xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 08ae519ab8eb6c9abbd97156cb3678f372521501)
1  /*
2   * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3   * All rights reserved.
4   *
5   * Redistribution and use in source and binary forms, with or without
6   * modification, are permitted provided that the following conditions are met:
7   *     * Redistributions of source code must retain the above copyright
8   *       notice, this list of conditions and the following disclaimer.
9   *     * Redistributions in binary form must reproduce the above copyright
10   *       notice, this list of conditions and the following disclaimer in the
11   *       documentation and/or other materials provided with the distribution.
12   *     * Neither the name of the Open Source and Linux Lab nor the
13   *       names of its contributors may be used to endorse or promote products
14   *       derived from this software without specific prior written permission.
15   *
16   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17   * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19   * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26   */
27  
28  #include "qemu/osdep.h"
29  #include "qemu/units.h"
30  #include "qapi/error.h"
31  #include "cpu.h"
32  #include "sysemu/sysemu.h"
33  #include "hw/boards.h"
34  #include "hw/loader.h"
35  #include "hw/qdev-properties.h"
36  #include "elf.h"
37  #include "exec/memory.h"
38  #include "hw/char/serial-mm.h"
39  #include "net/net.h"
40  #include "hw/sysbus.h"
41  #include "hw/block/flash.h"
42  #include "chardev/char.h"
43  #include "sysemu/device_tree.h"
44  #include "sysemu/reset.h"
45  #include "sysemu/runstate.h"
46  #include "qemu/error-report.h"
47  #include "qemu/option.h"
48  #include "bootparam.h"
49  #include "xtensa_memory.h"
50  #include "hw/xtensa/mx_pic.h"
51  #include "migration/vmstate.h"
52  
53  typedef struct XtfpgaFlashDesc {
54      hwaddr base;
55      size_t size;
56      size_t boot_base;
57      size_t sector_size;
58  } XtfpgaFlashDesc;
59  
60  typedef struct XtfpgaBoardDesc {
61      const XtfpgaFlashDesc *flash;
62      size_t sram_size;
63      const hwaddr *io;
64  } XtfpgaBoardDesc;
65  
66  typedef struct XtfpgaFpgaState {
67      MemoryRegion iomem;
68      uint32_t freq;
69      uint32_t leds;
70      uint32_t switches;
71  } XtfpgaFpgaState;
72  
xtfpga_fpga_reset(void * opaque)73  static void xtfpga_fpga_reset(void *opaque)
74  {
75      XtfpgaFpgaState *s = opaque;
76  
77      s->leds = 0;
78      s->switches = 0;
79  }
80  
xtfpga_fpga_read(void * opaque,hwaddr addr,unsigned size)81  static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
82          unsigned size)
83  {
84      XtfpgaFpgaState *s = opaque;
85  
86      switch (addr) {
87      case 0x0: /*build date code*/
88          return 0x09272011;
89  
90      case 0x4: /*processor clock frequency, Hz*/
91          return s->freq;
92  
93      case 0x8: /*LEDs (off = 0, on = 1)*/
94          return s->leds;
95  
96      case 0xc: /*DIP switches (off = 0, on = 1)*/
97          return s->switches;
98      }
99      return 0;
100  }
101  
xtfpga_fpga_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)102  static void xtfpga_fpga_write(void *opaque, hwaddr addr,
103          uint64_t val, unsigned size)
104  {
105      XtfpgaFpgaState *s = opaque;
106  
107      switch (addr) {
108      case 0x8: /*LEDs (off = 0, on = 1)*/
109          s->leds = val;
110          break;
111  
112      case 0x10: /*board reset*/
113          if (val == 0xdead) {
114              qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
115          }
116          break;
117      }
118  }
119  
120  static const MemoryRegionOps xtfpga_fpga_ops = {
121      .read = xtfpga_fpga_read,
122      .write = xtfpga_fpga_write,
123      .endianness = DEVICE_NATIVE_ENDIAN,
124  };
125  
xtfpga_fpga_init(MemoryRegion * address_space,hwaddr base,uint32_t freq)126  static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
127                                           hwaddr base, uint32_t freq)
128  {
129      XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1);
130  
131      memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
132                            "xtfpga.fpga", 0x10000);
133      memory_region_add_subregion(address_space, base, &s->iomem);
134      s->freq = freq;
135      xtfpga_fpga_reset(s);
136      qemu_register_reset(xtfpga_fpga_reset, s);
137      return s;
138  }
139  
xtfpga_net_init(MemoryRegion * address_space,hwaddr base,hwaddr descriptors,hwaddr buffers,qemu_irq irq)140  static void xtfpga_net_init(MemoryRegion *address_space,
141          hwaddr base,
142          hwaddr descriptors,
143          hwaddr buffers,
144          qemu_irq irq)
145  {
146      DeviceState *dev;
147      SysBusDevice *s;
148      MemoryRegion *ram;
149  
150      dev = qemu_create_nic_device("open_eth", true, NULL);
151      if (!dev) {
152          return;
153      }
154  
155      s = SYS_BUS_DEVICE(dev);
156      sysbus_realize_and_unref(s, &error_fatal);
157      sysbus_connect_irq(s, 0, irq);
158      memory_region_add_subregion(address_space, base,
159              sysbus_mmio_get_region(s, 0));
160      memory_region_add_subregion(address_space, descriptors,
161              sysbus_mmio_get_region(s, 1));
162  
163      ram = g_malloc(sizeof(*ram));
164      memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
165                             &error_fatal);
166      vmstate_register_ram_global(ram);
167      memory_region_add_subregion(address_space, buffers, ram);
168  }
169  
xtfpga_flash_init(MemoryRegion * address_space,const XtfpgaBoardDesc * board,DriveInfo * dinfo,int be)170  static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
171                                        const XtfpgaBoardDesc *board,
172                                        DriveInfo *dinfo, int be)
173  {
174      SysBusDevice *s;
175      DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
176  
177      qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
178      qdev_prop_set_uint32(dev, "num-blocks",
179                           board->flash->size / board->flash->sector_size);
180      qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
181      qdev_prop_set_uint8(dev, "width", 2);
182      qdev_prop_set_bit(dev, "big-endian", be);
183      qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
184      s = SYS_BUS_DEVICE(dev);
185      sysbus_realize_and_unref(s, &error_fatal);
186      memory_region_add_subregion(address_space, board->flash->base,
187                                  sysbus_mmio_get_region(s, 0));
188      return PFLASH_CFI01(dev);
189  }
190  
translate_phys_addr(void * opaque,uint64_t addr)191  static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
192  {
193      XtensaCPU *cpu = opaque;
194  
195      return cpu_get_phys_page_debug(CPU(cpu), addr);
196  }
197  
xtfpga_reset(void * opaque)198  static void xtfpga_reset(void *opaque)
199  {
200      XtensaCPU *cpu = opaque;
201  
202      cpu_reset(CPU(cpu));
203  }
204  
xtfpga_io_read(void * opaque,hwaddr addr,unsigned size)205  static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
206          unsigned size)
207  {
208      return 0;
209  }
210  
xtfpga_io_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)211  static void xtfpga_io_write(void *opaque, hwaddr addr,
212          uint64_t val, unsigned size)
213  {
214  }
215  
216  static const MemoryRegionOps xtfpga_io_ops = {
217      .read = xtfpga_io_read,
218      .write = xtfpga_io_write,
219      .endianness = DEVICE_NATIVE_ENDIAN,
220  };
221  
xtfpga_init(const XtfpgaBoardDesc * board,MachineState * machine)222  static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
223  {
224      MemoryRegion *system_memory = get_system_memory();
225      XtensaCPU *cpu = NULL;
226      CPUXtensaState *env = NULL;
227      MemoryRegion *system_io;
228      XtensaMxPic *mx_pic = NULL;
229      qemu_irq *extints;
230      DriveInfo *dinfo;
231      PFlashCFI01 *flash = NULL;
232      const char *kernel_filename = machine->kernel_filename;
233      const char *kernel_cmdline = machine->kernel_cmdline;
234      const char *dtb_filename = machine->dtb;
235      const char *initrd_filename = machine->initrd_filename;
236      const unsigned system_io_size = 224 * MiB;
237      uint32_t freq = 10000000;
238      int n;
239      unsigned int smp_cpus = machine->smp.cpus;
240  
241      if (smp_cpus > 1) {
242          mx_pic = xtensa_mx_pic_init(31);
243          qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
244      }
245      for (n = 0; n < smp_cpus; n++) {
246          CPUXtensaState *cenv = NULL;
247  
248          cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
249          cenv = &cpu->env;
250          if (!env) {
251              env = cenv;
252              freq = env->config->clock_freq_khz * 1000;
253          }
254  
255          if (mx_pic) {
256              MemoryRegion *mx_eri;
257  
258              mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
259                                                  xtensa_get_extints(cenv),
260                                                  xtensa_get_runstall(cenv));
261              memory_region_add_subregion(xtensa_get_er_region(cenv),
262                                          0, mx_eri);
263          }
264          cenv->sregs[PRID] = n;
265          xtensa_select_static_vectors(cenv, n != 0);
266          qemu_register_reset(xtfpga_reset, cpu);
267          /* Need MMU initialized prior to ELF loading,
268           * so that ELF gets loaded into virtual addresses
269           */
270          cpu_reset(CPU(cpu));
271      }
272      if (smp_cpus > 1) {
273          extints = xtensa_mx_pic_get_extints(mx_pic);
274      } else {
275          extints = xtensa_get_extints(env);
276      }
277  
278      if (env) {
279          XtensaMemory sysram = env->config->sysram;
280  
281          sysram.location[0].size = machine->ram_size;
282          xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
283                                       system_memory);
284          xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
285                                       system_memory);
286          xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
287                                       system_memory);
288          xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
289                                       system_memory);
290          xtensa_create_memory_regions(&sysram, "xtensa.sysram",
291                                       system_memory);
292      }
293  
294      system_io = g_malloc(sizeof(*system_io));
295      memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
296                            system_io_size);
297      memory_region_add_subregion(system_memory, board->io[0], system_io);
298      if (board->io[1]) {
299          MemoryRegion *io = g_malloc(sizeof(*io));
300  
301          memory_region_init_alias(io, NULL, "xtfpga.io.cached",
302                                   system_io, 0, system_io_size);
303          memory_region_add_subregion(system_memory, board->io[1], io);
304      }
305      xtfpga_fpga_init(system_io, 0x0d020000, freq);
306      xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, extints[1]);
307  
308      serial_mm_init(system_io, 0x0d050020, 2, extints[0],
309                     115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
310  
311      dinfo = drive_get(IF_PFLASH, 0, 0);
312      if (dinfo) {
313          flash = xtfpga_flash_init(system_io, board, dinfo, TARGET_BIG_ENDIAN);
314      }
315  
316      /* Use presence of kernel file name as 'boot from SRAM' switch. */
317      if (kernel_filename) {
318          uint32_t entry_point = env->pc;
319          size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
320          uint32_t tagptr = env->config->sysrom.location[0].addr +
321              board->sram_size;
322          uint32_t cur_tagptr;
323          BpMemInfo memory_location = {
324              .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
325              .start = tswap32(env->config->sysram.location[0].addr),
326              .end = tswap32(env->config->sysram.location[0].addr +
327                             machine->ram_size),
328          };
329          uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
330              machine->ram_size : 0x08000000;
331          uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
332  
333          lowmem_end += env->config->sysram.location[0].addr;
334          cur_lowmem += env->config->sysram.location[0].addr;
335  
336          xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
337                                       system_memory);
338  
339          if (kernel_cmdline) {
340              bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
341          }
342          if (dtb_filename) {
343              bp_size += get_tag_size(sizeof(uint32_t));
344          }
345          if (initrd_filename) {
346              bp_size += get_tag_size(sizeof(BpMemInfo));
347          }
348  
349          /* Put kernel bootparameters to the end of that SRAM */
350          tagptr = (tagptr - bp_size) & ~0xff;
351          cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
352          cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
353                               sizeof(memory_location), &memory_location);
354  
355          if (kernel_cmdline) {
356              cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
357                                   strlen(kernel_cmdline) + 1, kernel_cmdline);
358          }
359          if (dtb_filename) {
360              int fdt_size;
361              void *fdt = load_device_tree(dtb_filename, &fdt_size);
362              uint32_t dtb_addr = tswap32(cur_lowmem);
363  
364              if (!fdt) {
365                  error_report("could not load DTB '%s'", dtb_filename);
366                  exit(EXIT_FAILURE);
367              }
368  
369              cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
370              cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
371                                   sizeof(dtb_addr), &dtb_addr);
372              cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
373              g_free(fdt);
374          }
375          if (initrd_filename) {
376              BpMemInfo initrd_location = { 0 };
377              int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
378                                             lowmem_end - cur_lowmem);
379  
380              if (initrd_size < 0) {
381                  initrd_size = load_image_targphys(initrd_filename,
382                                                    cur_lowmem,
383                                                    lowmem_end - cur_lowmem);
384              }
385              if (initrd_size < 0) {
386                  error_report("could not load initrd '%s'", initrd_filename);
387                  exit(EXIT_FAILURE);
388              }
389              initrd_location.start = tswap32(cur_lowmem);
390              initrd_location.end = tswap32(cur_lowmem + initrd_size);
391              cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
392                                   sizeof(initrd_location), &initrd_location);
393              cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
394          }
395          cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
396          env->regs[2] = tagptr;
397  
398          uint64_t elf_entry;
399          int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
400                                 &elf_entry, NULL, NULL, NULL, TARGET_BIG_ENDIAN,
401                                 EM_XTENSA, 0, 0);
402          if (success > 0) {
403              entry_point = elf_entry;
404          } else {
405              hwaddr ep;
406              int is_linux;
407              success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
408                                    translate_phys_addr, cpu);
409              if (success > 0 && is_linux) {
410                  entry_point = ep;
411              } else {
412                  error_report("could not load kernel '%s'",
413                               kernel_filename);
414                  exit(EXIT_FAILURE);
415              }
416          }
417          if (entry_point != env->pc) {
418              uint8_t boot_be[] = {
419                  0x60, 0x00, 0x08,       /* j    1f */
420                  0x00,                   /* .literal_position */
421                  0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
422                  0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
423                                          /* 1: */
424                  0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
425                  0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
426                  0x0a, 0x00, 0x00,       /* jx   a0 */
427              };
428              uint8_t boot_le[] = {
429                  0x06, 0x02, 0x00,       /* j    1f */
430                  0x00,                   /* .literal_position */
431                  0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
432                  0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
433                                          /* 1: */
434                  0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
435                  0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
436                  0xa0, 0x00, 0x00,       /* jx   a0 */
437              };
438              const size_t boot_sz = TARGET_BIG_ENDIAN ? sizeof(boot_be)
439                                                       : sizeof(boot_le);
440              uint8_t *boot = TARGET_BIG_ENDIAN ? boot_be : boot_le;
441              uint32_t entry_pc = tswap32(entry_point);
442              uint32_t entry_a2 = tswap32(tagptr);
443  
444              memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
445              memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
446              cpu_physical_memory_write(env->pc, boot, boot_sz);
447          }
448      } else {
449          if (flash) {
450              MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
451              MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
452              uint32_t size = env->config->sysrom.location[0].size;
453  
454              if (board->flash->size - board->flash->boot_base < size) {
455                  size = board->flash->size - board->flash->boot_base;
456              }
457  
458              memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
459                                       flash_mr, board->flash->boot_base, size);
460              memory_region_add_subregion(system_memory,
461                                          env->config->sysrom.location[0].addr,
462                                          flash_io);
463          } else {
464              xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
465                                           system_memory);
466          }
467      }
468  }
469  
470  #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
471  
472  static const hwaddr xtfpga_mmu_io[2] = {
473      0xf0000000,
474  };
475  
476  static const hwaddr xtfpga_nommu_io[2] = {
477      0x90000000,
478      0x70000000,
479  };
480  
481  static const XtfpgaFlashDesc lx60_flash = {
482      .base = 0x08000000,
483      .size = 0x00400000,
484      .sector_size = 0x10000,
485  };
486  
xtfpga_lx60_init(MachineState * machine)487  static void xtfpga_lx60_init(MachineState *machine)
488  {
489      static const XtfpgaBoardDesc lx60_board = {
490          .flash = &lx60_flash,
491          .sram_size = 0x20000,
492          .io = xtfpga_mmu_io,
493      };
494      xtfpga_init(&lx60_board, machine);
495  }
496  
xtfpga_lx60_nommu_init(MachineState * machine)497  static void xtfpga_lx60_nommu_init(MachineState *machine)
498  {
499      static const XtfpgaBoardDesc lx60_board = {
500          .flash = &lx60_flash,
501          .sram_size = 0x20000,
502          .io = xtfpga_nommu_io,
503      };
504      xtfpga_init(&lx60_board, machine);
505  }
506  
507  static const XtfpgaFlashDesc lx200_flash = {
508      .base = 0x08000000,
509      .size = 0x01000000,
510      .sector_size = 0x20000,
511  };
512  
xtfpga_lx200_init(MachineState * machine)513  static void xtfpga_lx200_init(MachineState *machine)
514  {
515      static const XtfpgaBoardDesc lx200_board = {
516          .flash = &lx200_flash,
517          .sram_size = 0x2000000,
518          .io = xtfpga_mmu_io,
519      };
520      xtfpga_init(&lx200_board, machine);
521  }
522  
xtfpga_lx200_nommu_init(MachineState * machine)523  static void xtfpga_lx200_nommu_init(MachineState *machine)
524  {
525      static const XtfpgaBoardDesc lx200_board = {
526          .flash = &lx200_flash,
527          .sram_size = 0x2000000,
528          .io = xtfpga_nommu_io,
529      };
530      xtfpga_init(&lx200_board, machine);
531  }
532  
533  static const XtfpgaFlashDesc ml605_flash = {
534      .base = 0x08000000,
535      .size = 0x01000000,
536      .sector_size = 0x20000,
537  };
538  
xtfpga_ml605_init(MachineState * machine)539  static void xtfpga_ml605_init(MachineState *machine)
540  {
541      static const XtfpgaBoardDesc ml605_board = {
542          .flash = &ml605_flash,
543          .sram_size = 0x2000000,
544          .io = xtfpga_mmu_io,
545      };
546      xtfpga_init(&ml605_board, machine);
547  }
548  
xtfpga_ml605_nommu_init(MachineState * machine)549  static void xtfpga_ml605_nommu_init(MachineState *machine)
550  {
551      static const XtfpgaBoardDesc ml605_board = {
552          .flash = &ml605_flash,
553          .sram_size = 0x2000000,
554          .io = xtfpga_nommu_io,
555      };
556      xtfpga_init(&ml605_board, machine);
557  }
558  
559  static const XtfpgaFlashDesc kc705_flash = {
560      .base = 0x00000000,
561      .size = 0x08000000,
562      .boot_base = 0x06000000,
563      .sector_size = 0x20000,
564  };
565  
xtfpga_kc705_init(MachineState * machine)566  static void xtfpga_kc705_init(MachineState *machine)
567  {
568      static const XtfpgaBoardDesc kc705_board = {
569          .flash = &kc705_flash,
570          .sram_size = 0x2000000,
571          .io = xtfpga_mmu_io,
572      };
573      xtfpga_init(&kc705_board, machine);
574  }
575  
xtfpga_kc705_nommu_init(MachineState * machine)576  static void xtfpga_kc705_nommu_init(MachineState *machine)
577  {
578      static const XtfpgaBoardDesc kc705_board = {
579          .flash = &kc705_flash,
580          .sram_size = 0x2000000,
581          .io = xtfpga_nommu_io,
582      };
583      xtfpga_init(&kc705_board, machine);
584  }
585  
xtfpga_lx60_class_init(ObjectClass * oc,void * data)586  static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
587  {
588      MachineClass *mc = MACHINE_CLASS(oc);
589  
590      mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
591      mc->init = xtfpga_lx60_init;
592      mc->max_cpus = 32;
593      mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
594      mc->default_ram_size = 64 * MiB;
595  }
596  
597  static const TypeInfo xtfpga_lx60_type = {
598      .name = MACHINE_TYPE_NAME("lx60"),
599      .parent = TYPE_MACHINE,
600      .class_init = xtfpga_lx60_class_init,
601  };
602  
xtfpga_lx60_nommu_class_init(ObjectClass * oc,void * data)603  static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
604  {
605      MachineClass *mc = MACHINE_CLASS(oc);
606  
607      mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
608      mc->init = xtfpga_lx60_nommu_init;
609      mc->max_cpus = 32;
610      mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
611      mc->default_ram_size = 64 * MiB;
612  }
613  
614  static const TypeInfo xtfpga_lx60_nommu_type = {
615      .name = MACHINE_TYPE_NAME("lx60-nommu"),
616      .parent = TYPE_MACHINE,
617      .class_init = xtfpga_lx60_nommu_class_init,
618  };
619  
xtfpga_lx200_class_init(ObjectClass * oc,void * data)620  static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
621  {
622      MachineClass *mc = MACHINE_CLASS(oc);
623  
624      mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
625      mc->init = xtfpga_lx200_init;
626      mc->max_cpus = 32;
627      mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
628      mc->default_ram_size = 96 * MiB;
629  }
630  
631  static const TypeInfo xtfpga_lx200_type = {
632      .name = MACHINE_TYPE_NAME("lx200"),
633      .parent = TYPE_MACHINE,
634      .class_init = xtfpga_lx200_class_init,
635  };
636  
xtfpga_lx200_nommu_class_init(ObjectClass * oc,void * data)637  static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
638  {
639      MachineClass *mc = MACHINE_CLASS(oc);
640  
641      mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
642      mc->init = xtfpga_lx200_nommu_init;
643      mc->max_cpus = 32;
644      mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
645      mc->default_ram_size = 96 * MiB;
646  }
647  
648  static const TypeInfo xtfpga_lx200_nommu_type = {
649      .name = MACHINE_TYPE_NAME("lx200-nommu"),
650      .parent = TYPE_MACHINE,
651      .class_init = xtfpga_lx200_nommu_class_init,
652  };
653  
xtfpga_ml605_class_init(ObjectClass * oc,void * data)654  static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
655  {
656      MachineClass *mc = MACHINE_CLASS(oc);
657  
658      mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
659      mc->init = xtfpga_ml605_init;
660      mc->max_cpus = 32;
661      mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
662      mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
663  }
664  
665  static const TypeInfo xtfpga_ml605_type = {
666      .name = MACHINE_TYPE_NAME("ml605"),
667      .parent = TYPE_MACHINE,
668      .class_init = xtfpga_ml605_class_init,
669  };
670  
xtfpga_ml605_nommu_class_init(ObjectClass * oc,void * data)671  static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
672  {
673      MachineClass *mc = MACHINE_CLASS(oc);
674  
675      mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
676      mc->init = xtfpga_ml605_nommu_init;
677      mc->max_cpus = 32;
678      mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
679      mc->default_ram_size = 256 * MiB;
680  }
681  
682  static const TypeInfo xtfpga_ml605_nommu_type = {
683      .name = MACHINE_TYPE_NAME("ml605-nommu"),
684      .parent = TYPE_MACHINE,
685      .class_init = xtfpga_ml605_nommu_class_init,
686  };
687  
xtfpga_kc705_class_init(ObjectClass * oc,void * data)688  static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
689  {
690      MachineClass *mc = MACHINE_CLASS(oc);
691  
692      mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
693      mc->init = xtfpga_kc705_init;
694      mc->max_cpus = 32;
695      mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
696      mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
697  }
698  
699  static const TypeInfo xtfpga_kc705_type = {
700      .name = MACHINE_TYPE_NAME("kc705"),
701      .parent = TYPE_MACHINE,
702      .class_init = xtfpga_kc705_class_init,
703  };
704  
xtfpga_kc705_nommu_class_init(ObjectClass * oc,void * data)705  static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
706  {
707      MachineClass *mc = MACHINE_CLASS(oc);
708  
709      mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
710      mc->init = xtfpga_kc705_nommu_init;
711      mc->max_cpus = 32;
712      mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
713      mc->default_ram_size = 256 * MiB;
714  }
715  
716  static const TypeInfo xtfpga_kc705_nommu_type = {
717      .name = MACHINE_TYPE_NAME("kc705-nommu"),
718      .parent = TYPE_MACHINE,
719      .class_init = xtfpga_kc705_nommu_class_init,
720  };
721  
xtfpga_machines_init(void)722  static void xtfpga_machines_init(void)
723  {
724      type_register_static(&xtfpga_lx60_type);
725      type_register_static(&xtfpga_lx200_type);
726      type_register_static(&xtfpga_ml605_type);
727      type_register_static(&xtfpga_kc705_type);
728      type_register_static(&xtfpga_lx60_nommu_type);
729      type_register_static(&xtfpga_lx200_nommu_type);
730      type_register_static(&xtfpga_ml605_nommu_type);
731      type_register_static(&xtfpga_kc705_nommu_type);
732  }
733  
734  type_init(xtfpga_machines_init)
735