xref: /openbmc/linux/drivers/usb/gadget/udc/snps_udc_core.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4   *
5   * Copyright (C) 2005-2007 AMD (https://www.amd.com)
6   * Author: Thomas Dahlmann
7   */
8  
9  /*
10   * This file does the core driver implementation for the UDC that is based
11   * on Synopsys device controller IP (different than HS OTG IP) that is either
12   * connected through PCI bus or integrated to SoC platforms.
13   */
14  
15  /* Driver strings */
16  #define UDC_MOD_DESCRIPTION		"Synopsys USB Device Controller"
17  #define UDC_DRIVER_VERSION_STRING	"01.00.0206"
18  
19  #include <linux/module.h>
20  #include <linux/pci.h>
21  #include <linux/kernel.h>
22  #include <linux/delay.h>
23  #include <linux/ioport.h>
24  #include <linux/sched.h>
25  #include <linux/slab.h>
26  #include <linux/errno.h>
27  #include <linux/timer.h>
28  #include <linux/list.h>
29  #include <linux/interrupt.h>
30  #include <linux/ioctl.h>
31  #include <linux/fs.h>
32  #include <linux/dmapool.h>
33  #include <linux/prefetch.h>
34  #include <linux/moduleparam.h>
35  #include <asm/byteorder.h>
36  #include <asm/unaligned.h>
37  #include "amd5536udc.h"
38  
39  static void udc_setup_endpoints(struct udc *dev);
40  static void udc_soft_reset(struct udc *dev);
41  static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
42  static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
43  
44  /* description */
45  static const char mod_desc[] = UDC_MOD_DESCRIPTION;
46  static const char name[] = "udc";
47  
48  /* structure to hold endpoint function pointers */
49  static const struct usb_ep_ops udc_ep_ops;
50  
51  /* received setup data */
52  static union udc_setup_data setup_data;
53  
54  /* pointer to device object */
55  static struct udc *udc;
56  
57  /* irq spin lock for soft reset */
58  static DEFINE_SPINLOCK(udc_irq_spinlock);
59  /* stall spin lock */
60  static DEFINE_SPINLOCK(udc_stall_spinlock);
61  
62  /*
63  * slave mode: pending bytes in rx fifo after nyet,
64  * used if EPIN irq came but no req was available
65  */
66  static unsigned int udc_rxfifo_pending;
67  
68  /* count soft resets after suspend to avoid loop */
69  static int soft_reset_occured;
70  static int soft_reset_after_usbreset_occured;
71  
72  /* timer */
73  static struct timer_list udc_timer;
74  static int stop_timer;
75  
76  /* set_rde -- Is used to control enabling of RX DMA. Problem is
77   * that UDC has only one bit (RDE) to enable/disable RX DMA for
78   * all OUT endpoints. So we have to handle race conditions like
79   * when OUT data reaches the fifo but no request was queued yet.
80   * This cannot be solved by letting the RX DMA disabled until a
81   * request gets queued because there may be other OUT packets
82   * in the FIFO (important for not blocking control traffic).
83   * The value of set_rde controls the corresponding timer.
84   *
85   * set_rde -1 == not used, means it is alloed to be set to 0 or 1
86   * set_rde  0 == do not touch RDE, do no start the RDE timer
87   * set_rde  1 == timer function will look whether FIFO has data
88   * set_rde  2 == set by timer function to enable RX DMA on next call
89   */
90  static int set_rde = -1;
91  
92  static DECLARE_COMPLETION(on_exit);
93  static struct timer_list udc_pollstall_timer;
94  static int stop_pollstall_timer;
95  static DECLARE_COMPLETION(on_pollstall_exit);
96  
97  /* endpoint names used for print */
98  static const char ep0_string[] = "ep0in";
99  static const struct {
100  	const char *name;
101  	const struct usb_ep_caps caps;
102  } ep_info[] = {
103  #define EP_INFO(_name, _caps) \
104  	{ \
105  		.name = _name, \
106  		.caps = _caps, \
107  	}
108  
109  	EP_INFO(ep0_string,
110  		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
111  	EP_INFO("ep1in-int",
112  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
113  	EP_INFO("ep2in-bulk",
114  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
115  	EP_INFO("ep3in-bulk",
116  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
117  	EP_INFO("ep4in-bulk",
118  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
119  	EP_INFO("ep5in-bulk",
120  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
121  	EP_INFO("ep6in-bulk",
122  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
123  	EP_INFO("ep7in-bulk",
124  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
125  	EP_INFO("ep8in-bulk",
126  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
127  	EP_INFO("ep9in-bulk",
128  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
129  	EP_INFO("ep10in-bulk",
130  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
131  	EP_INFO("ep11in-bulk",
132  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
133  	EP_INFO("ep12in-bulk",
134  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
135  	EP_INFO("ep13in-bulk",
136  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
137  	EP_INFO("ep14in-bulk",
138  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
139  	EP_INFO("ep15in-bulk",
140  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
141  	EP_INFO("ep0out",
142  		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
143  	EP_INFO("ep1out-bulk",
144  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
145  	EP_INFO("ep2out-bulk",
146  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
147  	EP_INFO("ep3out-bulk",
148  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
149  	EP_INFO("ep4out-bulk",
150  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
151  	EP_INFO("ep5out-bulk",
152  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
153  	EP_INFO("ep6out-bulk",
154  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
155  	EP_INFO("ep7out-bulk",
156  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
157  	EP_INFO("ep8out-bulk",
158  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
159  	EP_INFO("ep9out-bulk",
160  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
161  	EP_INFO("ep10out-bulk",
162  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
163  	EP_INFO("ep11out-bulk",
164  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
165  	EP_INFO("ep12out-bulk",
166  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
167  	EP_INFO("ep13out-bulk",
168  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
169  	EP_INFO("ep14out-bulk",
170  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
171  	EP_INFO("ep15out-bulk",
172  		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
173  
174  #undef EP_INFO
175  };
176  
177  /* buffer fill mode */
178  static int use_dma_bufferfill_mode;
179  /* tx buffer size for high speed */
180  static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
181  
182  /*---------------------------------------------------------------------------*/
183  /* Prints UDC device registers and endpoint irq registers */
print_regs(struct udc * dev)184  static void print_regs(struct udc *dev)
185  {
186  	DBG(dev, "------- Device registers -------\n");
187  	DBG(dev, "dev config     = %08x\n", readl(&dev->regs->cfg));
188  	DBG(dev, "dev control    = %08x\n", readl(&dev->regs->ctl));
189  	DBG(dev, "dev status     = %08x\n", readl(&dev->regs->sts));
190  	DBG(dev, "\n");
191  	DBG(dev, "dev int's      = %08x\n", readl(&dev->regs->irqsts));
192  	DBG(dev, "dev intmask    = %08x\n", readl(&dev->regs->irqmsk));
193  	DBG(dev, "\n");
194  	DBG(dev, "dev ep int's   = %08x\n", readl(&dev->regs->ep_irqsts));
195  	DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
196  	DBG(dev, "\n");
197  	DBG(dev, "USE DMA        = %d\n", use_dma);
198  	if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
199  		DBG(dev, "DMA mode       = PPBNDU (packet per buffer "
200  			"WITHOUT desc. update)\n");
201  		dev_info(dev->dev, "DMA mode (%s)\n", "PPBNDU");
202  	} else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
203  		DBG(dev, "DMA mode       = PPBDU (packet per buffer "
204  			"WITH desc. update)\n");
205  		dev_info(dev->dev, "DMA mode (%s)\n", "PPBDU");
206  	}
207  	if (use_dma && use_dma_bufferfill_mode) {
208  		DBG(dev, "DMA mode       = BF (buffer fill mode)\n");
209  		dev_info(dev->dev, "DMA mode (%s)\n", "BF");
210  	}
211  	if (!use_dma)
212  		dev_info(dev->dev, "FIFO mode\n");
213  	DBG(dev, "-------------------------------------------------------\n");
214  }
215  
216  /* Masks unused interrupts */
udc_mask_unused_interrupts(struct udc * dev)217  int udc_mask_unused_interrupts(struct udc *dev)
218  {
219  	u32 tmp;
220  
221  	/* mask all dev interrupts */
222  	tmp =	AMD_BIT(UDC_DEVINT_SVC) |
223  		AMD_BIT(UDC_DEVINT_ENUM) |
224  		AMD_BIT(UDC_DEVINT_US) |
225  		AMD_BIT(UDC_DEVINT_UR) |
226  		AMD_BIT(UDC_DEVINT_ES) |
227  		AMD_BIT(UDC_DEVINT_SI) |
228  		AMD_BIT(UDC_DEVINT_SOF)|
229  		AMD_BIT(UDC_DEVINT_SC);
230  	writel(tmp, &dev->regs->irqmsk);
231  
232  	/* mask all ep interrupts */
233  	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
234  
235  	return 0;
236  }
237  EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts);
238  
239  /* Enables endpoint 0 interrupts */
udc_enable_ep0_interrupts(struct udc * dev)240  static int udc_enable_ep0_interrupts(struct udc *dev)
241  {
242  	u32 tmp;
243  
244  	DBG(dev, "udc_enable_ep0_interrupts()\n");
245  
246  	/* read irq mask */
247  	tmp = readl(&dev->regs->ep_irqmsk);
248  	/* enable ep0 irq's */
249  	tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
250  		& AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
251  	writel(tmp, &dev->regs->ep_irqmsk);
252  
253  	return 0;
254  }
255  
256  /* Enables device interrupts for SET_INTF and SET_CONFIG */
udc_enable_dev_setup_interrupts(struct udc * dev)257  int udc_enable_dev_setup_interrupts(struct udc *dev)
258  {
259  	u32 tmp;
260  
261  	DBG(dev, "enable device interrupts for setup data\n");
262  
263  	/* read irq mask */
264  	tmp = readl(&dev->regs->irqmsk);
265  
266  	/* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
267  	tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
268  		& AMD_UNMASK_BIT(UDC_DEVINT_SC)
269  		& AMD_UNMASK_BIT(UDC_DEVINT_UR)
270  		& AMD_UNMASK_BIT(UDC_DEVINT_SVC)
271  		& AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
272  	writel(tmp, &dev->regs->irqmsk);
273  
274  	return 0;
275  }
276  EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts);
277  
278  /* Calculates fifo start of endpoint based on preceding endpoints */
udc_set_txfifo_addr(struct udc_ep * ep)279  static int udc_set_txfifo_addr(struct udc_ep *ep)
280  {
281  	struct udc	*dev;
282  	u32 tmp;
283  	int i;
284  
285  	if (!ep || !(ep->in))
286  		return -EINVAL;
287  
288  	dev = ep->dev;
289  	ep->txfifo = dev->txfifo;
290  
291  	/* traverse ep's */
292  	for (i = 0; i < ep->num; i++) {
293  		if (dev->ep[i].regs) {
294  			/* read fifo size */
295  			tmp = readl(&dev->ep[i].regs->bufin_framenum);
296  			tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
297  			ep->txfifo += tmp;
298  		}
299  	}
300  	return 0;
301  }
302  
303  /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
304  static u32 cnak_pending;
305  
UDC_QUEUE_CNAK(struct udc_ep * ep,unsigned num)306  static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
307  {
308  	if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
309  		DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
310  		cnak_pending |= 1 << (num);
311  		ep->naking = 1;
312  	} else
313  		cnak_pending = cnak_pending & (~(1 << (num)));
314  }
315  
316  
317  /* Enables endpoint, is called by gadget driver */
318  static int
udc_ep_enable(struct usb_ep * usbep,const struct usb_endpoint_descriptor * desc)319  udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
320  {
321  	struct udc_ep		*ep;
322  	struct udc		*dev;
323  	u32			tmp;
324  	unsigned long		iflags;
325  	u8 udc_csr_epix;
326  	unsigned		maxpacket;
327  
328  	if (!usbep
329  			|| usbep->name == ep0_string
330  			|| !desc
331  			|| desc->bDescriptorType != USB_DT_ENDPOINT)
332  		return -EINVAL;
333  
334  	ep = container_of(usbep, struct udc_ep, ep);
335  	dev = ep->dev;
336  
337  	DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
338  
339  	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
340  		return -ESHUTDOWN;
341  
342  	spin_lock_irqsave(&dev->lock, iflags);
343  	ep->ep.desc = desc;
344  
345  	ep->halted = 0;
346  
347  	/* set traffic type */
348  	tmp = readl(&dev->ep[ep->num].regs->ctl);
349  	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
350  	writel(tmp, &dev->ep[ep->num].regs->ctl);
351  
352  	/* set max packet size */
353  	maxpacket = usb_endpoint_maxp(desc);
354  	tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
355  	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
356  	ep->ep.maxpacket = maxpacket;
357  	writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
358  
359  	/* IN ep */
360  	if (ep->in) {
361  
362  		/* ep ix in UDC CSR register space */
363  		udc_csr_epix = ep->num;
364  
365  		/* set buffer size (tx fifo entries) */
366  		tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
367  		/* double buffering: fifo size = 2 x max packet size */
368  		tmp = AMD_ADDBITS(
369  				tmp,
370  				maxpacket * UDC_EPIN_BUFF_SIZE_MULT
371  					  / UDC_DWORD_BYTES,
372  				UDC_EPIN_BUFF_SIZE);
373  		writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
374  
375  		/* calc. tx fifo base addr */
376  		udc_set_txfifo_addr(ep);
377  
378  		/* flush fifo */
379  		tmp = readl(&ep->regs->ctl);
380  		tmp |= AMD_BIT(UDC_EPCTL_F);
381  		writel(tmp, &ep->regs->ctl);
382  
383  	/* OUT ep */
384  	} else {
385  		/* ep ix in UDC CSR register space */
386  		udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
387  
388  		/* set max packet size UDC CSR	*/
389  		tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
390  		tmp = AMD_ADDBITS(tmp, maxpacket,
391  					UDC_CSR_NE_MAX_PKT);
392  		writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
393  
394  		if (use_dma && !ep->in) {
395  			/* alloc and init BNA dummy request */
396  			ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
397  			ep->bna_occurred = 0;
398  		}
399  
400  		if (ep->num != UDC_EP0OUT_IX)
401  			dev->data_ep_enabled = 1;
402  	}
403  
404  	/* set ep values */
405  	tmp = readl(&dev->csr->ne[udc_csr_epix]);
406  	/* max packet */
407  	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
408  	/* ep number */
409  	tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
410  	/* ep direction */
411  	tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
412  	/* ep type */
413  	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
414  	/* ep config */
415  	tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
416  	/* ep interface */
417  	tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
418  	/* ep alt */
419  	tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
420  	/* write reg */
421  	writel(tmp, &dev->csr->ne[udc_csr_epix]);
422  
423  	/* enable ep irq */
424  	tmp = readl(&dev->regs->ep_irqmsk);
425  	tmp &= AMD_UNMASK_BIT(ep->num);
426  	writel(tmp, &dev->regs->ep_irqmsk);
427  
428  	/*
429  	 * clear NAK by writing CNAK
430  	 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
431  	 */
432  	if (!use_dma || ep->in) {
433  		tmp = readl(&ep->regs->ctl);
434  		tmp |= AMD_BIT(UDC_EPCTL_CNAK);
435  		writel(tmp, &ep->regs->ctl);
436  		ep->naking = 0;
437  		UDC_QUEUE_CNAK(ep, ep->num);
438  	}
439  	tmp = desc->bEndpointAddress;
440  	DBG(dev, "%s enabled\n", usbep->name);
441  
442  	spin_unlock_irqrestore(&dev->lock, iflags);
443  	return 0;
444  }
445  
446  /* Resets endpoint */
ep_init(struct udc_regs __iomem * regs,struct udc_ep * ep)447  static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
448  {
449  	u32		tmp;
450  
451  	VDBG(ep->dev, "ep-%d reset\n", ep->num);
452  	ep->ep.desc = NULL;
453  	ep->ep.ops = &udc_ep_ops;
454  	INIT_LIST_HEAD(&ep->queue);
455  
456  	usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
457  	/* set NAK */
458  	tmp = readl(&ep->regs->ctl);
459  	tmp |= AMD_BIT(UDC_EPCTL_SNAK);
460  	writel(tmp, &ep->regs->ctl);
461  	ep->naking = 1;
462  
463  	/* disable interrupt */
464  	tmp = readl(&regs->ep_irqmsk);
465  	tmp |= AMD_BIT(ep->num);
466  	writel(tmp, &regs->ep_irqmsk);
467  
468  	if (ep->in) {
469  		/* unset P and IN bit of potential former DMA */
470  		tmp = readl(&ep->regs->ctl);
471  		tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
472  		writel(tmp, &ep->regs->ctl);
473  
474  		tmp = readl(&ep->regs->sts);
475  		tmp |= AMD_BIT(UDC_EPSTS_IN);
476  		writel(tmp, &ep->regs->sts);
477  
478  		/* flush the fifo */
479  		tmp = readl(&ep->regs->ctl);
480  		tmp |= AMD_BIT(UDC_EPCTL_F);
481  		writel(tmp, &ep->regs->ctl);
482  
483  	}
484  	/* reset desc pointer */
485  	writel(0, &ep->regs->desptr);
486  }
487  
488  /* Disables endpoint, is called by gadget driver */
udc_ep_disable(struct usb_ep * usbep)489  static int udc_ep_disable(struct usb_ep *usbep)
490  {
491  	struct udc_ep	*ep = NULL;
492  	unsigned long	iflags;
493  
494  	if (!usbep)
495  		return -EINVAL;
496  
497  	ep = container_of(usbep, struct udc_ep, ep);
498  	if (usbep->name == ep0_string || !ep->ep.desc)
499  		return -EINVAL;
500  
501  	DBG(ep->dev, "Disable ep-%d\n", ep->num);
502  
503  	spin_lock_irqsave(&ep->dev->lock, iflags);
504  	udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
505  	empty_req_queue(ep);
506  	ep_init(ep->dev->regs, ep);
507  	spin_unlock_irqrestore(&ep->dev->lock, iflags);
508  
509  	return 0;
510  }
511  
512  /* Allocates request packet, called by gadget driver */
513  static struct usb_request *
udc_alloc_request(struct usb_ep * usbep,gfp_t gfp)514  udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
515  {
516  	struct udc_request	*req;
517  	struct udc_data_dma	*dma_desc;
518  	struct udc_ep	*ep;
519  
520  	if (!usbep)
521  		return NULL;
522  
523  	ep = container_of(usbep, struct udc_ep, ep);
524  
525  	VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
526  	req = kzalloc(sizeof(struct udc_request), gfp);
527  	if (!req)
528  		return NULL;
529  
530  	req->req.dma = DMA_DONT_USE;
531  	INIT_LIST_HEAD(&req->queue);
532  
533  	if (ep->dma) {
534  		/* ep0 in requests are allocated from data pool here */
535  		dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
536  						&req->td_phys);
537  		if (!dma_desc) {
538  			kfree(req);
539  			return NULL;
540  		}
541  
542  		VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
543  				"td_phys = %lx\n",
544  				req, dma_desc,
545  				(unsigned long)req->td_phys);
546  		/* prevent from using desc. - set HOST BUSY */
547  		dma_desc->status = AMD_ADDBITS(dma_desc->status,
548  						UDC_DMA_STP_STS_BS_HOST_BUSY,
549  						UDC_DMA_STP_STS_BS);
550  		dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
551  		req->td_data = dma_desc;
552  		req->td_data_last = NULL;
553  		req->chain_len = 1;
554  	}
555  
556  	return &req->req;
557  }
558  
559  /* frees pci pool descriptors of a DMA chain */
udc_free_dma_chain(struct udc * dev,struct udc_request * req)560  static void udc_free_dma_chain(struct udc *dev, struct udc_request *req)
561  {
562  	struct udc_data_dma *td = req->td_data;
563  	unsigned int i;
564  
565  	dma_addr_t addr_next = 0x00;
566  	dma_addr_t addr = (dma_addr_t)td->next;
567  
568  	DBG(dev, "free chain req = %p\n", req);
569  
570  	/* do not free first desc., will be done by free for request */
571  	for (i = 1; i < req->chain_len; i++) {
572  		td = phys_to_virt(addr);
573  		addr_next = (dma_addr_t)td->next;
574  		dma_pool_free(dev->data_requests, td, addr);
575  		addr = addr_next;
576  	}
577  }
578  
579  /* Frees request packet, called by gadget driver */
580  static void
udc_free_request(struct usb_ep * usbep,struct usb_request * usbreq)581  udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
582  {
583  	struct udc_ep	*ep;
584  	struct udc_request	*req;
585  
586  	if (!usbep || !usbreq)
587  		return;
588  
589  	ep = container_of(usbep, struct udc_ep, ep);
590  	req = container_of(usbreq, struct udc_request, req);
591  	VDBG(ep->dev, "free_req req=%p\n", req);
592  	BUG_ON(!list_empty(&req->queue));
593  	if (req->td_data) {
594  		VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
595  
596  		/* free dma chain if created */
597  		if (req->chain_len > 1)
598  			udc_free_dma_chain(ep->dev, req);
599  
600  		dma_pool_free(ep->dev->data_requests, req->td_data,
601  							req->td_phys);
602  	}
603  	kfree(req);
604  }
605  
606  /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
udc_init_bna_dummy(struct udc_request * req)607  static void udc_init_bna_dummy(struct udc_request *req)
608  {
609  	if (req) {
610  		/* set last bit */
611  		req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
612  		/* set next pointer to itself */
613  		req->td_data->next = req->td_phys;
614  		/* set HOST BUSY */
615  		req->td_data->status
616  			= AMD_ADDBITS(req->td_data->status,
617  					UDC_DMA_STP_STS_BS_DMA_DONE,
618  					UDC_DMA_STP_STS_BS);
619  #ifdef UDC_VERBOSE
620  		pr_debug("bna desc = %p, sts = %08x\n",
621  			req->td_data, req->td_data->status);
622  #endif
623  	}
624  }
625  
626  /* Allocate BNA dummy descriptor */
udc_alloc_bna_dummy(struct udc_ep * ep)627  static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
628  {
629  	struct udc_request *req = NULL;
630  	struct usb_request *_req = NULL;
631  
632  	/* alloc the dummy request */
633  	_req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
634  	if (_req) {
635  		req = container_of(_req, struct udc_request, req);
636  		ep->bna_dummy_req = req;
637  		udc_init_bna_dummy(req);
638  	}
639  	return req;
640  }
641  
642  /* Write data to TX fifo for IN packets */
643  static void
udc_txfifo_write(struct udc_ep * ep,struct usb_request * req)644  udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
645  {
646  	u8			*req_buf;
647  	u32			*buf;
648  	int			i, j;
649  	unsigned		bytes = 0;
650  	unsigned		remaining = 0;
651  
652  	if (!req || !ep)
653  		return;
654  
655  	req_buf = req->buf + req->actual;
656  	prefetch(req_buf);
657  	remaining = req->length - req->actual;
658  
659  	buf = (u32 *) req_buf;
660  
661  	bytes = ep->ep.maxpacket;
662  	if (bytes > remaining)
663  		bytes = remaining;
664  
665  	/* dwords first */
666  	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
667  		writel(*(buf + i), ep->txfifo);
668  
669  	/* remaining bytes must be written by byte access */
670  	for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
671  		writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
672  							ep->txfifo);
673  	}
674  
675  	/* dummy write confirm */
676  	writel(0, &ep->regs->confirm);
677  }
678  
679  /* Read dwords from RX fifo for OUT transfers */
udc_rxfifo_read_dwords(struct udc * dev,u32 * buf,int dwords)680  static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
681  {
682  	int i;
683  
684  	VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
685  
686  	for (i = 0; i < dwords; i++)
687  		*(buf + i) = readl(dev->rxfifo);
688  	return 0;
689  }
690  
691  /* Read bytes from RX fifo for OUT transfers */
udc_rxfifo_read_bytes(struct udc * dev,u8 * buf,int bytes)692  static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
693  {
694  	int i, j;
695  	u32 tmp;
696  
697  	VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
698  
699  	/* dwords first */
700  	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
701  		*((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
702  
703  	/* remaining bytes must be read by byte access */
704  	if (bytes % UDC_DWORD_BYTES) {
705  		tmp = readl(dev->rxfifo);
706  		for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
707  			*(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
708  			tmp = tmp >> UDC_BITS_PER_BYTE;
709  		}
710  	}
711  
712  	return 0;
713  }
714  
715  /* Read data from RX fifo for OUT transfers */
716  static int
udc_rxfifo_read(struct udc_ep * ep,struct udc_request * req)717  udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
718  {
719  	u8 *buf;
720  	unsigned buf_space;
721  	unsigned bytes = 0;
722  	unsigned finished = 0;
723  
724  	/* received number bytes */
725  	bytes = readl(&ep->regs->sts);
726  	bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
727  
728  	buf_space = req->req.length - req->req.actual;
729  	buf = req->req.buf + req->req.actual;
730  	if (bytes > buf_space) {
731  		if ((buf_space % ep->ep.maxpacket) != 0) {
732  			DBG(ep->dev,
733  				"%s: rx %d bytes, rx-buf space = %d bytesn\n",
734  				ep->ep.name, bytes, buf_space);
735  			req->req.status = -EOVERFLOW;
736  		}
737  		bytes = buf_space;
738  	}
739  	req->req.actual += bytes;
740  
741  	/* last packet ? */
742  	if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
743  		|| ((req->req.actual == req->req.length) && !req->req.zero))
744  		finished = 1;
745  
746  	/* read rx fifo bytes */
747  	VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
748  	udc_rxfifo_read_bytes(ep->dev, buf, bytes);
749  
750  	return finished;
751  }
752  
753  /* Creates or re-inits a DMA chain */
udc_create_dma_chain(struct udc_ep * ep,struct udc_request * req,unsigned long buf_len,gfp_t gfp_flags)754  static int udc_create_dma_chain(
755  	struct udc_ep *ep,
756  	struct udc_request *req,
757  	unsigned long buf_len, gfp_t gfp_flags
758  )
759  {
760  	unsigned long bytes = req->req.length;
761  	unsigned int i;
762  	dma_addr_t dma_addr;
763  	struct udc_data_dma	*td = NULL;
764  	struct udc_data_dma	*last = NULL;
765  	unsigned long txbytes;
766  	unsigned create_new_chain = 0;
767  	unsigned len;
768  
769  	VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
770  	     bytes, buf_len);
771  	dma_addr = DMA_DONT_USE;
772  
773  	/* unset L bit in first desc for OUT */
774  	if (!ep->in)
775  		req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
776  
777  	/* alloc only new desc's if not already available */
778  	len = req->req.length / ep->ep.maxpacket;
779  	if (req->req.length % ep->ep.maxpacket)
780  		len++;
781  
782  	if (len > req->chain_len) {
783  		/* shorter chain already allocated before */
784  		if (req->chain_len > 1)
785  			udc_free_dma_chain(ep->dev, req);
786  		req->chain_len = len;
787  		create_new_chain = 1;
788  	}
789  
790  	td = req->td_data;
791  	/* gen. required number of descriptors and buffers */
792  	for (i = buf_len; i < bytes; i += buf_len) {
793  		/* create or determine next desc. */
794  		if (create_new_chain) {
795  			td = dma_pool_alloc(ep->dev->data_requests,
796  					    gfp_flags, &dma_addr);
797  			if (!td)
798  				return -ENOMEM;
799  
800  			td->status = 0;
801  		} else if (i == buf_len) {
802  			/* first td */
803  			td = (struct udc_data_dma *)phys_to_virt(
804  						req->td_data->next);
805  			td->status = 0;
806  		} else {
807  			td = (struct udc_data_dma *)phys_to_virt(last->next);
808  			td->status = 0;
809  		}
810  
811  		if (td)
812  			td->bufptr = req->req.dma + i; /* assign buffer */
813  		else
814  			break;
815  
816  		/* short packet ? */
817  		if ((bytes - i) >= buf_len) {
818  			txbytes = buf_len;
819  		} else {
820  			/* short packet */
821  			txbytes = bytes - i;
822  		}
823  
824  		/* link td and assign tx bytes */
825  		if (i == buf_len) {
826  			if (create_new_chain)
827  				req->td_data->next = dma_addr;
828  			/*
829  			 * else
830  			 *	req->td_data->next = virt_to_phys(td);
831  			 */
832  			/* write tx bytes */
833  			if (ep->in) {
834  				/* first desc */
835  				req->td_data->status =
836  					AMD_ADDBITS(req->td_data->status,
837  						    ep->ep.maxpacket,
838  						    UDC_DMA_IN_STS_TXBYTES);
839  				/* second desc */
840  				td->status = AMD_ADDBITS(td->status,
841  							txbytes,
842  							UDC_DMA_IN_STS_TXBYTES);
843  			}
844  		} else {
845  			if (create_new_chain)
846  				last->next = dma_addr;
847  			/*
848  			 * else
849  			 *	last->next = virt_to_phys(td);
850  			 */
851  			if (ep->in) {
852  				/* write tx bytes */
853  				td->status = AMD_ADDBITS(td->status,
854  							txbytes,
855  							UDC_DMA_IN_STS_TXBYTES);
856  			}
857  		}
858  		last = td;
859  	}
860  	/* set last bit */
861  	if (td) {
862  		td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
863  		/* last desc. points to itself */
864  		req->td_data_last = td;
865  	}
866  
867  	return 0;
868  }
869  
870  /* create/re-init a DMA descriptor or a DMA descriptor chain */
prep_dma(struct udc_ep * ep,struct udc_request * req,gfp_t gfp)871  static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
872  {
873  	int	retval = 0;
874  	u32	tmp;
875  
876  	VDBG(ep->dev, "prep_dma\n");
877  	VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
878  			ep->num, req->td_data);
879  
880  	/* set buffer pointer */
881  	req->td_data->bufptr = req->req.dma;
882  
883  	/* set last bit */
884  	req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
885  
886  	/* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
887  	if (use_dma_ppb) {
888  
889  		retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
890  		if (retval != 0) {
891  			if (retval == -ENOMEM)
892  				DBG(ep->dev, "Out of DMA memory\n");
893  			return retval;
894  		}
895  		if (ep->in) {
896  			if (req->req.length == ep->ep.maxpacket) {
897  				/* write tx bytes */
898  				req->td_data->status =
899  					AMD_ADDBITS(req->td_data->status,
900  						ep->ep.maxpacket,
901  						UDC_DMA_IN_STS_TXBYTES);
902  
903  			}
904  		}
905  
906  	}
907  
908  	if (ep->in) {
909  		VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
910  				"maxpacket=%d ep%d\n",
911  				use_dma_ppb, req->req.length,
912  				ep->ep.maxpacket, ep->num);
913  		/*
914  		 * if bytes < max packet then tx bytes must
915  		 * be written in packet per buffer mode
916  		 */
917  		if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
918  				|| ep->num == UDC_EP0OUT_IX
919  				|| ep->num == UDC_EP0IN_IX) {
920  			/* write tx bytes */
921  			req->td_data->status =
922  				AMD_ADDBITS(req->td_data->status,
923  						req->req.length,
924  						UDC_DMA_IN_STS_TXBYTES);
925  			/* reset frame num */
926  			req->td_data->status =
927  				AMD_ADDBITS(req->td_data->status,
928  						0,
929  						UDC_DMA_IN_STS_FRAMENUM);
930  		}
931  		/* set HOST BUSY */
932  		req->td_data->status =
933  			AMD_ADDBITS(req->td_data->status,
934  				UDC_DMA_STP_STS_BS_HOST_BUSY,
935  				UDC_DMA_STP_STS_BS);
936  	} else {
937  		VDBG(ep->dev, "OUT set host ready\n");
938  		/* set HOST READY */
939  		req->td_data->status =
940  			AMD_ADDBITS(req->td_data->status,
941  				UDC_DMA_STP_STS_BS_HOST_READY,
942  				UDC_DMA_STP_STS_BS);
943  
944  		/* clear NAK by writing CNAK */
945  		if (ep->naking) {
946  			tmp = readl(&ep->regs->ctl);
947  			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
948  			writel(tmp, &ep->regs->ctl);
949  			ep->naking = 0;
950  			UDC_QUEUE_CNAK(ep, ep->num);
951  		}
952  
953  	}
954  
955  	return retval;
956  }
957  
958  /* Completes request packet ... caller MUST hold lock */
959  static void
complete_req(struct udc_ep * ep,struct udc_request * req,int sts)960  complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
961  __releases(ep->dev->lock)
962  __acquires(ep->dev->lock)
963  {
964  	struct udc		*dev;
965  	unsigned		halted;
966  
967  	VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
968  
969  	dev = ep->dev;
970  	/* unmap DMA */
971  	if (ep->dma)
972  		usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
973  
974  	halted = ep->halted;
975  	ep->halted = 1;
976  
977  	/* set new status if pending */
978  	if (req->req.status == -EINPROGRESS)
979  		req->req.status = sts;
980  
981  	/* remove from ep queue */
982  	list_del_init(&req->queue);
983  
984  	VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
985  		&req->req, req->req.length, ep->ep.name, sts);
986  
987  	spin_unlock(&dev->lock);
988  	usb_gadget_giveback_request(&ep->ep, &req->req);
989  	spin_lock(&dev->lock);
990  	ep->halted = halted;
991  }
992  
993  /* Iterates to the end of a DMA chain and returns last descriptor */
udc_get_last_dma_desc(struct udc_request * req)994  static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
995  {
996  	struct udc_data_dma	*td;
997  
998  	td = req->td_data;
999  	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
1000  		td = phys_to_virt(td->next);
1001  
1002  	return td;
1003  
1004  }
1005  
1006  /* Iterates to the end of a DMA chain and counts bytes received */
udc_get_ppbdu_rxbytes(struct udc_request * req)1007  static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
1008  {
1009  	struct udc_data_dma	*td;
1010  	u32 count;
1011  
1012  	td = req->td_data;
1013  	/* received number bytes */
1014  	count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
1015  
1016  	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
1017  		td = phys_to_virt(td->next);
1018  		/* received number bytes */
1019  		if (td) {
1020  			count += AMD_GETBITS(td->status,
1021  				UDC_DMA_OUT_STS_RXBYTES);
1022  		}
1023  	}
1024  
1025  	return count;
1026  
1027  }
1028  
1029  /* Enabling RX DMA */
udc_set_rde(struct udc * dev)1030  static void udc_set_rde(struct udc *dev)
1031  {
1032  	u32 tmp;
1033  
1034  	VDBG(dev, "udc_set_rde()\n");
1035  	/* stop RDE timer */
1036  	if (timer_pending(&udc_timer)) {
1037  		set_rde = 0;
1038  		mod_timer(&udc_timer, jiffies - 1);
1039  	}
1040  	/* set RDE */
1041  	tmp = readl(&dev->regs->ctl);
1042  	tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1043  	writel(tmp, &dev->regs->ctl);
1044  }
1045  
1046  /* Queues a request packet, called by gadget driver */
1047  static int
udc_queue(struct usb_ep * usbep,struct usb_request * usbreq,gfp_t gfp)1048  udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1049  {
1050  	int			retval = 0;
1051  	u8			open_rxfifo = 0;
1052  	unsigned long		iflags;
1053  	struct udc_ep		*ep;
1054  	struct udc_request	*req;
1055  	struct udc		*dev;
1056  	u32			tmp;
1057  
1058  	/* check the inputs */
1059  	req = container_of(usbreq, struct udc_request, req);
1060  
1061  	if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1062  			|| !list_empty(&req->queue))
1063  		return -EINVAL;
1064  
1065  	ep = container_of(usbep, struct udc_ep, ep);
1066  	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1067  		return -EINVAL;
1068  
1069  	VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1070  	dev = ep->dev;
1071  
1072  	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1073  		return -ESHUTDOWN;
1074  
1075  	/* map dma (usually done before) */
1076  	if (ep->dma) {
1077  		VDBG(dev, "DMA map req %p\n", req);
1078  		retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1079  		if (retval)
1080  			return retval;
1081  	}
1082  
1083  	VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1084  			usbep->name, usbreq, usbreq->length,
1085  			req->td_data, usbreq->buf);
1086  
1087  	spin_lock_irqsave(&dev->lock, iflags);
1088  	usbreq->actual = 0;
1089  	usbreq->status = -EINPROGRESS;
1090  	req->dma_done = 0;
1091  
1092  	/* on empty queue just do first transfer */
1093  	if (list_empty(&ep->queue)) {
1094  		/* zlp */
1095  		if (usbreq->length == 0) {
1096  			/* IN zlp's are handled by hardware */
1097  			complete_req(ep, req, 0);
1098  			VDBG(dev, "%s: zlp\n", ep->ep.name);
1099  			/*
1100  			 * if set_config or set_intf is waiting for ack by zlp
1101  			 * then set CSR_DONE
1102  			 */
1103  			if (dev->set_cfg_not_acked) {
1104  				tmp = readl(&dev->regs->ctl);
1105  				tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1106  				writel(tmp, &dev->regs->ctl);
1107  				dev->set_cfg_not_acked = 0;
1108  			}
1109  			/* setup command is ACK'ed now by zlp */
1110  			if (dev->waiting_zlp_ack_ep0in) {
1111  				/* clear NAK by writing CNAK in EP0_IN */
1112  				tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1113  				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1114  				writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1115  				dev->ep[UDC_EP0IN_IX].naking = 0;
1116  				UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1117  							UDC_EP0IN_IX);
1118  				dev->waiting_zlp_ack_ep0in = 0;
1119  			}
1120  			goto finished;
1121  		}
1122  		if (ep->dma) {
1123  			retval = prep_dma(ep, req, GFP_ATOMIC);
1124  			if (retval != 0)
1125  				goto finished;
1126  			/* write desc pointer to enable DMA */
1127  			if (ep->in) {
1128  				/* set HOST READY */
1129  				req->td_data->status =
1130  					AMD_ADDBITS(req->td_data->status,
1131  						UDC_DMA_IN_STS_BS_HOST_READY,
1132  						UDC_DMA_IN_STS_BS);
1133  			}
1134  
1135  			/* disabled rx dma while descriptor update */
1136  			if (!ep->in) {
1137  				/* stop RDE timer */
1138  				if (timer_pending(&udc_timer)) {
1139  					set_rde = 0;
1140  					mod_timer(&udc_timer, jiffies - 1);
1141  				}
1142  				/* clear RDE */
1143  				tmp = readl(&dev->regs->ctl);
1144  				tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1145  				writel(tmp, &dev->regs->ctl);
1146  				open_rxfifo = 1;
1147  
1148  				/*
1149  				 * if BNA occurred then let BNA dummy desc.
1150  				 * point to current desc.
1151  				 */
1152  				if (ep->bna_occurred) {
1153  					VDBG(dev, "copy to BNA dummy desc.\n");
1154  					memcpy(ep->bna_dummy_req->td_data,
1155  						req->td_data,
1156  						sizeof(struct udc_data_dma));
1157  				}
1158  			}
1159  			/* write desc pointer */
1160  			writel(req->td_phys, &ep->regs->desptr);
1161  
1162  			/* clear NAK by writing CNAK */
1163  			if (ep->naking) {
1164  				tmp = readl(&ep->regs->ctl);
1165  				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1166  				writel(tmp, &ep->regs->ctl);
1167  				ep->naking = 0;
1168  				UDC_QUEUE_CNAK(ep, ep->num);
1169  			}
1170  
1171  			if (ep->in) {
1172  				/* enable ep irq */
1173  				tmp = readl(&dev->regs->ep_irqmsk);
1174  				tmp &= AMD_UNMASK_BIT(ep->num);
1175  				writel(tmp, &dev->regs->ep_irqmsk);
1176  			}
1177  		} else if (ep->in) {
1178  				/* enable ep irq */
1179  				tmp = readl(&dev->regs->ep_irqmsk);
1180  				tmp &= AMD_UNMASK_BIT(ep->num);
1181  				writel(tmp, &dev->regs->ep_irqmsk);
1182  			}
1183  
1184  	} else if (ep->dma) {
1185  
1186  		/*
1187  		 * prep_dma not used for OUT ep's, this is not possible
1188  		 * for PPB modes, because of chain creation reasons
1189  		 */
1190  		if (ep->in) {
1191  			retval = prep_dma(ep, req, GFP_ATOMIC);
1192  			if (retval != 0)
1193  				goto finished;
1194  		}
1195  	}
1196  	VDBG(dev, "list_add\n");
1197  	/* add request to ep queue */
1198  	if (req) {
1199  
1200  		list_add_tail(&req->queue, &ep->queue);
1201  
1202  		/* open rxfifo if out data queued */
1203  		if (open_rxfifo) {
1204  			/* enable DMA */
1205  			req->dma_going = 1;
1206  			udc_set_rde(dev);
1207  			if (ep->num != UDC_EP0OUT_IX)
1208  				dev->data_ep_queued = 1;
1209  		}
1210  		/* stop OUT naking */
1211  		if (!ep->in) {
1212  			if (!use_dma && udc_rxfifo_pending) {
1213  				DBG(dev, "udc_queue(): pending bytes in "
1214  					"rxfifo after nyet\n");
1215  				/*
1216  				 * read pending bytes afer nyet:
1217  				 * referring to isr
1218  				 */
1219  				if (udc_rxfifo_read(ep, req)) {
1220  					/* finish */
1221  					complete_req(ep, req, 0);
1222  				}
1223  				udc_rxfifo_pending = 0;
1224  
1225  			}
1226  		}
1227  	}
1228  
1229  finished:
1230  	spin_unlock_irqrestore(&dev->lock, iflags);
1231  	return retval;
1232  }
1233  
1234  /* Empty request queue of an endpoint; caller holds spinlock */
empty_req_queue(struct udc_ep * ep)1235  void empty_req_queue(struct udc_ep *ep)
1236  {
1237  	struct udc_request	*req;
1238  
1239  	ep->halted = 1;
1240  	while (!list_empty(&ep->queue)) {
1241  		req = list_entry(ep->queue.next,
1242  			struct udc_request,
1243  			queue);
1244  		complete_req(ep, req, -ESHUTDOWN);
1245  	}
1246  }
1247  EXPORT_SYMBOL_GPL(empty_req_queue);
1248  
1249  /* Dequeues a request packet, called by gadget driver */
udc_dequeue(struct usb_ep * usbep,struct usb_request * usbreq)1250  static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1251  {
1252  	struct udc_ep		*ep;
1253  	struct udc_request	*req;
1254  	unsigned		halted;
1255  	unsigned long		iflags;
1256  
1257  	ep = container_of(usbep, struct udc_ep, ep);
1258  	if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1259  				&& ep->num != UDC_EP0OUT_IX)))
1260  		return -EINVAL;
1261  
1262  	req = container_of(usbreq, struct udc_request, req);
1263  
1264  	spin_lock_irqsave(&ep->dev->lock, iflags);
1265  	halted = ep->halted;
1266  	ep->halted = 1;
1267  	/* request in processing or next one */
1268  	if (ep->queue.next == &req->queue) {
1269  		if (ep->dma && req->dma_going) {
1270  			if (ep->in)
1271  				ep->cancel_transfer = 1;
1272  			else {
1273  				u32 tmp;
1274  				u32 dma_sts;
1275  				/* stop potential receive DMA */
1276  				tmp = readl(&udc->regs->ctl);
1277  				writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1278  							&udc->regs->ctl);
1279  				/*
1280  				 * Cancel transfer later in ISR
1281  				 * if descriptor was touched.
1282  				 */
1283  				dma_sts = AMD_GETBITS(req->td_data->status,
1284  							UDC_DMA_OUT_STS_BS);
1285  				if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1286  					ep->cancel_transfer = 1;
1287  				else {
1288  					udc_init_bna_dummy(ep->req);
1289  					writel(ep->bna_dummy_req->td_phys,
1290  						&ep->regs->desptr);
1291  				}
1292  				writel(tmp, &udc->regs->ctl);
1293  			}
1294  		}
1295  	}
1296  	complete_req(ep, req, -ECONNRESET);
1297  	ep->halted = halted;
1298  
1299  	spin_unlock_irqrestore(&ep->dev->lock, iflags);
1300  	return 0;
1301  }
1302  
1303  /* Halt or clear halt of endpoint */
1304  static int
udc_set_halt(struct usb_ep * usbep,int halt)1305  udc_set_halt(struct usb_ep *usbep, int halt)
1306  {
1307  	struct udc_ep	*ep;
1308  	u32 tmp;
1309  	unsigned long iflags;
1310  	int retval = 0;
1311  
1312  	if (!usbep)
1313  		return -EINVAL;
1314  
1315  	pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1316  
1317  	ep = container_of(usbep, struct udc_ep, ep);
1318  	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1319  		return -EINVAL;
1320  	if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1321  		return -ESHUTDOWN;
1322  
1323  	spin_lock_irqsave(&udc_stall_spinlock, iflags);
1324  	/* halt or clear halt */
1325  	if (halt) {
1326  		if (ep->num == 0)
1327  			ep->dev->stall_ep0in = 1;
1328  		else {
1329  			/*
1330  			 * set STALL
1331  			 * rxfifo empty not taken into acount
1332  			 */
1333  			tmp = readl(&ep->regs->ctl);
1334  			tmp |= AMD_BIT(UDC_EPCTL_S);
1335  			writel(tmp, &ep->regs->ctl);
1336  			ep->halted = 1;
1337  
1338  			/* setup poll timer */
1339  			if (!timer_pending(&udc_pollstall_timer)) {
1340  				udc_pollstall_timer.expires = jiffies +
1341  					HZ * UDC_POLLSTALL_TIMER_USECONDS
1342  					/ (1000 * 1000);
1343  				if (!stop_pollstall_timer) {
1344  					DBG(ep->dev, "start polltimer\n");
1345  					add_timer(&udc_pollstall_timer);
1346  				}
1347  			}
1348  		}
1349  	} else {
1350  		/* ep is halted by set_halt() before */
1351  		if (ep->halted) {
1352  			tmp = readl(&ep->regs->ctl);
1353  			/* clear stall bit */
1354  			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1355  			/* clear NAK by writing CNAK */
1356  			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1357  			writel(tmp, &ep->regs->ctl);
1358  			ep->halted = 0;
1359  			UDC_QUEUE_CNAK(ep, ep->num);
1360  		}
1361  	}
1362  	spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1363  	return retval;
1364  }
1365  
1366  /* gadget interface */
1367  static const struct usb_ep_ops udc_ep_ops = {
1368  	.enable		= udc_ep_enable,
1369  	.disable	= udc_ep_disable,
1370  
1371  	.alloc_request	= udc_alloc_request,
1372  	.free_request	= udc_free_request,
1373  
1374  	.queue		= udc_queue,
1375  	.dequeue	= udc_dequeue,
1376  
1377  	.set_halt	= udc_set_halt,
1378  	/* fifo ops not implemented */
1379  };
1380  
1381  /*-------------------------------------------------------------------------*/
1382  
1383  /* Get frame counter (not implemented) */
udc_get_frame(struct usb_gadget * gadget)1384  static int udc_get_frame(struct usb_gadget *gadget)
1385  {
1386  	return -EOPNOTSUPP;
1387  }
1388  
1389  /* Initiates a remote wakeup */
udc_remote_wakeup(struct udc * dev)1390  static int udc_remote_wakeup(struct udc *dev)
1391  {
1392  	unsigned long flags;
1393  	u32 tmp;
1394  
1395  	DBG(dev, "UDC initiates remote wakeup\n");
1396  
1397  	spin_lock_irqsave(&dev->lock, flags);
1398  
1399  	tmp = readl(&dev->regs->ctl);
1400  	tmp |= AMD_BIT(UDC_DEVCTL_RES);
1401  	writel(tmp, &dev->regs->ctl);
1402  	tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
1403  	writel(tmp, &dev->regs->ctl);
1404  
1405  	spin_unlock_irqrestore(&dev->lock, flags);
1406  	return 0;
1407  }
1408  
1409  /* Remote wakeup gadget interface */
udc_wakeup(struct usb_gadget * gadget)1410  static int udc_wakeup(struct usb_gadget *gadget)
1411  {
1412  	struct udc		*dev;
1413  
1414  	if (!gadget)
1415  		return -EINVAL;
1416  	dev = container_of(gadget, struct udc, gadget);
1417  	udc_remote_wakeup(dev);
1418  
1419  	return 0;
1420  }
1421  
1422  static int amd5536_udc_start(struct usb_gadget *g,
1423  		struct usb_gadget_driver *driver);
1424  static int amd5536_udc_stop(struct usb_gadget *g);
1425  
1426  static const struct usb_gadget_ops udc_ops = {
1427  	.wakeup		= udc_wakeup,
1428  	.get_frame	= udc_get_frame,
1429  	.udc_start	= amd5536_udc_start,
1430  	.udc_stop	= amd5536_udc_stop,
1431  };
1432  
1433  /* Setups endpoint parameters, adds endpoints to linked list */
make_ep_lists(struct udc * dev)1434  static void make_ep_lists(struct udc *dev)
1435  {
1436  	/* make gadget ep lists */
1437  	INIT_LIST_HEAD(&dev->gadget.ep_list);
1438  	list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1439  						&dev->gadget.ep_list);
1440  	list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1441  						&dev->gadget.ep_list);
1442  	list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1443  						&dev->gadget.ep_list);
1444  
1445  	/* fifo config */
1446  	dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1447  	if (dev->gadget.speed == USB_SPEED_FULL)
1448  		dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1449  	else if (dev->gadget.speed == USB_SPEED_HIGH)
1450  		dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1451  	dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1452  }
1453  
1454  /* Inits UDC context */
udc_basic_init(struct udc * dev)1455  void udc_basic_init(struct udc *dev)
1456  {
1457  	u32	tmp;
1458  
1459  	DBG(dev, "udc_basic_init()\n");
1460  
1461  	dev->gadget.speed = USB_SPEED_UNKNOWN;
1462  
1463  	/* stop RDE timer */
1464  	if (timer_pending(&udc_timer)) {
1465  		set_rde = 0;
1466  		mod_timer(&udc_timer, jiffies - 1);
1467  	}
1468  	/* stop poll stall timer */
1469  	if (timer_pending(&udc_pollstall_timer))
1470  		mod_timer(&udc_pollstall_timer, jiffies - 1);
1471  	/* disable DMA */
1472  	tmp = readl(&dev->regs->ctl);
1473  	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1474  	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1475  	writel(tmp, &dev->regs->ctl);
1476  
1477  	/* enable dynamic CSR programming */
1478  	tmp = readl(&dev->regs->cfg);
1479  	tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1480  	/* set self powered */
1481  	tmp |= AMD_BIT(UDC_DEVCFG_SP);
1482  	/* set remote wakeupable */
1483  	tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1484  	writel(tmp, &dev->regs->cfg);
1485  
1486  	make_ep_lists(dev);
1487  
1488  	dev->data_ep_enabled = 0;
1489  	dev->data_ep_queued = 0;
1490  }
1491  EXPORT_SYMBOL_GPL(udc_basic_init);
1492  
1493  /* init registers at driver load time */
startup_registers(struct udc * dev)1494  static int startup_registers(struct udc *dev)
1495  {
1496  	u32 tmp;
1497  
1498  	/* init controller by soft reset */
1499  	udc_soft_reset(dev);
1500  
1501  	/* mask not needed interrupts */
1502  	udc_mask_unused_interrupts(dev);
1503  
1504  	/* put into initial config */
1505  	udc_basic_init(dev);
1506  	/* link up all endpoints */
1507  	udc_setup_endpoints(dev);
1508  
1509  	/* program speed */
1510  	tmp = readl(&dev->regs->cfg);
1511  	if (use_fullspeed)
1512  		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1513  	else
1514  		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1515  	writel(tmp, &dev->regs->cfg);
1516  
1517  	return 0;
1518  }
1519  
1520  /* Sets initial endpoint parameters */
udc_setup_endpoints(struct udc * dev)1521  static void udc_setup_endpoints(struct udc *dev)
1522  {
1523  	struct udc_ep	*ep;
1524  	u32	tmp;
1525  	u32	reg;
1526  
1527  	DBG(dev, "udc_setup_endpoints()\n");
1528  
1529  	/* read enum speed */
1530  	tmp = readl(&dev->regs->sts);
1531  	tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1532  	if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1533  		dev->gadget.speed = USB_SPEED_HIGH;
1534  	else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1535  		dev->gadget.speed = USB_SPEED_FULL;
1536  
1537  	/* set basic ep parameters */
1538  	for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1539  		ep = &dev->ep[tmp];
1540  		ep->dev = dev;
1541  		ep->ep.name = ep_info[tmp].name;
1542  		ep->ep.caps = ep_info[tmp].caps;
1543  		ep->num = tmp;
1544  		/* txfifo size is calculated at enable time */
1545  		ep->txfifo = dev->txfifo;
1546  
1547  		/* fifo size */
1548  		if (tmp < UDC_EPIN_NUM) {
1549  			ep->fifo_depth = UDC_TXFIFO_SIZE;
1550  			ep->in = 1;
1551  		} else {
1552  			ep->fifo_depth = UDC_RXFIFO_SIZE;
1553  			ep->in = 0;
1554  
1555  		}
1556  		ep->regs = &dev->ep_regs[tmp];
1557  		/*
1558  		 * ep will be reset only if ep was not enabled before to avoid
1559  		 * disabling ep interrupts when ENUM interrupt occurs but ep is
1560  		 * not enabled by gadget driver
1561  		 */
1562  		if (!ep->ep.desc)
1563  			ep_init(dev->regs, ep);
1564  
1565  		if (use_dma) {
1566  			/*
1567  			 * ep->dma is not really used, just to indicate that
1568  			 * DMA is active: remove this
1569  			 * dma regs = dev control regs
1570  			 */
1571  			ep->dma = &dev->regs->ctl;
1572  
1573  			/* nak OUT endpoints until enable - not for ep0 */
1574  			if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1575  						&& tmp > UDC_EPIN_NUM) {
1576  				/* set NAK */
1577  				reg = readl(&dev->ep[tmp].regs->ctl);
1578  				reg |= AMD_BIT(UDC_EPCTL_SNAK);
1579  				writel(reg, &dev->ep[tmp].regs->ctl);
1580  				dev->ep[tmp].naking = 1;
1581  
1582  			}
1583  		}
1584  	}
1585  	/* EP0 max packet */
1586  	if (dev->gadget.speed == USB_SPEED_FULL) {
1587  		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1588  					   UDC_FS_EP0IN_MAX_PKT_SIZE);
1589  		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1590  					   UDC_FS_EP0OUT_MAX_PKT_SIZE);
1591  	} else if (dev->gadget.speed == USB_SPEED_HIGH) {
1592  		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1593  					   UDC_EP0IN_MAX_PKT_SIZE);
1594  		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1595  					   UDC_EP0OUT_MAX_PKT_SIZE);
1596  	}
1597  
1598  	/*
1599  	 * with suspend bug workaround, ep0 params for gadget driver
1600  	 * are set at gadget driver bind() call
1601  	 */
1602  	dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1603  	dev->ep[UDC_EP0IN_IX].halted = 0;
1604  	INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1605  
1606  	/* init cfg/alt/int */
1607  	dev->cur_config = 0;
1608  	dev->cur_intf = 0;
1609  	dev->cur_alt = 0;
1610  }
1611  
1612  /* Bringup after Connect event, initial bringup to be ready for ep0 events */
usb_connect(struct udc * dev)1613  static void usb_connect(struct udc *dev)
1614  {
1615  	/* Return if already connected */
1616  	if (dev->connected)
1617  		return;
1618  
1619  	dev_info(dev->dev, "USB Connect\n");
1620  
1621  	dev->connected = 1;
1622  
1623  	/* put into initial config */
1624  	udc_basic_init(dev);
1625  
1626  	/* enable device setup interrupts */
1627  	udc_enable_dev_setup_interrupts(dev);
1628  }
1629  
1630  /*
1631   * Calls gadget with disconnect event and resets the UDC and makes
1632   * initial bringup to be ready for ep0 events
1633   */
usb_disconnect(struct udc * dev)1634  static void usb_disconnect(struct udc *dev)
1635  {
1636  	u32 tmp;
1637  
1638  	/* Return if already disconnected */
1639  	if (!dev->connected)
1640  		return;
1641  
1642  	dev_info(dev->dev, "USB Disconnect\n");
1643  
1644  	dev->connected = 0;
1645  
1646  	/* mask interrupts */
1647  	udc_mask_unused_interrupts(dev);
1648  
1649  	if (dev->driver) {
1650  		spin_unlock(&dev->lock);
1651  		dev->driver->disconnect(&dev->gadget);
1652  		spin_lock(&dev->lock);
1653  
1654  		/* empty queues */
1655  		for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1656  			empty_req_queue(&dev->ep[tmp]);
1657  	}
1658  
1659  	/* disable ep0 */
1660  	ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
1661  
1662  	if (!soft_reset_occured) {
1663  		/* init controller by soft reset */
1664  		udc_soft_reset(dev);
1665  		soft_reset_occured++;
1666  	}
1667  
1668  	/* re-enable dev interrupts */
1669  	udc_enable_dev_setup_interrupts(dev);
1670  	/* back to full speed ? */
1671  	if (use_fullspeed) {
1672  		tmp = readl(&dev->regs->cfg);
1673  		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1674  		writel(tmp, &dev->regs->cfg);
1675  	}
1676  }
1677  
1678  /* Reset the UDC core */
udc_soft_reset(struct udc * dev)1679  static void udc_soft_reset(struct udc *dev)
1680  {
1681  	unsigned long	flags;
1682  
1683  	DBG(dev, "Soft reset\n");
1684  	/*
1685  	 * reset possible waiting interrupts, because int.
1686  	 * status is lost after soft reset,
1687  	 * ep int. status reset
1688  	 */
1689  	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1690  	/* device int. status reset */
1691  	writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1692  
1693  	/* Don't do this for Broadcom UDC since this is a reserved
1694  	 * bit.
1695  	 */
1696  	if (dev->chiprev != UDC_BCM_REV) {
1697  		spin_lock_irqsave(&udc_irq_spinlock, flags);
1698  		writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1699  		readl(&dev->regs->cfg);
1700  		spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1701  	}
1702  }
1703  
1704  /* RDE timer callback to set RDE bit */
udc_timer_function(struct timer_list * unused)1705  static void udc_timer_function(struct timer_list *unused)
1706  {
1707  	u32 tmp;
1708  
1709  	spin_lock_irq(&udc_irq_spinlock);
1710  
1711  	if (set_rde > 0) {
1712  		/*
1713  		 * open the fifo if fifo was filled on last timer call
1714  		 * conditionally
1715  		 */
1716  		if (set_rde > 1) {
1717  			/* set RDE to receive setup data */
1718  			tmp = readl(&udc->regs->ctl);
1719  			tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1720  			writel(tmp, &udc->regs->ctl);
1721  			set_rde = -1;
1722  		} else if (readl(&udc->regs->sts)
1723  				& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1724  			/*
1725  			 * if fifo empty setup polling, do not just
1726  			 * open the fifo
1727  			 */
1728  			udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1729  			if (!stop_timer)
1730  				add_timer(&udc_timer);
1731  		} else {
1732  			/*
1733  			 * fifo contains data now, setup timer for opening
1734  			 * the fifo when timer expires to be able to receive
1735  			 * setup packets, when data packets gets queued by
1736  			 * gadget layer then timer will forced to expire with
1737  			 * set_rde=0 (RDE is set in udc_queue())
1738  			 */
1739  			set_rde++;
1740  			/* debug: lhadmot_timer_start = 221070 */
1741  			udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1742  			if (!stop_timer)
1743  				add_timer(&udc_timer);
1744  		}
1745  
1746  	} else
1747  		set_rde = -1; /* RDE was set by udc_queue() */
1748  	spin_unlock_irq(&udc_irq_spinlock);
1749  	if (stop_timer)
1750  		complete(&on_exit);
1751  
1752  }
1753  
1754  /* Handle halt state, used in stall poll timer */
udc_handle_halt_state(struct udc_ep * ep)1755  static void udc_handle_halt_state(struct udc_ep *ep)
1756  {
1757  	u32 tmp;
1758  	/* set stall as long not halted */
1759  	if (ep->halted == 1) {
1760  		tmp = readl(&ep->regs->ctl);
1761  		/* STALL cleared ? */
1762  		if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1763  			/*
1764  			 * FIXME: MSC spec requires that stall remains
1765  			 * even on receivng of CLEAR_FEATURE HALT. So
1766  			 * we would set STALL again here to be compliant.
1767  			 * But with current mass storage drivers this does
1768  			 * not work (would produce endless host retries).
1769  			 * So we clear halt on CLEAR_FEATURE.
1770  			 *
1771  			DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1772  			tmp |= AMD_BIT(UDC_EPCTL_S);
1773  			writel(tmp, &ep->regs->ctl);*/
1774  
1775  			/* clear NAK by writing CNAK */
1776  			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1777  			writel(tmp, &ep->regs->ctl);
1778  			ep->halted = 0;
1779  			UDC_QUEUE_CNAK(ep, ep->num);
1780  		}
1781  	}
1782  }
1783  
1784  /* Stall timer callback to poll S bit and set it again after */
udc_pollstall_timer_function(struct timer_list * unused)1785  static void udc_pollstall_timer_function(struct timer_list *unused)
1786  {
1787  	struct udc_ep *ep;
1788  	int halted = 0;
1789  
1790  	spin_lock_irq(&udc_stall_spinlock);
1791  	/*
1792  	 * only one IN and OUT endpoints are handled
1793  	 * IN poll stall
1794  	 */
1795  	ep = &udc->ep[UDC_EPIN_IX];
1796  	udc_handle_halt_state(ep);
1797  	if (ep->halted)
1798  		halted = 1;
1799  	/* OUT poll stall */
1800  	ep = &udc->ep[UDC_EPOUT_IX];
1801  	udc_handle_halt_state(ep);
1802  	if (ep->halted)
1803  		halted = 1;
1804  
1805  	/* setup timer again when still halted */
1806  	if (!stop_pollstall_timer && halted) {
1807  		udc_pollstall_timer.expires = jiffies +
1808  					HZ * UDC_POLLSTALL_TIMER_USECONDS
1809  					/ (1000 * 1000);
1810  		add_timer(&udc_pollstall_timer);
1811  	}
1812  	spin_unlock_irq(&udc_stall_spinlock);
1813  
1814  	if (stop_pollstall_timer)
1815  		complete(&on_pollstall_exit);
1816  }
1817  
1818  /* Inits endpoint 0 so that SETUP packets are processed */
activate_control_endpoints(struct udc * dev)1819  static void activate_control_endpoints(struct udc *dev)
1820  {
1821  	u32 tmp;
1822  
1823  	DBG(dev, "activate_control_endpoints\n");
1824  
1825  	/* flush fifo */
1826  	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1827  	tmp |= AMD_BIT(UDC_EPCTL_F);
1828  	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1829  
1830  	/* set ep0 directions */
1831  	dev->ep[UDC_EP0IN_IX].in = 1;
1832  	dev->ep[UDC_EP0OUT_IX].in = 0;
1833  
1834  	/* set buffer size (tx fifo entries) of EP0_IN */
1835  	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1836  	if (dev->gadget.speed == USB_SPEED_FULL)
1837  		tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1838  					UDC_EPIN_BUFF_SIZE);
1839  	else if (dev->gadget.speed == USB_SPEED_HIGH)
1840  		tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1841  					UDC_EPIN_BUFF_SIZE);
1842  	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1843  
1844  	/* set max packet size of EP0_IN */
1845  	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1846  	if (dev->gadget.speed == USB_SPEED_FULL)
1847  		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1848  					UDC_EP_MAX_PKT_SIZE);
1849  	else if (dev->gadget.speed == USB_SPEED_HIGH)
1850  		tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1851  				UDC_EP_MAX_PKT_SIZE);
1852  	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1853  
1854  	/* set max packet size of EP0_OUT */
1855  	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1856  	if (dev->gadget.speed == USB_SPEED_FULL)
1857  		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1858  					UDC_EP_MAX_PKT_SIZE);
1859  	else if (dev->gadget.speed == USB_SPEED_HIGH)
1860  		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1861  					UDC_EP_MAX_PKT_SIZE);
1862  	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1863  
1864  	/* set max packet size of EP0 in UDC CSR */
1865  	tmp = readl(&dev->csr->ne[0]);
1866  	if (dev->gadget.speed == USB_SPEED_FULL)
1867  		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1868  					UDC_CSR_NE_MAX_PKT);
1869  	else if (dev->gadget.speed == USB_SPEED_HIGH)
1870  		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1871  					UDC_CSR_NE_MAX_PKT);
1872  	writel(tmp, &dev->csr->ne[0]);
1873  
1874  	if (use_dma) {
1875  		dev->ep[UDC_EP0OUT_IX].td->status |=
1876  			AMD_BIT(UDC_DMA_OUT_STS_L);
1877  		/* write dma desc address */
1878  		writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1879  			&dev->ep[UDC_EP0OUT_IX].regs->subptr);
1880  		writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1881  			&dev->ep[UDC_EP0OUT_IX].regs->desptr);
1882  		/* stop RDE timer */
1883  		if (timer_pending(&udc_timer)) {
1884  			set_rde = 0;
1885  			mod_timer(&udc_timer, jiffies - 1);
1886  		}
1887  		/* stop pollstall timer */
1888  		if (timer_pending(&udc_pollstall_timer))
1889  			mod_timer(&udc_pollstall_timer, jiffies - 1);
1890  		/* enable DMA */
1891  		tmp = readl(&dev->regs->ctl);
1892  		tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1893  				| AMD_BIT(UDC_DEVCTL_RDE)
1894  				| AMD_BIT(UDC_DEVCTL_TDE);
1895  		if (use_dma_bufferfill_mode)
1896  			tmp |= AMD_BIT(UDC_DEVCTL_BF);
1897  		else if (use_dma_ppb_du)
1898  			tmp |= AMD_BIT(UDC_DEVCTL_DU);
1899  		writel(tmp, &dev->regs->ctl);
1900  	}
1901  
1902  	/* clear NAK by writing CNAK for EP0IN */
1903  	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1904  	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1905  	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1906  	dev->ep[UDC_EP0IN_IX].naking = 0;
1907  	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1908  
1909  	/* clear NAK by writing CNAK for EP0OUT */
1910  	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1911  	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1912  	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1913  	dev->ep[UDC_EP0OUT_IX].naking = 0;
1914  	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1915  }
1916  
1917  /* Make endpoint 0 ready for control traffic */
setup_ep0(struct udc * dev)1918  static int setup_ep0(struct udc *dev)
1919  {
1920  	activate_control_endpoints(dev);
1921  	/* enable ep0 interrupts */
1922  	udc_enable_ep0_interrupts(dev);
1923  	/* enable device setup interrupts */
1924  	udc_enable_dev_setup_interrupts(dev);
1925  
1926  	return 0;
1927  }
1928  
1929  /* Called by gadget driver to register itself */
amd5536_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1930  static int amd5536_udc_start(struct usb_gadget *g,
1931  		struct usb_gadget_driver *driver)
1932  {
1933  	struct udc *dev = to_amd5536_udc(g);
1934  	u32 tmp;
1935  
1936  	dev->driver = driver;
1937  
1938  	/* Some gadget drivers use both ep0 directions.
1939  	 * NOTE: to gadget driver, ep0 is just one endpoint...
1940  	 */
1941  	dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1942  		dev->ep[UDC_EP0IN_IX].ep.driver_data;
1943  
1944  	/* get ready for ep0 traffic */
1945  	setup_ep0(dev);
1946  
1947  	/* clear SD */
1948  	tmp = readl(&dev->regs->ctl);
1949  	tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1950  	writel(tmp, &dev->regs->ctl);
1951  
1952  	usb_connect(dev);
1953  
1954  	return 0;
1955  }
1956  
1957  /* shutdown requests and disconnect from gadget */
1958  static void
shutdown(struct udc * dev,struct usb_gadget_driver * driver)1959  shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1960  __releases(dev->lock)
1961  __acquires(dev->lock)
1962  {
1963  	int tmp;
1964  
1965  	/* empty queues and init hardware */
1966  	udc_basic_init(dev);
1967  
1968  	for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1969  		empty_req_queue(&dev->ep[tmp]);
1970  
1971  	udc_setup_endpoints(dev);
1972  }
1973  
1974  /* Called by gadget driver to unregister itself */
amd5536_udc_stop(struct usb_gadget * g)1975  static int amd5536_udc_stop(struct usb_gadget *g)
1976  {
1977  	struct udc *dev = to_amd5536_udc(g);
1978  	unsigned long flags;
1979  	u32 tmp;
1980  
1981  	spin_lock_irqsave(&dev->lock, flags);
1982  	udc_mask_unused_interrupts(dev);
1983  	shutdown(dev, NULL);
1984  	spin_unlock_irqrestore(&dev->lock, flags);
1985  
1986  	dev->driver = NULL;
1987  
1988  	/* set SD */
1989  	tmp = readl(&dev->regs->ctl);
1990  	tmp |= AMD_BIT(UDC_DEVCTL_SD);
1991  	writel(tmp, &dev->regs->ctl);
1992  
1993  	return 0;
1994  }
1995  
1996  /* Clear pending NAK bits */
udc_process_cnak_queue(struct udc * dev)1997  static void udc_process_cnak_queue(struct udc *dev)
1998  {
1999  	u32 tmp;
2000  	u32 reg;
2001  
2002  	/* check epin's */
2003  	DBG(dev, "CNAK pending queue processing\n");
2004  	for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2005  		if (cnak_pending & (1 << tmp)) {
2006  			DBG(dev, "CNAK pending for ep%d\n", tmp);
2007  			/* clear NAK by writing CNAK */
2008  			reg = readl(&dev->ep[tmp].regs->ctl);
2009  			reg |= AMD_BIT(UDC_EPCTL_CNAK);
2010  			writel(reg, &dev->ep[tmp].regs->ctl);
2011  			dev->ep[tmp].naking = 0;
2012  			UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2013  		}
2014  	}
2015  	/* ...	and ep0out */
2016  	if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2017  		DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2018  		/* clear NAK by writing CNAK */
2019  		reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2020  		reg |= AMD_BIT(UDC_EPCTL_CNAK);
2021  		writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2022  		dev->ep[UDC_EP0OUT_IX].naking = 0;
2023  		UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2024  				dev->ep[UDC_EP0OUT_IX].num);
2025  	}
2026  }
2027  
2028  /* Enabling RX DMA after setup packet */
udc_ep0_set_rde(struct udc * dev)2029  static void udc_ep0_set_rde(struct udc *dev)
2030  {
2031  	if (use_dma) {
2032  		/*
2033  		 * only enable RXDMA when no data endpoint enabled
2034  		 * or data is queued
2035  		 */
2036  		if (!dev->data_ep_enabled || dev->data_ep_queued) {
2037  			udc_set_rde(dev);
2038  		} else {
2039  			/*
2040  			 * setup timer for enabling RDE (to not enable
2041  			 * RXFIFO DMA for data endpoints to early)
2042  			 */
2043  			if (set_rde != 0 && !timer_pending(&udc_timer)) {
2044  				udc_timer.expires =
2045  					jiffies + HZ/UDC_RDE_TIMER_DIV;
2046  				set_rde = 1;
2047  				if (!stop_timer)
2048  					add_timer(&udc_timer);
2049  			}
2050  		}
2051  	}
2052  }
2053  
2054  
2055  /* Interrupt handler for data OUT traffic */
udc_data_out_isr(struct udc * dev,int ep_ix)2056  static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2057  {
2058  	irqreturn_t		ret_val = IRQ_NONE;
2059  	u32			tmp;
2060  	struct udc_ep		*ep;
2061  	struct udc_request	*req;
2062  	unsigned int		count;
2063  	struct udc_data_dma	*td = NULL;
2064  	unsigned		dma_done;
2065  
2066  	VDBG(dev, "ep%d irq\n", ep_ix);
2067  	ep = &dev->ep[ep_ix];
2068  
2069  	tmp = readl(&ep->regs->sts);
2070  	if (use_dma) {
2071  		/* BNA event ? */
2072  		if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2073  			DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2074  					ep->num, readl(&ep->regs->desptr));
2075  			/* clear BNA */
2076  			writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2077  			if (!ep->cancel_transfer)
2078  				ep->bna_occurred = 1;
2079  			else
2080  				ep->cancel_transfer = 0;
2081  			ret_val = IRQ_HANDLED;
2082  			goto finished;
2083  		}
2084  	}
2085  	/* HE event ? */
2086  	if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2087  		dev_err(dev->dev, "HE ep%dout occurred\n", ep->num);
2088  
2089  		/* clear HE */
2090  		writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2091  		ret_val = IRQ_HANDLED;
2092  		goto finished;
2093  	}
2094  
2095  	if (!list_empty(&ep->queue)) {
2096  
2097  		/* next request */
2098  		req = list_entry(ep->queue.next,
2099  			struct udc_request, queue);
2100  	} else {
2101  		req = NULL;
2102  		udc_rxfifo_pending = 1;
2103  	}
2104  	VDBG(dev, "req = %p\n", req);
2105  	/* fifo mode */
2106  	if (!use_dma) {
2107  
2108  		/* read fifo */
2109  		if (req && udc_rxfifo_read(ep, req)) {
2110  			ret_val = IRQ_HANDLED;
2111  
2112  			/* finish */
2113  			complete_req(ep, req, 0);
2114  			/* next request */
2115  			if (!list_empty(&ep->queue) && !ep->halted) {
2116  				req = list_entry(ep->queue.next,
2117  					struct udc_request, queue);
2118  			} else
2119  				req = NULL;
2120  		}
2121  
2122  	/* DMA */
2123  	} else if (!ep->cancel_transfer && req) {
2124  		ret_val = IRQ_HANDLED;
2125  
2126  		/* check for DMA done */
2127  		if (!use_dma_ppb) {
2128  			dma_done = AMD_GETBITS(req->td_data->status,
2129  						UDC_DMA_OUT_STS_BS);
2130  		/* packet per buffer mode - rx bytes */
2131  		} else {
2132  			/*
2133  			 * if BNA occurred then recover desc. from
2134  			 * BNA dummy desc.
2135  			 */
2136  			if (ep->bna_occurred) {
2137  				VDBG(dev, "Recover desc. from BNA dummy\n");
2138  				memcpy(req->td_data, ep->bna_dummy_req->td_data,
2139  						sizeof(struct udc_data_dma));
2140  				ep->bna_occurred = 0;
2141  				udc_init_bna_dummy(ep->req);
2142  			}
2143  			td = udc_get_last_dma_desc(req);
2144  			dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2145  		}
2146  		if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2147  			/* buffer fill mode - rx bytes */
2148  			if (!use_dma_ppb) {
2149  				/* received number bytes */
2150  				count = AMD_GETBITS(req->td_data->status,
2151  						UDC_DMA_OUT_STS_RXBYTES);
2152  				VDBG(dev, "rx bytes=%u\n", count);
2153  			/* packet per buffer mode - rx bytes */
2154  			} else {
2155  				VDBG(dev, "req->td_data=%p\n", req->td_data);
2156  				VDBG(dev, "last desc = %p\n", td);
2157  				/* received number bytes */
2158  				if (use_dma_ppb_du) {
2159  					/* every desc. counts bytes */
2160  					count = udc_get_ppbdu_rxbytes(req);
2161  				} else {
2162  					/* last desc. counts bytes */
2163  					count = AMD_GETBITS(td->status,
2164  						UDC_DMA_OUT_STS_RXBYTES);
2165  					if (!count && req->req.length
2166  						== UDC_DMA_MAXPACKET) {
2167  						/*
2168  						 * on 64k packets the RXBYTES
2169  						 * field is zero
2170  						 */
2171  						count = UDC_DMA_MAXPACKET;
2172  					}
2173  				}
2174  				VDBG(dev, "last desc rx bytes=%u\n", count);
2175  			}
2176  
2177  			tmp = req->req.length - req->req.actual;
2178  			if (count > tmp) {
2179  				if ((tmp % ep->ep.maxpacket) != 0) {
2180  					DBG(dev, "%s: rx %db, space=%db\n",
2181  						ep->ep.name, count, tmp);
2182  					req->req.status = -EOVERFLOW;
2183  				}
2184  				count = tmp;
2185  			}
2186  			req->req.actual += count;
2187  			req->dma_going = 0;
2188  			/* complete request */
2189  			complete_req(ep, req, 0);
2190  
2191  			/* next request */
2192  			if (!list_empty(&ep->queue) && !ep->halted) {
2193  				req = list_entry(ep->queue.next,
2194  					struct udc_request,
2195  					queue);
2196  				/*
2197  				 * DMA may be already started by udc_queue()
2198  				 * called by gadget drivers completion
2199  				 * routine. This happens when queue
2200  				 * holds one request only.
2201  				 */
2202  				if (req->dma_going == 0) {
2203  					/* next dma */
2204  					if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2205  						goto finished;
2206  					/* write desc pointer */
2207  					writel(req->td_phys,
2208  						&ep->regs->desptr);
2209  					req->dma_going = 1;
2210  					/* enable DMA */
2211  					udc_set_rde(dev);
2212  				}
2213  			} else {
2214  				/*
2215  				 * implant BNA dummy descriptor to allow
2216  				 * RXFIFO opening by RDE
2217  				 */
2218  				if (ep->bna_dummy_req) {
2219  					/* write desc pointer */
2220  					writel(ep->bna_dummy_req->td_phys,
2221  						&ep->regs->desptr);
2222  					ep->bna_occurred = 0;
2223  				}
2224  
2225  				/*
2226  				 * schedule timer for setting RDE if queue
2227  				 * remains empty to allow ep0 packets pass
2228  				 * through
2229  				 */
2230  				if (set_rde != 0
2231  						&& !timer_pending(&udc_timer)) {
2232  					udc_timer.expires =
2233  						jiffies
2234  						+ HZ*UDC_RDE_TIMER_SECONDS;
2235  					set_rde = 1;
2236  					if (!stop_timer)
2237  						add_timer(&udc_timer);
2238  				}
2239  				if (ep->num != UDC_EP0OUT_IX)
2240  					dev->data_ep_queued = 0;
2241  			}
2242  
2243  		} else {
2244  			/*
2245  			* RX DMA must be reenabled for each desc in PPBDU mode
2246  			* and must be enabled for PPBNDU mode in case of BNA
2247  			*/
2248  			udc_set_rde(dev);
2249  		}
2250  
2251  	} else if (ep->cancel_transfer) {
2252  		ret_val = IRQ_HANDLED;
2253  		ep->cancel_transfer = 0;
2254  	}
2255  
2256  	/* check pending CNAKS */
2257  	if (cnak_pending) {
2258  		/* CNAk processing when rxfifo empty only */
2259  		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2260  			udc_process_cnak_queue(dev);
2261  	}
2262  
2263  	/* clear OUT bits in ep status */
2264  	writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2265  finished:
2266  	return ret_val;
2267  }
2268  
2269  /* Interrupt handler for data IN traffic */
udc_data_in_isr(struct udc * dev,int ep_ix)2270  static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2271  {
2272  	irqreturn_t ret_val = IRQ_NONE;
2273  	u32 tmp;
2274  	u32 epsts;
2275  	struct udc_ep *ep;
2276  	struct udc_request *req;
2277  	struct udc_data_dma *td;
2278  	unsigned len;
2279  
2280  	ep = &dev->ep[ep_ix];
2281  
2282  	epsts = readl(&ep->regs->sts);
2283  	if (use_dma) {
2284  		/* BNA ? */
2285  		if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2286  			dev_err(dev->dev,
2287  				"BNA ep%din occurred - DESPTR = %08lx\n",
2288  				ep->num,
2289  				(unsigned long) readl(&ep->regs->desptr));
2290  
2291  			/* clear BNA */
2292  			writel(epsts, &ep->regs->sts);
2293  			ret_val = IRQ_HANDLED;
2294  			goto finished;
2295  		}
2296  	}
2297  	/* HE event ? */
2298  	if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2299  		dev_err(dev->dev,
2300  			"HE ep%dn occurred - DESPTR = %08lx\n",
2301  			ep->num, (unsigned long) readl(&ep->regs->desptr));
2302  
2303  		/* clear HE */
2304  		writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2305  		ret_val = IRQ_HANDLED;
2306  		goto finished;
2307  	}
2308  
2309  	/* DMA completion */
2310  	if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2311  		VDBG(dev, "TDC set- completion\n");
2312  		ret_val = IRQ_HANDLED;
2313  		if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2314  			req = list_entry(ep->queue.next,
2315  					struct udc_request, queue);
2316  			/*
2317  			 * length bytes transferred
2318  			 * check dma done of last desc. in PPBDU mode
2319  			 */
2320  			if (use_dma_ppb_du) {
2321  				td = udc_get_last_dma_desc(req);
2322  				if (td)
2323  					req->req.actual = req->req.length;
2324  			} else {
2325  				/* assume all bytes transferred */
2326  				req->req.actual = req->req.length;
2327  			}
2328  
2329  			if (req->req.actual == req->req.length) {
2330  				/* complete req */
2331  				complete_req(ep, req, 0);
2332  				req->dma_going = 0;
2333  				/* further request available ? */
2334  				if (list_empty(&ep->queue)) {
2335  					/* disable interrupt */
2336  					tmp = readl(&dev->regs->ep_irqmsk);
2337  					tmp |= AMD_BIT(ep->num);
2338  					writel(tmp, &dev->regs->ep_irqmsk);
2339  				}
2340  			}
2341  		}
2342  		ep->cancel_transfer = 0;
2343  
2344  	}
2345  	/*
2346  	 * status reg has IN bit set and TDC not set (if TDC was handled,
2347  	 * IN must not be handled (UDC defect) ?
2348  	 */
2349  	if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2350  			&& !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2351  		ret_val = IRQ_HANDLED;
2352  		if (!list_empty(&ep->queue)) {
2353  			/* next request */
2354  			req = list_entry(ep->queue.next,
2355  					struct udc_request, queue);
2356  			/* FIFO mode */
2357  			if (!use_dma) {
2358  				/* write fifo */
2359  				udc_txfifo_write(ep, &req->req);
2360  				len = req->req.length - req->req.actual;
2361  				if (len > ep->ep.maxpacket)
2362  					len = ep->ep.maxpacket;
2363  				req->req.actual += len;
2364  				if (req->req.actual == req->req.length
2365  					|| (len != ep->ep.maxpacket)) {
2366  					/* complete req */
2367  					complete_req(ep, req, 0);
2368  				}
2369  			/* DMA */
2370  			} else if (req && !req->dma_going) {
2371  				VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2372  					req, req->td_data);
2373  				if (req->td_data) {
2374  
2375  					req->dma_going = 1;
2376  
2377  					/*
2378  					 * unset L bit of first desc.
2379  					 * for chain
2380  					 */
2381  					if (use_dma_ppb && req->req.length >
2382  							ep->ep.maxpacket) {
2383  						req->td_data->status &=
2384  							AMD_CLEAR_BIT(
2385  							UDC_DMA_IN_STS_L);
2386  					}
2387  
2388  					/* write desc pointer */
2389  					writel(req->td_phys, &ep->regs->desptr);
2390  
2391  					/* set HOST READY */
2392  					req->td_data->status =
2393  						AMD_ADDBITS(
2394  						req->td_data->status,
2395  						UDC_DMA_IN_STS_BS_HOST_READY,
2396  						UDC_DMA_IN_STS_BS);
2397  
2398  					/* set poll demand bit */
2399  					tmp = readl(&ep->regs->ctl);
2400  					tmp |= AMD_BIT(UDC_EPCTL_P);
2401  					writel(tmp, &ep->regs->ctl);
2402  				}
2403  			}
2404  
2405  		} else if (!use_dma && ep->in) {
2406  			/* disable interrupt */
2407  			tmp = readl(
2408  				&dev->regs->ep_irqmsk);
2409  			tmp |= AMD_BIT(ep->num);
2410  			writel(tmp,
2411  				&dev->regs->ep_irqmsk);
2412  		}
2413  	}
2414  	/* clear status bits */
2415  	writel(epsts, &ep->regs->sts);
2416  
2417  finished:
2418  	return ret_val;
2419  
2420  }
2421  
2422  /* Interrupt handler for Control OUT traffic */
udc_control_out_isr(struct udc * dev)2423  static irqreturn_t udc_control_out_isr(struct udc *dev)
2424  __releases(dev->lock)
2425  __acquires(dev->lock)
2426  {
2427  	irqreturn_t ret_val = IRQ_NONE;
2428  	u32 tmp;
2429  	int setup_supported;
2430  	u32 count;
2431  	int set = 0;
2432  	struct udc_ep	*ep;
2433  	struct udc_ep	*ep_tmp;
2434  
2435  	ep = &dev->ep[UDC_EP0OUT_IX];
2436  
2437  	/* clear irq */
2438  	writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2439  
2440  	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2441  	/* check BNA and clear if set */
2442  	if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2443  		VDBG(dev, "ep0: BNA set\n");
2444  		writel(AMD_BIT(UDC_EPSTS_BNA),
2445  			&dev->ep[UDC_EP0OUT_IX].regs->sts);
2446  		ep->bna_occurred = 1;
2447  		ret_val = IRQ_HANDLED;
2448  		goto finished;
2449  	}
2450  
2451  	/* type of data: SETUP or DATA 0 bytes */
2452  	tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2453  	VDBG(dev, "data_typ = %x\n", tmp);
2454  
2455  	/* setup data */
2456  	if (tmp == UDC_EPSTS_OUT_SETUP) {
2457  		ret_val = IRQ_HANDLED;
2458  
2459  		ep->dev->stall_ep0in = 0;
2460  		dev->waiting_zlp_ack_ep0in = 0;
2461  
2462  		/* set NAK for EP0_IN */
2463  		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2464  		tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2465  		writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2466  		dev->ep[UDC_EP0IN_IX].naking = 1;
2467  		/* get setup data */
2468  		if (use_dma) {
2469  
2470  			/* clear OUT bits in ep status */
2471  			writel(UDC_EPSTS_OUT_CLEAR,
2472  				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2473  
2474  			setup_data.data[0] =
2475  				dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2476  			setup_data.data[1] =
2477  				dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2478  			/* set HOST READY */
2479  			dev->ep[UDC_EP0OUT_IX].td_stp->status =
2480  					UDC_DMA_STP_STS_BS_HOST_READY;
2481  		} else {
2482  			/* read fifo */
2483  			udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2484  		}
2485  
2486  		/* determine direction of control data */
2487  		if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2488  			dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2489  			/* enable RDE */
2490  			udc_ep0_set_rde(dev);
2491  			set = 0;
2492  		} else {
2493  			dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2494  			/*
2495  			 * implant BNA dummy descriptor to allow RXFIFO opening
2496  			 * by RDE
2497  			 */
2498  			if (ep->bna_dummy_req) {
2499  				/* write desc pointer */
2500  				writel(ep->bna_dummy_req->td_phys,
2501  					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2502  				ep->bna_occurred = 0;
2503  			}
2504  
2505  			set = 1;
2506  			dev->ep[UDC_EP0OUT_IX].naking = 1;
2507  			/*
2508  			 * setup timer for enabling RDE (to not enable
2509  			 * RXFIFO DMA for data to early)
2510  			 */
2511  			set_rde = 1;
2512  			if (!timer_pending(&udc_timer)) {
2513  				udc_timer.expires = jiffies +
2514  							HZ/UDC_RDE_TIMER_DIV;
2515  				if (!stop_timer)
2516  					add_timer(&udc_timer);
2517  			}
2518  		}
2519  
2520  		/*
2521  		 * mass storage reset must be processed here because
2522  		 * next packet may be a CLEAR_FEATURE HALT which would not
2523  		 * clear the stall bit when no STALL handshake was received
2524  		 * before (autostall can cause this)
2525  		 */
2526  		if (setup_data.data[0] == UDC_MSCRES_DWORD0
2527  				&& setup_data.data[1] == UDC_MSCRES_DWORD1) {
2528  			DBG(dev, "MSC Reset\n");
2529  			/*
2530  			 * clear stall bits
2531  			 * only one IN and OUT endpoints are handled
2532  			 */
2533  			ep_tmp = &udc->ep[UDC_EPIN_IX];
2534  			udc_set_halt(&ep_tmp->ep, 0);
2535  			ep_tmp = &udc->ep[UDC_EPOUT_IX];
2536  			udc_set_halt(&ep_tmp->ep, 0);
2537  		}
2538  
2539  		/* call gadget with setup data received */
2540  		spin_unlock(&dev->lock);
2541  		setup_supported = dev->driver->setup(&dev->gadget,
2542  						&setup_data.request);
2543  		spin_lock(&dev->lock);
2544  
2545  		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2546  		/* ep0 in returns data (not zlp) on IN phase */
2547  		if (setup_supported >= 0 && setup_supported <
2548  				UDC_EP0IN_MAXPACKET) {
2549  			/* clear NAK by writing CNAK in EP0_IN */
2550  			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2551  			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2552  			dev->ep[UDC_EP0IN_IX].naking = 0;
2553  			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2554  
2555  		/* if unsupported request then stall */
2556  		} else if (setup_supported < 0) {
2557  			tmp |= AMD_BIT(UDC_EPCTL_S);
2558  			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2559  		} else
2560  			dev->waiting_zlp_ack_ep0in = 1;
2561  
2562  
2563  		/* clear NAK by writing CNAK in EP0_OUT */
2564  		if (!set) {
2565  			tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2566  			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2567  			writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2568  			dev->ep[UDC_EP0OUT_IX].naking = 0;
2569  			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2570  		}
2571  
2572  		if (!use_dma) {
2573  			/* clear OUT bits in ep status */
2574  			writel(UDC_EPSTS_OUT_CLEAR,
2575  				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2576  		}
2577  
2578  	/* data packet 0 bytes */
2579  	} else if (tmp == UDC_EPSTS_OUT_DATA) {
2580  		/* clear OUT bits in ep status */
2581  		writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2582  
2583  		/* get setup data: only 0 packet */
2584  		if (use_dma) {
2585  			/* no req if 0 packet, just reactivate */
2586  			if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2587  				VDBG(dev, "ZLP\n");
2588  
2589  				/* set HOST READY */
2590  				dev->ep[UDC_EP0OUT_IX].td->status =
2591  					AMD_ADDBITS(
2592  					dev->ep[UDC_EP0OUT_IX].td->status,
2593  					UDC_DMA_OUT_STS_BS_HOST_READY,
2594  					UDC_DMA_OUT_STS_BS);
2595  				/* enable RDE */
2596  				udc_ep0_set_rde(dev);
2597  				ret_val = IRQ_HANDLED;
2598  
2599  			} else {
2600  				/* control write */
2601  				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2602  				/* re-program desc. pointer for possible ZLPs */
2603  				writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2604  					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2605  				/* enable RDE */
2606  				udc_ep0_set_rde(dev);
2607  			}
2608  		} else {
2609  
2610  			/* received number bytes */
2611  			count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2612  			count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2613  			/* out data for fifo mode not working */
2614  			count = 0;
2615  
2616  			/* 0 packet or real data ? */
2617  			if (count != 0) {
2618  				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2619  			} else {
2620  				/* dummy read confirm */
2621  				readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2622  				ret_val = IRQ_HANDLED;
2623  			}
2624  		}
2625  	}
2626  
2627  	/* check pending CNAKS */
2628  	if (cnak_pending) {
2629  		/* CNAk processing when rxfifo empty only */
2630  		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2631  			udc_process_cnak_queue(dev);
2632  	}
2633  
2634  finished:
2635  	return ret_val;
2636  }
2637  
2638  /* Interrupt handler for Control IN traffic */
udc_control_in_isr(struct udc * dev)2639  static irqreturn_t udc_control_in_isr(struct udc *dev)
2640  {
2641  	irqreturn_t ret_val = IRQ_NONE;
2642  	u32 tmp;
2643  	struct udc_ep *ep;
2644  	struct udc_request *req;
2645  	unsigned len;
2646  
2647  	ep = &dev->ep[UDC_EP0IN_IX];
2648  
2649  	/* clear irq */
2650  	writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2651  
2652  	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2653  	/* DMA completion */
2654  	if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2655  		VDBG(dev, "isr: TDC clear\n");
2656  		ret_val = IRQ_HANDLED;
2657  
2658  		/* clear TDC bit */
2659  		writel(AMD_BIT(UDC_EPSTS_TDC),
2660  				&dev->ep[UDC_EP0IN_IX].regs->sts);
2661  
2662  	/* status reg has IN bit set ? */
2663  	} else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2664  		ret_val = IRQ_HANDLED;
2665  
2666  		if (ep->dma) {
2667  			/* clear IN bit */
2668  			writel(AMD_BIT(UDC_EPSTS_IN),
2669  				&dev->ep[UDC_EP0IN_IX].regs->sts);
2670  		}
2671  		if (dev->stall_ep0in) {
2672  			DBG(dev, "stall ep0in\n");
2673  			/* halt ep0in */
2674  			tmp = readl(&ep->regs->ctl);
2675  			tmp |= AMD_BIT(UDC_EPCTL_S);
2676  			writel(tmp, &ep->regs->ctl);
2677  		} else {
2678  			if (!list_empty(&ep->queue)) {
2679  				/* next request */
2680  				req = list_entry(ep->queue.next,
2681  						struct udc_request, queue);
2682  
2683  				if (ep->dma) {
2684  					/* write desc pointer */
2685  					writel(req->td_phys, &ep->regs->desptr);
2686  					/* set HOST READY */
2687  					req->td_data->status =
2688  						AMD_ADDBITS(
2689  						req->td_data->status,
2690  						UDC_DMA_STP_STS_BS_HOST_READY,
2691  						UDC_DMA_STP_STS_BS);
2692  
2693  					/* set poll demand bit */
2694  					tmp =
2695  					readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2696  					tmp |= AMD_BIT(UDC_EPCTL_P);
2697  					writel(tmp,
2698  					&dev->ep[UDC_EP0IN_IX].regs->ctl);
2699  
2700  					/* all bytes will be transferred */
2701  					req->req.actual = req->req.length;
2702  
2703  					/* complete req */
2704  					complete_req(ep, req, 0);
2705  
2706  				} else {
2707  					/* write fifo */
2708  					udc_txfifo_write(ep, &req->req);
2709  
2710  					/* lengh bytes transferred */
2711  					len = req->req.length - req->req.actual;
2712  					if (len > ep->ep.maxpacket)
2713  						len = ep->ep.maxpacket;
2714  
2715  					req->req.actual += len;
2716  					if (req->req.actual == req->req.length
2717  						|| (len != ep->ep.maxpacket)) {
2718  						/* complete req */
2719  						complete_req(ep, req, 0);
2720  					}
2721  				}
2722  
2723  			}
2724  		}
2725  		ep->halted = 0;
2726  		dev->stall_ep0in = 0;
2727  		if (!ep->dma) {
2728  			/* clear IN bit */
2729  			writel(AMD_BIT(UDC_EPSTS_IN),
2730  				&dev->ep[UDC_EP0IN_IX].regs->sts);
2731  		}
2732  	}
2733  
2734  	return ret_val;
2735  }
2736  
2737  
2738  /* Interrupt handler for global device events */
udc_dev_isr(struct udc * dev,u32 dev_irq)2739  static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2740  __releases(dev->lock)
2741  __acquires(dev->lock)
2742  {
2743  	irqreturn_t ret_val = IRQ_NONE;
2744  	u32 tmp;
2745  	u32 cfg;
2746  	struct udc_ep *ep;
2747  	u16 i;
2748  	u8 udc_csr_epix;
2749  
2750  	/* SET_CONFIG irq ? */
2751  	if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2752  		ret_val = IRQ_HANDLED;
2753  
2754  		/* read config value */
2755  		tmp = readl(&dev->regs->sts);
2756  		cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2757  		DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2758  		dev->cur_config = cfg;
2759  		dev->set_cfg_not_acked = 1;
2760  
2761  		/* make usb request for gadget driver */
2762  		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2763  		setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2764  		setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2765  
2766  		/* programm the NE registers */
2767  		for (i = 0; i < UDC_EP_NUM; i++) {
2768  			ep = &dev->ep[i];
2769  			if (ep->in) {
2770  
2771  				/* ep ix in UDC CSR register space */
2772  				udc_csr_epix = ep->num;
2773  
2774  
2775  			/* OUT ep */
2776  			} else {
2777  				/* ep ix in UDC CSR register space */
2778  				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2779  			}
2780  
2781  			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2782  			/* ep cfg */
2783  			tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2784  						UDC_CSR_NE_CFG);
2785  			/* write reg */
2786  			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2787  
2788  			/* clear stall bits */
2789  			ep->halted = 0;
2790  			tmp = readl(&ep->regs->ctl);
2791  			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2792  			writel(tmp, &ep->regs->ctl);
2793  		}
2794  		/* call gadget zero with setup data received */
2795  		spin_unlock(&dev->lock);
2796  		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2797  		spin_lock(&dev->lock);
2798  
2799  	} /* SET_INTERFACE ? */
2800  	if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2801  		ret_val = IRQ_HANDLED;
2802  
2803  		dev->set_cfg_not_acked = 1;
2804  		/* read interface and alt setting values */
2805  		tmp = readl(&dev->regs->sts);
2806  		dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2807  		dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2808  
2809  		/* make usb request for gadget driver */
2810  		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2811  		setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2812  		setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2813  		setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2814  		setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2815  
2816  		DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2817  				dev->cur_alt, dev->cur_intf);
2818  
2819  		/* programm the NE registers */
2820  		for (i = 0; i < UDC_EP_NUM; i++) {
2821  			ep = &dev->ep[i];
2822  			if (ep->in) {
2823  
2824  				/* ep ix in UDC CSR register space */
2825  				udc_csr_epix = ep->num;
2826  
2827  
2828  			/* OUT ep */
2829  			} else {
2830  				/* ep ix in UDC CSR register space */
2831  				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2832  			}
2833  
2834  			/* UDC CSR reg */
2835  			/* set ep values */
2836  			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2837  			/* ep interface */
2838  			tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2839  						UDC_CSR_NE_INTF);
2840  			/* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2841  			/* ep alt */
2842  			tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2843  						UDC_CSR_NE_ALT);
2844  			/* write reg */
2845  			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2846  
2847  			/* clear stall bits */
2848  			ep->halted = 0;
2849  			tmp = readl(&ep->regs->ctl);
2850  			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2851  			writel(tmp, &ep->regs->ctl);
2852  		}
2853  
2854  		/* call gadget zero with setup data received */
2855  		spin_unlock(&dev->lock);
2856  		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2857  		spin_lock(&dev->lock);
2858  
2859  	} /* USB reset */
2860  	if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2861  		DBG(dev, "USB Reset interrupt\n");
2862  		ret_val = IRQ_HANDLED;
2863  
2864  		/* allow soft reset when suspend occurs */
2865  		soft_reset_occured = 0;
2866  
2867  		dev->waiting_zlp_ack_ep0in = 0;
2868  		dev->set_cfg_not_acked = 0;
2869  
2870  		/* mask not needed interrupts */
2871  		udc_mask_unused_interrupts(dev);
2872  
2873  		/* call gadget to resume and reset configs etc. */
2874  		spin_unlock(&dev->lock);
2875  		if (dev->sys_suspended && dev->driver->resume) {
2876  			dev->driver->resume(&dev->gadget);
2877  			dev->sys_suspended = 0;
2878  		}
2879  		usb_gadget_udc_reset(&dev->gadget, dev->driver);
2880  		spin_lock(&dev->lock);
2881  
2882  		/* disable ep0 to empty req queue */
2883  		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2884  		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2885  
2886  		/* soft reset when rxfifo not empty */
2887  		tmp = readl(&dev->regs->sts);
2888  		if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2889  				&& !soft_reset_after_usbreset_occured) {
2890  			udc_soft_reset(dev);
2891  			soft_reset_after_usbreset_occured++;
2892  		}
2893  
2894  		/*
2895  		 * DMA reset to kill potential old DMA hw hang,
2896  		 * POLL bit is already reset by ep_init() through
2897  		 * disconnect()
2898  		 */
2899  		DBG(dev, "DMA machine reset\n");
2900  		tmp = readl(&dev->regs->cfg);
2901  		writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2902  		writel(tmp, &dev->regs->cfg);
2903  
2904  		/* put into initial config */
2905  		udc_basic_init(dev);
2906  
2907  		/* enable device setup interrupts */
2908  		udc_enable_dev_setup_interrupts(dev);
2909  
2910  		/* enable suspend interrupt */
2911  		tmp = readl(&dev->regs->irqmsk);
2912  		tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2913  		writel(tmp, &dev->regs->irqmsk);
2914  
2915  	} /* USB suspend */
2916  	if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2917  		DBG(dev, "USB Suspend interrupt\n");
2918  		ret_val = IRQ_HANDLED;
2919  		if (dev->driver->suspend) {
2920  			spin_unlock(&dev->lock);
2921  			dev->sys_suspended = 1;
2922  			dev->driver->suspend(&dev->gadget);
2923  			spin_lock(&dev->lock);
2924  		}
2925  	} /* new speed ? */
2926  	if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2927  		DBG(dev, "ENUM interrupt\n");
2928  		ret_val = IRQ_HANDLED;
2929  		soft_reset_after_usbreset_occured = 0;
2930  
2931  		/* disable ep0 to empty req queue */
2932  		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2933  		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2934  
2935  		/* link up all endpoints */
2936  		udc_setup_endpoints(dev);
2937  		dev_info(dev->dev, "Connect: %s\n",
2938  			 usb_speed_string(dev->gadget.speed));
2939  
2940  		/* init ep 0 */
2941  		activate_control_endpoints(dev);
2942  
2943  		/* enable ep0 interrupts */
2944  		udc_enable_ep0_interrupts(dev);
2945  	}
2946  	/* session valid change interrupt */
2947  	if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2948  		DBG(dev, "USB SVC interrupt\n");
2949  		ret_val = IRQ_HANDLED;
2950  
2951  		/* check that session is not valid to detect disconnect */
2952  		tmp = readl(&dev->regs->sts);
2953  		if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2954  			/* disable suspend interrupt */
2955  			tmp = readl(&dev->regs->irqmsk);
2956  			tmp |= AMD_BIT(UDC_DEVINT_US);
2957  			writel(tmp, &dev->regs->irqmsk);
2958  			DBG(dev, "USB Disconnect (session valid low)\n");
2959  			/* cleanup on disconnect */
2960  			usb_disconnect(udc);
2961  		}
2962  
2963  	}
2964  
2965  	return ret_val;
2966  }
2967  
2968  /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
udc_irq(int irq,void * pdev)2969  irqreturn_t udc_irq(int irq, void *pdev)
2970  {
2971  	struct udc *dev = pdev;
2972  	u32 reg;
2973  	u16 i;
2974  	u32 ep_irq;
2975  	irqreturn_t ret_val = IRQ_NONE;
2976  
2977  	spin_lock(&dev->lock);
2978  
2979  	/* check for ep irq */
2980  	reg = readl(&dev->regs->ep_irqsts);
2981  	if (reg) {
2982  		if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
2983  			ret_val |= udc_control_out_isr(dev);
2984  		if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
2985  			ret_val |= udc_control_in_isr(dev);
2986  
2987  		/*
2988  		 * data endpoint
2989  		 * iterate ep's
2990  		 */
2991  		for (i = 1; i < UDC_EP_NUM; i++) {
2992  			ep_irq = 1 << i;
2993  			if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
2994  				continue;
2995  
2996  			/* clear irq status */
2997  			writel(ep_irq, &dev->regs->ep_irqsts);
2998  
2999  			/* irq for out ep ? */
3000  			if (i > UDC_EPIN_NUM)
3001  				ret_val |= udc_data_out_isr(dev, i);
3002  			else
3003  				ret_val |= udc_data_in_isr(dev, i);
3004  		}
3005  
3006  	}
3007  
3008  
3009  	/* check for dev irq */
3010  	reg = readl(&dev->regs->irqsts);
3011  	if (reg) {
3012  		/* clear irq */
3013  		writel(reg, &dev->regs->irqsts);
3014  		ret_val |= udc_dev_isr(dev, reg);
3015  	}
3016  
3017  
3018  	spin_unlock(&dev->lock);
3019  	return ret_val;
3020  }
3021  EXPORT_SYMBOL_GPL(udc_irq);
3022  
3023  /* Tears down device */
gadget_release(struct device * pdev)3024  void gadget_release(struct device *pdev)
3025  {
3026  	struct amd5536udc *dev = dev_get_drvdata(pdev);
3027  	kfree(dev);
3028  }
3029  EXPORT_SYMBOL_GPL(gadget_release);
3030  
3031  /* Cleanup on device remove */
udc_remove(struct udc * dev)3032  void udc_remove(struct udc *dev)
3033  {
3034  	/* remove timer */
3035  	stop_timer++;
3036  	if (timer_pending(&udc_timer))
3037  		wait_for_completion(&on_exit);
3038  	del_timer_sync(&udc_timer);
3039  	/* remove pollstall timer */
3040  	stop_pollstall_timer++;
3041  	if (timer_pending(&udc_pollstall_timer))
3042  		wait_for_completion(&on_pollstall_exit);
3043  	del_timer_sync(&udc_pollstall_timer);
3044  	udc = NULL;
3045  }
3046  EXPORT_SYMBOL_GPL(udc_remove);
3047  
3048  /* free all the dma pools */
free_dma_pools(struct udc * dev)3049  void free_dma_pools(struct udc *dev)
3050  {
3051  	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td,
3052  		      dev->ep[UDC_EP0OUT_IX].td_phys);
3053  	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3054  		      dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3055  	dma_pool_destroy(dev->stp_requests);
3056  	dma_pool_destroy(dev->data_requests);
3057  }
3058  EXPORT_SYMBOL_GPL(free_dma_pools);
3059  
3060  /* create dma pools on init */
init_dma_pools(struct udc * dev)3061  int init_dma_pools(struct udc *dev)
3062  {
3063  	struct udc_stp_dma	*td_stp;
3064  	struct udc_data_dma	*td_data;
3065  	int retval;
3066  
3067  	/* consistent DMA mode setting ? */
3068  	if (use_dma_ppb) {
3069  		use_dma_bufferfill_mode = 0;
3070  	} else {
3071  		use_dma_ppb_du = 0;
3072  		use_dma_bufferfill_mode = 1;
3073  	}
3074  
3075  	/* DMA setup */
3076  	dev->data_requests = dma_pool_create("data_requests", dev->dev,
3077  		sizeof(struct udc_data_dma), 0, 0);
3078  	if (!dev->data_requests) {
3079  		DBG(dev, "can't get request data pool\n");
3080  		return -ENOMEM;
3081  	}
3082  
3083  	/* EP0 in dma regs = dev control regs */
3084  	dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3085  
3086  	/* dma desc for setup data */
3087  	dev->stp_requests = dma_pool_create("setup requests", dev->dev,
3088  		sizeof(struct udc_stp_dma), 0, 0);
3089  	if (!dev->stp_requests) {
3090  		DBG(dev, "can't get stp request pool\n");
3091  		retval = -ENOMEM;
3092  		goto err_create_dma_pool;
3093  	}
3094  	/* setup */
3095  	td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3096  				&dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3097  	if (!td_stp) {
3098  		retval = -ENOMEM;
3099  		goto err_alloc_dma;
3100  	}
3101  	dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3102  
3103  	/* data: 0 packets !? */
3104  	td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3105  				&dev->ep[UDC_EP0OUT_IX].td_phys);
3106  	if (!td_data) {
3107  		retval = -ENOMEM;
3108  		goto err_alloc_phys;
3109  	}
3110  	dev->ep[UDC_EP0OUT_IX].td = td_data;
3111  	return 0;
3112  
3113  err_alloc_phys:
3114  	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3115  		      dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3116  err_alloc_dma:
3117  	dma_pool_destroy(dev->stp_requests);
3118  	dev->stp_requests = NULL;
3119  err_create_dma_pool:
3120  	dma_pool_destroy(dev->data_requests);
3121  	dev->data_requests = NULL;
3122  	return retval;
3123  }
3124  EXPORT_SYMBOL_GPL(init_dma_pools);
3125  
3126  /* general probe */
udc_probe(struct udc * dev)3127  int udc_probe(struct udc *dev)
3128  {
3129  	char		tmp[128];
3130  	u32		reg;
3131  	int		retval;
3132  
3133  	/* device struct setup */
3134  	dev->gadget.ops = &udc_ops;
3135  
3136  	dev_set_name(&dev->gadget.dev, "gadget");
3137  	dev->gadget.name = name;
3138  	dev->gadget.max_speed = USB_SPEED_HIGH;
3139  
3140  	/* init registers, interrupts, ... */
3141  	startup_registers(dev);
3142  
3143  	dev_info(dev->dev, "%s\n", mod_desc);
3144  
3145  	snprintf(tmp, sizeof(tmp), "%d", dev->irq);
3146  
3147  	/* Print this device info for AMD chips only*/
3148  	if (dev->chiprev == UDC_HSA0_REV ||
3149  	    dev->chiprev == UDC_HSB1_REV) {
3150  		dev_info(dev->dev, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3151  			 tmp, dev->phys_addr, dev->chiprev,
3152  			 (dev->chiprev == UDC_HSA0_REV) ?
3153  			 "A0" : "B1");
3154  		strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3155  		if (dev->chiprev == UDC_HSA0_REV) {
3156  			dev_err(dev->dev, "chip revision is A0; too old\n");
3157  			retval = -ENODEV;
3158  			goto finished;
3159  		}
3160  		dev_info(dev->dev,
3161  			 "driver version: %s(for Geode5536 B1)\n", tmp);
3162  	}
3163  
3164  	udc = dev;
3165  
3166  	retval = usb_add_gadget_udc_release(udc->dev, &dev->gadget,
3167  					    gadget_release);
3168  	if (retval)
3169  		goto finished;
3170  
3171  	/* timer init */
3172  	timer_setup(&udc_timer, udc_timer_function, 0);
3173  	timer_setup(&udc_pollstall_timer, udc_pollstall_timer_function, 0);
3174  
3175  	/* set SD */
3176  	reg = readl(&dev->regs->ctl);
3177  	reg |= AMD_BIT(UDC_DEVCTL_SD);
3178  	writel(reg, &dev->regs->ctl);
3179  
3180  	/* print dev register info */
3181  	print_regs(dev);
3182  
3183  	return 0;
3184  
3185  finished:
3186  	return retval;
3187  }
3188  EXPORT_SYMBOL_GPL(udc_probe);
3189  
3190  MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3191  MODULE_AUTHOR("Thomas Dahlmann");
3192  MODULE_LICENSE("GPL");
3193