1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36
37 #include "mtdcore.h"
38
39 struct backing_dev_info *mtd_bdi;
40
41 #ifdef CONFIG_PM_SLEEP
42
mtd_cls_suspend(struct device * dev)43 static int mtd_cls_suspend(struct device *dev)
44 {
45 struct mtd_info *mtd = dev_get_drvdata(dev);
46
47 return mtd ? mtd_suspend(mtd) : 0;
48 }
49
mtd_cls_resume(struct device * dev)50 static int mtd_cls_resume(struct device *dev)
51 {
52 struct mtd_info *mtd = dev_get_drvdata(dev);
53
54 if (mtd)
55 mtd_resume(mtd);
56 return 0;
57 }
58
59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
61 #else
62 #define MTD_CLS_PM_OPS NULL
63 #endif
64
65 static struct class mtd_class = {
66 .name = "mtd",
67 .pm = MTD_CLS_PM_OPS,
68 };
69
70 static DEFINE_IDR(mtd_idr);
71
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73 should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76
__mtd_next_device(int i)77 struct mtd_info *__mtd_next_device(int i)
78 {
79 return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82
83 static LIST_HEAD(mtd_notifiers);
84
85
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89 * the mtd_info will probably want to use the release() hook...
90 */
mtd_release(struct device * dev)91 static void mtd_release(struct device *dev)
92 {
93 struct mtd_info *mtd = dev_get_drvdata(dev);
94 dev_t index = MTD_DEVT(mtd->index);
95
96 idr_remove(&mtd_idr, mtd->index);
97 of_node_put(mtd_get_of_node(mtd));
98
99 if (mtd_is_partition(mtd))
100 release_mtd_partition(mtd);
101
102 /* remove /dev/mtdXro node */
103 device_destroy(&mtd_class, index + 1);
104 }
105
mtd_device_release(struct kref * kref)106 static void mtd_device_release(struct kref *kref)
107 {
108 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
109 bool is_partition = mtd_is_partition(mtd);
110
111 debugfs_remove_recursive(mtd->dbg.dfs_dir);
112
113 /* Try to remove the NVMEM provider */
114 nvmem_unregister(mtd->nvmem);
115
116 device_unregister(&mtd->dev);
117
118 /*
119 * Clear dev so mtd can be safely re-registered later if desired.
120 * Should not be done for partition,
121 * as it was already destroyed in device_unregister().
122 */
123 if (!is_partition)
124 memset(&mtd->dev, 0, sizeof(mtd->dev));
125
126 module_put(THIS_MODULE);
127 }
128
129 #define MTD_DEVICE_ATTR_RO(name) \
130 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
131
132 #define MTD_DEVICE_ATTR_RW(name) \
133 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
134
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)135 static ssize_t mtd_type_show(struct device *dev,
136 struct device_attribute *attr, char *buf)
137 {
138 struct mtd_info *mtd = dev_get_drvdata(dev);
139 char *type;
140
141 switch (mtd->type) {
142 case MTD_ABSENT:
143 type = "absent";
144 break;
145 case MTD_RAM:
146 type = "ram";
147 break;
148 case MTD_ROM:
149 type = "rom";
150 break;
151 case MTD_NORFLASH:
152 type = "nor";
153 break;
154 case MTD_NANDFLASH:
155 type = "nand";
156 break;
157 case MTD_DATAFLASH:
158 type = "dataflash";
159 break;
160 case MTD_UBIVOLUME:
161 type = "ubi";
162 break;
163 case MTD_MLCNANDFLASH:
164 type = "mlc-nand";
165 break;
166 default:
167 type = "unknown";
168 }
169
170 return sysfs_emit(buf, "%s\n", type);
171 }
172 MTD_DEVICE_ATTR_RO(type);
173
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)174 static ssize_t mtd_flags_show(struct device *dev,
175 struct device_attribute *attr, char *buf)
176 {
177 struct mtd_info *mtd = dev_get_drvdata(dev);
178
179 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
180 }
181 MTD_DEVICE_ATTR_RO(flags);
182
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)183 static ssize_t mtd_size_show(struct device *dev,
184 struct device_attribute *attr, char *buf)
185 {
186 struct mtd_info *mtd = dev_get_drvdata(dev);
187
188 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
189 }
190 MTD_DEVICE_ATTR_RO(size);
191
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)192 static ssize_t mtd_erasesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196
197 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
198 }
199 MTD_DEVICE_ATTR_RO(erasesize);
200
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203 {
204 struct mtd_info *mtd = dev_get_drvdata(dev);
205
206 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
207 }
208 MTD_DEVICE_ATTR_RO(writesize);
209
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)210 static ssize_t mtd_subpagesize_show(struct device *dev,
211 struct device_attribute *attr, char *buf)
212 {
213 struct mtd_info *mtd = dev_get_drvdata(dev);
214 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
215
216 return sysfs_emit(buf, "%u\n", subpagesize);
217 }
218 MTD_DEVICE_ATTR_RO(subpagesize);
219
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)220 static ssize_t mtd_oobsize_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222 {
223 struct mtd_info *mtd = dev_get_drvdata(dev);
224
225 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
226 }
227 MTD_DEVICE_ATTR_RO(oobsize);
228
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t mtd_oobavail_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 struct mtd_info *mtd = dev_get_drvdata(dev);
233
234 return sysfs_emit(buf, "%u\n", mtd->oobavail);
235 }
236 MTD_DEVICE_ATTR_RO(oobavail);
237
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)238 static ssize_t mtd_numeraseregions_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240 {
241 struct mtd_info *mtd = dev_get_drvdata(dev);
242
243 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
244 }
245 MTD_DEVICE_ATTR_RO(numeraseregions);
246
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)247 static ssize_t mtd_name_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
249 {
250 struct mtd_info *mtd = dev_get_drvdata(dev);
251
252 return sysfs_emit(buf, "%s\n", mtd->name);
253 }
254 MTD_DEVICE_ATTR_RO(name);
255
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)256 static ssize_t mtd_ecc_strength_show(struct device *dev,
257 struct device_attribute *attr, char *buf)
258 {
259 struct mtd_info *mtd = dev_get_drvdata(dev);
260
261 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
262 }
263 MTD_DEVICE_ATTR_RO(ecc_strength);
264
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)265 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
266 struct device_attribute *attr,
267 char *buf)
268 {
269 struct mtd_info *mtd = dev_get_drvdata(dev);
270
271 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
272 }
273
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)274 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
275 struct device_attribute *attr,
276 const char *buf, size_t count)
277 {
278 struct mtd_info *mtd = dev_get_drvdata(dev);
279 unsigned int bitflip_threshold;
280 int retval;
281
282 retval = kstrtouint(buf, 0, &bitflip_threshold);
283 if (retval)
284 return retval;
285
286 mtd->bitflip_threshold = bitflip_threshold;
287 return count;
288 }
289 MTD_DEVICE_ATTR_RW(bitflip_threshold);
290
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295
296 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
297
298 }
299 MTD_DEVICE_ATTR_RO(ecc_step_size);
300
mtd_corrected_bits_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_corrected_bits_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
308 }
309 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
310
mtd_ecc_failures_show(struct device * dev,struct device_attribute * attr,char * buf)311 static ssize_t mtd_ecc_failures_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313 {
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
318 }
319 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
320
mtd_bad_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)321 static ssize_t mtd_bad_blocks_show(struct device *dev,
322 struct device_attribute *attr, char *buf)
323 {
324 struct mtd_info *mtd = dev_get_drvdata(dev);
325 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326
327 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
328 }
329 MTD_DEVICE_ATTR_RO(bad_blocks);
330
mtd_bbt_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)331 static ssize_t mtd_bbt_blocks_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
333 {
334 struct mtd_info *mtd = dev_get_drvdata(dev);
335 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
336
337 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
338 }
339 MTD_DEVICE_ATTR_RO(bbt_blocks);
340
341 static struct attribute *mtd_attrs[] = {
342 &dev_attr_type.attr,
343 &dev_attr_flags.attr,
344 &dev_attr_size.attr,
345 &dev_attr_erasesize.attr,
346 &dev_attr_writesize.attr,
347 &dev_attr_subpagesize.attr,
348 &dev_attr_oobsize.attr,
349 &dev_attr_oobavail.attr,
350 &dev_attr_numeraseregions.attr,
351 &dev_attr_name.attr,
352 &dev_attr_ecc_strength.attr,
353 &dev_attr_ecc_step_size.attr,
354 &dev_attr_corrected_bits.attr,
355 &dev_attr_ecc_failures.attr,
356 &dev_attr_bad_blocks.attr,
357 &dev_attr_bbt_blocks.attr,
358 &dev_attr_bitflip_threshold.attr,
359 NULL,
360 };
361 ATTRIBUTE_GROUPS(mtd);
362
363 static const struct device_type mtd_devtype = {
364 .name = "mtd",
365 .groups = mtd_groups,
366 .release = mtd_release,
367 };
368
369 static bool mtd_expert_analysis_mode;
370
371 #ifdef CONFIG_DEBUG_FS
mtd_check_expert_analysis_mode(void)372 bool mtd_check_expert_analysis_mode(void)
373 {
374 const char *mtd_expert_analysis_warning =
375 "Bad block checks have been entirely disabled.\n"
376 "This is only reserved for post-mortem forensics and debug purposes.\n"
377 "Never enable this mode if you do not know what you are doing!\n";
378
379 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
380 }
381 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
382 #endif
383
384 static struct dentry *dfs_dir_mtd;
385
mtd_debugfs_populate(struct mtd_info * mtd)386 static void mtd_debugfs_populate(struct mtd_info *mtd)
387 {
388 struct device *dev = &mtd->dev;
389
390 if (IS_ERR_OR_NULL(dfs_dir_mtd))
391 return;
392
393 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
394 }
395
396 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)397 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
398 {
399 switch (mtd->type) {
400 case MTD_RAM:
401 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
402 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
403 case MTD_ROM:
404 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
405 NOMMU_MAP_READ;
406 default:
407 return NOMMU_MAP_COPY;
408 }
409 }
410 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
411 #endif
412
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)413 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
414 void *cmd)
415 {
416 struct mtd_info *mtd;
417
418 mtd = container_of(n, struct mtd_info, reboot_notifier);
419 mtd->_reboot(mtd);
420
421 return NOTIFY_DONE;
422 }
423
424 /**
425 * mtd_wunit_to_pairing_info - get pairing information of a wunit
426 * @mtd: pointer to new MTD device info structure
427 * @wunit: write unit we are interested in
428 * @info: returned pairing information
429 *
430 * Retrieve pairing information associated to the wunit.
431 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
432 * paired together, and where programming a page may influence the page it is
433 * paired with.
434 * The notion of page is replaced by the term wunit (write-unit) to stay
435 * consistent with the ->writesize field.
436 *
437 * The @wunit argument can be extracted from an absolute offset using
438 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
439 * to @wunit.
440 *
441 * From the pairing info the MTD user can find all the wunits paired with
442 * @wunit using the following loop:
443 *
444 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
445 * info.pair = i;
446 * mtd_pairing_info_to_wunit(mtd, &info);
447 * ...
448 * }
449 */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)450 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
451 struct mtd_pairing_info *info)
452 {
453 struct mtd_info *master = mtd_get_master(mtd);
454 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
455
456 if (wunit < 0 || wunit >= npairs)
457 return -EINVAL;
458
459 if (master->pairing && master->pairing->get_info)
460 return master->pairing->get_info(master, wunit, info);
461
462 info->group = 0;
463 info->pair = wunit;
464
465 return 0;
466 }
467 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
468
469 /**
470 * mtd_pairing_info_to_wunit - get wunit from pairing information
471 * @mtd: pointer to new MTD device info structure
472 * @info: pairing information struct
473 *
474 * Returns a positive number representing the wunit associated to the info
475 * struct, or a negative error code.
476 *
477 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
478 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
479 * doc).
480 *
481 * It can also be used to only program the first page of each pair (i.e.
482 * page attached to group 0), which allows one to use an MLC NAND in
483 * software-emulated SLC mode:
484 *
485 * info.group = 0;
486 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
487 * for (info.pair = 0; info.pair < npairs; info.pair++) {
488 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
489 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
490 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
491 * }
492 */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)493 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
494 const struct mtd_pairing_info *info)
495 {
496 struct mtd_info *master = mtd_get_master(mtd);
497 int ngroups = mtd_pairing_groups(master);
498 int npairs = mtd_wunit_per_eb(master) / ngroups;
499
500 if (!info || info->pair < 0 || info->pair >= npairs ||
501 info->group < 0 || info->group >= ngroups)
502 return -EINVAL;
503
504 if (master->pairing && master->pairing->get_wunit)
505 return mtd->pairing->get_wunit(master, info);
506
507 return info->pair;
508 }
509 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
510
511 /**
512 * mtd_pairing_groups - get the number of pairing groups
513 * @mtd: pointer to new MTD device info structure
514 *
515 * Returns the number of pairing groups.
516 *
517 * This number is usually equal to the number of bits exposed by a single
518 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
519 * to iterate over all pages of a given pair.
520 */
mtd_pairing_groups(struct mtd_info * mtd)521 int mtd_pairing_groups(struct mtd_info *mtd)
522 {
523 struct mtd_info *master = mtd_get_master(mtd);
524
525 if (!master->pairing || !master->pairing->ngroups)
526 return 1;
527
528 return master->pairing->ngroups;
529 }
530 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
531
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)532 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
533 void *val, size_t bytes)
534 {
535 struct mtd_info *mtd = priv;
536 size_t retlen;
537 int err;
538
539 err = mtd_read(mtd, offset, bytes, &retlen, val);
540 if (err && err != -EUCLEAN)
541 return err;
542
543 return retlen == bytes ? 0 : -EIO;
544 }
545
mtd_nvmem_add(struct mtd_info * mtd)546 static int mtd_nvmem_add(struct mtd_info *mtd)
547 {
548 struct device_node *node = mtd_get_of_node(mtd);
549 struct nvmem_config config = {};
550
551 config.id = NVMEM_DEVID_NONE;
552 config.dev = &mtd->dev;
553 config.name = dev_name(&mtd->dev);
554 config.owner = THIS_MODULE;
555 config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
556 config.reg_read = mtd_nvmem_reg_read;
557 config.size = mtd->size;
558 config.word_size = 1;
559 config.stride = 1;
560 config.read_only = true;
561 config.root_only = true;
562 config.ignore_wp = true;
563 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
564 config.priv = mtd;
565
566 mtd->nvmem = nvmem_register(&config);
567 if (IS_ERR(mtd->nvmem)) {
568 /* Just ignore if there is no NVMEM support in the kernel */
569 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
570 mtd->nvmem = NULL;
571 else
572 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
573 "Failed to register NVMEM device\n");
574 }
575
576 return 0;
577 }
578
mtd_check_of_node(struct mtd_info * mtd)579 static void mtd_check_of_node(struct mtd_info *mtd)
580 {
581 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
582 const char *pname, *prefix = "partition-";
583 int plen, mtd_name_len, offset, prefix_len;
584
585 /* Check if MTD already has a device node */
586 if (mtd_get_of_node(mtd))
587 return;
588
589 if (!mtd_is_partition(mtd))
590 return;
591
592 parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
593 if (!parent_dn)
594 return;
595
596 if (mtd_is_partition(mtd->parent))
597 partitions = of_node_get(parent_dn);
598 else
599 partitions = of_get_child_by_name(parent_dn, "partitions");
600 if (!partitions)
601 goto exit_parent;
602
603 prefix_len = strlen(prefix);
604 mtd_name_len = strlen(mtd->name);
605
606 /* Search if a partition is defined with the same name */
607 for_each_child_of_node(partitions, mtd_dn) {
608 /* Skip partition with no/wrong prefix */
609 if (!of_node_name_prefix(mtd_dn, prefix))
610 continue;
611
612 /* Label have priority. Check that first */
613 if (!of_property_read_string(mtd_dn, "label", &pname)) {
614 offset = 0;
615 } else {
616 pname = mtd_dn->name;
617 offset = prefix_len;
618 }
619
620 plen = strlen(pname) - offset;
621 if (plen == mtd_name_len &&
622 !strncmp(mtd->name, pname + offset, plen)) {
623 mtd_set_of_node(mtd, mtd_dn);
624 break;
625 }
626 }
627
628 of_node_put(partitions);
629 exit_parent:
630 of_node_put(parent_dn);
631 }
632
633 /**
634 * add_mtd_device - register an MTD device
635 * @mtd: pointer to new MTD device info structure
636 *
637 * Add a device to the list of MTD devices present in the system, and
638 * notify each currently active MTD 'user' of its arrival. Returns
639 * zero on success or non-zero on failure.
640 */
641
add_mtd_device(struct mtd_info * mtd)642 int add_mtd_device(struct mtd_info *mtd)
643 {
644 struct device_node *np = mtd_get_of_node(mtd);
645 struct mtd_info *master = mtd_get_master(mtd);
646 struct mtd_notifier *not;
647 int i, error, ofidx;
648
649 /*
650 * May occur, for instance, on buggy drivers which call
651 * mtd_device_parse_register() multiple times on the same master MTD,
652 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
653 */
654 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
655 return -EEXIST;
656
657 BUG_ON(mtd->writesize == 0);
658
659 /*
660 * MTD drivers should implement ->_{write,read}() or
661 * ->_{write,read}_oob(), but not both.
662 */
663 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
664 (mtd->_read && mtd->_read_oob)))
665 return -EINVAL;
666
667 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
668 !(mtd->flags & MTD_NO_ERASE)))
669 return -EINVAL;
670
671 /*
672 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
673 * master is an MLC NAND and has a proper pairing scheme defined.
674 * We also reject masters that implement ->_writev() for now, because
675 * NAND controller drivers don't implement this hook, and adding the
676 * SLC -> MLC address/length conversion to this path is useless if we
677 * don't have a user.
678 */
679 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
680 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
681 !master->pairing || master->_writev))
682 return -EINVAL;
683
684 mutex_lock(&mtd_table_mutex);
685
686 ofidx = -1;
687 if (np)
688 ofidx = of_alias_get_id(np, "mtd");
689 if (ofidx >= 0)
690 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
691 else
692 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
693 if (i < 0) {
694 error = i;
695 goto fail_locked;
696 }
697
698 mtd->index = i;
699 kref_init(&mtd->refcnt);
700
701 /* default value if not set by driver */
702 if (mtd->bitflip_threshold == 0)
703 mtd->bitflip_threshold = mtd->ecc_strength;
704
705 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
706 int ngroups = mtd_pairing_groups(master);
707
708 mtd->erasesize /= ngroups;
709 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
710 mtd->erasesize;
711 }
712
713 if (is_power_of_2(mtd->erasesize))
714 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
715 else
716 mtd->erasesize_shift = 0;
717
718 if (is_power_of_2(mtd->writesize))
719 mtd->writesize_shift = ffs(mtd->writesize) - 1;
720 else
721 mtd->writesize_shift = 0;
722
723 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
724 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
725
726 /* Some chips always power up locked. Unlock them now */
727 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
728 error = mtd_unlock(mtd, 0, mtd->size);
729 if (error && error != -EOPNOTSUPP)
730 printk(KERN_WARNING
731 "%s: unlock failed, writes may not work\n",
732 mtd->name);
733 /* Ignore unlock failures? */
734 error = 0;
735 }
736
737 /* Caller should have set dev.parent to match the
738 * physical device, if appropriate.
739 */
740 mtd->dev.type = &mtd_devtype;
741 mtd->dev.class = &mtd_class;
742 mtd->dev.devt = MTD_DEVT(i);
743 dev_set_name(&mtd->dev, "mtd%d", i);
744 dev_set_drvdata(&mtd->dev, mtd);
745 mtd_check_of_node(mtd);
746 of_node_get(mtd_get_of_node(mtd));
747 error = device_register(&mtd->dev);
748 if (error) {
749 put_device(&mtd->dev);
750 goto fail_added;
751 }
752
753 /* Add the nvmem provider */
754 error = mtd_nvmem_add(mtd);
755 if (error)
756 goto fail_nvmem_add;
757
758 mtd_debugfs_populate(mtd);
759
760 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
761 "mtd%dro", i);
762
763 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
764 /* No need to get a refcount on the module containing
765 the notifier, since we hold the mtd_table_mutex */
766 list_for_each_entry(not, &mtd_notifiers, list)
767 not->add(mtd);
768
769 mutex_unlock(&mtd_table_mutex);
770
771 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
772 if (IS_BUILTIN(CONFIG_MTD)) {
773 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
774 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
775 } else {
776 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
777 mtd->index, mtd->name);
778 }
779 }
780
781 /* We _know_ we aren't being removed, because
782 our caller is still holding us here. So none
783 of this try_ nonsense, and no bitching about it
784 either. :) */
785 __module_get(THIS_MODULE);
786 return 0;
787
788 fail_nvmem_add:
789 device_unregister(&mtd->dev);
790 fail_added:
791 of_node_put(mtd_get_of_node(mtd));
792 idr_remove(&mtd_idr, i);
793 fail_locked:
794 mutex_unlock(&mtd_table_mutex);
795 return error;
796 }
797
798 /**
799 * del_mtd_device - unregister an MTD device
800 * @mtd: pointer to MTD device info structure
801 *
802 * Remove a device from the list of MTD devices present in the system,
803 * and notify each currently active MTD 'user' of its departure.
804 * Returns zero on success or 1 on failure, which currently will happen
805 * if the requested device does not appear to be present in the list.
806 */
807
del_mtd_device(struct mtd_info * mtd)808 int del_mtd_device(struct mtd_info *mtd)
809 {
810 int ret;
811 struct mtd_notifier *not;
812
813 mutex_lock(&mtd_table_mutex);
814
815 if (idr_find(&mtd_idr, mtd->index) != mtd) {
816 ret = -ENODEV;
817 goto out_error;
818 }
819
820 /* No need to get a refcount on the module containing
821 the notifier, since we hold the mtd_table_mutex */
822 list_for_each_entry(not, &mtd_notifiers, list)
823 not->remove(mtd);
824
825 kref_put(&mtd->refcnt, mtd_device_release);
826 ret = 0;
827
828 out_error:
829 mutex_unlock(&mtd_table_mutex);
830 return ret;
831 }
832
833 /*
834 * Set a few defaults based on the parent devices, if not provided by the
835 * driver
836 */
mtd_set_dev_defaults(struct mtd_info * mtd)837 static void mtd_set_dev_defaults(struct mtd_info *mtd)
838 {
839 if (mtd->dev.parent) {
840 if (!mtd->owner && mtd->dev.parent->driver)
841 mtd->owner = mtd->dev.parent->driver->owner;
842 if (!mtd->name)
843 mtd->name = dev_name(mtd->dev.parent);
844 } else {
845 pr_debug("mtd device won't show a device symlink in sysfs\n");
846 }
847
848 INIT_LIST_HEAD(&mtd->partitions);
849 mutex_init(&mtd->master.partitions_lock);
850 mutex_init(&mtd->master.chrdev_lock);
851 }
852
mtd_otp_size(struct mtd_info * mtd,bool is_user)853 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
854 {
855 struct otp_info *info;
856 ssize_t size = 0;
857 unsigned int i;
858 size_t retlen;
859 int ret;
860
861 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
862 if (!info)
863 return -ENOMEM;
864
865 if (is_user)
866 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
867 else
868 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
869 if (ret)
870 goto err;
871
872 for (i = 0; i < retlen / sizeof(*info); i++)
873 size += info[i].length;
874
875 kfree(info);
876 return size;
877
878 err:
879 kfree(info);
880
881 /* ENODATA means there is no OTP region. */
882 return ret == -ENODATA ? 0 : ret;
883 }
884
mtd_otp_nvmem_register(struct mtd_info * mtd,const char * compatible,int size,nvmem_reg_read_t reg_read)885 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
886 const char *compatible,
887 int size,
888 nvmem_reg_read_t reg_read)
889 {
890 struct nvmem_device *nvmem = NULL;
891 struct nvmem_config config = {};
892 struct device_node *np;
893
894 /* DT binding is optional */
895 np = of_get_compatible_child(mtd->dev.of_node, compatible);
896
897 /* OTP nvmem will be registered on the physical device */
898 config.dev = mtd->dev.parent;
899 config.name = compatible;
900 config.id = NVMEM_DEVID_AUTO;
901 config.owner = THIS_MODULE;
902 config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd);
903 config.type = NVMEM_TYPE_OTP;
904 config.root_only = true;
905 config.ignore_wp = true;
906 config.reg_read = reg_read;
907 config.size = size;
908 config.of_node = np;
909 config.priv = mtd;
910
911 nvmem = nvmem_register(&config);
912 /* Just ignore if there is no NVMEM support in the kernel */
913 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
914 nvmem = NULL;
915
916 of_node_put(np);
917
918 return nvmem;
919 }
920
mtd_nvmem_user_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)921 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
922 void *val, size_t bytes)
923 {
924 struct mtd_info *mtd = priv;
925 size_t retlen;
926 int ret;
927
928 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
929 if (ret)
930 return ret;
931
932 return retlen == bytes ? 0 : -EIO;
933 }
934
mtd_nvmem_fact_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)935 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
936 void *val, size_t bytes)
937 {
938 struct mtd_info *mtd = priv;
939 size_t retlen;
940 int ret;
941
942 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
943 if (ret)
944 return ret;
945
946 return retlen == bytes ? 0 : -EIO;
947 }
948
mtd_otp_nvmem_add(struct mtd_info * mtd)949 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
950 {
951 struct device *dev = mtd->dev.parent;
952 struct nvmem_device *nvmem;
953 ssize_t size;
954 int err;
955
956 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
957 size = mtd_otp_size(mtd, true);
958 if (size < 0) {
959 err = size;
960 goto err;
961 }
962
963 if (size > 0) {
964 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
965 mtd_nvmem_user_otp_reg_read);
966 if (IS_ERR(nvmem)) {
967 err = PTR_ERR(nvmem);
968 goto err;
969 }
970 mtd->otp_user_nvmem = nvmem;
971 }
972 }
973
974 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
975 size = mtd_otp_size(mtd, false);
976 if (size < 0) {
977 err = size;
978 goto err;
979 }
980
981 if (size > 0) {
982 /*
983 * The factory OTP contains thing such as a unique serial
984 * number and is small, so let's read it out and put it
985 * into the entropy pool.
986 */
987 void *otp;
988
989 otp = kmalloc(size, GFP_KERNEL);
990 if (!otp) {
991 err = -ENOMEM;
992 goto err;
993 }
994 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
995 if (err < 0) {
996 kfree(otp);
997 goto err;
998 }
999 add_device_randomness(otp, err);
1000 kfree(otp);
1001
1002 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1003 mtd_nvmem_fact_otp_reg_read);
1004 if (IS_ERR(nvmem)) {
1005 err = PTR_ERR(nvmem);
1006 goto err;
1007 }
1008 mtd->otp_factory_nvmem = nvmem;
1009 }
1010 }
1011
1012 return 0;
1013
1014 err:
1015 nvmem_unregister(mtd->otp_user_nvmem);
1016 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1017 }
1018
1019 /**
1020 * mtd_device_parse_register - parse partitions and register an MTD device.
1021 *
1022 * @mtd: the MTD device to register
1023 * @types: the list of MTD partition probes to try, see
1024 * 'parse_mtd_partitions()' for more information
1025 * @parser_data: MTD partition parser-specific data
1026 * @parts: fallback partition information to register, if parsing fails;
1027 * only valid if %nr_parts > %0
1028 * @nr_parts: the number of partitions in parts, if zero then the full
1029 * MTD device is registered if no partition info is found
1030 *
1031 * This function aggregates MTD partitions parsing (done by
1032 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1033 * basically follows the most common pattern found in many MTD drivers:
1034 *
1035 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1036 * registered first.
1037 * * Then It tries to probe partitions on MTD device @mtd using parsers
1038 * specified in @types (if @types is %NULL, then the default list of parsers
1039 * is used, see 'parse_mtd_partitions()' for more information). If none are
1040 * found this functions tries to fallback to information specified in
1041 * @parts/@nr_parts.
1042 * * If no partitions were found this function just registers the MTD device
1043 * @mtd and exits.
1044 *
1045 * Returns zero in case of success and a negative error code in case of failure.
1046 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)1047 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1048 struct mtd_part_parser_data *parser_data,
1049 const struct mtd_partition *parts,
1050 int nr_parts)
1051 {
1052 int ret;
1053
1054 mtd_set_dev_defaults(mtd);
1055
1056 ret = mtd_otp_nvmem_add(mtd);
1057 if (ret)
1058 goto out;
1059
1060 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1061 ret = add_mtd_device(mtd);
1062 if (ret)
1063 goto out;
1064 }
1065
1066 /* Prefer parsed partitions over driver-provided fallback */
1067 ret = parse_mtd_partitions(mtd, types, parser_data);
1068 if (ret == -EPROBE_DEFER)
1069 goto out;
1070
1071 if (ret > 0)
1072 ret = 0;
1073 else if (nr_parts)
1074 ret = add_mtd_partitions(mtd, parts, nr_parts);
1075 else if (!device_is_registered(&mtd->dev))
1076 ret = add_mtd_device(mtd);
1077 else
1078 ret = 0;
1079
1080 if (ret)
1081 goto out;
1082
1083 /*
1084 * FIXME: some drivers unfortunately call this function more than once.
1085 * So we have to check if we've already assigned the reboot notifier.
1086 *
1087 * Generally, we can make multiple calls work for most cases, but it
1088 * does cause problems with parse_mtd_partitions() above (e.g.,
1089 * cmdlineparts will register partitions more than once).
1090 */
1091 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1092 "MTD already registered\n");
1093 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1094 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1095 register_reboot_notifier(&mtd->reboot_notifier);
1096 }
1097
1098 out:
1099 if (ret) {
1100 nvmem_unregister(mtd->otp_user_nvmem);
1101 nvmem_unregister(mtd->otp_factory_nvmem);
1102 }
1103
1104 if (ret && device_is_registered(&mtd->dev))
1105 del_mtd_device(mtd);
1106
1107 return ret;
1108 }
1109 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1110
1111 /**
1112 * mtd_device_unregister - unregister an existing MTD device.
1113 *
1114 * @master: the MTD device to unregister. This will unregister both the master
1115 * and any partitions if registered.
1116 */
mtd_device_unregister(struct mtd_info * master)1117 int mtd_device_unregister(struct mtd_info *master)
1118 {
1119 int err;
1120
1121 if (master->_reboot) {
1122 unregister_reboot_notifier(&master->reboot_notifier);
1123 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1124 }
1125
1126 nvmem_unregister(master->otp_user_nvmem);
1127 nvmem_unregister(master->otp_factory_nvmem);
1128
1129 err = del_mtd_partitions(master);
1130 if (err)
1131 return err;
1132
1133 if (!device_is_registered(&master->dev))
1134 return 0;
1135
1136 return del_mtd_device(master);
1137 }
1138 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1139
1140 /**
1141 * register_mtd_user - register a 'user' of MTD devices.
1142 * @new: pointer to notifier info structure
1143 *
1144 * Registers a pair of callbacks function to be called upon addition
1145 * or removal of MTD devices. Causes the 'add' callback to be immediately
1146 * invoked for each MTD device currently present in the system.
1147 */
register_mtd_user(struct mtd_notifier * new)1148 void register_mtd_user (struct mtd_notifier *new)
1149 {
1150 struct mtd_info *mtd;
1151
1152 mutex_lock(&mtd_table_mutex);
1153
1154 list_add(&new->list, &mtd_notifiers);
1155
1156 __module_get(THIS_MODULE);
1157
1158 mtd_for_each_device(mtd)
1159 new->add(mtd);
1160
1161 mutex_unlock(&mtd_table_mutex);
1162 }
1163 EXPORT_SYMBOL_GPL(register_mtd_user);
1164
1165 /**
1166 * unregister_mtd_user - unregister a 'user' of MTD devices.
1167 * @old: pointer to notifier info structure
1168 *
1169 * Removes a callback function pair from the list of 'users' to be
1170 * notified upon addition or removal of MTD devices. Causes the
1171 * 'remove' callback to be immediately invoked for each MTD device
1172 * currently present in the system.
1173 */
unregister_mtd_user(struct mtd_notifier * old)1174 int unregister_mtd_user (struct mtd_notifier *old)
1175 {
1176 struct mtd_info *mtd;
1177
1178 mutex_lock(&mtd_table_mutex);
1179
1180 module_put(THIS_MODULE);
1181
1182 mtd_for_each_device(mtd)
1183 old->remove(mtd);
1184
1185 list_del(&old->list);
1186 mutex_unlock(&mtd_table_mutex);
1187 return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1190
1191 /**
1192 * get_mtd_device - obtain a validated handle for an MTD device
1193 * @mtd: last known address of the required MTD device
1194 * @num: internal device number of the required MTD device
1195 *
1196 * Given a number and NULL address, return the num'th entry in the device
1197 * table, if any. Given an address and num == -1, search the device table
1198 * for a device with that address and return if it's still present. Given
1199 * both, return the num'th driver only if its address matches. Return
1200 * error code if not.
1201 */
get_mtd_device(struct mtd_info * mtd,int num)1202 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1203 {
1204 struct mtd_info *ret = NULL, *other;
1205 int err = -ENODEV;
1206
1207 mutex_lock(&mtd_table_mutex);
1208
1209 if (num == -1) {
1210 mtd_for_each_device(other) {
1211 if (other == mtd) {
1212 ret = mtd;
1213 break;
1214 }
1215 }
1216 } else if (num >= 0) {
1217 ret = idr_find(&mtd_idr, num);
1218 if (mtd && mtd != ret)
1219 ret = NULL;
1220 }
1221
1222 if (!ret) {
1223 ret = ERR_PTR(err);
1224 goto out;
1225 }
1226
1227 err = __get_mtd_device(ret);
1228 if (err)
1229 ret = ERR_PTR(err);
1230 out:
1231 mutex_unlock(&mtd_table_mutex);
1232 return ret;
1233 }
1234 EXPORT_SYMBOL_GPL(get_mtd_device);
1235
1236
__get_mtd_device(struct mtd_info * mtd)1237 int __get_mtd_device(struct mtd_info *mtd)
1238 {
1239 struct mtd_info *master = mtd_get_master(mtd);
1240 int err;
1241
1242 if (master->_get_device) {
1243 err = master->_get_device(mtd);
1244 if (err)
1245 return err;
1246 }
1247
1248 if (!try_module_get(master->owner)) {
1249 if (master->_put_device)
1250 master->_put_device(master);
1251 return -ENODEV;
1252 }
1253
1254 while (mtd) {
1255 if (mtd != master)
1256 kref_get(&mtd->refcnt);
1257 mtd = mtd->parent;
1258 }
1259
1260 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1261 kref_get(&master->refcnt);
1262
1263 return 0;
1264 }
1265 EXPORT_SYMBOL_GPL(__get_mtd_device);
1266
1267 /**
1268 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1269 *
1270 * @np: device tree node
1271 */
of_get_mtd_device_by_node(struct device_node * np)1272 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1273 {
1274 struct mtd_info *mtd = NULL;
1275 struct mtd_info *tmp;
1276 int err;
1277
1278 mutex_lock(&mtd_table_mutex);
1279
1280 err = -EPROBE_DEFER;
1281 mtd_for_each_device(tmp) {
1282 if (mtd_get_of_node(tmp) == np) {
1283 mtd = tmp;
1284 err = __get_mtd_device(mtd);
1285 break;
1286 }
1287 }
1288
1289 mutex_unlock(&mtd_table_mutex);
1290
1291 return err ? ERR_PTR(err) : mtd;
1292 }
1293 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1294
1295 /**
1296 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1297 * device name
1298 * @name: MTD device name to open
1299 *
1300 * This function returns MTD device description structure in case of
1301 * success and an error code in case of failure.
1302 */
get_mtd_device_nm(const char * name)1303 struct mtd_info *get_mtd_device_nm(const char *name)
1304 {
1305 int err = -ENODEV;
1306 struct mtd_info *mtd = NULL, *other;
1307
1308 mutex_lock(&mtd_table_mutex);
1309
1310 mtd_for_each_device(other) {
1311 if (!strcmp(name, other->name)) {
1312 mtd = other;
1313 break;
1314 }
1315 }
1316
1317 if (!mtd)
1318 goto out_unlock;
1319
1320 err = __get_mtd_device(mtd);
1321 if (err)
1322 goto out_unlock;
1323
1324 mutex_unlock(&mtd_table_mutex);
1325 return mtd;
1326
1327 out_unlock:
1328 mutex_unlock(&mtd_table_mutex);
1329 return ERR_PTR(err);
1330 }
1331 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1332
put_mtd_device(struct mtd_info * mtd)1333 void put_mtd_device(struct mtd_info *mtd)
1334 {
1335 mutex_lock(&mtd_table_mutex);
1336 __put_mtd_device(mtd);
1337 mutex_unlock(&mtd_table_mutex);
1338
1339 }
1340 EXPORT_SYMBOL_GPL(put_mtd_device);
1341
__put_mtd_device(struct mtd_info * mtd)1342 void __put_mtd_device(struct mtd_info *mtd)
1343 {
1344 struct mtd_info *master = mtd_get_master(mtd);
1345
1346 while (mtd) {
1347 /* kref_put() can relese mtd, so keep a reference mtd->parent */
1348 struct mtd_info *parent = mtd->parent;
1349
1350 if (mtd != master)
1351 kref_put(&mtd->refcnt, mtd_device_release);
1352 mtd = parent;
1353 }
1354
1355 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1356 kref_put(&master->refcnt, mtd_device_release);
1357
1358 module_put(master->owner);
1359
1360 /* must be the last as master can be freed in the _put_device */
1361 if (master->_put_device)
1362 master->_put_device(master);
1363 }
1364 EXPORT_SYMBOL_GPL(__put_mtd_device);
1365
1366 /*
1367 * Erase is an synchronous operation. Device drivers are epected to return a
1368 * negative error code if the operation failed and update instr->fail_addr
1369 * to point the portion that was not properly erased.
1370 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1371 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1372 {
1373 struct mtd_info *master = mtd_get_master(mtd);
1374 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1375 struct erase_info adjinstr;
1376 int ret;
1377
1378 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1379 adjinstr = *instr;
1380
1381 if (!mtd->erasesize || !master->_erase)
1382 return -ENOTSUPP;
1383
1384 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1385 return -EINVAL;
1386 if (!(mtd->flags & MTD_WRITEABLE))
1387 return -EROFS;
1388
1389 if (!instr->len)
1390 return 0;
1391
1392 ledtrig_mtd_activity();
1393
1394 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1395 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1396 master->erasesize;
1397 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1398 master->erasesize) -
1399 adjinstr.addr;
1400 }
1401
1402 adjinstr.addr += mst_ofs;
1403
1404 ret = master->_erase(master, &adjinstr);
1405
1406 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1407 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1408 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1409 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1410 master);
1411 instr->fail_addr *= mtd->erasesize;
1412 }
1413 }
1414
1415 return ret;
1416 }
1417 EXPORT_SYMBOL_GPL(mtd_erase);
1418
1419 /*
1420 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1421 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1422 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1423 void **virt, resource_size_t *phys)
1424 {
1425 struct mtd_info *master = mtd_get_master(mtd);
1426
1427 *retlen = 0;
1428 *virt = NULL;
1429 if (phys)
1430 *phys = 0;
1431 if (!master->_point)
1432 return -EOPNOTSUPP;
1433 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1434 return -EINVAL;
1435 if (!len)
1436 return 0;
1437
1438 from = mtd_get_master_ofs(mtd, from);
1439 return master->_point(master, from, len, retlen, virt, phys);
1440 }
1441 EXPORT_SYMBOL_GPL(mtd_point);
1442
1443 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1444 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1445 {
1446 struct mtd_info *master = mtd_get_master(mtd);
1447
1448 if (!master->_unpoint)
1449 return -EOPNOTSUPP;
1450 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1451 return -EINVAL;
1452 if (!len)
1453 return 0;
1454 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1455 }
1456 EXPORT_SYMBOL_GPL(mtd_unpoint);
1457
1458 /*
1459 * Allow NOMMU mmap() to directly map the device (if not NULL)
1460 * - return the address to which the offset maps
1461 * - return -ENOSYS to indicate refusal to do the mapping
1462 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1463 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1464 unsigned long offset, unsigned long flags)
1465 {
1466 size_t retlen;
1467 void *virt;
1468 int ret;
1469
1470 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1471 if (ret)
1472 return ret;
1473 if (retlen != len) {
1474 mtd_unpoint(mtd, offset, retlen);
1475 return -ENOSYS;
1476 }
1477 return (unsigned long)virt;
1478 }
1479 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1480
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1481 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1482 const struct mtd_ecc_stats *old_stats)
1483 {
1484 struct mtd_ecc_stats diff;
1485
1486 if (master == mtd)
1487 return;
1488
1489 diff = master->ecc_stats;
1490 diff.failed -= old_stats->failed;
1491 diff.corrected -= old_stats->corrected;
1492
1493 while (mtd->parent) {
1494 mtd->ecc_stats.failed += diff.failed;
1495 mtd->ecc_stats.corrected += diff.corrected;
1496 mtd = mtd->parent;
1497 }
1498 }
1499
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1500 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1501 u_char *buf)
1502 {
1503 struct mtd_oob_ops ops = {
1504 .len = len,
1505 .datbuf = buf,
1506 };
1507 int ret;
1508
1509 ret = mtd_read_oob(mtd, from, &ops);
1510 *retlen = ops.retlen;
1511
1512 return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(mtd_read);
1515
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1516 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1517 const u_char *buf)
1518 {
1519 struct mtd_oob_ops ops = {
1520 .len = len,
1521 .datbuf = (u8 *)buf,
1522 };
1523 int ret;
1524
1525 ret = mtd_write_oob(mtd, to, &ops);
1526 *retlen = ops.retlen;
1527
1528 return ret;
1529 }
1530 EXPORT_SYMBOL_GPL(mtd_write);
1531
1532 /*
1533 * In blackbox flight recorder like scenarios we want to make successful writes
1534 * in interrupt context. panic_write() is only intended to be called when its
1535 * known the kernel is about to panic and we need the write to succeed. Since
1536 * the kernel is not going to be running for much longer, this function can
1537 * break locks and delay to ensure the write succeeds (but not sleep).
1538 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1539 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1540 const u_char *buf)
1541 {
1542 struct mtd_info *master = mtd_get_master(mtd);
1543
1544 *retlen = 0;
1545 if (!master->_panic_write)
1546 return -EOPNOTSUPP;
1547 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1548 return -EINVAL;
1549 if (!(mtd->flags & MTD_WRITEABLE))
1550 return -EROFS;
1551 if (!len)
1552 return 0;
1553 if (!master->oops_panic_write)
1554 master->oops_panic_write = true;
1555
1556 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1557 retlen, buf);
1558 }
1559 EXPORT_SYMBOL_GPL(mtd_panic_write);
1560
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1561 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1562 struct mtd_oob_ops *ops)
1563 {
1564 /*
1565 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1566 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1567 * this case.
1568 */
1569 if (!ops->datbuf)
1570 ops->len = 0;
1571
1572 if (!ops->oobbuf)
1573 ops->ooblen = 0;
1574
1575 if (offs < 0 || offs + ops->len > mtd->size)
1576 return -EINVAL;
1577
1578 if (ops->ooblen) {
1579 size_t maxooblen;
1580
1581 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1582 return -EINVAL;
1583
1584 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1585 mtd_div_by_ws(offs, mtd)) *
1586 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1587 if (ops->ooblen > maxooblen)
1588 return -EINVAL;
1589 }
1590
1591 return 0;
1592 }
1593
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1594 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1595 struct mtd_oob_ops *ops)
1596 {
1597 struct mtd_info *master = mtd_get_master(mtd);
1598 int ret;
1599
1600 from = mtd_get_master_ofs(mtd, from);
1601 if (master->_read_oob)
1602 ret = master->_read_oob(master, from, ops);
1603 else
1604 ret = master->_read(master, from, ops->len, &ops->retlen,
1605 ops->datbuf);
1606
1607 return ret;
1608 }
1609
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1610 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1611 struct mtd_oob_ops *ops)
1612 {
1613 struct mtd_info *master = mtd_get_master(mtd);
1614 int ret;
1615
1616 to = mtd_get_master_ofs(mtd, to);
1617 if (master->_write_oob)
1618 ret = master->_write_oob(master, to, ops);
1619 else
1620 ret = master->_write(master, to, ops->len, &ops->retlen,
1621 ops->datbuf);
1622
1623 return ret;
1624 }
1625
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1626 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1627 struct mtd_oob_ops *ops)
1628 {
1629 struct mtd_info *master = mtd_get_master(mtd);
1630 int ngroups = mtd_pairing_groups(master);
1631 int npairs = mtd_wunit_per_eb(master) / ngroups;
1632 struct mtd_oob_ops adjops = *ops;
1633 unsigned int wunit, oobavail;
1634 struct mtd_pairing_info info;
1635 int max_bitflips = 0;
1636 u32 ebofs, pageofs;
1637 loff_t base, pos;
1638
1639 ebofs = mtd_mod_by_eb(start, mtd);
1640 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1641 info.group = 0;
1642 info.pair = mtd_div_by_ws(ebofs, mtd);
1643 pageofs = mtd_mod_by_ws(ebofs, mtd);
1644 oobavail = mtd_oobavail(mtd, ops);
1645
1646 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1647 int ret;
1648
1649 if (info.pair >= npairs) {
1650 info.pair = 0;
1651 base += master->erasesize;
1652 }
1653
1654 wunit = mtd_pairing_info_to_wunit(master, &info);
1655 pos = mtd_wunit_to_offset(mtd, base, wunit);
1656
1657 adjops.len = ops->len - ops->retlen;
1658 if (adjops.len > mtd->writesize - pageofs)
1659 adjops.len = mtd->writesize - pageofs;
1660
1661 adjops.ooblen = ops->ooblen - ops->oobretlen;
1662 if (adjops.ooblen > oobavail - adjops.ooboffs)
1663 adjops.ooblen = oobavail - adjops.ooboffs;
1664
1665 if (read) {
1666 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1667 if (ret > 0)
1668 max_bitflips = max(max_bitflips, ret);
1669 } else {
1670 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1671 }
1672
1673 if (ret < 0)
1674 return ret;
1675
1676 max_bitflips = max(max_bitflips, ret);
1677 ops->retlen += adjops.retlen;
1678 ops->oobretlen += adjops.oobretlen;
1679 adjops.datbuf += adjops.retlen;
1680 adjops.oobbuf += adjops.oobretlen;
1681 adjops.ooboffs = 0;
1682 pageofs = 0;
1683 info.pair++;
1684 }
1685
1686 return max_bitflips;
1687 }
1688
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1689 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1690 {
1691 struct mtd_info *master = mtd_get_master(mtd);
1692 struct mtd_ecc_stats old_stats = master->ecc_stats;
1693 int ret_code;
1694
1695 ops->retlen = ops->oobretlen = 0;
1696
1697 ret_code = mtd_check_oob_ops(mtd, from, ops);
1698 if (ret_code)
1699 return ret_code;
1700
1701 ledtrig_mtd_activity();
1702
1703 /* Check the validity of a potential fallback on mtd->_read */
1704 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1705 return -EOPNOTSUPP;
1706
1707 if (ops->stats)
1708 memset(ops->stats, 0, sizeof(*ops->stats));
1709
1710 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1711 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1712 else
1713 ret_code = mtd_read_oob_std(mtd, from, ops);
1714
1715 mtd_update_ecc_stats(mtd, master, &old_stats);
1716
1717 /*
1718 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1719 * similar to mtd->_read(), returning a non-negative integer
1720 * representing max bitflips. In other cases, mtd->_read_oob() may
1721 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1722 */
1723 if (unlikely(ret_code < 0))
1724 return ret_code;
1725 if (mtd->ecc_strength == 0)
1726 return 0; /* device lacks ecc */
1727 if (ops->stats)
1728 ops->stats->max_bitflips = ret_code;
1729 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1730 }
1731 EXPORT_SYMBOL_GPL(mtd_read_oob);
1732
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1733 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1734 struct mtd_oob_ops *ops)
1735 {
1736 struct mtd_info *master = mtd_get_master(mtd);
1737 int ret;
1738
1739 ops->retlen = ops->oobretlen = 0;
1740
1741 if (!(mtd->flags & MTD_WRITEABLE))
1742 return -EROFS;
1743
1744 ret = mtd_check_oob_ops(mtd, to, ops);
1745 if (ret)
1746 return ret;
1747
1748 ledtrig_mtd_activity();
1749
1750 /* Check the validity of a potential fallback on mtd->_write */
1751 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1752 return -EOPNOTSUPP;
1753
1754 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1755 return mtd_io_emulated_slc(mtd, to, false, ops);
1756
1757 return mtd_write_oob_std(mtd, to, ops);
1758 }
1759 EXPORT_SYMBOL_GPL(mtd_write_oob);
1760
1761 /**
1762 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1763 * @mtd: MTD device structure
1764 * @section: ECC section. Depending on the layout you may have all the ECC
1765 * bytes stored in a single contiguous section, or one section
1766 * per ECC chunk (and sometime several sections for a single ECC
1767 * ECC chunk)
1768 * @oobecc: OOB region struct filled with the appropriate ECC position
1769 * information
1770 *
1771 * This function returns ECC section information in the OOB area. If you want
1772 * to get all the ECC bytes information, then you should call
1773 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1774 *
1775 * Returns zero on success, a negative error code otherwise.
1776 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1777 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1778 struct mtd_oob_region *oobecc)
1779 {
1780 struct mtd_info *master = mtd_get_master(mtd);
1781
1782 memset(oobecc, 0, sizeof(*oobecc));
1783
1784 if (!master || section < 0)
1785 return -EINVAL;
1786
1787 if (!master->ooblayout || !master->ooblayout->ecc)
1788 return -ENOTSUPP;
1789
1790 return master->ooblayout->ecc(master, section, oobecc);
1791 }
1792 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1793
1794 /**
1795 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1796 * section
1797 * @mtd: MTD device structure
1798 * @section: Free section you are interested in. Depending on the layout
1799 * you may have all the free bytes stored in a single contiguous
1800 * section, or one section per ECC chunk plus an extra section
1801 * for the remaining bytes (or other funky layout).
1802 * @oobfree: OOB region struct filled with the appropriate free position
1803 * information
1804 *
1805 * This function returns free bytes position in the OOB area. If you want
1806 * to get all the free bytes information, then you should call
1807 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1808 *
1809 * Returns zero on success, a negative error code otherwise.
1810 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1811 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1812 struct mtd_oob_region *oobfree)
1813 {
1814 struct mtd_info *master = mtd_get_master(mtd);
1815
1816 memset(oobfree, 0, sizeof(*oobfree));
1817
1818 if (!master || section < 0)
1819 return -EINVAL;
1820
1821 if (!master->ooblayout || !master->ooblayout->free)
1822 return -ENOTSUPP;
1823
1824 return master->ooblayout->free(master, section, oobfree);
1825 }
1826 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1827
1828 /**
1829 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1830 * @mtd: mtd info structure
1831 * @byte: the byte we are searching for
1832 * @sectionp: pointer where the section id will be stored
1833 * @oobregion: used to retrieve the ECC position
1834 * @iter: iterator function. Should be either mtd_ooblayout_free or
1835 * mtd_ooblayout_ecc depending on the region type you're searching for
1836 *
1837 * This function returns the section id and oobregion information of a
1838 * specific byte. For example, say you want to know where the 4th ECC byte is
1839 * stored, you'll use:
1840 *
1841 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1842 *
1843 * Returns zero on success, a negative error code otherwise.
1844 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1845 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1846 int *sectionp, struct mtd_oob_region *oobregion,
1847 int (*iter)(struct mtd_info *,
1848 int section,
1849 struct mtd_oob_region *oobregion))
1850 {
1851 int pos = 0, ret, section = 0;
1852
1853 memset(oobregion, 0, sizeof(*oobregion));
1854
1855 while (1) {
1856 ret = iter(mtd, section, oobregion);
1857 if (ret)
1858 return ret;
1859
1860 if (pos + oobregion->length > byte)
1861 break;
1862
1863 pos += oobregion->length;
1864 section++;
1865 }
1866
1867 /*
1868 * Adjust region info to make it start at the beginning at the
1869 * 'start' ECC byte.
1870 */
1871 oobregion->offset += byte - pos;
1872 oobregion->length -= byte - pos;
1873 *sectionp = section;
1874
1875 return 0;
1876 }
1877
1878 /**
1879 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1880 * ECC byte
1881 * @mtd: mtd info structure
1882 * @eccbyte: the byte we are searching for
1883 * @section: pointer where the section id will be stored
1884 * @oobregion: OOB region information
1885 *
1886 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1887 * byte.
1888 *
1889 * Returns zero on success, a negative error code otherwise.
1890 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1891 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1892 int *section,
1893 struct mtd_oob_region *oobregion)
1894 {
1895 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1896 mtd_ooblayout_ecc);
1897 }
1898 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1899
1900 /**
1901 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1902 * @mtd: mtd info structure
1903 * @buf: destination buffer to store OOB bytes
1904 * @oobbuf: OOB buffer
1905 * @start: first byte to retrieve
1906 * @nbytes: number of bytes to retrieve
1907 * @iter: section iterator
1908 *
1909 * Extract bytes attached to a specific category (ECC or free)
1910 * from the OOB buffer and copy them into buf.
1911 *
1912 * Returns zero on success, a negative error code otherwise.
1913 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1914 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1915 const u8 *oobbuf, int start, int nbytes,
1916 int (*iter)(struct mtd_info *,
1917 int section,
1918 struct mtd_oob_region *oobregion))
1919 {
1920 struct mtd_oob_region oobregion;
1921 int section, ret;
1922
1923 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1924 &oobregion, iter);
1925
1926 while (!ret) {
1927 int cnt;
1928
1929 cnt = min_t(int, nbytes, oobregion.length);
1930 memcpy(buf, oobbuf + oobregion.offset, cnt);
1931 buf += cnt;
1932 nbytes -= cnt;
1933
1934 if (!nbytes)
1935 break;
1936
1937 ret = iter(mtd, ++section, &oobregion);
1938 }
1939
1940 return ret;
1941 }
1942
1943 /**
1944 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1945 * @mtd: mtd info structure
1946 * @buf: source buffer to get OOB bytes from
1947 * @oobbuf: OOB buffer
1948 * @start: first OOB byte to set
1949 * @nbytes: number of OOB bytes to set
1950 * @iter: section iterator
1951 *
1952 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1953 * is selected by passing the appropriate iterator.
1954 *
1955 * Returns zero on success, a negative error code otherwise.
1956 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1957 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1958 u8 *oobbuf, int start, int nbytes,
1959 int (*iter)(struct mtd_info *,
1960 int section,
1961 struct mtd_oob_region *oobregion))
1962 {
1963 struct mtd_oob_region oobregion;
1964 int section, ret;
1965
1966 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1967 &oobregion, iter);
1968
1969 while (!ret) {
1970 int cnt;
1971
1972 cnt = min_t(int, nbytes, oobregion.length);
1973 memcpy(oobbuf + oobregion.offset, buf, cnt);
1974 buf += cnt;
1975 nbytes -= cnt;
1976
1977 if (!nbytes)
1978 break;
1979
1980 ret = iter(mtd, ++section, &oobregion);
1981 }
1982
1983 return ret;
1984 }
1985
1986 /**
1987 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1988 * @mtd: mtd info structure
1989 * @iter: category iterator
1990 *
1991 * Count the number of bytes in a given category.
1992 *
1993 * Returns a positive value on success, a negative error code otherwise.
1994 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1995 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1996 int (*iter)(struct mtd_info *,
1997 int section,
1998 struct mtd_oob_region *oobregion))
1999 {
2000 struct mtd_oob_region oobregion;
2001 int section = 0, ret, nbytes = 0;
2002
2003 while (1) {
2004 ret = iter(mtd, section++, &oobregion);
2005 if (ret) {
2006 if (ret == -ERANGE)
2007 ret = nbytes;
2008 break;
2009 }
2010
2011 nbytes += oobregion.length;
2012 }
2013
2014 return ret;
2015 }
2016
2017 /**
2018 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2019 * @mtd: mtd info structure
2020 * @eccbuf: destination buffer to store ECC bytes
2021 * @oobbuf: OOB buffer
2022 * @start: first ECC byte to retrieve
2023 * @nbytes: number of ECC bytes to retrieve
2024 *
2025 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2026 *
2027 * Returns zero on success, a negative error code otherwise.
2028 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)2029 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2030 const u8 *oobbuf, int start, int nbytes)
2031 {
2032 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2033 mtd_ooblayout_ecc);
2034 }
2035 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2036
2037 /**
2038 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2039 * @mtd: mtd info structure
2040 * @eccbuf: source buffer to get ECC bytes from
2041 * @oobbuf: OOB buffer
2042 * @start: first ECC byte to set
2043 * @nbytes: number of ECC bytes to set
2044 *
2045 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2046 *
2047 * Returns zero on success, a negative error code otherwise.
2048 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)2049 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2050 u8 *oobbuf, int start, int nbytes)
2051 {
2052 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2053 mtd_ooblayout_ecc);
2054 }
2055 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2056
2057 /**
2058 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2059 * @mtd: mtd info structure
2060 * @databuf: destination buffer to store ECC bytes
2061 * @oobbuf: OOB buffer
2062 * @start: first ECC byte to retrieve
2063 * @nbytes: number of ECC bytes to retrieve
2064 *
2065 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2066 *
2067 * Returns zero on success, a negative error code otherwise.
2068 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)2069 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2070 const u8 *oobbuf, int start, int nbytes)
2071 {
2072 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2073 mtd_ooblayout_free);
2074 }
2075 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2076
2077 /**
2078 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2079 * @mtd: mtd info structure
2080 * @databuf: source buffer to get data bytes from
2081 * @oobbuf: OOB buffer
2082 * @start: first ECC byte to set
2083 * @nbytes: number of ECC bytes to set
2084 *
2085 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2086 *
2087 * Returns zero on success, a negative error code otherwise.
2088 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)2089 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2090 u8 *oobbuf, int start, int nbytes)
2091 {
2092 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2093 mtd_ooblayout_free);
2094 }
2095 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2096
2097 /**
2098 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2099 * @mtd: mtd info structure
2100 *
2101 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2102 *
2103 * Returns zero on success, a negative error code otherwise.
2104 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)2105 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2106 {
2107 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2108 }
2109 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2110
2111 /**
2112 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2113 * @mtd: mtd info structure
2114 *
2115 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2116 *
2117 * Returns zero on success, a negative error code otherwise.
2118 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)2119 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2120 {
2121 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2122 }
2123 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2124
2125 /*
2126 * Method to access the protection register area, present in some flash
2127 * devices. The user data is one time programmable but the factory data is read
2128 * only.
2129 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2130 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2131 struct otp_info *buf)
2132 {
2133 struct mtd_info *master = mtd_get_master(mtd);
2134
2135 if (!master->_get_fact_prot_info)
2136 return -EOPNOTSUPP;
2137 if (!len)
2138 return 0;
2139 return master->_get_fact_prot_info(master, len, retlen, buf);
2140 }
2141 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2142
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2143 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2144 size_t *retlen, u_char *buf)
2145 {
2146 struct mtd_info *master = mtd_get_master(mtd);
2147
2148 *retlen = 0;
2149 if (!master->_read_fact_prot_reg)
2150 return -EOPNOTSUPP;
2151 if (!len)
2152 return 0;
2153 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2154 }
2155 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2156
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2157 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2158 struct otp_info *buf)
2159 {
2160 struct mtd_info *master = mtd_get_master(mtd);
2161
2162 if (!master->_get_user_prot_info)
2163 return -EOPNOTSUPP;
2164 if (!len)
2165 return 0;
2166 return master->_get_user_prot_info(master, len, retlen, buf);
2167 }
2168 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2169
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2170 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2171 size_t *retlen, u_char *buf)
2172 {
2173 struct mtd_info *master = mtd_get_master(mtd);
2174
2175 *retlen = 0;
2176 if (!master->_read_user_prot_reg)
2177 return -EOPNOTSUPP;
2178 if (!len)
2179 return 0;
2180 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2181 }
2182 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2183
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2184 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2185 size_t *retlen, const u_char *buf)
2186 {
2187 struct mtd_info *master = mtd_get_master(mtd);
2188 int ret;
2189
2190 *retlen = 0;
2191 if (!master->_write_user_prot_reg)
2192 return -EOPNOTSUPP;
2193 if (!len)
2194 return 0;
2195 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2196 if (ret)
2197 return ret;
2198
2199 /*
2200 * If no data could be written at all, we are out of memory and
2201 * must return -ENOSPC.
2202 */
2203 return (*retlen) ? 0 : -ENOSPC;
2204 }
2205 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2206
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2207 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2208 {
2209 struct mtd_info *master = mtd_get_master(mtd);
2210
2211 if (!master->_lock_user_prot_reg)
2212 return -EOPNOTSUPP;
2213 if (!len)
2214 return 0;
2215 return master->_lock_user_prot_reg(master, from, len);
2216 }
2217 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2218
mtd_erase_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2219 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2220 {
2221 struct mtd_info *master = mtd_get_master(mtd);
2222
2223 if (!master->_erase_user_prot_reg)
2224 return -EOPNOTSUPP;
2225 if (!len)
2226 return 0;
2227 return master->_erase_user_prot_reg(master, from, len);
2228 }
2229 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2230
2231 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2232 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2233 {
2234 struct mtd_info *master = mtd_get_master(mtd);
2235
2236 if (!master->_lock)
2237 return -EOPNOTSUPP;
2238 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2239 return -EINVAL;
2240 if (!len)
2241 return 0;
2242
2243 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2244 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2245 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2246 }
2247
2248 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2249 }
2250 EXPORT_SYMBOL_GPL(mtd_lock);
2251
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2252 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2253 {
2254 struct mtd_info *master = mtd_get_master(mtd);
2255
2256 if (!master->_unlock)
2257 return -EOPNOTSUPP;
2258 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2259 return -EINVAL;
2260 if (!len)
2261 return 0;
2262
2263 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2264 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2265 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2266 }
2267
2268 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2269 }
2270 EXPORT_SYMBOL_GPL(mtd_unlock);
2271
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2272 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2273 {
2274 struct mtd_info *master = mtd_get_master(mtd);
2275
2276 if (!master->_is_locked)
2277 return -EOPNOTSUPP;
2278 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2279 return -EINVAL;
2280 if (!len)
2281 return 0;
2282
2283 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2284 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2285 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2286 }
2287
2288 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2289 }
2290 EXPORT_SYMBOL_GPL(mtd_is_locked);
2291
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2292 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2293 {
2294 struct mtd_info *master = mtd_get_master(mtd);
2295
2296 if (ofs < 0 || ofs >= mtd->size)
2297 return -EINVAL;
2298 if (!master->_block_isreserved)
2299 return 0;
2300
2301 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2302 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2303
2304 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2305 }
2306 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2307
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2308 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2309 {
2310 struct mtd_info *master = mtd_get_master(mtd);
2311
2312 if (ofs < 0 || ofs >= mtd->size)
2313 return -EINVAL;
2314 if (!master->_block_isbad)
2315 return 0;
2316
2317 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2318 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2319
2320 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2321 }
2322 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2323
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2324 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2325 {
2326 struct mtd_info *master = mtd_get_master(mtd);
2327 int ret;
2328
2329 if (!master->_block_markbad)
2330 return -EOPNOTSUPP;
2331 if (ofs < 0 || ofs >= mtd->size)
2332 return -EINVAL;
2333 if (!(mtd->flags & MTD_WRITEABLE))
2334 return -EROFS;
2335
2336 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2337 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2338
2339 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2340 if (ret)
2341 return ret;
2342
2343 while (mtd->parent) {
2344 mtd->ecc_stats.badblocks++;
2345 mtd = mtd->parent;
2346 }
2347
2348 return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2351
2352 /*
2353 * default_mtd_writev - the default writev method
2354 * @mtd: mtd device description object pointer
2355 * @vecs: the vectors to write
2356 * @count: count of vectors in @vecs
2357 * @to: the MTD device offset to write to
2358 * @retlen: on exit contains the count of bytes written to the MTD device.
2359 *
2360 * This function returns zero in case of success and a negative error code in
2361 * case of failure.
2362 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2363 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2364 unsigned long count, loff_t to, size_t *retlen)
2365 {
2366 unsigned long i;
2367 size_t totlen = 0, thislen;
2368 int ret = 0;
2369
2370 for (i = 0; i < count; i++) {
2371 if (!vecs[i].iov_len)
2372 continue;
2373 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2374 vecs[i].iov_base);
2375 totlen += thislen;
2376 if (ret || thislen != vecs[i].iov_len)
2377 break;
2378 to += vecs[i].iov_len;
2379 }
2380 *retlen = totlen;
2381 return ret;
2382 }
2383
2384 /*
2385 * mtd_writev - the vector-based MTD write method
2386 * @mtd: mtd device description object pointer
2387 * @vecs: the vectors to write
2388 * @count: count of vectors in @vecs
2389 * @to: the MTD device offset to write to
2390 * @retlen: on exit contains the count of bytes written to the MTD device.
2391 *
2392 * This function returns zero in case of success and a negative error code in
2393 * case of failure.
2394 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2395 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2396 unsigned long count, loff_t to, size_t *retlen)
2397 {
2398 struct mtd_info *master = mtd_get_master(mtd);
2399
2400 *retlen = 0;
2401 if (!(mtd->flags & MTD_WRITEABLE))
2402 return -EROFS;
2403
2404 if (!master->_writev)
2405 return default_mtd_writev(mtd, vecs, count, to, retlen);
2406
2407 return master->_writev(master, vecs, count,
2408 mtd_get_master_ofs(mtd, to), retlen);
2409 }
2410 EXPORT_SYMBOL_GPL(mtd_writev);
2411
2412 /**
2413 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2414 * @mtd: mtd device description object pointer
2415 * @size: a pointer to the ideal or maximum size of the allocation, points
2416 * to the actual allocation size on success.
2417 *
2418 * This routine attempts to allocate a contiguous kernel buffer up to
2419 * the specified size, backing off the size of the request exponentially
2420 * until the request succeeds or until the allocation size falls below
2421 * the system page size. This attempts to make sure it does not adversely
2422 * impact system performance, so when allocating more than one page, we
2423 * ask the memory allocator to avoid re-trying, swapping, writing back
2424 * or performing I/O.
2425 *
2426 * Note, this function also makes sure that the allocated buffer is aligned to
2427 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2428 *
2429 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2430 * to handle smaller (i.e. degraded) buffer allocations under low- or
2431 * fragmented-memory situations where such reduced allocations, from a
2432 * requested ideal, are allowed.
2433 *
2434 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2435 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2436 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2437 {
2438 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2439 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2440 void *kbuf;
2441
2442 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2443
2444 while (*size > min_alloc) {
2445 kbuf = kmalloc(*size, flags);
2446 if (kbuf)
2447 return kbuf;
2448
2449 *size >>= 1;
2450 *size = ALIGN(*size, mtd->writesize);
2451 }
2452
2453 /*
2454 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2455 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2456 */
2457 return kmalloc(*size, GFP_KERNEL);
2458 }
2459 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2460
2461 #ifdef CONFIG_PROC_FS
2462
2463 /*====================================================================*/
2464 /* Support for /proc/mtd */
2465
mtd_proc_show(struct seq_file * m,void * v)2466 static int mtd_proc_show(struct seq_file *m, void *v)
2467 {
2468 struct mtd_info *mtd;
2469
2470 seq_puts(m, "dev: size erasesize name\n");
2471 mutex_lock(&mtd_table_mutex);
2472 mtd_for_each_device(mtd) {
2473 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2474 mtd->index, (unsigned long long)mtd->size,
2475 mtd->erasesize, mtd->name);
2476 }
2477 mutex_unlock(&mtd_table_mutex);
2478 return 0;
2479 }
2480 #endif /* CONFIG_PROC_FS */
2481
2482 /*====================================================================*/
2483 /* Init code */
2484
mtd_bdi_init(const char * name)2485 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2486 {
2487 struct backing_dev_info *bdi;
2488 int ret;
2489
2490 bdi = bdi_alloc(NUMA_NO_NODE);
2491 if (!bdi)
2492 return ERR_PTR(-ENOMEM);
2493 bdi->ra_pages = 0;
2494 bdi->io_pages = 0;
2495
2496 /*
2497 * We put '-0' suffix to the name to get the same name format as we
2498 * used to get. Since this is called only once, we get a unique name.
2499 */
2500 ret = bdi_register(bdi, "%.28s-0", name);
2501 if (ret)
2502 bdi_put(bdi);
2503
2504 return ret ? ERR_PTR(ret) : bdi;
2505 }
2506
2507 static struct proc_dir_entry *proc_mtd;
2508
init_mtd(void)2509 static int __init init_mtd(void)
2510 {
2511 int ret;
2512
2513 ret = class_register(&mtd_class);
2514 if (ret)
2515 goto err_reg;
2516
2517 mtd_bdi = mtd_bdi_init("mtd");
2518 if (IS_ERR(mtd_bdi)) {
2519 ret = PTR_ERR(mtd_bdi);
2520 goto err_bdi;
2521 }
2522
2523 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2524
2525 ret = init_mtdchar();
2526 if (ret)
2527 goto out_procfs;
2528
2529 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2530 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2531 &mtd_expert_analysis_mode);
2532
2533 return 0;
2534
2535 out_procfs:
2536 if (proc_mtd)
2537 remove_proc_entry("mtd", NULL);
2538 bdi_unregister(mtd_bdi);
2539 bdi_put(mtd_bdi);
2540 err_bdi:
2541 class_unregister(&mtd_class);
2542 err_reg:
2543 pr_err("Error registering mtd class or bdi: %d\n", ret);
2544 return ret;
2545 }
2546
cleanup_mtd(void)2547 static void __exit cleanup_mtd(void)
2548 {
2549 debugfs_remove_recursive(dfs_dir_mtd);
2550 cleanup_mtdchar();
2551 if (proc_mtd)
2552 remove_proc_entry("mtd", NULL);
2553 class_unregister(&mtd_class);
2554 bdi_unregister(mtd_bdi);
2555 bdi_put(mtd_bdi);
2556 idr_destroy(&mtd_idr);
2557 }
2558
2559 module_init(init_mtd);
2560 module_exit(cleanup_mtd);
2561
2562 MODULE_LICENSE("GPL");
2563 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2564 MODULE_DESCRIPTION("Core MTD registration and access routines");
2565