
95  };
96  
97  struct dsi_data {
98  	struct dw_dsi dsi;
99  	struct dsi_hw_ctx ctx;
100  };
101  
102  struct dsi_phy_range {
103  	u32 min_range_kHz;
104  	u32 max_range_kHz;
105  	u32 pll_vco_750M;
106  	u32 hstx_ckg_sel;
107  };
108  
109  static const struct dsi_phy_range dphy_range_info[] = {
110  	{   46875,    62500,   1,    7 },
111  	{   62500,    93750,   0,    7 },
112  	{   93750,   125000,   1,    6 },
113  	{  125000,   187500,   0,    6 },
114  	{  187500,   250000,   1,    5 },
115  	{  250000,   375000,   0,    5 },
116  	{  375000,   500000,   1,    4 },
117  	{  500000,   750000,   0,    4 },
118  	{  750000,  1000000,   1,    0 },
119  	{ 1000000,  1500000,   0,    0 }
120  };
121  
dsi_calc_phy_rate(u32 req_kHz,struct mipi_phy_params * phy)122  static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy)
123  {
124  	u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
125  	u32 tmp_kHz = req_kHz;
126  	u32 i = 0;
127  	u32 q_pll = 1;
128  	u32 m_pll = 0;
129  	u32 n_pll = 0;
130  	u32 r_pll = 1;
131  	u32 m_n = 0;
132  	u32 m_n_int = 0;
133  	u32 f_kHz = 0;
134  	u64 temp;
135  
136  	/*
137  	 * Find a rate >= req_kHz.
138  	 */
139  	do {
140  		f_kHz = tmp_kHz;
141  
142  		for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++)
143  			if (f_kHz >= dphy_range_info[i].min_range_kHz &&
144  			    f_kHz <= dphy_range_info[i].max_range_kHz)
145  				break;
146  
147  		if (i == ARRAY_SIZE(dphy_range_info)) {
148  			DRM_ERROR("%dkHz out of range\n", f_kHz);
149  			return 0;
150  		}
151  
152  		phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M;
153  		phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel;
154  
155  		if (phy->hstx_ckg_sel <= 7 &&
156  		    phy->hstx_ckg_sel >= 4)
157  			q_pll = 0x10 >> (7 - phy->hstx_ckg_sel);
158  
159  		temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps;
160  		m_n_int = temp / (u64)1000000000;
161  		m_n = (temp % (u64)1000000000) / (u64)100000000;
162  
163  		if (m_n_int % 2 == 0) {
164  			if (m_n * 6 >= 50) {
165  				n_pll = 2;
166  				m_pll = (m_n_int + 1) * n_pll;
167  			} else if (m_n * 6 >= 30) {
168  				n_pll = 3;
169  				m_pll = m_n_int * n_pll + 2;
170  			} else {
171  				n_pll = 1;
172  				m_pll = m_n_int * n_pll;
173  			}
174  		} else {
175  			if (m_n * 6 >= 50) {
176  				n_pll = 1;
177  				m_pll = (m_n_int + 1) * n_pll;
178  			} else if (m_n * 6 >= 30) {
179  				n_pll = 1;
180  				m_pll = (m_n_int + 1) * n_pll;
181  			} else if (m_n * 6 >= 10) {
182  				n_pll = 3;
183  				m_pll = m_n_int * n_pll + 1;
184  			} else {
185  				n_pll = 2;
186  				m_pll = m_n_int * n_pll;
187  			}
188  		}
189  
190  		if (n_pll == 1) {
191  			phy->pll_fbd_p = 0;
192  			phy->pll_pre_div1p = 1;
193  		} else {
194  			phy->pll_fbd_p = n_pll;
195  			phy->pll_pre_div1p = 0;
196  		}
197  
198  		if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4)
199  			r_pll = 0x10 >> (7 - phy->pll_fbd_2p);
200  
201  		if (m_pll == 2) {
202  			phy->pll_pre_p = 0;
203  			phy->pll_fbd_s = 0;
204  			phy->pll_fbd_div1f = 0;
205  			phy->pll_fbd_div5f = 1;
206  		} else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) {
207  			phy->pll_pre_p = m_pll / (2 * r_pll);
208  			phy->pll_fbd_s = 0;
209  			phy->pll_fbd_div1f = 1;
210  			phy->pll_fbd_div5f = 0;
211  		} else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) {
212  			if (((m_pll / (2 * r_pll)) % 2) == 0) {
213  				phy->pll_pre_p =
214  					(m_pll / (2 * r_pll)) / 2 - 1;
215  				phy->pll_fbd_s =
216  					(m_pll / (2 * r_pll)) % 2 + 2;
217  			} else {
218  				phy->pll_pre_p =
219  					(m_pll / (2 * r_pll)) / 2;
220  				phy->pll_fbd_s =
221  					(m_pll / (2 * r_pll)) % 2;
222  			}
223  			phy->pll_fbd_div1f = 0;
224  			phy->pll_fbd_div5f = 0;
225  		} else {
226  			phy->pll_pre_p = 0;
227  			phy->pll_fbd_s = 0;
228  			phy->pll_fbd_div1f = 0;
229  			phy->pll_fbd_div5f = 1;
230  		}
231  
232  		f_kHz = (u64)1000000000 * (u64)m_pll /
233  			((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll);
234  
235  		if (f_kHz >= req_kHz)
236  			break;
237  
238  		tmp_kHz += 10;
239  
240  	} while (true);
241  
242  	return f_kHz;
243  }
244  
dsi_get_phy_params(u32 phy_req_kHz,struct mipi_phy_params * phy)245  static void dsi_get_phy_params(u32 phy_req_kHz,
246  			       struct mipi_phy_params *phy)
247  {
248  	u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
249  	u32 phy_rate_kHz;
250  	u32 ui;
251  
252  	memset(phy, 0, sizeof(*phy));
253  
254  	phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy);
255  	if (!phy_rate_kHz)
256  		return;
257  
258  	ui = 1000000 / phy_rate_kHz;
259  
260  	phy->clk_t_lpx = ROUND(50, 8 * ui);
261  	phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1;
262  
263  	phy->clk_t_hs_zero = ROUND(262, 8 * ui);
264  	phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1);
265  	phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1);
266  	if (phy->clk_t_wakeup > 0xff)
267  		phy->clk_t_wakeup = 0xff;
268  	phy->data_t_wakeup = phy->clk_t_wakeup;
269  	phy->data_t_lpx = phy->clk_t_lpx;
270  	phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1;
271  	phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui);
272  	phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1);
273  	phy->data_t_ta_go = 3;
274  	phy->data_t_ta_get = 4;
275  
276  	phy->pll_enbwt = 1;
277  	phy->clklp2hs_time = ROUND(407, 8 * ui) + 12;
278  	phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui);
279  	phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1;
280  	phy->hs2lp_time = phy->clkhs2lp_time;
281  	phy->clk_to_data_delay = 1 + phy->clklp2hs_time;
282  	phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) +
283  				phy->clkhs2lp_time;
284  
285  	phy->lane_byte_clk_kHz = phy_rate_kHz / 8;
286  	phy->clk_division =
287  		DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK);
288  }
289  
dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format)290  static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format)
291  {
292  	u32 val;
293  
294  	/*
295  	 * TODO: only support RGB888 now, to support more
296  	 */
297  	switch (format) {
298  	case MIPI_DSI_FMT_RGB888:
299  		val = DSI_24BITS_1;
300  		break;
301  	default:
302  		val = DSI_24BITS_1;
303  		break;
304  	}
305  
306  	return val;
307  }
308  
309  /*
310   * dsi phy reg write function
311   */
dsi_phy_tst_set(void __iomem * base,u32 reg,u32 val)312  static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val)
313  {
314  	u32 reg_write = 0x10000 + reg;
315  
316  	/*
317  	 * latch reg first
318  	 */
319  	writel(reg_write, base + PHY_TST_CTRL1);
320  	writel(0x02, base + PHY_TST_CTRL0);
321  	writel(0x00, base + PHY_TST_CTRL0);
322  
323  	/*
324  	 * then latch value
325  	 */
326  	writel(val, base + PHY_TST_CTRL1);
327  	writel(0x02, base + PHY_TST_CTRL0);
328  	writel(0x00, base + PHY_TST_CTRL0);
329  }
330  
dsi_set_phy_timer(void __iomem * base,struct mipi_phy_params * phy,u32 lanes)331  static void dsi_set_phy_timer(void __iomem *base,
332  			      struct mipi_phy_params *phy,
333  			      u32 lanes)
334  {
335  	u32 val;
336  
337  	/*
338  	 * Set lane value and phy stop wait time.
339  	 */
340  	val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8);
341  	writel(val, base + PHY_IF_CFG);
342  
343  	/*
344  	 * Set phy clk division.
345  	 */
346  	val = readl(base + CLKMGR_CFG) | phy->clk_division;
347  	writel(val, base + CLKMGR_CFG);
348  
349  	/*
350  	 * Set lp and hs switching params.
351  	 */
352  	dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time);
353  	dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time);
354  	dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10),
355  		       phy->clkhs2lp_time);
356  	dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10),
357  		       phy->clklp2hs_time);
358  	dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8),
359  		       phy->data_to_clk_delay);
360  	dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8),
361  		       phy->clk_to_data_delay);
362  }
363  
dsi_set_mipi_phy(void __iomem * base,struct mipi_phy_params * phy,u32 lanes)364  static void dsi_set_mipi_phy(void __iomem *base,
365  			     struct mipi_phy_params *phy,
366  			     u32 lanes)
367  {
368  	u32 delay_count;
369  	u32 val;
370  	u32 i;
371  
372  	/* phy timer setting */
373  	dsi_set_phy_timer(base, phy, lanes);
374  
375  	/*
376  	 * Reset to clean up phy tst params.
377  	 */
378  	writel(0, base + PHY_RSTZ);
379  	writel(0, base + PHY_TST_CTRL0);
380  	writel(1, base + PHY_TST_CTRL0);
381  	writel(0, base + PHY_TST_CTRL0);
382  
383  	/*
384  	 * Clock lane timing control setting: TLPX, THS-PREPARE,
385  	 * THS-ZERO, THS-TRAIL, TWAKEUP.
386  	 */
387  	dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx);
388  	dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare);
389  	dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero);
390  	dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial);
391  	dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup);
392  
393  	/*
394  	 * Data lane timing control setting: TLPX, THS-PREPARE,
395  	 * THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP.
396  	 */
397  	for (i = 0; i < lanes; i++) {
398  		dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx);
399  		dsi_phy_tst_set(base, DATA_THS_PREPARE(i),
400  				phy->data_t_hs_prepare);
401  		dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero);
402  		dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial);
403  		dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go);
404  		dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get);
405  		dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup);
406  	}
407  
408  	/*
409  	 * physical configuration: I, pll I, pll II, pll III,
410  	 * pll IV, pll V.
411  	 */
412  	dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel);
413  	val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) +
414  				(phy->pll_fbd_2p << 1) + phy->pll_enbwt;
415  	dsi_phy_tst_set(base, PHY_CFG_PLL_I, val);
416  	dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p);
417  	dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s);
418  	val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p;
419  	dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val);
420  	val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) +
421  		phy->pll_lpf_cs;
422  	dsi_phy_tst_set(base, PHY_CFG_PLL_V, val);
423  
424  	writel(PHY_ENABLECLK, base + PHY_RSTZ);
425  	udelay(1);
426  	writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
427  	udelay(1);
428  	writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
429  	usleep_range(1000, 1500);
430  
431  	/*
432  	 * wait for phy's clock ready
433  	 */
434  	delay_count = 100;
435  	while (delay_count) {
436  		val = readl(base +  PHY_STATUS);
437  		if ((BIT(0) | BIT(2)) & val)
438  			break;
439  
440  		udelay(1);
441  		delay_count--;
442  	}
443  
444  	if (!delay_count)
445  		DRM_INFO("phylock and phystopstateclklane is not ready.\n");
446  }
447  
dsi_set_mode_timing(void __iomem * base,u32 lane_byte_clk_kHz,struct drm_display_mode * mode,enum mipi_dsi_pixel_format format)448  static void dsi_set_mode_timing(void __iomem *base,
449  				u32 lane_byte_clk_kHz,
450  				struct drm_display_mode *mode,
451  				enum mipi_dsi_pixel_format format)
452  {
453  	u32 hfp, hbp, hsw, vfp, vbp, vsw;
454  	u32 hline_time;
455  	u32 hsa_time;
456  	u32 hbp_time;
457  	u32 pixel_clk_kHz;
458  	int htot, vtot;
459  	u32 val;
460  	u64 tmp;
461  
462  	val = dsi_get_dpi_color_coding(format);
463  	writel(val, base + DPI_COLOR_CODING);
464  
465  	val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2;
466  	val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1;
467  	writel(val, base +  DPI_CFG_POL);
468  
469  	/*
470  	 * The DSI IP accepts vertical timing using lines as normal,
471  	 * but horizontal timing is a mixture of pixel-clocks for the
472  	 * active region and byte-lane clocks for the blanking-related
473  	 * timings.  hfp is specified as the total hline_time in byte-
474  	 * lane clocks minus hsa, hbp and active.
475  	 */
476  	pixel_clk_kHz = mode->clock;
477  	htot = mode->htotal;
478  	vtot = mode->vtotal;
479  	hfp = mode->hsync_start - mode->hdisplay;
480  	hbp = mode->htotal - mode->hsync_end;
481  	hsw = mode->hsync_end - mode->hsync_start;
482  	vfp = mode->vsync_start - mode->vdisplay;
483  	vbp = mode->vtotal - mode->vsync_end;
484  	vsw = mode->vsync_end - mode->vsync_start;
485  	if (vsw > 15) {
486  		DRM_DEBUG_DRIVER("vsw exceeded 15\n");
487  		vsw = 15;
488  	}
489  
490  	hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz;
491  	hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz;
492  	tmp = (u64)htot * (u64)lane_byte_clk_kHz;
493  	hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz);
494  
495  	/* all specified in byte-lane clocks */
496  	writel(hsa_time, base + VID_HSA_TIME);
497  	writel(hbp_time, base + VID_HBP_TIME);
498  	writel(hline_time, base + VID_HLINE_TIME);
499  
500  	writel(vsw, base + VID_VSA_LINES);
501  	writel(vbp, base + VID_VBP_LINES);
502  	writel(vfp, base + VID_VFP_LINES);
503  	writel(mode->vdisplay, base + VID_VACTIVE_LINES);
504  	writel(mode->hdisplay, base + VID_PKT_SIZE);
505  
506  	DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n",
507  			 htot, hfp, hbp, hsw);
508  	DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n",
509  			 vtot, vfp, vbp, vsw);
510  	DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n",
511  			 hsa_time, hbp_time, hline_time);
512  }
513  
dsi_set_video_mode(void __iomem * base,unsigned long flags)514  static void dsi_set_video_mode(void __iomem *base, unsigned long flags)
515  {
516  	u32 val;
517  	u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
518  		MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
519  	u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO |
520  		MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
521  	u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO;
522  
523  	/*
524  	 * choose video mode type
525  	 */
526  	if ((flags & mode_mask) == non_burst_sync_pulse)
527  		val = DSI_NON_BURST_SYNC_PULSES;
528  	else if ((flags & mode_mask) == non_burst_sync_event)
529  		val = DSI_NON_BURST_SYNC_EVENTS;
530  	else
531  		val = DSI_BURST_SYNC_PULSES_1;
532  	writel(val, base + VID_MODE_CFG);
533  
534  	writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL);
535  	writel(DSI_VIDEO_MODE, base + MODE_CFG);
536  }
537  
dsi_mipi_init(struct dw_dsi * dsi)538  static void dsi_mipi_init(struct dw_dsi *dsi)
539  {
540  	struct dsi_hw_ctx *ctx = dsi->ctx;
541  	struct mipi_phy_params *phy = &dsi->phy;
542  	struct drm_display_mode *mode = &dsi->cur_mode;
543  	u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
544  	void __iomem *base = ctx->base;
545  	u32 dphy_req_kHz;
546  
547  	/*
548  	 * count phy params
549  	 */
550  	dphy_req_kHz = mode->clock * bpp / dsi->lanes;
551  	dsi_get_phy_params(dphy_req_kHz, phy);
552  
553  	/* reset Core */
554  	writel(RESET, base + PWR_UP);
555  
556  	/* set dsi phy params */
557  	dsi_set_mipi_phy(base, phy, dsi->lanes);
558  
559  	/* set dsi mode timing */
560  	dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format);
561  
562  	/* set dsi video mode */
563  	dsi_set_video_mode(base, dsi->mode_flags);
564  
565  	/* dsi wake up */
566  	writel(POWERUP, base + PWR_UP);
567  
568  	DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n",
569  			 dsi->lanes, mode->clock, phy->lane_byte_clk_kHz);
570  }
571  
dsi_encoder_disable(struct drm_encoder * encoder)572  static void dsi_encoder_disable(struct drm_encoder *encoder)
573  {
574  	struct dw_dsi *dsi = encoder_to_dsi(encoder);
575  	struct dsi_hw_ctx *ctx = dsi->ctx;
576  	void __iomem *base = ctx->base;
577  
578  	if (!dsi->enable)
579  		return;
580  
581  	writel(0, base + PWR_UP);
582  	writel(0, base + LPCLK_CTRL);
583  	writel(0, base + PHY_RSTZ);
584  	clk_disable_unprepare(ctx->pclk);
585  
586  	dsi->enable = false;
587  }
588  
dsi_encoder_enable(struct drm_encoder * encoder)589  static void dsi_encoder_enable(struct drm_encoder *encoder)
590  {
591  	struct dw_dsi *dsi = encoder_to_dsi(encoder);
592  	struct dsi_hw_ctx *ctx = dsi->ctx;
593  	int ret;
594  
595  	if (dsi->enable)
596  		return;
597  
598  	ret = clk_prepare_enable(ctx->pclk);
599  	if (ret) {
600  		DRM_ERROR("fail to enable pclk: %d\n", ret);
601  		return;
602  	}
603  
604  	dsi_mipi_init(dsi);
605  
606  	dsi->enable = true;
607  }
608  
dsi_encoder_phy_mode_valid(struct drm_encoder * encoder,const struct drm_display_mode * mode)609  static enum drm_mode_status dsi_encoder_phy_mode_valid(
610  					struct drm_encoder *encoder,
611  					const struct drm_display_mode *mode)
612  {
613  	struct dw_dsi *dsi = encoder_to_dsi(encoder);
614  	struct mipi_phy_params phy;
615  	u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
616  	u32 req_kHz, act_kHz, lane_byte_clk_kHz;
617  
618  	/* Calculate the lane byte clk using the adjusted mode clk */
619  	memset(&phy, 0, sizeof(phy));
620  	req_kHz = mode->clock * bpp / dsi->lanes;
621  	act_kHz = dsi_calc_phy_rate(req_kHz, &phy);
622  	lane_byte_clk_kHz = act_kHz / 8;
623  
624  	DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...",
625  			mode->hdisplay, mode->vdisplay, bpp,
626  			drm_mode_vrefresh(mode), mode->clock);
627  
628  	/*
629  	 * Make sure the adjusted mode clock and the lane byte clk
630  	 * have a common denominator base frequency
631  	 */
632  	if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) {
633  		DRM_DEBUG_DRIVER("OK!\n");
634  		return MODE_OK;
635  	}
636  
637  	DRM_DEBUG_DRIVER("BAD!\n");
638  	return MODE_BAD;
639  }
640  
dsi_encoder_mode_valid(struct drm_encoder * encoder,const struct drm_display_mode * mode)641  static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder,
642  					const struct drm_display_mode *mode)
643  
644  {
645  	const struct drm_crtc_helper_funcs *crtc_funcs = NULL;
646  	struct drm_crtc *crtc = NULL;
647  	struct drm_display_mode adj_mode;
648  	enum drm_mode_status ret;
649  
650  	/*
651  	 * The crtc might adjust the mode, so go through the
652  	 * possible crtcs (technically just one) and call
653  	 * mode_fixup to figure out the adjusted mode before we
654  	 * validate it.
655  	 */
656  	drm_for_each_crtc(crtc, encoder->dev) {
657  		/*
658  		 * reset adj_mode to the mode value each time,
659  		 * so we don't adjust the mode twice
660  		 */
661  		drm_mode_init(&adj_mode, mode);
662  
663  		crtc_funcs = crtc->helper_private;
664  		if (crtc_funcs && crtc_funcs->mode_fixup)
665  			if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode))
666  				return MODE_BAD;
667  
668  		ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode);
669  		if (ret != MODE_OK)
670  			return ret;
671  	}
672  	return MODE_OK;
673  }
674  
dsi_encoder_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adj_mode)675  static void dsi_encoder_mode_set(struct drm_encoder *encoder,
676  				 struct drm_display_mode *mode,
677  				 struct drm_display_mode *adj_mode)
678  {
679  	struct dw_dsi *dsi = encoder_to_dsi(encoder);
680  
681  	drm_mode_copy(&dsi->cur_mode, adj_mode);
682  }
683  
dsi_encoder_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)684  static int dsi_encoder_atomic_check(struct drm_encoder *encoder,
685  				    struct drm_crtc_state *crtc_state,
686  				    struct drm_connector_state *conn_state)
687  {
688  	/* do nothing */
689  	return 0;
690  }
691  
692  static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = {
693  	.atomic_check	= dsi_encoder_atomic_check,
694  	.mode_valid	= dsi_encoder_mode_valid,
695  	.mode_set	= dsi_encoder_mode_set,
696  	.enable		= dsi_encoder_enable,
697  	.disable	= dsi_encoder_disable
698  };
699  
dw_drm_encoder_init(struct device * dev,struct drm_device * drm_dev,struct drm_encoder * encoder)700  static int dw_drm_encoder_init(struct device *dev,
701  			       struct drm_device *drm_dev,
702  			       struct drm_encoder *encoder)
703  {
704  	int ret;
705  	u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node);
706  
707  	if (!crtc_mask) {
708  		DRM_ERROR("failed to find crtc mask\n");
709  		return -EINVAL;
710  	}
711  
712  	encoder->possible_crtcs = crtc_mask;
713  	ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI);
714  	if (ret) {
715  		DRM_ERROR("failed to init dsi encoder\n");
716  		return ret;
717  	}
718  
719  	drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs);
720  
721  	return 0;
722  }
723  
724  static const struct component_ops dsi_ops;
dsi_host_attach(struct mipi_dsi_host * host,struct mipi_dsi_device * mdsi)725  static int dsi_host_attach(struct mipi_dsi_host *host,
726  			   struct mipi_dsi_device *mdsi)
727  {
728  	struct dw_dsi *dsi = host_to_dsi(host);
729  	struct device *dev = host->dev;
730  	int ret;
731  
732  	if (mdsi->lanes < 1 || mdsi->lanes > 4) {
733  		DRM_ERROR("dsi device params invalid\n");
734  		return -EINVAL;
735  	}
736  
737  	dsi->lanes = mdsi->lanes;
738  	dsi->format = mdsi->format;
739  	dsi->mode_flags = mdsi->mode_flags;
740  
741  	ret = component_add(dev, &dsi_ops);
742  	if (ret)
743  		return ret;
744  
745  	return 0;
746  }
747  
dsi_host_detach(struct mipi_dsi_host * host,struct mipi_dsi_device * mdsi)748  static int dsi_host_detach(struct mipi_dsi_host *host,
749  			   struct mipi_dsi_device *mdsi)
750  {
751  	struct device *dev = host->dev;
752  
753  	component_del(dev, &dsi_ops);
754  
755  	return 0;
756  }
757  
758  static const struct mipi_dsi_host_ops dsi_host_ops = {
759  	.attach = dsi_host_attach,
760  	.detach = dsi_host_detach,
761  };
762  
dsi_host_init(struct device * dev,struct dw_dsi * dsi)763  static int dsi_host_init(struct device *dev, struct dw_dsi *dsi)
764  {
765  	struct mipi_dsi_host *host = &dsi->host;
766  	int ret;
767  
768  	host->dev = dev;
769  	host->ops = &dsi_host_ops;
770  	ret = mipi_dsi_host_register(host);
771  	if (ret) {
772  		DRM_ERROR("failed to register dsi host\n");
773  		return ret;
774  	}
775  
776  	return 0;
777  }
778  
dsi_bridge_init(struct drm_device * dev,struct dw_dsi * dsi)779  static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi)
780  {
781  	struct drm_encoder *encoder = &dsi->encoder;
782  	struct drm_bridge *bridge;
783  	struct device_node *np = dsi->dev->of_node;
784  	int ret;
785  
786  	/*
787  	 * Get the endpoint node. In our case, dsi has one output port1
788  	 * to which the external HDMI bridge is connected.
789  	 */
790  	ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &bridge);
791  	if (ret)
792  		return ret;
793  
794  	/* associate the bridge to dsi encoder */
795  	return drm_bridge_attach(encoder, bridge, NULL, 0);
796  }
797  
dsi_bind(struct device * dev,struct device * master,void * data)798  static int dsi_bind(struct device *dev, struct device *master, void *data)
799  {
800  	struct dsi_data *ddata = dev_get_drvdata(dev);
801  	struct dw_dsi *dsi = &ddata->dsi;
802  	struct drm_device *drm_dev = data;
803  	int ret;
804  
805  	ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder);
806  	if (ret)
807  		return ret;
808  
809  	ret = dsi_bridge_init(drm_dev, dsi);
810  	if (ret)
811  		return ret;
812  
813  	return 0;
814  }
815  
dsi_unbind(struct device * dev,struct device * master,void * data)816  static void dsi_unbind(struct device *dev, struct device *master, void *data)
817  {
818  	/* do nothing */
819  }
820  
821  static const struct component_ops dsi_ops = {
822  	.bind	= dsi_bind,
823  	.unbind	= dsi_unbind,
824  };
825  
dsi_parse_dt(struct platform_device * pdev,struct dw_dsi * dsi)826  static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi)
827  {
828  	struct dsi_hw_ctx *ctx = dsi->ctx;
829  	struct resource *res;
830  
831  	ctx->pclk = devm_clk_get(&pdev->dev, "pclk");
832  	if (IS_ERR(ctx->pclk)) {
833  		DRM_ERROR("failed to get pclk clock\n");
834  		return PTR_ERR(ctx->pclk);
835  	}
836  
837  	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
838  	ctx->base = devm_ioremap_resource(&pdev->dev, res);
839  	if (IS_ERR(ctx->base)) {
840  		DRM_ERROR("failed to remap dsi io region\n");
841  		return PTR_ERR(ctx->base);
842  	}
843  
844  	return 0;
845  }
846  
dsi_probe(struct platform_device * pdev)847  static int dsi_probe(struct platform_device *pdev)
848  {
849  	struct dsi_data *data;
850  	struct dw_dsi *dsi;
851  	struct dsi_hw_ctx *ctx;
852  	int ret;
853  
854  	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
855  	if (!data) {
856  		DRM_ERROR("failed to allocate dsi data.\n");
857  		return -ENOMEM;
858  	}
859  	dsi = &data->dsi;
860  	ctx = &data->ctx;
861  	dsi->ctx = ctx;
862  	dsi->dev = &pdev->dev;
863  
864  	ret = dsi_parse_dt(pdev, dsi);
865  	if (ret)
866  		return ret;
867  
868  	platform_set_drvdata(pdev, data);
869  
870  	ret = dsi_host_init(&pdev->dev, dsi);
871  	if (ret)
872  		return ret;
873  
874  	return 0;
875  }
876  
dsi_remove(struct platform_device * pdev)877  static void dsi_remove(struct platform_device *pdev)
878  {
879  	struct dsi_data *data = platform_get_drvdata(pdev);
880  	struct dw_dsi *dsi = &data->dsi;
881  
882  	mipi_dsi_host_unregister(&dsi->host);
883  }
884  
885  static const struct of_device_id dsi_of_match[] = {
886  	{.compatible = "hisilicon,hi6220-dsi"},
887  	{ }
888  };
889  MODULE_DEVICE_TABLE(of, dsi_of_match);
890  
891  static struct platform_driver dsi_driver = {
892  	.probe = dsi_probe,
893  	.remove_new = dsi_remove,
894  	.driver = {
895  		.name = "dw-dsi",
896  		.of_match_table = dsi_of_match,
897  	},
898  };
899  
900  module_platform_driver(dsi_driver);
901  
902  MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>");
903  MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>");
904  MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>");
905  MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver");
906  MODULE_LICENSE("GPL v2");
907