xref: /openbmc/linux/net/ipv4/ipmr.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *	IP multicast routing support for mrouted 3.6/3.8
4   *
5   *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6   *	  Linux Consultancy and Custom Driver Development
7   *
8   *	Fixes:
9   *	Michael Chastain	:	Incorrect size of copying.
10   *	Alan Cox		:	Added the cache manager code
11   *	Alan Cox		:	Fixed the clone/copy bug and device race.
12   *	Mike McLagan		:	Routing by source
13   *	Malcolm Beattie		:	Buffer handling fixes.
14   *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15   *	SVR Anand		:	Fixed several multicast bugs and problems.
16   *	Alexey Kuznetsov	:	Status, optimisations and more.
17   *	Brad Parker		:	Better behaviour on mrouted upcall
18   *					overflow.
19   *      Carlos Picoto           :       PIMv1 Support
20   *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21   *					Relax this requirement to work with older peers.
22   */
23  
24  #include <linux/uaccess.h>
25  #include <linux/types.h>
26  #include <linux/cache.h>
27  #include <linux/capability.h>
28  #include <linux/errno.h>
29  #include <linux/mm.h>
30  #include <linux/kernel.h>
31  #include <linux/fcntl.h>
32  #include <linux/stat.h>
33  #include <linux/socket.h>
34  #include <linux/in.h>
35  #include <linux/inet.h>
36  #include <linux/netdevice.h>
37  #include <linux/inetdevice.h>
38  #include <linux/igmp.h>
39  #include <linux/proc_fs.h>
40  #include <linux/seq_file.h>
41  #include <linux/mroute.h>
42  #include <linux/init.h>
43  #include <linux/if_ether.h>
44  #include <linux/slab.h>
45  #include <net/net_namespace.h>
46  #include <net/ip.h>
47  #include <net/protocol.h>
48  #include <linux/skbuff.h>
49  #include <net/route.h>
50  #include <net/icmp.h>
51  #include <net/udp.h>
52  #include <net/raw.h>
53  #include <linux/notifier.h>
54  #include <linux/if_arp.h>
55  #include <linux/netfilter_ipv4.h>
56  #include <linux/compat.h>
57  #include <linux/export.h>
58  #include <linux/rhashtable.h>
59  #include <net/ip_tunnels.h>
60  #include <net/checksum.h>
61  #include <net/netlink.h>
62  #include <net/fib_rules.h>
63  #include <linux/netconf.h>
64  #include <net/rtnh.h>
65  
66  #include <linux/nospec.h>
67  
68  struct ipmr_rule {
69  	struct fib_rule		common;
70  };
71  
72  struct ipmr_result {
73  	struct mr_table		*mrt;
74  };
75  
76  /* Big lock, protecting vif table, mrt cache and mroute socket state.
77   * Note that the changes are semaphored via rtnl_lock.
78   */
79  
80  static DEFINE_SPINLOCK(mrt_lock);
81  
vif_dev_read(const struct vif_device * vif)82  static struct net_device *vif_dev_read(const struct vif_device *vif)
83  {
84  	return rcu_dereference(vif->dev);
85  }
86  
87  /* Multicast router control variables */
88  
89  /* Special spinlock for queue of unresolved entries */
90  static DEFINE_SPINLOCK(mfc_unres_lock);
91  
92  /* We return to original Alan's scheme. Hash table of resolved
93   * entries is changed only in process context and protected
94   * with weak lock mrt_lock. Queue of unresolved entries is protected
95   * with strong spinlock mfc_unres_lock.
96   *
97   * In this case data path is free of exclusive locks at all.
98   */
99  
100  static struct kmem_cache *mrt_cachep __ro_after_init;
101  
102  static struct mr_table *ipmr_new_table(struct net *net, u32 id);
103  static void ipmr_free_table(struct mr_table *mrt);
104  
105  static void ip_mr_forward(struct net *net, struct mr_table *mrt,
106  			  struct net_device *dev, struct sk_buff *skb,
107  			  struct mfc_cache *cache, int local);
108  static int ipmr_cache_report(const struct mr_table *mrt,
109  			     struct sk_buff *pkt, vifi_t vifi, int assert);
110  static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111  				 int cmd);
112  static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
113  static void mroute_clean_tables(struct mr_table *mrt, int flags);
114  static void ipmr_expire_process(struct timer_list *t);
115  
116  #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
117  #define ipmr_for_each_table(mrt, net)					\
118  	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
119  				lockdep_rtnl_is_held() ||		\
120  				list_empty(&net->ipv4.mr_tables))
121  
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)122  static struct mr_table *ipmr_mr_table_iter(struct net *net,
123  					   struct mr_table *mrt)
124  {
125  	struct mr_table *ret;
126  
127  	if (!mrt)
128  		ret = list_entry_rcu(net->ipv4.mr_tables.next,
129  				     struct mr_table, list);
130  	else
131  		ret = list_entry_rcu(mrt->list.next,
132  				     struct mr_table, list);
133  
134  	if (&ret->list == &net->ipv4.mr_tables)
135  		return NULL;
136  	return ret;
137  }
138  
__ipmr_get_table(struct net * net,u32 id)139  static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
140  {
141  	struct mr_table *mrt;
142  
143  	ipmr_for_each_table(mrt, net) {
144  		if (mrt->id == id)
145  			return mrt;
146  	}
147  	return NULL;
148  }
149  
ipmr_get_table(struct net * net,u32 id)150  static struct mr_table *ipmr_get_table(struct net *net, u32 id)
151  {
152  	struct mr_table *mrt;
153  
154  	rcu_read_lock();
155  	mrt = __ipmr_get_table(net, id);
156  	rcu_read_unlock();
157  	return mrt;
158  }
159  
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)160  static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
161  			   struct mr_table **mrt)
162  {
163  	int err;
164  	struct ipmr_result res;
165  	struct fib_lookup_arg arg = {
166  		.result = &res,
167  		.flags = FIB_LOOKUP_NOREF,
168  	};
169  
170  	/* update flow if oif or iif point to device enslaved to l3mdev */
171  	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
172  
173  	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
174  			       flowi4_to_flowi(flp4), 0, &arg);
175  	if (err < 0)
176  		return err;
177  	*mrt = res.mrt;
178  	return 0;
179  }
180  
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)181  static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
182  			    int flags, struct fib_lookup_arg *arg)
183  {
184  	struct ipmr_result *res = arg->result;
185  	struct mr_table *mrt;
186  
187  	switch (rule->action) {
188  	case FR_ACT_TO_TBL:
189  		break;
190  	case FR_ACT_UNREACHABLE:
191  		return -ENETUNREACH;
192  	case FR_ACT_PROHIBIT:
193  		return -EACCES;
194  	case FR_ACT_BLACKHOLE:
195  	default:
196  		return -EINVAL;
197  	}
198  
199  	arg->table = fib_rule_get_table(rule, arg);
200  
201  	mrt = __ipmr_get_table(rule->fr_net, arg->table);
202  	if (!mrt)
203  		return -EAGAIN;
204  	res->mrt = mrt;
205  	return 0;
206  }
207  
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)208  static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
209  {
210  	return 1;
211  }
212  
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)213  static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
214  			       struct fib_rule_hdr *frh, struct nlattr **tb,
215  			       struct netlink_ext_ack *extack)
216  {
217  	return 0;
218  }
219  
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)220  static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
221  			     struct nlattr **tb)
222  {
223  	return 1;
224  }
225  
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)226  static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
227  			  struct fib_rule_hdr *frh)
228  {
229  	frh->dst_len = 0;
230  	frh->src_len = 0;
231  	frh->tos     = 0;
232  	return 0;
233  }
234  
235  static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
236  	.family		= RTNL_FAMILY_IPMR,
237  	.rule_size	= sizeof(struct ipmr_rule),
238  	.addr_size	= sizeof(u32),
239  	.action		= ipmr_rule_action,
240  	.match		= ipmr_rule_match,
241  	.configure	= ipmr_rule_configure,
242  	.compare	= ipmr_rule_compare,
243  	.fill		= ipmr_rule_fill,
244  	.nlgroup	= RTNLGRP_IPV4_RULE,
245  	.owner		= THIS_MODULE,
246  };
247  
ipmr_rules_init(struct net * net)248  static int __net_init ipmr_rules_init(struct net *net)
249  {
250  	struct fib_rules_ops *ops;
251  	struct mr_table *mrt;
252  	int err;
253  
254  	ops = fib_rules_register(&ipmr_rules_ops_template, net);
255  	if (IS_ERR(ops))
256  		return PTR_ERR(ops);
257  
258  	INIT_LIST_HEAD(&net->ipv4.mr_tables);
259  
260  	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
261  	if (IS_ERR(mrt)) {
262  		err = PTR_ERR(mrt);
263  		goto err1;
264  	}
265  
266  	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
267  	if (err < 0)
268  		goto err2;
269  
270  	net->ipv4.mr_rules_ops = ops;
271  	return 0;
272  
273  err2:
274  	rtnl_lock();
275  	ipmr_free_table(mrt);
276  	rtnl_unlock();
277  err1:
278  	fib_rules_unregister(ops);
279  	return err;
280  }
281  
ipmr_rules_exit(struct net * net)282  static void __net_exit ipmr_rules_exit(struct net *net)
283  {
284  	struct mr_table *mrt, *next;
285  
286  	ASSERT_RTNL();
287  	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
288  		list_del(&mrt->list);
289  		ipmr_free_table(mrt);
290  	}
291  	fib_rules_unregister(net->ipv4.mr_rules_ops);
292  }
293  
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)294  static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
295  			   struct netlink_ext_ack *extack)
296  {
297  	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
298  }
299  
ipmr_rules_seq_read(struct net * net)300  static unsigned int ipmr_rules_seq_read(struct net *net)
301  {
302  	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
303  }
304  
ipmr_rule_default(const struct fib_rule * rule)305  bool ipmr_rule_default(const struct fib_rule *rule)
306  {
307  	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
308  }
309  EXPORT_SYMBOL(ipmr_rule_default);
310  #else
311  #define ipmr_for_each_table(mrt, net) \
312  	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
313  
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)314  static struct mr_table *ipmr_mr_table_iter(struct net *net,
315  					   struct mr_table *mrt)
316  {
317  	if (!mrt)
318  		return net->ipv4.mrt;
319  	return NULL;
320  }
321  
ipmr_get_table(struct net * net,u32 id)322  static struct mr_table *ipmr_get_table(struct net *net, u32 id)
323  {
324  	return net->ipv4.mrt;
325  }
326  
327  #define __ipmr_get_table ipmr_get_table
328  
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)329  static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
330  			   struct mr_table **mrt)
331  {
332  	*mrt = net->ipv4.mrt;
333  	return 0;
334  }
335  
ipmr_rules_init(struct net * net)336  static int __net_init ipmr_rules_init(struct net *net)
337  {
338  	struct mr_table *mrt;
339  
340  	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
341  	if (IS_ERR(mrt))
342  		return PTR_ERR(mrt);
343  	net->ipv4.mrt = mrt;
344  	return 0;
345  }
346  
ipmr_rules_exit(struct net * net)347  static void __net_exit ipmr_rules_exit(struct net *net)
348  {
349  	ASSERT_RTNL();
350  	ipmr_free_table(net->ipv4.mrt);
351  	net->ipv4.mrt = NULL;
352  }
353  
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)354  static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
355  			   struct netlink_ext_ack *extack)
356  {
357  	return 0;
358  }
359  
ipmr_rules_seq_read(struct net * net)360  static unsigned int ipmr_rules_seq_read(struct net *net)
361  {
362  	return 0;
363  }
364  
ipmr_rule_default(const struct fib_rule * rule)365  bool ipmr_rule_default(const struct fib_rule *rule)
366  {
367  	return true;
368  }
369  EXPORT_SYMBOL(ipmr_rule_default);
370  #endif
371  
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)372  static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
373  				const void *ptr)
374  {
375  	const struct mfc_cache_cmp_arg *cmparg = arg->key;
376  	const struct mfc_cache *c = ptr;
377  
378  	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
379  	       cmparg->mfc_origin != c->mfc_origin;
380  }
381  
382  static const struct rhashtable_params ipmr_rht_params = {
383  	.head_offset = offsetof(struct mr_mfc, mnode),
384  	.key_offset = offsetof(struct mfc_cache, cmparg),
385  	.key_len = sizeof(struct mfc_cache_cmp_arg),
386  	.nelem_hint = 3,
387  	.obj_cmpfn = ipmr_hash_cmp,
388  	.automatic_shrinking = true,
389  };
390  
ipmr_new_table_set(struct mr_table * mrt,struct net * net)391  static void ipmr_new_table_set(struct mr_table *mrt,
392  			       struct net *net)
393  {
394  #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
395  	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
396  #endif
397  }
398  
399  static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
400  	.mfc_mcastgrp = htonl(INADDR_ANY),
401  	.mfc_origin = htonl(INADDR_ANY),
402  };
403  
404  static struct mr_table_ops ipmr_mr_table_ops = {
405  	.rht_params = &ipmr_rht_params,
406  	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
407  };
408  
ipmr_new_table(struct net * net,u32 id)409  static struct mr_table *ipmr_new_table(struct net *net, u32 id)
410  {
411  	struct mr_table *mrt;
412  
413  	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
414  	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
415  		return ERR_PTR(-EINVAL);
416  
417  	mrt = __ipmr_get_table(net, id);
418  	if (mrt)
419  		return mrt;
420  
421  	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
422  			      ipmr_expire_process, ipmr_new_table_set);
423  }
424  
ipmr_free_table(struct mr_table * mrt)425  static void ipmr_free_table(struct mr_table *mrt)
426  {
427  	timer_shutdown_sync(&mrt->ipmr_expire_timer);
428  	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
429  				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
430  	rhltable_destroy(&mrt->mfc_hash);
431  	kfree(mrt);
432  }
433  
434  /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
435  
436  /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)437  static bool ipmr_init_vif_indev(const struct net_device *dev)
438  {
439  	struct in_device *in_dev;
440  
441  	ASSERT_RTNL();
442  
443  	in_dev = __in_dev_get_rtnl(dev);
444  	if (!in_dev)
445  		return false;
446  	ipv4_devconf_setall(in_dev);
447  	neigh_parms_data_state_setall(in_dev->arp_parms);
448  	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
449  
450  	return true;
451  }
452  
ipmr_new_tunnel(struct net * net,struct vifctl * v)453  static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
454  {
455  	struct net_device *tunnel_dev, *new_dev;
456  	struct ip_tunnel_parm p = { };
457  	int err;
458  
459  	tunnel_dev = __dev_get_by_name(net, "tunl0");
460  	if (!tunnel_dev)
461  		goto out;
462  
463  	p.iph.daddr = v->vifc_rmt_addr.s_addr;
464  	p.iph.saddr = v->vifc_lcl_addr.s_addr;
465  	p.iph.version = 4;
466  	p.iph.ihl = 5;
467  	p.iph.protocol = IPPROTO_IPIP;
468  	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
469  
470  	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
471  		goto out;
472  	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
473  			SIOCADDTUNNEL);
474  	if (err)
475  		goto out;
476  
477  	new_dev = __dev_get_by_name(net, p.name);
478  	if (!new_dev)
479  		goto out;
480  
481  	new_dev->flags |= IFF_MULTICAST;
482  	if (!ipmr_init_vif_indev(new_dev))
483  		goto out_unregister;
484  	if (dev_open(new_dev, NULL))
485  		goto out_unregister;
486  	dev_hold(new_dev);
487  	err = dev_set_allmulti(new_dev, 1);
488  	if (err) {
489  		dev_close(new_dev);
490  		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
491  				SIOCDELTUNNEL);
492  		dev_put(new_dev);
493  		new_dev = ERR_PTR(err);
494  	}
495  	return new_dev;
496  
497  out_unregister:
498  	unregister_netdevice(new_dev);
499  out:
500  	return ERR_PTR(-ENOBUFS);
501  }
502  
503  #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)504  static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
505  {
506  	struct net *net = dev_net(dev);
507  	struct mr_table *mrt;
508  	struct flowi4 fl4 = {
509  		.flowi4_oif	= dev->ifindex,
510  		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
511  		.flowi4_mark	= skb->mark,
512  	};
513  	int err;
514  
515  	err = ipmr_fib_lookup(net, &fl4, &mrt);
516  	if (err < 0) {
517  		kfree_skb(skb);
518  		return err;
519  	}
520  
521  	DEV_STATS_ADD(dev, tx_bytes, skb->len);
522  	DEV_STATS_INC(dev, tx_packets);
523  	rcu_read_lock();
524  
525  	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
526  	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
527  			  IGMPMSG_WHOLEPKT);
528  
529  	rcu_read_unlock();
530  	kfree_skb(skb);
531  	return NETDEV_TX_OK;
532  }
533  
reg_vif_get_iflink(const struct net_device * dev)534  static int reg_vif_get_iflink(const struct net_device *dev)
535  {
536  	return 0;
537  }
538  
539  static const struct net_device_ops reg_vif_netdev_ops = {
540  	.ndo_start_xmit	= reg_vif_xmit,
541  	.ndo_get_iflink = reg_vif_get_iflink,
542  };
543  
reg_vif_setup(struct net_device * dev)544  static void reg_vif_setup(struct net_device *dev)
545  {
546  	dev->type		= ARPHRD_PIMREG;
547  	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
548  	dev->flags		= IFF_NOARP;
549  	dev->netdev_ops		= &reg_vif_netdev_ops;
550  	dev->needs_free_netdev	= true;
551  	dev->features		|= NETIF_F_NETNS_LOCAL;
552  }
553  
ipmr_reg_vif(struct net * net,struct mr_table * mrt)554  static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
555  {
556  	struct net_device *dev;
557  	char name[IFNAMSIZ];
558  
559  	if (mrt->id == RT_TABLE_DEFAULT)
560  		sprintf(name, "pimreg");
561  	else
562  		sprintf(name, "pimreg%u", mrt->id);
563  
564  	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
565  
566  	if (!dev)
567  		return NULL;
568  
569  	dev_net_set(dev, net);
570  
571  	if (register_netdevice(dev)) {
572  		free_netdev(dev);
573  		return NULL;
574  	}
575  
576  	if (!ipmr_init_vif_indev(dev))
577  		goto failure;
578  	if (dev_open(dev, NULL))
579  		goto failure;
580  
581  	dev_hold(dev);
582  
583  	return dev;
584  
585  failure:
586  	unregister_netdevice(dev);
587  	return NULL;
588  }
589  
590  /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)591  static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
592  		     unsigned int pimlen)
593  {
594  	struct net_device *reg_dev = NULL;
595  	struct iphdr *encap;
596  	int vif_num;
597  
598  	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
599  	/* Check that:
600  	 * a. packet is really sent to a multicast group
601  	 * b. packet is not a NULL-REGISTER
602  	 * c. packet is not truncated
603  	 */
604  	if (!ipv4_is_multicast(encap->daddr) ||
605  	    encap->tot_len == 0 ||
606  	    ntohs(encap->tot_len) + pimlen > skb->len)
607  		return 1;
608  
609  	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
610  	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
611  	if (vif_num >= 0)
612  		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
613  	if (!reg_dev)
614  		return 1;
615  
616  	skb->mac_header = skb->network_header;
617  	skb_pull(skb, (u8 *)encap - skb->data);
618  	skb_reset_network_header(skb);
619  	skb->protocol = htons(ETH_P_IP);
620  	skb->ip_summed = CHECKSUM_NONE;
621  
622  	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
623  
624  	netif_rx(skb);
625  
626  	return NET_RX_SUCCESS;
627  }
628  #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)629  static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
630  {
631  	return NULL;
632  }
633  #endif
634  
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,struct net_device * vif_dev,vifi_t vif_index,u32 tb_id)635  static int call_ipmr_vif_entry_notifiers(struct net *net,
636  					 enum fib_event_type event_type,
637  					 struct vif_device *vif,
638  					 struct net_device *vif_dev,
639  					 vifi_t vif_index, u32 tb_id)
640  {
641  	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
642  				     vif, vif_dev, vif_index, tb_id,
643  				     &net->ipv4.ipmr_seq);
644  }
645  
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)646  static int call_ipmr_mfc_entry_notifiers(struct net *net,
647  					 enum fib_event_type event_type,
648  					 struct mfc_cache *mfc, u32 tb_id)
649  {
650  	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
651  				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
652  }
653  
654  /**
655   *	vif_delete - Delete a VIF entry
656   *	@mrt: Table to delete from
657   *	@vifi: VIF identifier to delete
658   *	@notify: Set to 1, if the caller is a notifier_call
659   *	@head: if unregistering the VIF, place it on this queue
660   */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)661  static int vif_delete(struct mr_table *mrt, int vifi, int notify,
662  		      struct list_head *head)
663  {
664  	struct net *net = read_pnet(&mrt->net);
665  	struct vif_device *v;
666  	struct net_device *dev;
667  	struct in_device *in_dev;
668  
669  	if (vifi < 0 || vifi >= mrt->maxvif)
670  		return -EADDRNOTAVAIL;
671  
672  	v = &mrt->vif_table[vifi];
673  
674  	dev = rtnl_dereference(v->dev);
675  	if (!dev)
676  		return -EADDRNOTAVAIL;
677  
678  	spin_lock(&mrt_lock);
679  	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
680  				      vifi, mrt->id);
681  	RCU_INIT_POINTER(v->dev, NULL);
682  
683  	if (vifi == mrt->mroute_reg_vif_num) {
684  		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
685  		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
686  	}
687  	if (vifi + 1 == mrt->maxvif) {
688  		int tmp;
689  
690  		for (tmp = vifi - 1; tmp >= 0; tmp--) {
691  			if (VIF_EXISTS(mrt, tmp))
692  				break;
693  		}
694  		WRITE_ONCE(mrt->maxvif, tmp + 1);
695  	}
696  
697  	spin_unlock(&mrt_lock);
698  
699  	dev_set_allmulti(dev, -1);
700  
701  	in_dev = __in_dev_get_rtnl(dev);
702  	if (in_dev) {
703  		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
704  		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
705  					    NETCONFA_MC_FORWARDING,
706  					    dev->ifindex, &in_dev->cnf);
707  		ip_rt_multicast_event(in_dev);
708  	}
709  
710  	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
711  		unregister_netdevice_queue(dev, head);
712  
713  	netdev_put(dev, &v->dev_tracker);
714  	return 0;
715  }
716  
ipmr_cache_free_rcu(struct rcu_head * head)717  static void ipmr_cache_free_rcu(struct rcu_head *head)
718  {
719  	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
720  
721  	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
722  }
723  
ipmr_cache_free(struct mfc_cache * c)724  static void ipmr_cache_free(struct mfc_cache *c)
725  {
726  	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
727  }
728  
729  /* Destroy an unresolved cache entry, killing queued skbs
730   * and reporting error to netlink readers.
731   */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)732  static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
733  {
734  	struct net *net = read_pnet(&mrt->net);
735  	struct sk_buff *skb;
736  	struct nlmsgerr *e;
737  
738  	atomic_dec(&mrt->cache_resolve_queue_len);
739  
740  	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
741  		if (ip_hdr(skb)->version == 0) {
742  			struct nlmsghdr *nlh = skb_pull(skb,
743  							sizeof(struct iphdr));
744  			nlh->nlmsg_type = NLMSG_ERROR;
745  			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
746  			skb_trim(skb, nlh->nlmsg_len);
747  			e = nlmsg_data(nlh);
748  			e->error = -ETIMEDOUT;
749  			memset(&e->msg, 0, sizeof(e->msg));
750  
751  			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
752  		} else {
753  			kfree_skb(skb);
754  		}
755  	}
756  
757  	ipmr_cache_free(c);
758  }
759  
760  /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)761  static void ipmr_expire_process(struct timer_list *t)
762  {
763  	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
764  	struct mr_mfc *c, *next;
765  	unsigned long expires;
766  	unsigned long now;
767  
768  	if (!spin_trylock(&mfc_unres_lock)) {
769  		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
770  		return;
771  	}
772  
773  	if (list_empty(&mrt->mfc_unres_queue))
774  		goto out;
775  
776  	now = jiffies;
777  	expires = 10*HZ;
778  
779  	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
780  		if (time_after(c->mfc_un.unres.expires, now)) {
781  			unsigned long interval = c->mfc_un.unres.expires - now;
782  			if (interval < expires)
783  				expires = interval;
784  			continue;
785  		}
786  
787  		list_del(&c->list);
788  		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
789  		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
790  	}
791  
792  	if (!list_empty(&mrt->mfc_unres_queue))
793  		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
794  
795  out:
796  	spin_unlock(&mfc_unres_lock);
797  }
798  
799  /* Fill oifs list. It is called under locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)800  static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
801  				   unsigned char *ttls)
802  {
803  	int vifi;
804  
805  	cache->mfc_un.res.minvif = MAXVIFS;
806  	cache->mfc_un.res.maxvif = 0;
807  	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
808  
809  	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
810  		if (VIF_EXISTS(mrt, vifi) &&
811  		    ttls[vifi] && ttls[vifi] < 255) {
812  			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
813  			if (cache->mfc_un.res.minvif > vifi)
814  				cache->mfc_un.res.minvif = vifi;
815  			if (cache->mfc_un.res.maxvif <= vifi)
816  				cache->mfc_un.res.maxvif = vifi + 1;
817  		}
818  	}
819  	WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
820  }
821  
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)822  static int vif_add(struct net *net, struct mr_table *mrt,
823  		   struct vifctl *vifc, int mrtsock)
824  {
825  	struct netdev_phys_item_id ppid = { };
826  	int vifi = vifc->vifc_vifi;
827  	struct vif_device *v = &mrt->vif_table[vifi];
828  	struct net_device *dev;
829  	struct in_device *in_dev;
830  	int err;
831  
832  	/* Is vif busy ? */
833  	if (VIF_EXISTS(mrt, vifi))
834  		return -EADDRINUSE;
835  
836  	switch (vifc->vifc_flags) {
837  	case VIFF_REGISTER:
838  		if (!ipmr_pimsm_enabled())
839  			return -EINVAL;
840  		/* Special Purpose VIF in PIM
841  		 * All the packets will be sent to the daemon
842  		 */
843  		if (mrt->mroute_reg_vif_num >= 0)
844  			return -EADDRINUSE;
845  		dev = ipmr_reg_vif(net, mrt);
846  		if (!dev)
847  			return -ENOBUFS;
848  		err = dev_set_allmulti(dev, 1);
849  		if (err) {
850  			unregister_netdevice(dev);
851  			dev_put(dev);
852  			return err;
853  		}
854  		break;
855  	case VIFF_TUNNEL:
856  		dev = ipmr_new_tunnel(net, vifc);
857  		if (IS_ERR(dev))
858  			return PTR_ERR(dev);
859  		break;
860  	case VIFF_USE_IFINDEX:
861  	case 0:
862  		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
863  			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
864  			if (dev && !__in_dev_get_rtnl(dev)) {
865  				dev_put(dev);
866  				return -EADDRNOTAVAIL;
867  			}
868  		} else {
869  			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
870  		}
871  		if (!dev)
872  			return -EADDRNOTAVAIL;
873  		err = dev_set_allmulti(dev, 1);
874  		if (err) {
875  			dev_put(dev);
876  			return err;
877  		}
878  		break;
879  	default:
880  		return -EINVAL;
881  	}
882  
883  	in_dev = __in_dev_get_rtnl(dev);
884  	if (!in_dev) {
885  		dev_put(dev);
886  		return -EADDRNOTAVAIL;
887  	}
888  	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
889  	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
890  				    dev->ifindex, &in_dev->cnf);
891  	ip_rt_multicast_event(in_dev);
892  
893  	/* Fill in the VIF structures */
894  	vif_device_init(v, dev, vifc->vifc_rate_limit,
895  			vifc->vifc_threshold,
896  			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
897  			(VIFF_TUNNEL | VIFF_REGISTER));
898  
899  	err = dev_get_port_parent_id(dev, &ppid, true);
900  	if (err == 0) {
901  		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
902  		v->dev_parent_id.id_len = ppid.id_len;
903  	} else {
904  		v->dev_parent_id.id_len = 0;
905  	}
906  
907  	v->local = vifc->vifc_lcl_addr.s_addr;
908  	v->remote = vifc->vifc_rmt_addr.s_addr;
909  
910  	/* And finish update writing critical data */
911  	spin_lock(&mrt_lock);
912  	rcu_assign_pointer(v->dev, dev);
913  	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
914  	if (v->flags & VIFF_REGISTER) {
915  		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
916  		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
917  	}
918  	if (vifi+1 > mrt->maxvif)
919  		WRITE_ONCE(mrt->maxvif, vifi + 1);
920  	spin_unlock(&mrt_lock);
921  	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
922  				      vifi, mrt->id);
923  	return 0;
924  }
925  
926  /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)927  static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
928  					 __be32 origin,
929  					 __be32 mcastgrp)
930  {
931  	struct mfc_cache_cmp_arg arg = {
932  			.mfc_mcastgrp = mcastgrp,
933  			.mfc_origin = origin
934  	};
935  
936  	return mr_mfc_find(mrt, &arg);
937  }
938  
939  /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)940  static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
941  					     __be32 mcastgrp, int vifi)
942  {
943  	struct mfc_cache_cmp_arg arg = {
944  			.mfc_mcastgrp = mcastgrp,
945  			.mfc_origin = htonl(INADDR_ANY)
946  	};
947  
948  	if (mcastgrp == htonl(INADDR_ANY))
949  		return mr_mfc_find_any_parent(mrt, vifi);
950  	return mr_mfc_find_any(mrt, vifi, &arg);
951  }
952  
953  /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)954  static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
955  						__be32 origin, __be32 mcastgrp,
956  						int parent)
957  {
958  	struct mfc_cache_cmp_arg arg = {
959  			.mfc_mcastgrp = mcastgrp,
960  			.mfc_origin = origin,
961  	};
962  
963  	return mr_mfc_find_parent(mrt, &arg, parent);
964  }
965  
966  /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)967  static struct mfc_cache *ipmr_cache_alloc(void)
968  {
969  	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
970  
971  	if (c) {
972  		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
973  		c->_c.mfc_un.res.minvif = MAXVIFS;
974  		c->_c.free = ipmr_cache_free_rcu;
975  		refcount_set(&c->_c.mfc_un.res.refcount, 1);
976  	}
977  	return c;
978  }
979  
ipmr_cache_alloc_unres(void)980  static struct mfc_cache *ipmr_cache_alloc_unres(void)
981  {
982  	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
983  
984  	if (c) {
985  		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
986  		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
987  	}
988  	return c;
989  }
990  
991  /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)992  static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
993  			       struct mfc_cache *uc, struct mfc_cache *c)
994  {
995  	struct sk_buff *skb;
996  	struct nlmsgerr *e;
997  
998  	/* Play the pending entries through our router */
999  	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1000  		if (ip_hdr(skb)->version == 0) {
1001  			struct nlmsghdr *nlh = skb_pull(skb,
1002  							sizeof(struct iphdr));
1003  
1004  			if (mr_fill_mroute(mrt, skb, &c->_c,
1005  					   nlmsg_data(nlh)) > 0) {
1006  				nlh->nlmsg_len = skb_tail_pointer(skb) -
1007  						 (u8 *)nlh;
1008  			} else {
1009  				nlh->nlmsg_type = NLMSG_ERROR;
1010  				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1011  				skb_trim(skb, nlh->nlmsg_len);
1012  				e = nlmsg_data(nlh);
1013  				e->error = -EMSGSIZE;
1014  				memset(&e->msg, 0, sizeof(e->msg));
1015  			}
1016  
1017  			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1018  		} else {
1019  			rcu_read_lock();
1020  			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1021  			rcu_read_unlock();
1022  		}
1023  	}
1024  }
1025  
1026  /* Bounce a cache query up to mrouted and netlink.
1027   *
1028   * Called under rcu_read_lock().
1029   */
ipmr_cache_report(const struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1030  static int ipmr_cache_report(const struct mr_table *mrt,
1031  			     struct sk_buff *pkt, vifi_t vifi, int assert)
1032  {
1033  	const int ihl = ip_hdrlen(pkt);
1034  	struct sock *mroute_sk;
1035  	struct igmphdr *igmp;
1036  	struct igmpmsg *msg;
1037  	struct sk_buff *skb;
1038  	int ret;
1039  
1040  	mroute_sk = rcu_dereference(mrt->mroute_sk);
1041  	if (!mroute_sk)
1042  		return -EINVAL;
1043  
1044  	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1045  		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1046  	else
1047  		skb = alloc_skb(128, GFP_ATOMIC);
1048  
1049  	if (!skb)
1050  		return -ENOBUFS;
1051  
1052  	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1053  		/* Ugly, but we have no choice with this interface.
1054  		 * Duplicate old header, fix ihl, length etc.
1055  		 * And all this only to mangle msg->im_msgtype and
1056  		 * to set msg->im_mbz to "mbz" :-)
1057  		 */
1058  		skb_push(skb, sizeof(struct iphdr));
1059  		skb_reset_network_header(skb);
1060  		skb_reset_transport_header(skb);
1061  		msg = (struct igmpmsg *)skb_network_header(skb);
1062  		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1063  		msg->im_msgtype = assert;
1064  		msg->im_mbz = 0;
1065  		if (assert == IGMPMSG_WRVIFWHOLE) {
1066  			msg->im_vif = vifi;
1067  			msg->im_vif_hi = vifi >> 8;
1068  		} else {
1069  			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1070  			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1071  
1072  			msg->im_vif = vif_num;
1073  			msg->im_vif_hi = vif_num >> 8;
1074  		}
1075  		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1076  		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1077  					     sizeof(struct iphdr));
1078  	} else {
1079  		/* Copy the IP header */
1080  		skb_set_network_header(skb, skb->len);
1081  		skb_put(skb, ihl);
1082  		skb_copy_to_linear_data(skb, pkt->data, ihl);
1083  		/* Flag to the kernel this is a route add */
1084  		ip_hdr(skb)->protocol = 0;
1085  		msg = (struct igmpmsg *)skb_network_header(skb);
1086  		msg->im_vif = vifi;
1087  		msg->im_vif_hi = vifi >> 8;
1088  		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1089  		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1090  		/* Add our header */
1091  		igmp = skb_put(skb, sizeof(struct igmphdr));
1092  		igmp->type = assert;
1093  		msg->im_msgtype = assert;
1094  		igmp->code = 0;
1095  		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1096  		skb->transport_header = skb->network_header;
1097  	}
1098  
1099  	igmpmsg_netlink_event(mrt, skb);
1100  
1101  	/* Deliver to mrouted */
1102  	ret = sock_queue_rcv_skb(mroute_sk, skb);
1103  
1104  	if (ret < 0) {
1105  		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1106  		kfree_skb(skb);
1107  	}
1108  
1109  	return ret;
1110  }
1111  
1112  /* Queue a packet for resolution. It gets locked cache entry! */
1113  /* Called under rcu_read_lock() */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1114  static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1115  				 struct sk_buff *skb, struct net_device *dev)
1116  {
1117  	const struct iphdr *iph = ip_hdr(skb);
1118  	struct mfc_cache *c;
1119  	bool found = false;
1120  	int err;
1121  
1122  	spin_lock_bh(&mfc_unres_lock);
1123  	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1124  		if (c->mfc_mcastgrp == iph->daddr &&
1125  		    c->mfc_origin == iph->saddr) {
1126  			found = true;
1127  			break;
1128  		}
1129  	}
1130  
1131  	if (!found) {
1132  		/* Create a new entry if allowable */
1133  		c = ipmr_cache_alloc_unres();
1134  		if (!c) {
1135  			spin_unlock_bh(&mfc_unres_lock);
1136  
1137  			kfree_skb(skb);
1138  			return -ENOBUFS;
1139  		}
1140  
1141  		/* Fill in the new cache entry */
1142  		c->_c.mfc_parent = -1;
1143  		c->mfc_origin	= iph->saddr;
1144  		c->mfc_mcastgrp	= iph->daddr;
1145  
1146  		/* Reflect first query at mrouted. */
1147  		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1148  
1149  		if (err < 0) {
1150  			/* If the report failed throw the cache entry
1151  			   out - Brad Parker
1152  			 */
1153  			spin_unlock_bh(&mfc_unres_lock);
1154  
1155  			ipmr_cache_free(c);
1156  			kfree_skb(skb);
1157  			return err;
1158  		}
1159  
1160  		atomic_inc(&mrt->cache_resolve_queue_len);
1161  		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1162  		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1163  
1164  		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1165  			mod_timer(&mrt->ipmr_expire_timer,
1166  				  c->_c.mfc_un.unres.expires);
1167  	}
1168  
1169  	/* See if we can append the packet */
1170  	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1171  		kfree_skb(skb);
1172  		err = -ENOBUFS;
1173  	} else {
1174  		if (dev) {
1175  			skb->dev = dev;
1176  			skb->skb_iif = dev->ifindex;
1177  		}
1178  		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1179  		err = 0;
1180  	}
1181  
1182  	spin_unlock_bh(&mfc_unres_lock);
1183  	return err;
1184  }
1185  
1186  /* MFC cache manipulation by user space mroute daemon */
1187  
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1188  static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1189  {
1190  	struct net *net = read_pnet(&mrt->net);
1191  	struct mfc_cache *c;
1192  
1193  	/* The entries are added/deleted only under RTNL */
1194  	rcu_read_lock();
1195  	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1196  				   mfc->mfcc_mcastgrp.s_addr, parent);
1197  	rcu_read_unlock();
1198  	if (!c)
1199  		return -ENOENT;
1200  	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1201  	list_del_rcu(&c->_c.list);
1202  	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1203  	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1204  	mr_cache_put(&c->_c);
1205  
1206  	return 0;
1207  }
1208  
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1209  static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1210  			struct mfcctl *mfc, int mrtsock, int parent)
1211  {
1212  	struct mfc_cache *uc, *c;
1213  	struct mr_mfc *_uc;
1214  	bool found;
1215  	int ret;
1216  
1217  	if (mfc->mfcc_parent >= MAXVIFS)
1218  		return -ENFILE;
1219  
1220  	/* The entries are added/deleted only under RTNL */
1221  	rcu_read_lock();
1222  	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1223  				   mfc->mfcc_mcastgrp.s_addr, parent);
1224  	rcu_read_unlock();
1225  	if (c) {
1226  		spin_lock(&mrt_lock);
1227  		c->_c.mfc_parent = mfc->mfcc_parent;
1228  		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1229  		if (!mrtsock)
1230  			c->_c.mfc_flags |= MFC_STATIC;
1231  		spin_unlock(&mrt_lock);
1232  		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1233  					      mrt->id);
1234  		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1235  		return 0;
1236  	}
1237  
1238  	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1239  	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1240  		return -EINVAL;
1241  
1242  	c = ipmr_cache_alloc();
1243  	if (!c)
1244  		return -ENOMEM;
1245  
1246  	c->mfc_origin = mfc->mfcc_origin.s_addr;
1247  	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1248  	c->_c.mfc_parent = mfc->mfcc_parent;
1249  	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1250  	if (!mrtsock)
1251  		c->_c.mfc_flags |= MFC_STATIC;
1252  
1253  	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1254  				  ipmr_rht_params);
1255  	if (ret) {
1256  		pr_err("ipmr: rhtable insert error %d\n", ret);
1257  		ipmr_cache_free(c);
1258  		return ret;
1259  	}
1260  	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1261  	/* Check to see if we resolved a queued list. If so we
1262  	 * need to send on the frames and tidy up.
1263  	 */
1264  	found = false;
1265  	spin_lock_bh(&mfc_unres_lock);
1266  	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1267  		uc = (struct mfc_cache *)_uc;
1268  		if (uc->mfc_origin == c->mfc_origin &&
1269  		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1270  			list_del(&_uc->list);
1271  			atomic_dec(&mrt->cache_resolve_queue_len);
1272  			found = true;
1273  			break;
1274  		}
1275  	}
1276  	if (list_empty(&mrt->mfc_unres_queue))
1277  		del_timer(&mrt->ipmr_expire_timer);
1278  	spin_unlock_bh(&mfc_unres_lock);
1279  
1280  	if (found) {
1281  		ipmr_cache_resolve(net, mrt, uc, c);
1282  		ipmr_cache_free(uc);
1283  	}
1284  	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1285  	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1286  	return 0;
1287  }
1288  
1289  /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1290  static void mroute_clean_tables(struct mr_table *mrt, int flags)
1291  {
1292  	struct net *net = read_pnet(&mrt->net);
1293  	struct mr_mfc *c, *tmp;
1294  	struct mfc_cache *cache;
1295  	LIST_HEAD(list);
1296  	int i;
1297  
1298  	/* Shut down all active vif entries */
1299  	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1300  		for (i = 0; i < mrt->maxvif; i++) {
1301  			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1302  			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1303  			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1304  				continue;
1305  			vif_delete(mrt, i, 0, &list);
1306  		}
1307  		unregister_netdevice_many(&list);
1308  	}
1309  
1310  	/* Wipe the cache */
1311  	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1312  		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1313  			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1314  			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1315  				continue;
1316  			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1317  			list_del_rcu(&c->list);
1318  			cache = (struct mfc_cache *)c;
1319  			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1320  						      mrt->id);
1321  			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1322  			mr_cache_put(c);
1323  		}
1324  	}
1325  
1326  	if (flags & MRT_FLUSH_MFC) {
1327  		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1328  			spin_lock_bh(&mfc_unres_lock);
1329  			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1330  				list_del(&c->list);
1331  				cache = (struct mfc_cache *)c;
1332  				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1333  				ipmr_destroy_unres(mrt, cache);
1334  			}
1335  			spin_unlock_bh(&mfc_unres_lock);
1336  		}
1337  	}
1338  }
1339  
1340  /* called from ip_ra_control(), before an RCU grace period,
1341   * we don't need to call synchronize_rcu() here
1342   */
mrtsock_destruct(struct sock * sk)1343  static void mrtsock_destruct(struct sock *sk)
1344  {
1345  	struct net *net = sock_net(sk);
1346  	struct mr_table *mrt;
1347  
1348  	rtnl_lock();
1349  	ipmr_for_each_table(mrt, net) {
1350  		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1351  			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1352  			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1353  						    NETCONFA_MC_FORWARDING,
1354  						    NETCONFA_IFINDEX_ALL,
1355  						    net->ipv4.devconf_all);
1356  			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1357  			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1358  		}
1359  	}
1360  	rtnl_unlock();
1361  }
1362  
1363  /* Socket options and virtual interface manipulation. The whole
1364   * virtual interface system is a complete heap, but unfortunately
1365   * that's how BSD mrouted happens to think. Maybe one day with a proper
1366   * MOSPF/PIM router set up we can clean this up.
1367   */
1368  
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1369  int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1370  			 unsigned int optlen)
1371  {
1372  	struct net *net = sock_net(sk);
1373  	int val, ret = 0, parent = 0;
1374  	struct mr_table *mrt;
1375  	struct vifctl vif;
1376  	struct mfcctl mfc;
1377  	bool do_wrvifwhole;
1378  	u32 uval;
1379  
1380  	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1381  	rtnl_lock();
1382  	if (sk->sk_type != SOCK_RAW ||
1383  	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1384  		ret = -EOPNOTSUPP;
1385  		goto out_unlock;
1386  	}
1387  
1388  	mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1389  	if (!mrt) {
1390  		ret = -ENOENT;
1391  		goto out_unlock;
1392  	}
1393  	if (optname != MRT_INIT) {
1394  		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1395  		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1396  			ret = -EACCES;
1397  			goto out_unlock;
1398  		}
1399  	}
1400  
1401  	switch (optname) {
1402  	case MRT_INIT:
1403  		if (optlen != sizeof(int)) {
1404  			ret = -EINVAL;
1405  			break;
1406  		}
1407  		if (rtnl_dereference(mrt->mroute_sk)) {
1408  			ret = -EADDRINUSE;
1409  			break;
1410  		}
1411  
1412  		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1413  		if (ret == 0) {
1414  			rcu_assign_pointer(mrt->mroute_sk, sk);
1415  			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1416  			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1417  						    NETCONFA_MC_FORWARDING,
1418  						    NETCONFA_IFINDEX_ALL,
1419  						    net->ipv4.devconf_all);
1420  		}
1421  		break;
1422  	case MRT_DONE:
1423  		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1424  			ret = -EACCES;
1425  		} else {
1426  			/* We need to unlock here because mrtsock_destruct takes
1427  			 * care of rtnl itself and we can't change that due to
1428  			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1429  			 */
1430  			rtnl_unlock();
1431  			ret = ip_ra_control(sk, 0, NULL);
1432  			goto out;
1433  		}
1434  		break;
1435  	case MRT_ADD_VIF:
1436  	case MRT_DEL_VIF:
1437  		if (optlen != sizeof(vif)) {
1438  			ret = -EINVAL;
1439  			break;
1440  		}
1441  		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1442  			ret = -EFAULT;
1443  			break;
1444  		}
1445  		if (vif.vifc_vifi >= MAXVIFS) {
1446  			ret = -ENFILE;
1447  			break;
1448  		}
1449  		if (optname == MRT_ADD_VIF) {
1450  			ret = vif_add(net, mrt, &vif,
1451  				      sk == rtnl_dereference(mrt->mroute_sk));
1452  		} else {
1453  			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1454  		}
1455  		break;
1456  	/* Manipulate the forwarding caches. These live
1457  	 * in a sort of kernel/user symbiosis.
1458  	 */
1459  	case MRT_ADD_MFC:
1460  	case MRT_DEL_MFC:
1461  		parent = -1;
1462  		fallthrough;
1463  	case MRT_ADD_MFC_PROXY:
1464  	case MRT_DEL_MFC_PROXY:
1465  		if (optlen != sizeof(mfc)) {
1466  			ret = -EINVAL;
1467  			break;
1468  		}
1469  		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1470  			ret = -EFAULT;
1471  			break;
1472  		}
1473  		if (parent == 0)
1474  			parent = mfc.mfcc_parent;
1475  		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1476  			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1477  		else
1478  			ret = ipmr_mfc_add(net, mrt, &mfc,
1479  					   sk == rtnl_dereference(mrt->mroute_sk),
1480  					   parent);
1481  		break;
1482  	case MRT_FLUSH:
1483  		if (optlen != sizeof(val)) {
1484  			ret = -EINVAL;
1485  			break;
1486  		}
1487  		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1488  			ret = -EFAULT;
1489  			break;
1490  		}
1491  		mroute_clean_tables(mrt, val);
1492  		break;
1493  	/* Control PIM assert. */
1494  	case MRT_ASSERT:
1495  		if (optlen != sizeof(val)) {
1496  			ret = -EINVAL;
1497  			break;
1498  		}
1499  		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1500  			ret = -EFAULT;
1501  			break;
1502  		}
1503  		mrt->mroute_do_assert = val;
1504  		break;
1505  	case MRT_PIM:
1506  		if (!ipmr_pimsm_enabled()) {
1507  			ret = -ENOPROTOOPT;
1508  			break;
1509  		}
1510  		if (optlen != sizeof(val)) {
1511  			ret = -EINVAL;
1512  			break;
1513  		}
1514  		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1515  			ret = -EFAULT;
1516  			break;
1517  		}
1518  
1519  		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1520  		val = !!val;
1521  		if (val != mrt->mroute_do_pim) {
1522  			mrt->mroute_do_pim = val;
1523  			mrt->mroute_do_assert = val;
1524  			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1525  		}
1526  		break;
1527  	case MRT_TABLE:
1528  		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1529  			ret = -ENOPROTOOPT;
1530  			break;
1531  		}
1532  		if (optlen != sizeof(uval)) {
1533  			ret = -EINVAL;
1534  			break;
1535  		}
1536  		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1537  			ret = -EFAULT;
1538  			break;
1539  		}
1540  
1541  		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1542  			ret = -EBUSY;
1543  		} else {
1544  			mrt = ipmr_new_table(net, uval);
1545  			if (IS_ERR(mrt))
1546  				ret = PTR_ERR(mrt);
1547  			else
1548  				raw_sk(sk)->ipmr_table = uval;
1549  		}
1550  		break;
1551  	/* Spurious command, or MRT_VERSION which you cannot set. */
1552  	default:
1553  		ret = -ENOPROTOOPT;
1554  	}
1555  out_unlock:
1556  	rtnl_unlock();
1557  out:
1558  	return ret;
1559  }
1560  
1561  /* Execute if this ioctl is a special mroute ioctl */
ipmr_sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1562  int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1563  {
1564  	switch (cmd) {
1565  	/* These userspace buffers will be consumed by ipmr_ioctl() */
1566  	case SIOCGETVIFCNT: {
1567  		struct sioc_vif_req buffer;
1568  
1569  		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1570  				      sizeof(buffer));
1571  		}
1572  	case SIOCGETSGCNT: {
1573  		struct sioc_sg_req buffer;
1574  
1575  		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1576  				      sizeof(buffer));
1577  		}
1578  	}
1579  	/* return code > 0 means that the ioctl was not executed */
1580  	return 1;
1581  }
1582  
1583  /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,sockptr_t optval,sockptr_t optlen)1584  int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1585  			 sockptr_t optlen)
1586  {
1587  	int olr;
1588  	int val;
1589  	struct net *net = sock_net(sk);
1590  	struct mr_table *mrt;
1591  
1592  	if (sk->sk_type != SOCK_RAW ||
1593  	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1594  		return -EOPNOTSUPP;
1595  
1596  	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1597  	if (!mrt)
1598  		return -ENOENT;
1599  
1600  	switch (optname) {
1601  	case MRT_VERSION:
1602  		val = 0x0305;
1603  		break;
1604  	case MRT_PIM:
1605  		if (!ipmr_pimsm_enabled())
1606  			return -ENOPROTOOPT;
1607  		val = mrt->mroute_do_pim;
1608  		break;
1609  	case MRT_ASSERT:
1610  		val = mrt->mroute_do_assert;
1611  		break;
1612  	default:
1613  		return -ENOPROTOOPT;
1614  	}
1615  
1616  	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1617  		return -EFAULT;
1618  	if (olr < 0)
1619  		return -EINVAL;
1620  
1621  	olr = min_t(unsigned int, olr, sizeof(int));
1622  
1623  	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1624  		return -EFAULT;
1625  	if (copy_to_sockptr(optval, &val, olr))
1626  		return -EFAULT;
1627  	return 0;
1628  }
1629  
1630  /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void * arg)1631  int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1632  {
1633  	struct vif_device *vif;
1634  	struct mfc_cache *c;
1635  	struct net *net = sock_net(sk);
1636  	struct sioc_vif_req *vr;
1637  	struct sioc_sg_req *sr;
1638  	struct mr_table *mrt;
1639  
1640  	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1641  	if (!mrt)
1642  		return -ENOENT;
1643  
1644  	switch (cmd) {
1645  	case SIOCGETVIFCNT:
1646  		vr = (struct sioc_vif_req *)arg;
1647  		if (vr->vifi >= mrt->maxvif)
1648  			return -EINVAL;
1649  		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1650  		rcu_read_lock();
1651  		vif = &mrt->vif_table[vr->vifi];
1652  		if (VIF_EXISTS(mrt, vr->vifi)) {
1653  			vr->icount = READ_ONCE(vif->pkt_in);
1654  			vr->ocount = READ_ONCE(vif->pkt_out);
1655  			vr->ibytes = READ_ONCE(vif->bytes_in);
1656  			vr->obytes = READ_ONCE(vif->bytes_out);
1657  			rcu_read_unlock();
1658  
1659  			return 0;
1660  		}
1661  		rcu_read_unlock();
1662  		return -EADDRNOTAVAIL;
1663  	case SIOCGETSGCNT:
1664  		sr = (struct sioc_sg_req *)arg;
1665  
1666  		rcu_read_lock();
1667  		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1668  		if (c) {
1669  			sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1670  			sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1671  			sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1672  			rcu_read_unlock();
1673  			return 0;
1674  		}
1675  		rcu_read_unlock();
1676  		return -EADDRNOTAVAIL;
1677  	default:
1678  		return -ENOIOCTLCMD;
1679  	}
1680  }
1681  
1682  #ifdef CONFIG_COMPAT
1683  struct compat_sioc_sg_req {
1684  	struct in_addr src;
1685  	struct in_addr grp;
1686  	compat_ulong_t pktcnt;
1687  	compat_ulong_t bytecnt;
1688  	compat_ulong_t wrong_if;
1689  };
1690  
1691  struct compat_sioc_vif_req {
1692  	vifi_t	vifi;		/* Which iface */
1693  	compat_ulong_t icount;
1694  	compat_ulong_t ocount;
1695  	compat_ulong_t ibytes;
1696  	compat_ulong_t obytes;
1697  };
1698  
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1699  int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1700  {
1701  	struct compat_sioc_sg_req sr;
1702  	struct compat_sioc_vif_req vr;
1703  	struct vif_device *vif;
1704  	struct mfc_cache *c;
1705  	struct net *net = sock_net(sk);
1706  	struct mr_table *mrt;
1707  
1708  	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1709  	if (!mrt)
1710  		return -ENOENT;
1711  
1712  	switch (cmd) {
1713  	case SIOCGETVIFCNT:
1714  		if (copy_from_user(&vr, arg, sizeof(vr)))
1715  			return -EFAULT;
1716  		if (vr.vifi >= mrt->maxvif)
1717  			return -EINVAL;
1718  		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1719  		rcu_read_lock();
1720  		vif = &mrt->vif_table[vr.vifi];
1721  		if (VIF_EXISTS(mrt, vr.vifi)) {
1722  			vr.icount = READ_ONCE(vif->pkt_in);
1723  			vr.ocount = READ_ONCE(vif->pkt_out);
1724  			vr.ibytes = READ_ONCE(vif->bytes_in);
1725  			vr.obytes = READ_ONCE(vif->bytes_out);
1726  			rcu_read_unlock();
1727  
1728  			if (copy_to_user(arg, &vr, sizeof(vr)))
1729  				return -EFAULT;
1730  			return 0;
1731  		}
1732  		rcu_read_unlock();
1733  		return -EADDRNOTAVAIL;
1734  	case SIOCGETSGCNT:
1735  		if (copy_from_user(&sr, arg, sizeof(sr)))
1736  			return -EFAULT;
1737  
1738  		rcu_read_lock();
1739  		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1740  		if (c) {
1741  			sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1742  			sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1743  			sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1744  			rcu_read_unlock();
1745  
1746  			if (copy_to_user(arg, &sr, sizeof(sr)))
1747  				return -EFAULT;
1748  			return 0;
1749  		}
1750  		rcu_read_unlock();
1751  		return -EADDRNOTAVAIL;
1752  	default:
1753  		return -ENOIOCTLCMD;
1754  	}
1755  }
1756  #endif
1757  
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1758  static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1759  {
1760  	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1761  	struct net *net = dev_net(dev);
1762  	struct mr_table *mrt;
1763  	struct vif_device *v;
1764  	int ct;
1765  
1766  	if (event != NETDEV_UNREGISTER)
1767  		return NOTIFY_DONE;
1768  
1769  	ipmr_for_each_table(mrt, net) {
1770  		v = &mrt->vif_table[0];
1771  		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1772  			if (rcu_access_pointer(v->dev) == dev)
1773  				vif_delete(mrt, ct, 1, NULL);
1774  		}
1775  	}
1776  	return NOTIFY_DONE;
1777  }
1778  
1779  static struct notifier_block ip_mr_notifier = {
1780  	.notifier_call = ipmr_device_event,
1781  };
1782  
1783  /* Encapsulate a packet by attaching a valid IPIP header to it.
1784   * This avoids tunnel drivers and other mess and gives us the speed so
1785   * important for multicast video.
1786   */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1787  static void ip_encap(struct net *net, struct sk_buff *skb,
1788  		     __be32 saddr, __be32 daddr)
1789  {
1790  	struct iphdr *iph;
1791  	const struct iphdr *old_iph = ip_hdr(skb);
1792  
1793  	skb_push(skb, sizeof(struct iphdr));
1794  	skb->transport_header = skb->network_header;
1795  	skb_reset_network_header(skb);
1796  	iph = ip_hdr(skb);
1797  
1798  	iph->version	=	4;
1799  	iph->tos	=	old_iph->tos;
1800  	iph->ttl	=	old_iph->ttl;
1801  	iph->frag_off	=	0;
1802  	iph->daddr	=	daddr;
1803  	iph->saddr	=	saddr;
1804  	iph->protocol	=	IPPROTO_IPIP;
1805  	iph->ihl	=	5;
1806  	iph->tot_len	=	htons(skb->len);
1807  	ip_select_ident(net, skb, NULL);
1808  	ip_send_check(iph);
1809  
1810  	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1811  	nf_reset_ct(skb);
1812  }
1813  
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1814  static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1815  				      struct sk_buff *skb)
1816  {
1817  	struct ip_options *opt = &(IPCB(skb)->opt);
1818  
1819  	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1820  
1821  	if (unlikely(opt->optlen))
1822  		ip_forward_options(skb);
1823  
1824  	return dst_output(net, sk, skb);
1825  }
1826  
1827  #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1828  static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1829  				   int in_vifi, int out_vifi)
1830  {
1831  	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1832  	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1833  
1834  	if (!skb->offload_l3_fwd_mark)
1835  		return false;
1836  	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1837  		return false;
1838  	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1839  					&in_vif->dev_parent_id);
1840  }
1841  #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1842  static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1843  				   int in_vifi, int out_vifi)
1844  {
1845  	return false;
1846  }
1847  #endif
1848  
1849  /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1850  
ipmr_queue_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1851  static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1852  			    int in_vifi, struct sk_buff *skb, int vifi)
1853  {
1854  	const struct iphdr *iph = ip_hdr(skb);
1855  	struct vif_device *vif = &mrt->vif_table[vifi];
1856  	struct net_device *vif_dev;
1857  	struct net_device *dev;
1858  	struct rtable *rt;
1859  	struct flowi4 fl4;
1860  	int    encap = 0;
1861  
1862  	vif_dev = vif_dev_read(vif);
1863  	if (!vif_dev)
1864  		goto out_free;
1865  
1866  	if (vif->flags & VIFF_REGISTER) {
1867  		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1868  		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1869  		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1870  		DEV_STATS_INC(vif_dev, tx_packets);
1871  		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1872  		goto out_free;
1873  	}
1874  
1875  	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1876  		goto out_free;
1877  
1878  	if (vif->flags & VIFF_TUNNEL) {
1879  		rt = ip_route_output_ports(net, &fl4, NULL,
1880  					   vif->remote, vif->local,
1881  					   0, 0,
1882  					   IPPROTO_IPIP,
1883  					   RT_TOS(iph->tos), vif->link);
1884  		if (IS_ERR(rt))
1885  			goto out_free;
1886  		encap = sizeof(struct iphdr);
1887  	} else {
1888  		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1889  					   0, 0,
1890  					   IPPROTO_IPIP,
1891  					   RT_TOS(iph->tos), vif->link);
1892  		if (IS_ERR(rt))
1893  			goto out_free;
1894  	}
1895  
1896  	dev = rt->dst.dev;
1897  
1898  	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1899  		/* Do not fragment multicasts. Alas, IPv4 does not
1900  		 * allow to send ICMP, so that packets will disappear
1901  		 * to blackhole.
1902  		 */
1903  		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1904  		ip_rt_put(rt);
1905  		goto out_free;
1906  	}
1907  
1908  	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1909  
1910  	if (skb_cow(skb, encap)) {
1911  		ip_rt_put(rt);
1912  		goto out_free;
1913  	}
1914  
1915  	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1916  	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1917  
1918  	skb_dst_drop(skb);
1919  	skb_dst_set(skb, &rt->dst);
1920  	ip_decrease_ttl(ip_hdr(skb));
1921  
1922  	/* FIXME: forward and output firewalls used to be called here.
1923  	 * What do we do with netfilter? -- RR
1924  	 */
1925  	if (vif->flags & VIFF_TUNNEL) {
1926  		ip_encap(net, skb, vif->local, vif->remote);
1927  		/* FIXME: extra output firewall step used to be here. --RR */
1928  		DEV_STATS_INC(vif_dev, tx_packets);
1929  		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1930  	}
1931  
1932  	IPCB(skb)->flags |= IPSKB_FORWARDED;
1933  
1934  	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1935  	 * not only before forwarding, but after forwarding on all output
1936  	 * interfaces. It is clear, if mrouter runs a multicasting
1937  	 * program, it should receive packets not depending to what interface
1938  	 * program is joined.
1939  	 * If we will not make it, the program will have to join on all
1940  	 * interfaces. On the other hand, multihoming host (or router, but
1941  	 * not mrouter) cannot join to more than one interface - it will
1942  	 * result in receiving multiple packets.
1943  	 */
1944  	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1945  		net, NULL, skb, skb->dev, dev,
1946  		ipmr_forward_finish);
1947  	return;
1948  
1949  out_free:
1950  	kfree_skb(skb);
1951  }
1952  
1953  /* Called with mrt_lock or rcu_read_lock() */
ipmr_find_vif(const struct mr_table * mrt,struct net_device * dev)1954  static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1955  {
1956  	int ct;
1957  	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1958  	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1959  		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1960  			break;
1961  	}
1962  	return ct;
1963  }
1964  
1965  /* "local" means that we should preserve one skb (for local delivery) */
1966  /* Called uner rcu_read_lock() */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1967  static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1968  			  struct net_device *dev, struct sk_buff *skb,
1969  			  struct mfc_cache *c, int local)
1970  {
1971  	int true_vifi = ipmr_find_vif(mrt, dev);
1972  	int psend = -1;
1973  	int vif, ct;
1974  
1975  	vif = c->_c.mfc_parent;
1976  	atomic_long_inc(&c->_c.mfc_un.res.pkt);
1977  	atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
1978  	WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
1979  
1980  	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1981  		struct mfc_cache *cache_proxy;
1982  
1983  		/* For an (*,G) entry, we only check that the incoming
1984  		 * interface is part of the static tree.
1985  		 */
1986  		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1987  		if (cache_proxy &&
1988  		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1989  			goto forward;
1990  	}
1991  
1992  	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1993  	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1994  		if (rt_is_output_route(skb_rtable(skb))) {
1995  			/* It is our own packet, looped back.
1996  			 * Very complicated situation...
1997  			 *
1998  			 * The best workaround until routing daemons will be
1999  			 * fixed is not to redistribute packet, if it was
2000  			 * send through wrong interface. It means, that
2001  			 * multicast applications WILL NOT work for
2002  			 * (S,G), which have default multicast route pointing
2003  			 * to wrong oif. In any case, it is not a good
2004  			 * idea to use multicasting applications on router.
2005  			 */
2006  			goto dont_forward;
2007  		}
2008  
2009  		atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2010  
2011  		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2012  		    /* pimsm uses asserts, when switching from RPT to SPT,
2013  		     * so that we cannot check that packet arrived on an oif.
2014  		     * It is bad, but otherwise we would need to move pretty
2015  		     * large chunk of pimd to kernel. Ough... --ANK
2016  		     */
2017  		    (mrt->mroute_do_pim ||
2018  		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2019  		    time_after(jiffies,
2020  			       c->_c.mfc_un.res.last_assert +
2021  			       MFC_ASSERT_THRESH)) {
2022  			c->_c.mfc_un.res.last_assert = jiffies;
2023  			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2024  			if (mrt->mroute_do_wrvifwhole)
2025  				ipmr_cache_report(mrt, skb, true_vifi,
2026  						  IGMPMSG_WRVIFWHOLE);
2027  		}
2028  		goto dont_forward;
2029  	}
2030  
2031  forward:
2032  	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2033  		   mrt->vif_table[vif].pkt_in + 1);
2034  	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2035  		   mrt->vif_table[vif].bytes_in + skb->len);
2036  
2037  	/* Forward the frame */
2038  	if (c->mfc_origin == htonl(INADDR_ANY) &&
2039  	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2040  		if (true_vifi >= 0 &&
2041  		    true_vifi != c->_c.mfc_parent &&
2042  		    ip_hdr(skb)->ttl >
2043  				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2044  			/* It's an (*,*) entry and the packet is not coming from
2045  			 * the upstream: forward the packet to the upstream
2046  			 * only.
2047  			 */
2048  			psend = c->_c.mfc_parent;
2049  			goto last_forward;
2050  		}
2051  		goto dont_forward;
2052  	}
2053  	for (ct = c->_c.mfc_un.res.maxvif - 1;
2054  	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2055  		/* For (*,G) entry, don't forward to the incoming interface */
2056  		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2057  		     ct != true_vifi) &&
2058  		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2059  			if (psend != -1) {
2060  				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2061  
2062  				if (skb2)
2063  					ipmr_queue_xmit(net, mrt, true_vifi,
2064  							skb2, psend);
2065  			}
2066  			psend = ct;
2067  		}
2068  	}
2069  last_forward:
2070  	if (psend != -1) {
2071  		if (local) {
2072  			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2073  
2074  			if (skb2)
2075  				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2076  						psend);
2077  		} else {
2078  			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2079  			return;
2080  		}
2081  	}
2082  
2083  dont_forward:
2084  	if (!local)
2085  		kfree_skb(skb);
2086  }
2087  
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2088  static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2089  {
2090  	struct rtable *rt = skb_rtable(skb);
2091  	struct iphdr *iph = ip_hdr(skb);
2092  	struct flowi4 fl4 = {
2093  		.daddr = iph->daddr,
2094  		.saddr = iph->saddr,
2095  		.flowi4_tos = RT_TOS(iph->tos),
2096  		.flowi4_oif = (rt_is_output_route(rt) ?
2097  			       skb->dev->ifindex : 0),
2098  		.flowi4_iif = (rt_is_output_route(rt) ?
2099  			       LOOPBACK_IFINDEX :
2100  			       skb->dev->ifindex),
2101  		.flowi4_mark = skb->mark,
2102  	};
2103  	struct mr_table *mrt;
2104  	int err;
2105  
2106  	err = ipmr_fib_lookup(net, &fl4, &mrt);
2107  	if (err)
2108  		return ERR_PTR(err);
2109  	return mrt;
2110  }
2111  
2112  /* Multicast packets for forwarding arrive here
2113   * Called with rcu_read_lock();
2114   */
ip_mr_input(struct sk_buff * skb)2115  int ip_mr_input(struct sk_buff *skb)
2116  {
2117  	struct mfc_cache *cache;
2118  	struct net *net = dev_net(skb->dev);
2119  	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2120  	struct mr_table *mrt;
2121  	struct net_device *dev;
2122  
2123  	/* skb->dev passed in is the loX master dev for vrfs.
2124  	 * As there are no vifs associated with loopback devices,
2125  	 * get the proper interface that does have a vif associated with it.
2126  	 */
2127  	dev = skb->dev;
2128  	if (netif_is_l3_master(skb->dev)) {
2129  		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2130  		if (!dev) {
2131  			kfree_skb(skb);
2132  			return -ENODEV;
2133  		}
2134  	}
2135  
2136  	/* Packet is looped back after forward, it should not be
2137  	 * forwarded second time, but still can be delivered locally.
2138  	 */
2139  	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2140  		goto dont_forward;
2141  
2142  	mrt = ipmr_rt_fib_lookup(net, skb);
2143  	if (IS_ERR(mrt)) {
2144  		kfree_skb(skb);
2145  		return PTR_ERR(mrt);
2146  	}
2147  	if (!local) {
2148  		if (IPCB(skb)->opt.router_alert) {
2149  			if (ip_call_ra_chain(skb))
2150  				return 0;
2151  		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2152  			/* IGMPv1 (and broken IGMPv2 implementations sort of
2153  			 * Cisco IOS <= 11.2(8)) do not put router alert
2154  			 * option to IGMP packets destined to routable
2155  			 * groups. It is very bad, because it means
2156  			 * that we can forward NO IGMP messages.
2157  			 */
2158  			struct sock *mroute_sk;
2159  
2160  			mroute_sk = rcu_dereference(mrt->mroute_sk);
2161  			if (mroute_sk) {
2162  				nf_reset_ct(skb);
2163  				raw_rcv(mroute_sk, skb);
2164  				return 0;
2165  			}
2166  		}
2167  	}
2168  
2169  	/* already under rcu_read_lock() */
2170  	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2171  	if (!cache) {
2172  		int vif = ipmr_find_vif(mrt, dev);
2173  
2174  		if (vif >= 0)
2175  			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2176  						    vif);
2177  	}
2178  
2179  	/* No usable cache entry */
2180  	if (!cache) {
2181  		int vif;
2182  
2183  		if (local) {
2184  			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2185  			ip_local_deliver(skb);
2186  			if (!skb2)
2187  				return -ENOBUFS;
2188  			skb = skb2;
2189  		}
2190  
2191  		vif = ipmr_find_vif(mrt, dev);
2192  		if (vif >= 0)
2193  			return ipmr_cache_unresolved(mrt, vif, skb, dev);
2194  		kfree_skb(skb);
2195  		return -ENODEV;
2196  	}
2197  
2198  	ip_mr_forward(net, mrt, dev, skb, cache, local);
2199  
2200  	if (local)
2201  		return ip_local_deliver(skb);
2202  
2203  	return 0;
2204  
2205  dont_forward:
2206  	if (local)
2207  		return ip_local_deliver(skb);
2208  	kfree_skb(skb);
2209  	return 0;
2210  }
2211  
2212  #ifdef CONFIG_IP_PIMSM_V1
2213  /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2214  int pim_rcv_v1(struct sk_buff *skb)
2215  {
2216  	struct igmphdr *pim;
2217  	struct net *net = dev_net(skb->dev);
2218  	struct mr_table *mrt;
2219  
2220  	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2221  		goto drop;
2222  
2223  	pim = igmp_hdr(skb);
2224  
2225  	mrt = ipmr_rt_fib_lookup(net, skb);
2226  	if (IS_ERR(mrt))
2227  		goto drop;
2228  	if (!mrt->mroute_do_pim ||
2229  	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2230  		goto drop;
2231  
2232  	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2233  drop:
2234  		kfree_skb(skb);
2235  	}
2236  	return 0;
2237  }
2238  #endif
2239  
2240  #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2241  static int pim_rcv(struct sk_buff *skb)
2242  {
2243  	struct pimreghdr *pim;
2244  	struct net *net = dev_net(skb->dev);
2245  	struct mr_table *mrt;
2246  
2247  	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2248  		goto drop;
2249  
2250  	pim = (struct pimreghdr *)skb_transport_header(skb);
2251  	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2252  	    (pim->flags & PIM_NULL_REGISTER) ||
2253  	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2254  	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2255  		goto drop;
2256  
2257  	mrt = ipmr_rt_fib_lookup(net, skb);
2258  	if (IS_ERR(mrt))
2259  		goto drop;
2260  	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2261  drop:
2262  		kfree_skb(skb);
2263  	}
2264  	return 0;
2265  }
2266  #endif
2267  
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2268  int ipmr_get_route(struct net *net, struct sk_buff *skb,
2269  		   __be32 saddr, __be32 daddr,
2270  		   struct rtmsg *rtm, u32 portid)
2271  {
2272  	struct mfc_cache *cache;
2273  	struct mr_table *mrt;
2274  	int err;
2275  
2276  	rcu_read_lock();
2277  	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2278  	if (!mrt) {
2279  		rcu_read_unlock();
2280  		return -ENOENT;
2281  	}
2282  
2283  	cache = ipmr_cache_find(mrt, saddr, daddr);
2284  	if (!cache && skb->dev) {
2285  		int vif = ipmr_find_vif(mrt, skb->dev);
2286  
2287  		if (vif >= 0)
2288  			cache = ipmr_cache_find_any(mrt, daddr, vif);
2289  	}
2290  	if (!cache) {
2291  		struct sk_buff *skb2;
2292  		struct iphdr *iph;
2293  		struct net_device *dev;
2294  		int vif = -1;
2295  
2296  		dev = skb->dev;
2297  		if (dev)
2298  			vif = ipmr_find_vif(mrt, dev);
2299  		if (vif < 0) {
2300  			rcu_read_unlock();
2301  			return -ENODEV;
2302  		}
2303  
2304  		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2305  		if (!skb2) {
2306  			rcu_read_unlock();
2307  			return -ENOMEM;
2308  		}
2309  
2310  		NETLINK_CB(skb2).portid = portid;
2311  		skb_push(skb2, sizeof(struct iphdr));
2312  		skb_reset_network_header(skb2);
2313  		iph = ip_hdr(skb2);
2314  		iph->ihl = sizeof(struct iphdr) >> 2;
2315  		iph->saddr = saddr;
2316  		iph->daddr = daddr;
2317  		iph->version = 0;
2318  		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2319  		rcu_read_unlock();
2320  		return err;
2321  	}
2322  
2323  	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2324  	rcu_read_unlock();
2325  	return err;
2326  }
2327  
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2328  static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2329  			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2330  			    int flags)
2331  {
2332  	struct nlmsghdr *nlh;
2333  	struct rtmsg *rtm;
2334  	int err;
2335  
2336  	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2337  	if (!nlh)
2338  		return -EMSGSIZE;
2339  
2340  	rtm = nlmsg_data(nlh);
2341  	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2342  	rtm->rtm_dst_len  = 32;
2343  	rtm->rtm_src_len  = 32;
2344  	rtm->rtm_tos      = 0;
2345  	rtm->rtm_table    = mrt->id;
2346  	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2347  		goto nla_put_failure;
2348  	rtm->rtm_type     = RTN_MULTICAST;
2349  	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2350  	if (c->_c.mfc_flags & MFC_STATIC)
2351  		rtm->rtm_protocol = RTPROT_STATIC;
2352  	else
2353  		rtm->rtm_protocol = RTPROT_MROUTED;
2354  	rtm->rtm_flags    = 0;
2355  
2356  	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2357  	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2358  		goto nla_put_failure;
2359  	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2360  	/* do not break the dump if cache is unresolved */
2361  	if (err < 0 && err != -ENOENT)
2362  		goto nla_put_failure;
2363  
2364  	nlmsg_end(skb, nlh);
2365  	return 0;
2366  
2367  nla_put_failure:
2368  	nlmsg_cancel(skb, nlh);
2369  	return -EMSGSIZE;
2370  }
2371  
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2372  static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2373  			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2374  			     int flags)
2375  {
2376  	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2377  				cmd, flags);
2378  }
2379  
mroute_msgsize(bool unresolved,int maxvif)2380  static size_t mroute_msgsize(bool unresolved, int maxvif)
2381  {
2382  	size_t len =
2383  		NLMSG_ALIGN(sizeof(struct rtmsg))
2384  		+ nla_total_size(4)	/* RTA_TABLE */
2385  		+ nla_total_size(4)	/* RTA_SRC */
2386  		+ nla_total_size(4)	/* RTA_DST */
2387  		;
2388  
2389  	if (!unresolved)
2390  		len = len
2391  		      + nla_total_size(4)	/* RTA_IIF */
2392  		      + nla_total_size(0)	/* RTA_MULTIPATH */
2393  		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2394  						/* RTA_MFC_STATS */
2395  		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2396  		;
2397  
2398  	return len;
2399  }
2400  
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2401  static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2402  				 int cmd)
2403  {
2404  	struct net *net = read_pnet(&mrt->net);
2405  	struct sk_buff *skb;
2406  	int err = -ENOBUFS;
2407  
2408  	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2409  				       mrt->maxvif),
2410  			GFP_ATOMIC);
2411  	if (!skb)
2412  		goto errout;
2413  
2414  	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2415  	if (err < 0)
2416  		goto errout;
2417  
2418  	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2419  	return;
2420  
2421  errout:
2422  	kfree_skb(skb);
2423  	if (err < 0)
2424  		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2425  }
2426  
igmpmsg_netlink_msgsize(size_t payloadlen)2427  static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2428  {
2429  	size_t len =
2430  		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2431  		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2432  		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2433  		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2434  		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2435  		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2436  					/* IPMRA_CREPORT_PKT */
2437  		+ nla_total_size(payloadlen)
2438  		;
2439  
2440  	return len;
2441  }
2442  
igmpmsg_netlink_event(const struct mr_table * mrt,struct sk_buff * pkt)2443  static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2444  {
2445  	struct net *net = read_pnet(&mrt->net);
2446  	struct nlmsghdr *nlh;
2447  	struct rtgenmsg *rtgenm;
2448  	struct igmpmsg *msg;
2449  	struct sk_buff *skb;
2450  	struct nlattr *nla;
2451  	int payloadlen;
2452  
2453  	payloadlen = pkt->len - sizeof(struct igmpmsg);
2454  	msg = (struct igmpmsg *)skb_network_header(pkt);
2455  
2456  	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2457  	if (!skb)
2458  		goto errout;
2459  
2460  	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2461  			sizeof(struct rtgenmsg), 0);
2462  	if (!nlh)
2463  		goto errout;
2464  	rtgenm = nlmsg_data(nlh);
2465  	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2466  	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2467  	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2468  	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2469  			    msg->im_src.s_addr) ||
2470  	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2471  			    msg->im_dst.s_addr) ||
2472  	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2473  		goto nla_put_failure;
2474  
2475  	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2476  	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2477  				  nla_data(nla), payloadlen))
2478  		goto nla_put_failure;
2479  
2480  	nlmsg_end(skb, nlh);
2481  
2482  	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2483  	return;
2484  
2485  nla_put_failure:
2486  	nlmsg_cancel(skb, nlh);
2487  errout:
2488  	kfree_skb(skb);
2489  	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2490  }
2491  
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2492  static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2493  				       const struct nlmsghdr *nlh,
2494  				       struct nlattr **tb,
2495  				       struct netlink_ext_ack *extack)
2496  {
2497  	struct rtmsg *rtm;
2498  	int i, err;
2499  
2500  	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2501  		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2502  		return -EINVAL;
2503  	}
2504  
2505  	if (!netlink_strict_get_check(skb))
2506  		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2507  					      rtm_ipv4_policy, extack);
2508  
2509  	rtm = nlmsg_data(nlh);
2510  	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2511  	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2512  	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2513  	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2514  		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2515  		return -EINVAL;
2516  	}
2517  
2518  	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2519  					    rtm_ipv4_policy, extack);
2520  	if (err)
2521  		return err;
2522  
2523  	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2524  	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2525  		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2526  		return -EINVAL;
2527  	}
2528  
2529  	for (i = 0; i <= RTA_MAX; i++) {
2530  		if (!tb[i])
2531  			continue;
2532  
2533  		switch (i) {
2534  		case RTA_SRC:
2535  		case RTA_DST:
2536  		case RTA_TABLE:
2537  			break;
2538  		default:
2539  			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2540  			return -EINVAL;
2541  		}
2542  	}
2543  
2544  	return 0;
2545  }
2546  
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2547  static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2548  			     struct netlink_ext_ack *extack)
2549  {
2550  	struct net *net = sock_net(in_skb->sk);
2551  	struct nlattr *tb[RTA_MAX + 1];
2552  	struct sk_buff *skb = NULL;
2553  	struct mfc_cache *cache;
2554  	struct mr_table *mrt;
2555  	__be32 src, grp;
2556  	u32 tableid;
2557  	int err;
2558  
2559  	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2560  	if (err < 0)
2561  		goto errout;
2562  
2563  	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2564  	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2565  	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2566  
2567  	mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2568  	if (!mrt) {
2569  		err = -ENOENT;
2570  		goto errout_free;
2571  	}
2572  
2573  	/* entries are added/deleted only under RTNL */
2574  	rcu_read_lock();
2575  	cache = ipmr_cache_find(mrt, src, grp);
2576  	rcu_read_unlock();
2577  	if (!cache) {
2578  		err = -ENOENT;
2579  		goto errout_free;
2580  	}
2581  
2582  	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2583  	if (!skb) {
2584  		err = -ENOBUFS;
2585  		goto errout_free;
2586  	}
2587  
2588  	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2589  			       nlh->nlmsg_seq, cache,
2590  			       RTM_NEWROUTE, 0);
2591  	if (err < 0)
2592  		goto errout_free;
2593  
2594  	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2595  
2596  errout:
2597  	return err;
2598  
2599  errout_free:
2600  	kfree_skb(skb);
2601  	goto errout;
2602  }
2603  
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2604  static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2605  {
2606  	struct fib_dump_filter filter = {};
2607  	int err;
2608  
2609  	if (cb->strict_check) {
2610  		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2611  					    &filter, cb);
2612  		if (err < 0)
2613  			return err;
2614  	}
2615  
2616  	if (filter.table_id) {
2617  		struct mr_table *mrt;
2618  
2619  		mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2620  		if (!mrt) {
2621  			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2622  				return skb->len;
2623  
2624  			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2625  			return -ENOENT;
2626  		}
2627  		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2628  				    &mfc_unres_lock, &filter);
2629  		return skb->len ? : err;
2630  	}
2631  
2632  	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2633  				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2634  }
2635  
2636  static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2637  	[RTA_SRC]	= { .type = NLA_U32 },
2638  	[RTA_DST]	= { .type = NLA_U32 },
2639  	[RTA_IIF]	= { .type = NLA_U32 },
2640  	[RTA_TABLE]	= { .type = NLA_U32 },
2641  	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2642  };
2643  
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2644  static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2645  {
2646  	switch (rtm_protocol) {
2647  	case RTPROT_STATIC:
2648  	case RTPROT_MROUTED:
2649  		return true;
2650  	}
2651  	return false;
2652  }
2653  
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2654  static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2655  {
2656  	struct rtnexthop *rtnh = nla_data(nla);
2657  	int remaining = nla_len(nla), vifi = 0;
2658  
2659  	while (rtnh_ok(rtnh, remaining)) {
2660  		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2661  		if (++vifi == MAXVIFS)
2662  			break;
2663  		rtnh = rtnh_next(rtnh, &remaining);
2664  	}
2665  
2666  	return remaining > 0 ? -EINVAL : vifi;
2667  }
2668  
2669  /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2670  static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2671  			    struct mfcctl *mfcc, int *mrtsock,
2672  			    struct mr_table **mrtret,
2673  			    struct netlink_ext_ack *extack)
2674  {
2675  	struct net_device *dev = NULL;
2676  	u32 tblid = RT_TABLE_DEFAULT;
2677  	struct mr_table *mrt;
2678  	struct nlattr *attr;
2679  	struct rtmsg *rtm;
2680  	int ret, rem;
2681  
2682  	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2683  					rtm_ipmr_policy, extack);
2684  	if (ret < 0)
2685  		goto out;
2686  	rtm = nlmsg_data(nlh);
2687  
2688  	ret = -EINVAL;
2689  	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2690  	    rtm->rtm_type != RTN_MULTICAST ||
2691  	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2692  	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2693  		goto out;
2694  
2695  	memset(mfcc, 0, sizeof(*mfcc));
2696  	mfcc->mfcc_parent = -1;
2697  	ret = 0;
2698  	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2699  		switch (nla_type(attr)) {
2700  		case RTA_SRC:
2701  			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2702  			break;
2703  		case RTA_DST:
2704  			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2705  			break;
2706  		case RTA_IIF:
2707  			dev = __dev_get_by_index(net, nla_get_u32(attr));
2708  			if (!dev) {
2709  				ret = -ENODEV;
2710  				goto out;
2711  			}
2712  			break;
2713  		case RTA_MULTIPATH:
2714  			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2715  				ret = -EINVAL;
2716  				goto out;
2717  			}
2718  			break;
2719  		case RTA_PREFSRC:
2720  			ret = 1;
2721  			break;
2722  		case RTA_TABLE:
2723  			tblid = nla_get_u32(attr);
2724  			break;
2725  		}
2726  	}
2727  	mrt = __ipmr_get_table(net, tblid);
2728  	if (!mrt) {
2729  		ret = -ENOENT;
2730  		goto out;
2731  	}
2732  	*mrtret = mrt;
2733  	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2734  	if (dev)
2735  		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2736  
2737  out:
2738  	return ret;
2739  }
2740  
2741  /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2742  static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2743  			  struct netlink_ext_ack *extack)
2744  {
2745  	struct net *net = sock_net(skb->sk);
2746  	int ret, mrtsock, parent;
2747  	struct mr_table *tbl;
2748  	struct mfcctl mfcc;
2749  
2750  	mrtsock = 0;
2751  	tbl = NULL;
2752  	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2753  	if (ret < 0)
2754  		return ret;
2755  
2756  	parent = ret ? mfcc.mfcc_parent : -1;
2757  	if (nlh->nlmsg_type == RTM_NEWROUTE)
2758  		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2759  	else
2760  		return ipmr_mfc_delete(tbl, &mfcc, parent);
2761  }
2762  
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2763  static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2764  {
2765  	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2766  
2767  	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2768  	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2769  	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2770  			mrt->mroute_reg_vif_num) ||
2771  	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2772  		       mrt->mroute_do_assert) ||
2773  	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2774  	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2775  		       mrt->mroute_do_wrvifwhole))
2776  		return false;
2777  
2778  	return true;
2779  }
2780  
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2781  static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2782  {
2783  	struct net_device *vif_dev;
2784  	struct nlattr *vif_nest;
2785  	struct vif_device *vif;
2786  
2787  	vif = &mrt->vif_table[vifid];
2788  	vif_dev = rtnl_dereference(vif->dev);
2789  	/* if the VIF doesn't exist just continue */
2790  	if (!vif_dev)
2791  		return true;
2792  
2793  	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2794  	if (!vif_nest)
2795  		return false;
2796  
2797  	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2798  	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2799  	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2800  	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2801  			      IPMRA_VIFA_PAD) ||
2802  	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2803  			      IPMRA_VIFA_PAD) ||
2804  	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2805  			      IPMRA_VIFA_PAD) ||
2806  	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2807  			      IPMRA_VIFA_PAD) ||
2808  	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2809  	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2810  		nla_nest_cancel(skb, vif_nest);
2811  		return false;
2812  	}
2813  	nla_nest_end(skb, vif_nest);
2814  
2815  	return true;
2816  }
2817  
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2818  static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2819  			       struct netlink_ext_ack *extack)
2820  {
2821  	struct ifinfomsg *ifm;
2822  
2823  	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2824  		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2825  		return -EINVAL;
2826  	}
2827  
2828  	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2829  		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2830  		return -EINVAL;
2831  	}
2832  
2833  	ifm = nlmsg_data(nlh);
2834  	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2835  	    ifm->ifi_change || ifm->ifi_index) {
2836  		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2837  		return -EINVAL;
2838  	}
2839  
2840  	return 0;
2841  }
2842  
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2843  static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2844  {
2845  	struct net *net = sock_net(skb->sk);
2846  	struct nlmsghdr *nlh = NULL;
2847  	unsigned int t = 0, s_t;
2848  	unsigned int e = 0, s_e;
2849  	struct mr_table *mrt;
2850  
2851  	if (cb->strict_check) {
2852  		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2853  
2854  		if (err < 0)
2855  			return err;
2856  	}
2857  
2858  	s_t = cb->args[0];
2859  	s_e = cb->args[1];
2860  
2861  	ipmr_for_each_table(mrt, net) {
2862  		struct nlattr *vifs, *af;
2863  		struct ifinfomsg *hdr;
2864  		u32 i;
2865  
2866  		if (t < s_t)
2867  			goto skip_table;
2868  		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2869  				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2870  				sizeof(*hdr), NLM_F_MULTI);
2871  		if (!nlh)
2872  			break;
2873  
2874  		hdr = nlmsg_data(nlh);
2875  		memset(hdr, 0, sizeof(*hdr));
2876  		hdr->ifi_family = RTNL_FAMILY_IPMR;
2877  
2878  		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2879  		if (!af) {
2880  			nlmsg_cancel(skb, nlh);
2881  			goto out;
2882  		}
2883  
2884  		if (!ipmr_fill_table(mrt, skb)) {
2885  			nlmsg_cancel(skb, nlh);
2886  			goto out;
2887  		}
2888  
2889  		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2890  		if (!vifs) {
2891  			nla_nest_end(skb, af);
2892  			nlmsg_end(skb, nlh);
2893  			goto out;
2894  		}
2895  		for (i = 0; i < mrt->maxvif; i++) {
2896  			if (e < s_e)
2897  				goto skip_entry;
2898  			if (!ipmr_fill_vif(mrt, i, skb)) {
2899  				nla_nest_end(skb, vifs);
2900  				nla_nest_end(skb, af);
2901  				nlmsg_end(skb, nlh);
2902  				goto out;
2903  			}
2904  skip_entry:
2905  			e++;
2906  		}
2907  		s_e = 0;
2908  		e = 0;
2909  		nla_nest_end(skb, vifs);
2910  		nla_nest_end(skb, af);
2911  		nlmsg_end(skb, nlh);
2912  skip_table:
2913  		t++;
2914  	}
2915  
2916  out:
2917  	cb->args[1] = e;
2918  	cb->args[0] = t;
2919  
2920  	return skb->len;
2921  }
2922  
2923  #ifdef CONFIG_PROC_FS
2924  /* The /proc interfaces to multicast routing :
2925   * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2926   */
2927  
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)2928  static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2929  	__acquires(RCU)
2930  {
2931  	struct mr_vif_iter *iter = seq->private;
2932  	struct net *net = seq_file_net(seq);
2933  	struct mr_table *mrt;
2934  
2935  	rcu_read_lock();
2936  	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2937  	if (!mrt) {
2938  		rcu_read_unlock();
2939  		return ERR_PTR(-ENOENT);
2940  	}
2941  
2942  	iter->mrt = mrt;
2943  
2944  	return mr_vif_seq_start(seq, pos);
2945  }
2946  
ipmr_vif_seq_stop(struct seq_file * seq,void * v)2947  static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2948  	__releases(RCU)
2949  {
2950  	rcu_read_unlock();
2951  }
2952  
ipmr_vif_seq_show(struct seq_file * seq,void * v)2953  static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2954  {
2955  	struct mr_vif_iter *iter = seq->private;
2956  	struct mr_table *mrt = iter->mrt;
2957  
2958  	if (v == SEQ_START_TOKEN) {
2959  		seq_puts(seq,
2960  			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2961  	} else {
2962  		const struct vif_device *vif = v;
2963  		const struct net_device *vif_dev;
2964  		const char *name;
2965  
2966  		vif_dev = vif_dev_read(vif);
2967  		name = vif_dev ? vif_dev->name : "none";
2968  		seq_printf(seq,
2969  			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2970  			   vif - mrt->vif_table,
2971  			   name, vif->bytes_in, vif->pkt_in,
2972  			   vif->bytes_out, vif->pkt_out,
2973  			   vif->flags, vif->local, vif->remote);
2974  	}
2975  	return 0;
2976  }
2977  
2978  static const struct seq_operations ipmr_vif_seq_ops = {
2979  	.start = ipmr_vif_seq_start,
2980  	.next  = mr_vif_seq_next,
2981  	.stop  = ipmr_vif_seq_stop,
2982  	.show  = ipmr_vif_seq_show,
2983  };
2984  
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)2985  static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2986  {
2987  	struct net *net = seq_file_net(seq);
2988  	struct mr_table *mrt;
2989  
2990  	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2991  	if (!mrt)
2992  		return ERR_PTR(-ENOENT);
2993  
2994  	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2995  }
2996  
ipmr_mfc_seq_show(struct seq_file * seq,void * v)2997  static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2998  {
2999  	int n;
3000  
3001  	if (v == SEQ_START_TOKEN) {
3002  		seq_puts(seq,
3003  		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
3004  	} else {
3005  		const struct mfc_cache *mfc = v;
3006  		const struct mr_mfc_iter *it = seq->private;
3007  		const struct mr_table *mrt = it->mrt;
3008  
3009  		seq_printf(seq, "%08X %08X %-3hd",
3010  			   (__force u32) mfc->mfc_mcastgrp,
3011  			   (__force u32) mfc->mfc_origin,
3012  			   mfc->_c.mfc_parent);
3013  
3014  		if (it->cache != &mrt->mfc_unres_queue) {
3015  			seq_printf(seq, " %8lu %8lu %8lu",
3016  				   atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3017  				   atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3018  				   atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3019  			for (n = mfc->_c.mfc_un.res.minvif;
3020  			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3021  				if (VIF_EXISTS(mrt, n) &&
3022  				    mfc->_c.mfc_un.res.ttls[n] < 255)
3023  					seq_printf(seq,
3024  					   " %2d:%-3d",
3025  					   n, mfc->_c.mfc_un.res.ttls[n]);
3026  			}
3027  		} else {
3028  			/* unresolved mfc_caches don't contain
3029  			 * pkt, bytes and wrong_if values
3030  			 */
3031  			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3032  		}
3033  		seq_putc(seq, '\n');
3034  	}
3035  	return 0;
3036  }
3037  
3038  static const struct seq_operations ipmr_mfc_seq_ops = {
3039  	.start = ipmr_mfc_seq_start,
3040  	.next  = mr_mfc_seq_next,
3041  	.stop  = mr_mfc_seq_stop,
3042  	.show  = ipmr_mfc_seq_show,
3043  };
3044  #endif
3045  
3046  #ifdef CONFIG_IP_PIMSM_V2
3047  static const struct net_protocol pim_protocol = {
3048  	.handler	=	pim_rcv,
3049  };
3050  #endif
3051  
ipmr_seq_read(struct net * net)3052  static unsigned int ipmr_seq_read(struct net *net)
3053  {
3054  	ASSERT_RTNL();
3055  
3056  	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3057  }
3058  
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3059  static int ipmr_dump(struct net *net, struct notifier_block *nb,
3060  		     struct netlink_ext_ack *extack)
3061  {
3062  	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3063  		       ipmr_mr_table_iter, extack);
3064  }
3065  
3066  static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3067  	.family		= RTNL_FAMILY_IPMR,
3068  	.fib_seq_read	= ipmr_seq_read,
3069  	.fib_dump	= ipmr_dump,
3070  	.owner		= THIS_MODULE,
3071  };
3072  
ipmr_notifier_init(struct net * net)3073  static int __net_init ipmr_notifier_init(struct net *net)
3074  {
3075  	struct fib_notifier_ops *ops;
3076  
3077  	net->ipv4.ipmr_seq = 0;
3078  
3079  	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3080  	if (IS_ERR(ops))
3081  		return PTR_ERR(ops);
3082  	net->ipv4.ipmr_notifier_ops = ops;
3083  
3084  	return 0;
3085  }
3086  
ipmr_notifier_exit(struct net * net)3087  static void __net_exit ipmr_notifier_exit(struct net *net)
3088  {
3089  	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3090  	net->ipv4.ipmr_notifier_ops = NULL;
3091  }
3092  
3093  /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3094  static int __net_init ipmr_net_init(struct net *net)
3095  {
3096  	int err;
3097  
3098  	err = ipmr_notifier_init(net);
3099  	if (err)
3100  		goto ipmr_notifier_fail;
3101  
3102  	err = ipmr_rules_init(net);
3103  	if (err < 0)
3104  		goto ipmr_rules_fail;
3105  
3106  #ifdef CONFIG_PROC_FS
3107  	err = -ENOMEM;
3108  	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3109  			sizeof(struct mr_vif_iter)))
3110  		goto proc_vif_fail;
3111  	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3112  			sizeof(struct mr_mfc_iter)))
3113  		goto proc_cache_fail;
3114  #endif
3115  	return 0;
3116  
3117  #ifdef CONFIG_PROC_FS
3118  proc_cache_fail:
3119  	remove_proc_entry("ip_mr_vif", net->proc_net);
3120  proc_vif_fail:
3121  	rtnl_lock();
3122  	ipmr_rules_exit(net);
3123  	rtnl_unlock();
3124  #endif
3125  ipmr_rules_fail:
3126  	ipmr_notifier_exit(net);
3127  ipmr_notifier_fail:
3128  	return err;
3129  }
3130  
ipmr_net_exit(struct net * net)3131  static void __net_exit ipmr_net_exit(struct net *net)
3132  {
3133  #ifdef CONFIG_PROC_FS
3134  	remove_proc_entry("ip_mr_cache", net->proc_net);
3135  	remove_proc_entry("ip_mr_vif", net->proc_net);
3136  #endif
3137  	ipmr_notifier_exit(net);
3138  }
3139  
ipmr_net_exit_batch(struct list_head * net_list)3140  static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3141  {
3142  	struct net *net;
3143  
3144  	rtnl_lock();
3145  	list_for_each_entry(net, net_list, exit_list)
3146  		ipmr_rules_exit(net);
3147  	rtnl_unlock();
3148  }
3149  
3150  static struct pernet_operations ipmr_net_ops = {
3151  	.init = ipmr_net_init,
3152  	.exit = ipmr_net_exit,
3153  	.exit_batch = ipmr_net_exit_batch,
3154  };
3155  
ip_mr_init(void)3156  int __init ip_mr_init(void)
3157  {
3158  	int err;
3159  
3160  	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3161  				       sizeof(struct mfc_cache),
3162  				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3163  				       NULL);
3164  
3165  	err = register_pernet_subsys(&ipmr_net_ops);
3166  	if (err)
3167  		goto reg_pernet_fail;
3168  
3169  	err = register_netdevice_notifier(&ip_mr_notifier);
3170  	if (err)
3171  		goto reg_notif_fail;
3172  #ifdef CONFIG_IP_PIMSM_V2
3173  	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3174  		pr_err("%s: can't add PIM protocol\n", __func__);
3175  		err = -EAGAIN;
3176  		goto add_proto_fail;
3177  	}
3178  #endif
3179  	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3180  		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3181  	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3182  		      ipmr_rtm_route, NULL, 0);
3183  	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3184  		      ipmr_rtm_route, NULL, 0);
3185  
3186  	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3187  		      NULL, ipmr_rtm_dumplink, 0);
3188  	return 0;
3189  
3190  #ifdef CONFIG_IP_PIMSM_V2
3191  add_proto_fail:
3192  	unregister_netdevice_notifier(&ip_mr_notifier);
3193  #endif
3194  reg_notif_fail:
3195  	unregister_pernet_subsys(&ipmr_net_ops);
3196  reg_pernet_fail:
3197  	kmem_cache_destroy(mrt_cachep);
3198  	return err;
3199  }
3200