1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller 4 * 5 * Copyright (C) 2005-2007 AMD (https://www.amd.com) 6 * Author: Thomas Dahlmann 7 */ 8 9 /* 10 * This file does the core driver implementation for the UDC that is based 11 * on Synopsys device controller IP (different than HS OTG IP) that is either 12 * connected through PCI bus or integrated to SoC platforms. 13 */ 14 15 /* Driver strings */ 16 #define UDC_MOD_DESCRIPTION "Synopsys USB Device Controller" 17 #define UDC_DRIVER_VERSION_STRING "01.00.0206" 18 19 #include <linux/module.h> 20 #include <linux/pci.h> 21 #include <linux/kernel.h> 22 #include <linux/delay.h> 23 #include <linux/ioport.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/errno.h> 27 #include <linux/timer.h> 28 #include <linux/list.h> 29 #include <linux/interrupt.h> 30 #include <linux/ioctl.h> 31 #include <linux/fs.h> 32 #include <linux/dmapool.h> 33 #include <linux/prefetch.h> 34 #include <linux/moduleparam.h> 35 #include <asm/byteorder.h> 36 #include <asm/unaligned.h> 37 #include "amd5536udc.h" 38 39 static void udc_setup_endpoints(struct udc *dev); 40 static void udc_soft_reset(struct udc *dev); 41 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep); 42 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq); 43 44 /* description */ 45 static const char mod_desc[] = UDC_MOD_DESCRIPTION; 46 static const char name[] = "udc"; 47 48 /* structure to hold endpoint function pointers */ 49 static const struct usb_ep_ops udc_ep_ops; 50 51 /* received setup data */ 52 static union udc_setup_data setup_data; 53 54 /* pointer to device object */ 55 static struct udc *udc; 56 57 /* irq spin lock for soft reset */ 58 static DEFINE_SPINLOCK(udc_irq_spinlock); 59 /* stall spin lock */ 60 static DEFINE_SPINLOCK(udc_stall_spinlock); 61 62 /* 63 * slave mode: pending bytes in rx fifo after nyet, 64 * used if EPIN irq came but no req was available 65 */ 66 static unsigned int udc_rxfifo_pending; 67 68 /* count soft resets after suspend to avoid loop */ 69 static int soft_reset_occured; 70 static int soft_reset_after_usbreset_occured; 71 72 /* timer */ 73 static struct timer_list udc_timer; 74 static int stop_timer; 75 76 /* set_rde -- Is used to control enabling of RX DMA. Problem is 77 * that UDC has only one bit (RDE) to enable/disable RX DMA for 78 * all OUT endpoints. So we have to handle race conditions like 79 * when OUT data reaches the fifo but no request was queued yet. 80 * This cannot be solved by letting the RX DMA disabled until a 81 * request gets queued because there may be other OUT packets 82 * in the FIFO (important for not blocking control traffic). 83 * The value of set_rde controls the corresponding timer. 84 * 85 * set_rde -1 == not used, means it is alloed to be set to 0 or 1 86 * set_rde 0 == do not touch RDE, do no start the RDE timer 87 * set_rde 1 == timer function will look whether FIFO has data 88 * set_rde 2 == set by timer function to enable RX DMA on next call 89 */ 90 static int set_rde = -1; 91 92 static DECLARE_COMPLETION(on_exit); 93 static struct timer_list udc_pollstall_timer; 94 static int stop_pollstall_timer; 95 static DECLARE_COMPLETION(on_pollstall_exit); 96 97 /* endpoint names used for print */ 98 static const char ep0_string[] = "ep0in"; 99 static const struct { 100 const char *name; 101 const struct usb_ep_caps caps; 102 } ep_info[] = { 103 #define EP_INFO(_name, _caps) \ 104 { \ 105 .name = _name, \ 106 .caps = _caps, \ 107 } 108 109 EP_INFO(ep0_string, 110 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)), 111 EP_INFO("ep1in-int", 112 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 113 EP_INFO("ep2in-bulk", 114 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 115 EP_INFO("ep3in-bulk", 116 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 117 EP_INFO("ep4in-bulk", 118 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 119 EP_INFO("ep5in-bulk", 120 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 121 EP_INFO("ep6in-bulk", 122 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 123 EP_INFO("ep7in-bulk", 124 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 125 EP_INFO("ep8in-bulk", 126 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 127 EP_INFO("ep9in-bulk", 128 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 129 EP_INFO("ep10in-bulk", 130 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 131 EP_INFO("ep11in-bulk", 132 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 133 EP_INFO("ep12in-bulk", 134 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 135 EP_INFO("ep13in-bulk", 136 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 137 EP_INFO("ep14in-bulk", 138 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 139 EP_INFO("ep15in-bulk", 140 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), 141 EP_INFO("ep0out", 142 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)), 143 EP_INFO("ep1out-bulk", 144 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 145 EP_INFO("ep2out-bulk", 146 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 147 EP_INFO("ep3out-bulk", 148 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 149 EP_INFO("ep4out-bulk", 150 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 151 EP_INFO("ep5out-bulk", 152 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 153 EP_INFO("ep6out-bulk", 154 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 155 EP_INFO("ep7out-bulk", 156 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 157 EP_INFO("ep8out-bulk", 158 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 159 EP_INFO("ep9out-bulk", 160 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 161 EP_INFO("ep10out-bulk", 162 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 163 EP_INFO("ep11out-bulk", 164 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 165 EP_INFO("ep12out-bulk", 166 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 167 EP_INFO("ep13out-bulk", 168 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 169 EP_INFO("ep14out-bulk", 170 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 171 EP_INFO("ep15out-bulk", 172 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), 173 174 #undef EP_INFO 175 }; 176 177 /* buffer fill mode */ 178 static int use_dma_bufferfill_mode; 179 /* tx buffer size for high speed */ 180 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE; 181 182 /*---------------------------------------------------------------------------*/ 183 /* Prints UDC device registers and endpoint irq registers */ print_regs(struct udc * dev)184 static void print_regs(struct udc *dev) 185 { 186 DBG(dev, "------- Device registers -------\n"); 187 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg)); 188 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl)); 189 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts)); 190 DBG(dev, "\n"); 191 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts)); 192 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk)); 193 DBG(dev, "\n"); 194 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts)); 195 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk)); 196 DBG(dev, "\n"); 197 DBG(dev, "USE DMA = %d\n", use_dma); 198 if (use_dma && use_dma_ppb && !use_dma_ppb_du) { 199 DBG(dev, "DMA mode = PPBNDU (packet per buffer " 200 "WITHOUT desc. update)\n"); 201 dev_info(dev->dev, "DMA mode (%s)\n", "PPBNDU"); 202 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) { 203 DBG(dev, "DMA mode = PPBDU (packet per buffer " 204 "WITH desc. update)\n"); 205 dev_info(dev->dev, "DMA mode (%s)\n", "PPBDU"); 206 } 207 if (use_dma && use_dma_bufferfill_mode) { 208 DBG(dev, "DMA mode = BF (buffer fill mode)\n"); 209 dev_info(dev->dev, "DMA mode (%s)\n", "BF"); 210 } 211 if (!use_dma) 212 dev_info(dev->dev, "FIFO mode\n"); 213 DBG(dev, "-------------------------------------------------------\n"); 214 } 215 216 /* Masks unused interrupts */ udc_mask_unused_interrupts(struct udc * dev)217 int udc_mask_unused_interrupts(struct udc *dev) 218 { 219 u32 tmp; 220 221 /* mask all dev interrupts */ 222 tmp = AMD_BIT(UDC_DEVINT_SVC) | 223 AMD_BIT(UDC_DEVINT_ENUM) | 224 AMD_BIT(UDC_DEVINT_US) | 225 AMD_BIT(UDC_DEVINT_UR) | 226 AMD_BIT(UDC_DEVINT_ES) | 227 AMD_BIT(UDC_DEVINT_SI) | 228 AMD_BIT(UDC_DEVINT_SOF)| 229 AMD_BIT(UDC_DEVINT_SC); 230 writel(tmp, &dev->regs->irqmsk); 231 232 /* mask all ep interrupts */ 233 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk); 234 235 return 0; 236 } 237 EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts); 238 239 /* Enables endpoint 0 interrupts */ udc_enable_ep0_interrupts(struct udc * dev)240 static int udc_enable_ep0_interrupts(struct udc *dev) 241 { 242 u32 tmp; 243 244 DBG(dev, "udc_enable_ep0_interrupts()\n"); 245 246 /* read irq mask */ 247 tmp = readl(&dev->regs->ep_irqmsk); 248 /* enable ep0 irq's */ 249 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0) 250 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0); 251 writel(tmp, &dev->regs->ep_irqmsk); 252 253 return 0; 254 } 255 256 /* Enables device interrupts for SET_INTF and SET_CONFIG */ udc_enable_dev_setup_interrupts(struct udc * dev)257 int udc_enable_dev_setup_interrupts(struct udc *dev) 258 { 259 u32 tmp; 260 261 DBG(dev, "enable device interrupts for setup data\n"); 262 263 /* read irq mask */ 264 tmp = readl(&dev->regs->irqmsk); 265 266 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */ 267 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI) 268 & AMD_UNMASK_BIT(UDC_DEVINT_SC) 269 & AMD_UNMASK_BIT(UDC_DEVINT_UR) 270 & AMD_UNMASK_BIT(UDC_DEVINT_SVC) 271 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM); 272 writel(tmp, &dev->regs->irqmsk); 273 274 return 0; 275 } 276 EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts); 277 278 /* Calculates fifo start of endpoint based on preceding endpoints */ udc_set_txfifo_addr(struct udc_ep * ep)279 static int udc_set_txfifo_addr(struct udc_ep *ep) 280 { 281 struct udc *dev; 282 u32 tmp; 283 int i; 284 285 if (!ep || !(ep->in)) 286 return -EINVAL; 287 288 dev = ep->dev; 289 ep->txfifo = dev->txfifo; 290 291 /* traverse ep's */ 292 for (i = 0; i < ep->num; i++) { 293 if (dev->ep[i].regs) { 294 /* read fifo size */ 295 tmp = readl(&dev->ep[i].regs->bufin_framenum); 296 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE); 297 ep->txfifo += tmp; 298 } 299 } 300 return 0; 301 } 302 303 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */ 304 static u32 cnak_pending; 305 UDC_QUEUE_CNAK(struct udc_ep * ep,unsigned num)306 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num) 307 { 308 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) { 309 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num); 310 cnak_pending |= 1 << (num); 311 ep->naking = 1; 312 } else 313 cnak_pending = cnak_pending & (~(1 << (num))); 314 } 315 316 317 /* Enables endpoint, is called by gadget driver */ 318 static int udc_ep_enable(struct usb_ep * usbep,const struct usb_endpoint_descriptor * desc)319 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc) 320 { 321 struct udc_ep *ep; 322 struct udc *dev; 323 u32 tmp; 324 unsigned long iflags; 325 u8 udc_csr_epix; 326 unsigned maxpacket; 327 328 if (!usbep 329 || usbep->name == ep0_string 330 || !desc 331 || desc->bDescriptorType != USB_DT_ENDPOINT) 332 return -EINVAL; 333 334 ep = container_of(usbep, struct udc_ep, ep); 335 dev = ep->dev; 336 337 DBG(dev, "udc_ep_enable() ep %d\n", ep->num); 338 339 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) 340 return -ESHUTDOWN; 341 342 spin_lock_irqsave(&dev->lock, iflags); 343 ep->ep.desc = desc; 344 345 ep->halted = 0; 346 347 /* set traffic type */ 348 tmp = readl(&dev->ep[ep->num].regs->ctl); 349 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET); 350 writel(tmp, &dev->ep[ep->num].regs->ctl); 351 352 /* set max packet size */ 353 maxpacket = usb_endpoint_maxp(desc); 354 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt); 355 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE); 356 ep->ep.maxpacket = maxpacket; 357 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt); 358 359 /* IN ep */ 360 if (ep->in) { 361 362 /* ep ix in UDC CSR register space */ 363 udc_csr_epix = ep->num; 364 365 /* set buffer size (tx fifo entries) */ 366 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum); 367 /* double buffering: fifo size = 2 x max packet size */ 368 tmp = AMD_ADDBITS( 369 tmp, 370 maxpacket * UDC_EPIN_BUFF_SIZE_MULT 371 / UDC_DWORD_BYTES, 372 UDC_EPIN_BUFF_SIZE); 373 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum); 374 375 /* calc. tx fifo base addr */ 376 udc_set_txfifo_addr(ep); 377 378 /* flush fifo */ 379 tmp = readl(&ep->regs->ctl); 380 tmp |= AMD_BIT(UDC_EPCTL_F); 381 writel(tmp, &ep->regs->ctl); 382 383 /* OUT ep */ 384 } else { 385 /* ep ix in UDC CSR register space */ 386 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; 387 388 /* set max packet size UDC CSR */ 389 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]); 390 tmp = AMD_ADDBITS(tmp, maxpacket, 391 UDC_CSR_NE_MAX_PKT); 392 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]); 393 394 if (use_dma && !ep->in) { 395 /* alloc and init BNA dummy request */ 396 ep->bna_dummy_req = udc_alloc_bna_dummy(ep); 397 ep->bna_occurred = 0; 398 } 399 400 if (ep->num != UDC_EP0OUT_IX) 401 dev->data_ep_enabled = 1; 402 } 403 404 /* set ep values */ 405 tmp = readl(&dev->csr->ne[udc_csr_epix]); 406 /* max packet */ 407 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT); 408 /* ep number */ 409 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM); 410 /* ep direction */ 411 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR); 412 /* ep type */ 413 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE); 414 /* ep config */ 415 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG); 416 /* ep interface */ 417 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF); 418 /* ep alt */ 419 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT); 420 /* write reg */ 421 writel(tmp, &dev->csr->ne[udc_csr_epix]); 422 423 /* enable ep irq */ 424 tmp = readl(&dev->regs->ep_irqmsk); 425 tmp &= AMD_UNMASK_BIT(ep->num); 426 writel(tmp, &dev->regs->ep_irqmsk); 427 428 /* 429 * clear NAK by writing CNAK 430 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written 431 */ 432 if (!use_dma || ep->in) { 433 tmp = readl(&ep->regs->ctl); 434 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 435 writel(tmp, &ep->regs->ctl); 436 ep->naking = 0; 437 UDC_QUEUE_CNAK(ep, ep->num); 438 } 439 tmp = desc->bEndpointAddress; 440 DBG(dev, "%s enabled\n", usbep->name); 441 442 spin_unlock_irqrestore(&dev->lock, iflags); 443 return 0; 444 } 445 446 /* Resets endpoint */ ep_init(struct udc_regs __iomem * regs,struct udc_ep * ep)447 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep) 448 { 449 u32 tmp; 450 451 VDBG(ep->dev, "ep-%d reset\n", ep->num); 452 ep->ep.desc = NULL; 453 ep->ep.ops = &udc_ep_ops; 454 INIT_LIST_HEAD(&ep->queue); 455 456 usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0); 457 /* set NAK */ 458 tmp = readl(&ep->regs->ctl); 459 tmp |= AMD_BIT(UDC_EPCTL_SNAK); 460 writel(tmp, &ep->regs->ctl); 461 ep->naking = 1; 462 463 /* disable interrupt */ 464 tmp = readl(®s->ep_irqmsk); 465 tmp |= AMD_BIT(ep->num); 466 writel(tmp, ®s->ep_irqmsk); 467 468 if (ep->in) { 469 /* unset P and IN bit of potential former DMA */ 470 tmp = readl(&ep->regs->ctl); 471 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P); 472 writel(tmp, &ep->regs->ctl); 473 474 tmp = readl(&ep->regs->sts); 475 tmp |= AMD_BIT(UDC_EPSTS_IN); 476 writel(tmp, &ep->regs->sts); 477 478 /* flush the fifo */ 479 tmp = readl(&ep->regs->ctl); 480 tmp |= AMD_BIT(UDC_EPCTL_F); 481 writel(tmp, &ep->regs->ctl); 482 483 } 484 /* reset desc pointer */ 485 writel(0, &ep->regs->desptr); 486 } 487 488 /* Disables endpoint, is called by gadget driver */ udc_ep_disable(struct usb_ep * usbep)489 static int udc_ep_disable(struct usb_ep *usbep) 490 { 491 struct udc_ep *ep = NULL; 492 unsigned long iflags; 493 494 if (!usbep) 495 return -EINVAL; 496 497 ep = container_of(usbep, struct udc_ep, ep); 498 if (usbep->name == ep0_string || !ep->ep.desc) 499 return -EINVAL; 500 501 DBG(ep->dev, "Disable ep-%d\n", ep->num); 502 503 spin_lock_irqsave(&ep->dev->lock, iflags); 504 udc_free_request(&ep->ep, &ep->bna_dummy_req->req); 505 empty_req_queue(ep); 506 ep_init(ep->dev->regs, ep); 507 spin_unlock_irqrestore(&ep->dev->lock, iflags); 508 509 return 0; 510 } 511 512 /* Allocates request packet, called by gadget driver */ 513 static struct usb_request * udc_alloc_request(struct usb_ep * usbep,gfp_t gfp)514 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp) 515 { 516 struct udc_request *req; 517 struct udc_data_dma *dma_desc; 518 struct udc_ep *ep; 519 520 if (!usbep) 521 return NULL; 522 523 ep = container_of(usbep, struct udc_ep, ep); 524 525 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num); 526 req = kzalloc(sizeof(struct udc_request), gfp); 527 if (!req) 528 return NULL; 529 530 req->req.dma = DMA_DONT_USE; 531 INIT_LIST_HEAD(&req->queue); 532 533 if (ep->dma) { 534 /* ep0 in requests are allocated from data pool here */ 535 dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp, 536 &req->td_phys); 537 if (!dma_desc) { 538 kfree(req); 539 return NULL; 540 } 541 542 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, " 543 "td_phys = %lx\n", 544 req, dma_desc, 545 (unsigned long)req->td_phys); 546 /* prevent from using desc. - set HOST BUSY */ 547 dma_desc->status = AMD_ADDBITS(dma_desc->status, 548 UDC_DMA_STP_STS_BS_HOST_BUSY, 549 UDC_DMA_STP_STS_BS); 550 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE); 551 req->td_data = dma_desc; 552 req->td_data_last = NULL; 553 req->chain_len = 1; 554 } 555 556 return &req->req; 557 } 558 559 /* frees pci pool descriptors of a DMA chain */ udc_free_dma_chain(struct udc * dev,struct udc_request * req)560 static void udc_free_dma_chain(struct udc *dev, struct udc_request *req) 561 { 562 struct udc_data_dma *td = req->td_data; 563 unsigned int i; 564 565 dma_addr_t addr_next = 0x00; 566 dma_addr_t addr = (dma_addr_t)td->next; 567 568 DBG(dev, "free chain req = %p\n", req); 569 570 /* do not free first desc., will be done by free for request */ 571 for (i = 1; i < req->chain_len; i++) { 572 td = phys_to_virt(addr); 573 addr_next = (dma_addr_t)td->next; 574 dma_pool_free(dev->data_requests, td, addr); 575 addr = addr_next; 576 } 577 } 578 579 /* Frees request packet, called by gadget driver */ 580 static void udc_free_request(struct usb_ep * usbep,struct usb_request * usbreq)581 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq) 582 { 583 struct udc_ep *ep; 584 struct udc_request *req; 585 586 if (!usbep || !usbreq) 587 return; 588 589 ep = container_of(usbep, struct udc_ep, ep); 590 req = container_of(usbreq, struct udc_request, req); 591 VDBG(ep->dev, "free_req req=%p\n", req); 592 BUG_ON(!list_empty(&req->queue)); 593 if (req->td_data) { 594 VDBG(ep->dev, "req->td_data=%p\n", req->td_data); 595 596 /* free dma chain if created */ 597 if (req->chain_len > 1) 598 udc_free_dma_chain(ep->dev, req); 599 600 dma_pool_free(ep->dev->data_requests, req->td_data, 601 req->td_phys); 602 } 603 kfree(req); 604 } 605 606 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */ udc_init_bna_dummy(struct udc_request * req)607 static void udc_init_bna_dummy(struct udc_request *req) 608 { 609 if (req) { 610 /* set last bit */ 611 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L); 612 /* set next pointer to itself */ 613 req->td_data->next = req->td_phys; 614 /* set HOST BUSY */ 615 req->td_data->status 616 = AMD_ADDBITS(req->td_data->status, 617 UDC_DMA_STP_STS_BS_DMA_DONE, 618 UDC_DMA_STP_STS_BS); 619 #ifdef UDC_VERBOSE 620 pr_debug("bna desc = %p, sts = %08x\n", 621 req->td_data, req->td_data->status); 622 #endif 623 } 624 } 625 626 /* Allocate BNA dummy descriptor */ udc_alloc_bna_dummy(struct udc_ep * ep)627 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep) 628 { 629 struct udc_request *req = NULL; 630 struct usb_request *_req = NULL; 631 632 /* alloc the dummy request */ 633 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC); 634 if (_req) { 635 req = container_of(_req, struct udc_request, req); 636 ep->bna_dummy_req = req; 637 udc_init_bna_dummy(req); 638 } 639 return req; 640 } 641 642 /* Write data to TX fifo for IN packets */ 643 static void udc_txfifo_write(struct udc_ep * ep,struct usb_request * req)644 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req) 645 { 646 u8 *req_buf; 647 u32 *buf; 648 int i, j; 649 unsigned bytes = 0; 650 unsigned remaining = 0; 651 652 if (!req || !ep) 653 return; 654 655 req_buf = req->buf + req->actual; 656 prefetch(req_buf); 657 remaining = req->length - req->actual; 658 659 buf = (u32 *) req_buf; 660 661 bytes = ep->ep.maxpacket; 662 if (bytes > remaining) 663 bytes = remaining; 664 665 /* dwords first */ 666 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) 667 writel(*(buf + i), ep->txfifo); 668 669 /* remaining bytes must be written by byte access */ 670 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) { 671 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)), 672 ep->txfifo); 673 } 674 675 /* dummy write confirm */ 676 writel(0, &ep->regs->confirm); 677 } 678 679 /* Read dwords from RX fifo for OUT transfers */ udc_rxfifo_read_dwords(struct udc * dev,u32 * buf,int dwords)680 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords) 681 { 682 int i; 683 684 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords); 685 686 for (i = 0; i < dwords; i++) 687 *(buf + i) = readl(dev->rxfifo); 688 return 0; 689 } 690 691 /* Read bytes from RX fifo for OUT transfers */ udc_rxfifo_read_bytes(struct udc * dev,u8 * buf,int bytes)692 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes) 693 { 694 int i, j; 695 u32 tmp; 696 697 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes); 698 699 /* dwords first */ 700 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) 701 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo); 702 703 /* remaining bytes must be read by byte access */ 704 if (bytes % UDC_DWORD_BYTES) { 705 tmp = readl(dev->rxfifo); 706 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) { 707 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK); 708 tmp = tmp >> UDC_BITS_PER_BYTE; 709 } 710 } 711 712 return 0; 713 } 714 715 /* Read data from RX fifo for OUT transfers */ 716 static int udc_rxfifo_read(struct udc_ep * ep,struct udc_request * req)717 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req) 718 { 719 u8 *buf; 720 unsigned buf_space; 721 unsigned bytes = 0; 722 unsigned finished = 0; 723 724 /* received number bytes */ 725 bytes = readl(&ep->regs->sts); 726 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE); 727 728 buf_space = req->req.length - req->req.actual; 729 buf = req->req.buf + req->req.actual; 730 if (bytes > buf_space) { 731 if ((buf_space % ep->ep.maxpacket) != 0) { 732 DBG(ep->dev, 733 "%s: rx %d bytes, rx-buf space = %d bytesn\n", 734 ep->ep.name, bytes, buf_space); 735 req->req.status = -EOVERFLOW; 736 } 737 bytes = buf_space; 738 } 739 req->req.actual += bytes; 740 741 /* last packet ? */ 742 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes) 743 || ((req->req.actual == req->req.length) && !req->req.zero)) 744 finished = 1; 745 746 /* read rx fifo bytes */ 747 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes); 748 udc_rxfifo_read_bytes(ep->dev, buf, bytes); 749 750 return finished; 751 } 752 753 /* Creates or re-inits a DMA chain */ udc_create_dma_chain(struct udc_ep * ep,struct udc_request * req,unsigned long buf_len,gfp_t gfp_flags)754 static int udc_create_dma_chain( 755 struct udc_ep *ep, 756 struct udc_request *req, 757 unsigned long buf_len, gfp_t gfp_flags 758 ) 759 { 760 unsigned long bytes = req->req.length; 761 unsigned int i; 762 dma_addr_t dma_addr; 763 struct udc_data_dma *td = NULL; 764 struct udc_data_dma *last = NULL; 765 unsigned long txbytes; 766 unsigned create_new_chain = 0; 767 unsigned len; 768 769 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n", 770 bytes, buf_len); 771 dma_addr = DMA_DONT_USE; 772 773 /* unset L bit in first desc for OUT */ 774 if (!ep->in) 775 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L); 776 777 /* alloc only new desc's if not already available */ 778 len = req->req.length / ep->ep.maxpacket; 779 if (req->req.length % ep->ep.maxpacket) 780 len++; 781 782 if (len > req->chain_len) { 783 /* shorter chain already allocated before */ 784 if (req->chain_len > 1) 785 udc_free_dma_chain(ep->dev, req); 786 req->chain_len = len; 787 create_new_chain = 1; 788 } 789 790 td = req->td_data; 791 /* gen. required number of descriptors and buffers */ 792 for (i = buf_len; i < bytes; i += buf_len) { 793 /* create or determine next desc. */ 794 if (create_new_chain) { 795 td = dma_pool_alloc(ep->dev->data_requests, 796 gfp_flags, &dma_addr); 797 if (!td) 798 return -ENOMEM; 799 800 td->status = 0; 801 } else if (i == buf_len) { 802 /* first td */ 803 td = (struct udc_data_dma *)phys_to_virt( 804 req->td_data->next); 805 td->status = 0; 806 } else { 807 td = (struct udc_data_dma *)phys_to_virt(last->next); 808 td->status = 0; 809 } 810 811 if (td) 812 td->bufptr = req->req.dma + i; /* assign buffer */ 813 else 814 break; 815 816 /* short packet ? */ 817 if ((bytes - i) >= buf_len) { 818 txbytes = buf_len; 819 } else { 820 /* short packet */ 821 txbytes = bytes - i; 822 } 823 824 /* link td and assign tx bytes */ 825 if (i == buf_len) { 826 if (create_new_chain) 827 req->td_data->next = dma_addr; 828 /* 829 * else 830 * req->td_data->next = virt_to_phys(td); 831 */ 832 /* write tx bytes */ 833 if (ep->in) { 834 /* first desc */ 835 req->td_data->status = 836 AMD_ADDBITS(req->td_data->status, 837 ep->ep.maxpacket, 838 UDC_DMA_IN_STS_TXBYTES); 839 /* second desc */ 840 td->status = AMD_ADDBITS(td->status, 841 txbytes, 842 UDC_DMA_IN_STS_TXBYTES); 843 } 844 } else { 845 if (create_new_chain) 846 last->next = dma_addr; 847 /* 848 * else 849 * last->next = virt_to_phys(td); 850 */ 851 if (ep->in) { 852 /* write tx bytes */ 853 td->status = AMD_ADDBITS(td->status, 854 txbytes, 855 UDC_DMA_IN_STS_TXBYTES); 856 } 857 } 858 last = td; 859 } 860 /* set last bit */ 861 if (td) { 862 td->status |= AMD_BIT(UDC_DMA_IN_STS_L); 863 /* last desc. points to itself */ 864 req->td_data_last = td; 865 } 866 867 return 0; 868 } 869 870 /* create/re-init a DMA descriptor or a DMA descriptor chain */ prep_dma(struct udc_ep * ep,struct udc_request * req,gfp_t gfp)871 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp) 872 { 873 int retval = 0; 874 u32 tmp; 875 876 VDBG(ep->dev, "prep_dma\n"); 877 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n", 878 ep->num, req->td_data); 879 880 /* set buffer pointer */ 881 req->td_data->bufptr = req->req.dma; 882 883 /* set last bit */ 884 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L); 885 886 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */ 887 if (use_dma_ppb) { 888 889 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp); 890 if (retval != 0) { 891 if (retval == -ENOMEM) 892 DBG(ep->dev, "Out of DMA memory\n"); 893 return retval; 894 } 895 if (ep->in) { 896 if (req->req.length == ep->ep.maxpacket) { 897 /* write tx bytes */ 898 req->td_data->status = 899 AMD_ADDBITS(req->td_data->status, 900 ep->ep.maxpacket, 901 UDC_DMA_IN_STS_TXBYTES); 902 903 } 904 } 905 906 } 907 908 if (ep->in) { 909 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d " 910 "maxpacket=%d ep%d\n", 911 use_dma_ppb, req->req.length, 912 ep->ep.maxpacket, ep->num); 913 /* 914 * if bytes < max packet then tx bytes must 915 * be written in packet per buffer mode 916 */ 917 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket 918 || ep->num == UDC_EP0OUT_IX 919 || ep->num == UDC_EP0IN_IX) { 920 /* write tx bytes */ 921 req->td_data->status = 922 AMD_ADDBITS(req->td_data->status, 923 req->req.length, 924 UDC_DMA_IN_STS_TXBYTES); 925 /* reset frame num */ 926 req->td_data->status = 927 AMD_ADDBITS(req->td_data->status, 928 0, 929 UDC_DMA_IN_STS_FRAMENUM); 930 } 931 /* set HOST BUSY */ 932 req->td_data->status = 933 AMD_ADDBITS(req->td_data->status, 934 UDC_DMA_STP_STS_BS_HOST_BUSY, 935 UDC_DMA_STP_STS_BS); 936 } else { 937 VDBG(ep->dev, "OUT set host ready\n"); 938 /* set HOST READY */ 939 req->td_data->status = 940 AMD_ADDBITS(req->td_data->status, 941 UDC_DMA_STP_STS_BS_HOST_READY, 942 UDC_DMA_STP_STS_BS); 943 944 /* clear NAK by writing CNAK */ 945 if (ep->naking) { 946 tmp = readl(&ep->regs->ctl); 947 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 948 writel(tmp, &ep->regs->ctl); 949 ep->naking = 0; 950 UDC_QUEUE_CNAK(ep, ep->num); 951 } 952 953 } 954 955 return retval; 956 } 957 958 /* Completes request packet ... caller MUST hold lock */ 959 static void complete_req(struct udc_ep * ep,struct udc_request * req,int sts)960 complete_req(struct udc_ep *ep, struct udc_request *req, int sts) 961 __releases(ep->dev->lock) 962 __acquires(ep->dev->lock) 963 { 964 struct udc *dev; 965 unsigned halted; 966 967 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num); 968 969 dev = ep->dev; 970 /* unmap DMA */ 971 if (ep->dma) 972 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in); 973 974 halted = ep->halted; 975 ep->halted = 1; 976 977 /* set new status if pending */ 978 if (req->req.status == -EINPROGRESS) 979 req->req.status = sts; 980 981 /* remove from ep queue */ 982 list_del_init(&req->queue); 983 984 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n", 985 &req->req, req->req.length, ep->ep.name, sts); 986 987 spin_unlock(&dev->lock); 988 usb_gadget_giveback_request(&ep->ep, &req->req); 989 spin_lock(&dev->lock); 990 ep->halted = halted; 991 } 992 993 /* Iterates to the end of a DMA chain and returns last descriptor */ udc_get_last_dma_desc(struct udc_request * req)994 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req) 995 { 996 struct udc_data_dma *td; 997 998 td = req->td_data; 999 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) 1000 td = phys_to_virt(td->next); 1001 1002 return td; 1003 1004 } 1005 1006 /* Iterates to the end of a DMA chain and counts bytes received */ udc_get_ppbdu_rxbytes(struct udc_request * req)1007 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req) 1008 { 1009 struct udc_data_dma *td; 1010 u32 count; 1011 1012 td = req->td_data; 1013 /* received number bytes */ 1014 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES); 1015 1016 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) { 1017 td = phys_to_virt(td->next); 1018 /* received number bytes */ 1019 if (td) { 1020 count += AMD_GETBITS(td->status, 1021 UDC_DMA_OUT_STS_RXBYTES); 1022 } 1023 } 1024 1025 return count; 1026 1027 } 1028 1029 /* Enabling RX DMA */ udc_set_rde(struct udc * dev)1030 static void udc_set_rde(struct udc *dev) 1031 { 1032 u32 tmp; 1033 1034 VDBG(dev, "udc_set_rde()\n"); 1035 /* stop RDE timer */ 1036 if (timer_pending(&udc_timer)) { 1037 set_rde = 0; 1038 mod_timer(&udc_timer, jiffies - 1); 1039 } 1040 /* set RDE */ 1041 tmp = readl(&dev->regs->ctl); 1042 tmp |= AMD_BIT(UDC_DEVCTL_RDE); 1043 writel(tmp, &dev->regs->ctl); 1044 } 1045 1046 /* Queues a request packet, called by gadget driver */ 1047 static int udc_queue(struct usb_ep * usbep,struct usb_request * usbreq,gfp_t gfp)1048 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp) 1049 { 1050 int retval = 0; 1051 u8 open_rxfifo = 0; 1052 unsigned long iflags; 1053 struct udc_ep *ep; 1054 struct udc_request *req; 1055 struct udc *dev; 1056 u32 tmp; 1057 1058 /* check the inputs */ 1059 req = container_of(usbreq, struct udc_request, req); 1060 1061 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf 1062 || !list_empty(&req->queue)) 1063 return -EINVAL; 1064 1065 ep = container_of(usbep, struct udc_ep, ep); 1066 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX)) 1067 return -EINVAL; 1068 1069 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in); 1070 dev = ep->dev; 1071 1072 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) 1073 return -ESHUTDOWN; 1074 1075 /* map dma (usually done before) */ 1076 if (ep->dma) { 1077 VDBG(dev, "DMA map req %p\n", req); 1078 retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in); 1079 if (retval) 1080 return retval; 1081 } 1082 1083 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n", 1084 usbep->name, usbreq, usbreq->length, 1085 req->td_data, usbreq->buf); 1086 1087 spin_lock_irqsave(&dev->lock, iflags); 1088 usbreq->actual = 0; 1089 usbreq->status = -EINPROGRESS; 1090 req->dma_done = 0; 1091 1092 /* on empty queue just do first transfer */ 1093 if (list_empty(&ep->queue)) { 1094 /* zlp */ 1095 if (usbreq->length == 0) { 1096 /* IN zlp's are handled by hardware */ 1097 complete_req(ep, req, 0); 1098 VDBG(dev, "%s: zlp\n", ep->ep.name); 1099 /* 1100 * if set_config or set_intf is waiting for ack by zlp 1101 * then set CSR_DONE 1102 */ 1103 if (dev->set_cfg_not_acked) { 1104 tmp = readl(&dev->regs->ctl); 1105 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE); 1106 writel(tmp, &dev->regs->ctl); 1107 dev->set_cfg_not_acked = 0; 1108 } 1109 /* setup command is ACK'ed now by zlp */ 1110 if (dev->waiting_zlp_ack_ep0in) { 1111 /* clear NAK by writing CNAK in EP0_IN */ 1112 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); 1113 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 1114 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); 1115 dev->ep[UDC_EP0IN_IX].naking = 0; 1116 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], 1117 UDC_EP0IN_IX); 1118 dev->waiting_zlp_ack_ep0in = 0; 1119 } 1120 goto finished; 1121 } 1122 if (ep->dma) { 1123 retval = prep_dma(ep, req, GFP_ATOMIC); 1124 if (retval != 0) 1125 goto finished; 1126 /* write desc pointer to enable DMA */ 1127 if (ep->in) { 1128 /* set HOST READY */ 1129 req->td_data->status = 1130 AMD_ADDBITS(req->td_data->status, 1131 UDC_DMA_IN_STS_BS_HOST_READY, 1132 UDC_DMA_IN_STS_BS); 1133 } 1134 1135 /* disabled rx dma while descriptor update */ 1136 if (!ep->in) { 1137 /* stop RDE timer */ 1138 if (timer_pending(&udc_timer)) { 1139 set_rde = 0; 1140 mod_timer(&udc_timer, jiffies - 1); 1141 } 1142 /* clear RDE */ 1143 tmp = readl(&dev->regs->ctl); 1144 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE); 1145 writel(tmp, &dev->regs->ctl); 1146 open_rxfifo = 1; 1147 1148 /* 1149 * if BNA occurred then let BNA dummy desc. 1150 * point to current desc. 1151 */ 1152 if (ep->bna_occurred) { 1153 VDBG(dev, "copy to BNA dummy desc.\n"); 1154 memcpy(ep->bna_dummy_req->td_data, 1155 req->td_data, 1156 sizeof(struct udc_data_dma)); 1157 } 1158 } 1159 /* write desc pointer */ 1160 writel(req->td_phys, &ep->regs->desptr); 1161 1162 /* clear NAK by writing CNAK */ 1163 if (ep->naking) { 1164 tmp = readl(&ep->regs->ctl); 1165 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 1166 writel(tmp, &ep->regs->ctl); 1167 ep->naking = 0; 1168 UDC_QUEUE_CNAK(ep, ep->num); 1169 } 1170 1171 if (ep->in) { 1172 /* enable ep irq */ 1173 tmp = readl(&dev->regs->ep_irqmsk); 1174 tmp &= AMD_UNMASK_BIT(ep->num); 1175 writel(tmp, &dev->regs->ep_irqmsk); 1176 } 1177 } else if (ep->in) { 1178 /* enable ep irq */ 1179 tmp = readl(&dev->regs->ep_irqmsk); 1180 tmp &= AMD_UNMASK_BIT(ep->num); 1181 writel(tmp, &dev->regs->ep_irqmsk); 1182 } 1183 1184 } else if (ep->dma) { 1185 1186 /* 1187 * prep_dma not used for OUT ep's, this is not possible 1188 * for PPB modes, because of chain creation reasons 1189 */ 1190 if (ep->in) { 1191 retval = prep_dma(ep, req, GFP_ATOMIC); 1192 if (retval != 0) 1193 goto finished; 1194 } 1195 } 1196 VDBG(dev, "list_add\n"); 1197 /* add request to ep queue */ 1198 if (req) { 1199 1200 list_add_tail(&req->queue, &ep->queue); 1201 1202 /* open rxfifo if out data queued */ 1203 if (open_rxfifo) { 1204 /* enable DMA */ 1205 req->dma_going = 1; 1206 udc_set_rde(dev); 1207 if (ep->num != UDC_EP0OUT_IX) 1208 dev->data_ep_queued = 1; 1209 } 1210 /* stop OUT naking */ 1211 if (!ep->in) { 1212 if (!use_dma && udc_rxfifo_pending) { 1213 DBG(dev, "udc_queue(): pending bytes in " 1214 "rxfifo after nyet\n"); 1215 /* 1216 * read pending bytes afer nyet: 1217 * referring to isr 1218 */ 1219 if (udc_rxfifo_read(ep, req)) { 1220 /* finish */ 1221 complete_req(ep, req, 0); 1222 } 1223 udc_rxfifo_pending = 0; 1224 1225 } 1226 } 1227 } 1228 1229 finished: 1230 spin_unlock_irqrestore(&dev->lock, iflags); 1231 return retval; 1232 } 1233 1234 /* Empty request queue of an endpoint; caller holds spinlock */ empty_req_queue(struct udc_ep * ep)1235 void empty_req_queue(struct udc_ep *ep) 1236 { 1237 struct udc_request *req; 1238 1239 ep->halted = 1; 1240 while (!list_empty(&ep->queue)) { 1241 req = list_entry(ep->queue.next, 1242 struct udc_request, 1243 queue); 1244 complete_req(ep, req, -ESHUTDOWN); 1245 } 1246 } 1247 EXPORT_SYMBOL_GPL(empty_req_queue); 1248 1249 /* Dequeues a request packet, called by gadget driver */ udc_dequeue(struct usb_ep * usbep,struct usb_request * usbreq)1250 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq) 1251 { 1252 struct udc_ep *ep; 1253 struct udc_request *req; 1254 unsigned halted; 1255 unsigned long iflags; 1256 1257 ep = container_of(usbep, struct udc_ep, ep); 1258 if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0 1259 && ep->num != UDC_EP0OUT_IX))) 1260 return -EINVAL; 1261 1262 req = container_of(usbreq, struct udc_request, req); 1263 1264 spin_lock_irqsave(&ep->dev->lock, iflags); 1265 halted = ep->halted; 1266 ep->halted = 1; 1267 /* request in processing or next one */ 1268 if (ep->queue.next == &req->queue) { 1269 if (ep->dma && req->dma_going) { 1270 if (ep->in) 1271 ep->cancel_transfer = 1; 1272 else { 1273 u32 tmp; 1274 u32 dma_sts; 1275 /* stop potential receive DMA */ 1276 tmp = readl(&udc->regs->ctl); 1277 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE), 1278 &udc->regs->ctl); 1279 /* 1280 * Cancel transfer later in ISR 1281 * if descriptor was touched. 1282 */ 1283 dma_sts = AMD_GETBITS(req->td_data->status, 1284 UDC_DMA_OUT_STS_BS); 1285 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY) 1286 ep->cancel_transfer = 1; 1287 else { 1288 udc_init_bna_dummy(ep->req); 1289 writel(ep->bna_dummy_req->td_phys, 1290 &ep->regs->desptr); 1291 } 1292 writel(tmp, &udc->regs->ctl); 1293 } 1294 } 1295 } 1296 complete_req(ep, req, -ECONNRESET); 1297 ep->halted = halted; 1298 1299 spin_unlock_irqrestore(&ep->dev->lock, iflags); 1300 return 0; 1301 } 1302 1303 /* Halt or clear halt of endpoint */ 1304 static int udc_set_halt(struct usb_ep * usbep,int halt)1305 udc_set_halt(struct usb_ep *usbep, int halt) 1306 { 1307 struct udc_ep *ep; 1308 u32 tmp; 1309 unsigned long iflags; 1310 int retval = 0; 1311 1312 if (!usbep) 1313 return -EINVAL; 1314 1315 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt); 1316 1317 ep = container_of(usbep, struct udc_ep, ep); 1318 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX)) 1319 return -EINVAL; 1320 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN) 1321 return -ESHUTDOWN; 1322 1323 spin_lock_irqsave(&udc_stall_spinlock, iflags); 1324 /* halt or clear halt */ 1325 if (halt) { 1326 if (ep->num == 0) 1327 ep->dev->stall_ep0in = 1; 1328 else { 1329 /* 1330 * set STALL 1331 * rxfifo empty not taken into acount 1332 */ 1333 tmp = readl(&ep->regs->ctl); 1334 tmp |= AMD_BIT(UDC_EPCTL_S); 1335 writel(tmp, &ep->regs->ctl); 1336 ep->halted = 1; 1337 1338 /* setup poll timer */ 1339 if (!timer_pending(&udc_pollstall_timer)) { 1340 udc_pollstall_timer.expires = jiffies + 1341 HZ * UDC_POLLSTALL_TIMER_USECONDS 1342 / (1000 * 1000); 1343 if (!stop_pollstall_timer) { 1344 DBG(ep->dev, "start polltimer\n"); 1345 add_timer(&udc_pollstall_timer); 1346 } 1347 } 1348 } 1349 } else { 1350 /* ep is halted by set_halt() before */ 1351 if (ep->halted) { 1352 tmp = readl(&ep->regs->ctl); 1353 /* clear stall bit */ 1354 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); 1355 /* clear NAK by writing CNAK */ 1356 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 1357 writel(tmp, &ep->regs->ctl); 1358 ep->halted = 0; 1359 UDC_QUEUE_CNAK(ep, ep->num); 1360 } 1361 } 1362 spin_unlock_irqrestore(&udc_stall_spinlock, iflags); 1363 return retval; 1364 } 1365 1366 /* gadget interface */ 1367 static const struct usb_ep_ops udc_ep_ops = { 1368 .enable = udc_ep_enable, 1369 .disable = udc_ep_disable, 1370 1371 .alloc_request = udc_alloc_request, 1372 .free_request = udc_free_request, 1373 1374 .queue = udc_queue, 1375 .dequeue = udc_dequeue, 1376 1377 .set_halt = udc_set_halt, 1378 /* fifo ops not implemented */ 1379 }; 1380 1381 /*-------------------------------------------------------------------------*/ 1382 1383 /* Get frame counter (not implemented) */ udc_get_frame(struct usb_gadget * gadget)1384 static int udc_get_frame(struct usb_gadget *gadget) 1385 { 1386 return -EOPNOTSUPP; 1387 } 1388 1389 /* Initiates a remote wakeup */ udc_remote_wakeup(struct udc * dev)1390 static int udc_remote_wakeup(struct udc *dev) 1391 { 1392 unsigned long flags; 1393 u32 tmp; 1394 1395 DBG(dev, "UDC initiates remote wakeup\n"); 1396 1397 spin_lock_irqsave(&dev->lock, flags); 1398 1399 tmp = readl(&dev->regs->ctl); 1400 tmp |= AMD_BIT(UDC_DEVCTL_RES); 1401 writel(tmp, &dev->regs->ctl); 1402 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES); 1403 writel(tmp, &dev->regs->ctl); 1404 1405 spin_unlock_irqrestore(&dev->lock, flags); 1406 return 0; 1407 } 1408 1409 /* Remote wakeup gadget interface */ udc_wakeup(struct usb_gadget * gadget)1410 static int udc_wakeup(struct usb_gadget *gadget) 1411 { 1412 struct udc *dev; 1413 1414 if (!gadget) 1415 return -EINVAL; 1416 dev = container_of(gadget, struct udc, gadget); 1417 udc_remote_wakeup(dev); 1418 1419 return 0; 1420 } 1421 1422 static int amd5536_udc_start(struct usb_gadget *g, 1423 struct usb_gadget_driver *driver); 1424 static int amd5536_udc_stop(struct usb_gadget *g); 1425 1426 static const struct usb_gadget_ops udc_ops = { 1427 .wakeup = udc_wakeup, 1428 .get_frame = udc_get_frame, 1429 .udc_start = amd5536_udc_start, 1430 .udc_stop = amd5536_udc_stop, 1431 }; 1432 1433 /* Setups endpoint parameters, adds endpoints to linked list */ make_ep_lists(struct udc * dev)1434 static void make_ep_lists(struct udc *dev) 1435 { 1436 /* make gadget ep lists */ 1437 INIT_LIST_HEAD(&dev->gadget.ep_list); 1438 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list, 1439 &dev->gadget.ep_list); 1440 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list, 1441 &dev->gadget.ep_list); 1442 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list, 1443 &dev->gadget.ep_list); 1444 1445 /* fifo config */ 1446 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE; 1447 if (dev->gadget.speed == USB_SPEED_FULL) 1448 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE; 1449 else if (dev->gadget.speed == USB_SPEED_HIGH) 1450 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf; 1451 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE; 1452 } 1453 1454 /* Inits UDC context */ udc_basic_init(struct udc * dev)1455 void udc_basic_init(struct udc *dev) 1456 { 1457 u32 tmp; 1458 1459 DBG(dev, "udc_basic_init()\n"); 1460 1461 dev->gadget.speed = USB_SPEED_UNKNOWN; 1462 1463 /* stop RDE timer */ 1464 if (timer_pending(&udc_timer)) { 1465 set_rde = 0; 1466 mod_timer(&udc_timer, jiffies - 1); 1467 } 1468 /* stop poll stall timer */ 1469 if (timer_pending(&udc_pollstall_timer)) 1470 mod_timer(&udc_pollstall_timer, jiffies - 1); 1471 /* disable DMA */ 1472 tmp = readl(&dev->regs->ctl); 1473 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE); 1474 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE); 1475 writel(tmp, &dev->regs->ctl); 1476 1477 /* enable dynamic CSR programming */ 1478 tmp = readl(&dev->regs->cfg); 1479 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG); 1480 /* set self powered */ 1481 tmp |= AMD_BIT(UDC_DEVCFG_SP); 1482 /* set remote wakeupable */ 1483 tmp |= AMD_BIT(UDC_DEVCFG_RWKP); 1484 writel(tmp, &dev->regs->cfg); 1485 1486 make_ep_lists(dev); 1487 1488 dev->data_ep_enabled = 0; 1489 dev->data_ep_queued = 0; 1490 } 1491 EXPORT_SYMBOL_GPL(udc_basic_init); 1492 1493 /* init registers at driver load time */ startup_registers(struct udc * dev)1494 static int startup_registers(struct udc *dev) 1495 { 1496 u32 tmp; 1497 1498 /* init controller by soft reset */ 1499 udc_soft_reset(dev); 1500 1501 /* mask not needed interrupts */ 1502 udc_mask_unused_interrupts(dev); 1503 1504 /* put into initial config */ 1505 udc_basic_init(dev); 1506 /* link up all endpoints */ 1507 udc_setup_endpoints(dev); 1508 1509 /* program speed */ 1510 tmp = readl(&dev->regs->cfg); 1511 if (use_fullspeed) 1512 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD); 1513 else 1514 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD); 1515 writel(tmp, &dev->regs->cfg); 1516 1517 return 0; 1518 } 1519 1520 /* Sets initial endpoint parameters */ udc_setup_endpoints(struct udc * dev)1521 static void udc_setup_endpoints(struct udc *dev) 1522 { 1523 struct udc_ep *ep; 1524 u32 tmp; 1525 u32 reg; 1526 1527 DBG(dev, "udc_setup_endpoints()\n"); 1528 1529 /* read enum speed */ 1530 tmp = readl(&dev->regs->sts); 1531 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED); 1532 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) 1533 dev->gadget.speed = USB_SPEED_HIGH; 1534 else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) 1535 dev->gadget.speed = USB_SPEED_FULL; 1536 1537 /* set basic ep parameters */ 1538 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) { 1539 ep = &dev->ep[tmp]; 1540 ep->dev = dev; 1541 ep->ep.name = ep_info[tmp].name; 1542 ep->ep.caps = ep_info[tmp].caps; 1543 ep->num = tmp; 1544 /* txfifo size is calculated at enable time */ 1545 ep->txfifo = dev->txfifo; 1546 1547 /* fifo size */ 1548 if (tmp < UDC_EPIN_NUM) { 1549 ep->fifo_depth = UDC_TXFIFO_SIZE; 1550 ep->in = 1; 1551 } else { 1552 ep->fifo_depth = UDC_RXFIFO_SIZE; 1553 ep->in = 0; 1554 1555 } 1556 ep->regs = &dev->ep_regs[tmp]; 1557 /* 1558 * ep will be reset only if ep was not enabled before to avoid 1559 * disabling ep interrupts when ENUM interrupt occurs but ep is 1560 * not enabled by gadget driver 1561 */ 1562 if (!ep->ep.desc) 1563 ep_init(dev->regs, ep); 1564 1565 if (use_dma) { 1566 /* 1567 * ep->dma is not really used, just to indicate that 1568 * DMA is active: remove this 1569 * dma regs = dev control regs 1570 */ 1571 ep->dma = &dev->regs->ctl; 1572 1573 /* nak OUT endpoints until enable - not for ep0 */ 1574 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX 1575 && tmp > UDC_EPIN_NUM) { 1576 /* set NAK */ 1577 reg = readl(&dev->ep[tmp].regs->ctl); 1578 reg |= AMD_BIT(UDC_EPCTL_SNAK); 1579 writel(reg, &dev->ep[tmp].regs->ctl); 1580 dev->ep[tmp].naking = 1; 1581 1582 } 1583 } 1584 } 1585 /* EP0 max packet */ 1586 if (dev->gadget.speed == USB_SPEED_FULL) { 1587 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep, 1588 UDC_FS_EP0IN_MAX_PKT_SIZE); 1589 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep, 1590 UDC_FS_EP0OUT_MAX_PKT_SIZE); 1591 } else if (dev->gadget.speed == USB_SPEED_HIGH) { 1592 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep, 1593 UDC_EP0IN_MAX_PKT_SIZE); 1594 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep, 1595 UDC_EP0OUT_MAX_PKT_SIZE); 1596 } 1597 1598 /* 1599 * with suspend bug workaround, ep0 params for gadget driver 1600 * are set at gadget driver bind() call 1601 */ 1602 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep; 1603 dev->ep[UDC_EP0IN_IX].halted = 0; 1604 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); 1605 1606 /* init cfg/alt/int */ 1607 dev->cur_config = 0; 1608 dev->cur_intf = 0; 1609 dev->cur_alt = 0; 1610 } 1611 1612 /* Bringup after Connect event, initial bringup to be ready for ep0 events */ usb_connect(struct udc * dev)1613 static void usb_connect(struct udc *dev) 1614 { 1615 /* Return if already connected */ 1616 if (dev->connected) 1617 return; 1618 1619 dev_info(dev->dev, "USB Connect\n"); 1620 1621 dev->connected = 1; 1622 1623 /* put into initial config */ 1624 udc_basic_init(dev); 1625 1626 /* enable device setup interrupts */ 1627 udc_enable_dev_setup_interrupts(dev); 1628 } 1629 1630 /* 1631 * Calls gadget with disconnect event and resets the UDC and makes 1632 * initial bringup to be ready for ep0 events 1633 */ usb_disconnect(struct udc * dev)1634 static void usb_disconnect(struct udc *dev) 1635 { 1636 u32 tmp; 1637 1638 /* Return if already disconnected */ 1639 if (!dev->connected) 1640 return; 1641 1642 dev_info(dev->dev, "USB Disconnect\n"); 1643 1644 dev->connected = 0; 1645 1646 /* mask interrupts */ 1647 udc_mask_unused_interrupts(dev); 1648 1649 if (dev->driver) { 1650 spin_unlock(&dev->lock); 1651 dev->driver->disconnect(&dev->gadget); 1652 spin_lock(&dev->lock); 1653 1654 /* empty queues */ 1655 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) 1656 empty_req_queue(&dev->ep[tmp]); 1657 } 1658 1659 /* disable ep0 */ 1660 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]); 1661 1662 if (!soft_reset_occured) { 1663 /* init controller by soft reset */ 1664 udc_soft_reset(dev); 1665 soft_reset_occured++; 1666 } 1667 1668 /* re-enable dev interrupts */ 1669 udc_enable_dev_setup_interrupts(dev); 1670 /* back to full speed ? */ 1671 if (use_fullspeed) { 1672 tmp = readl(&dev->regs->cfg); 1673 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD); 1674 writel(tmp, &dev->regs->cfg); 1675 } 1676 } 1677 1678 /* Reset the UDC core */ udc_soft_reset(struct udc * dev)1679 static void udc_soft_reset(struct udc *dev) 1680 { 1681 unsigned long flags; 1682 1683 DBG(dev, "Soft reset\n"); 1684 /* 1685 * reset possible waiting interrupts, because int. 1686 * status is lost after soft reset, 1687 * ep int. status reset 1688 */ 1689 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts); 1690 /* device int. status reset */ 1691 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts); 1692 1693 /* Don't do this for Broadcom UDC since this is a reserved 1694 * bit. 1695 */ 1696 if (dev->chiprev != UDC_BCM_REV) { 1697 spin_lock_irqsave(&udc_irq_spinlock, flags); 1698 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg); 1699 readl(&dev->regs->cfg); 1700 spin_unlock_irqrestore(&udc_irq_spinlock, flags); 1701 } 1702 } 1703 1704 /* RDE timer callback to set RDE bit */ udc_timer_function(struct timer_list * unused)1705 static void udc_timer_function(struct timer_list *unused) 1706 { 1707 u32 tmp; 1708 1709 spin_lock_irq(&udc_irq_spinlock); 1710 1711 if (set_rde > 0) { 1712 /* 1713 * open the fifo if fifo was filled on last timer call 1714 * conditionally 1715 */ 1716 if (set_rde > 1) { 1717 /* set RDE to receive setup data */ 1718 tmp = readl(&udc->regs->ctl); 1719 tmp |= AMD_BIT(UDC_DEVCTL_RDE); 1720 writel(tmp, &udc->regs->ctl); 1721 set_rde = -1; 1722 } else if (readl(&udc->regs->sts) 1723 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) { 1724 /* 1725 * if fifo empty setup polling, do not just 1726 * open the fifo 1727 */ 1728 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV; 1729 if (!stop_timer) 1730 add_timer(&udc_timer); 1731 } else { 1732 /* 1733 * fifo contains data now, setup timer for opening 1734 * the fifo when timer expires to be able to receive 1735 * setup packets, when data packets gets queued by 1736 * gadget layer then timer will forced to expire with 1737 * set_rde=0 (RDE is set in udc_queue()) 1738 */ 1739 set_rde++; 1740 /* debug: lhadmot_timer_start = 221070 */ 1741 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS; 1742 if (!stop_timer) 1743 add_timer(&udc_timer); 1744 } 1745 1746 } else 1747 set_rde = -1; /* RDE was set by udc_queue() */ 1748 spin_unlock_irq(&udc_irq_spinlock); 1749 if (stop_timer) 1750 complete(&on_exit); 1751 1752 } 1753 1754 /* Handle halt state, used in stall poll timer */ udc_handle_halt_state(struct udc_ep * ep)1755 static void udc_handle_halt_state(struct udc_ep *ep) 1756 { 1757 u32 tmp; 1758 /* set stall as long not halted */ 1759 if (ep->halted == 1) { 1760 tmp = readl(&ep->regs->ctl); 1761 /* STALL cleared ? */ 1762 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) { 1763 /* 1764 * FIXME: MSC spec requires that stall remains 1765 * even on receivng of CLEAR_FEATURE HALT. So 1766 * we would set STALL again here to be compliant. 1767 * But with current mass storage drivers this does 1768 * not work (would produce endless host retries). 1769 * So we clear halt on CLEAR_FEATURE. 1770 * 1771 DBG(ep->dev, "ep %d: set STALL again\n", ep->num); 1772 tmp |= AMD_BIT(UDC_EPCTL_S); 1773 writel(tmp, &ep->regs->ctl);*/ 1774 1775 /* clear NAK by writing CNAK */ 1776 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 1777 writel(tmp, &ep->regs->ctl); 1778 ep->halted = 0; 1779 UDC_QUEUE_CNAK(ep, ep->num); 1780 } 1781 } 1782 } 1783 1784 /* Stall timer callback to poll S bit and set it again after */ udc_pollstall_timer_function(struct timer_list * unused)1785 static void udc_pollstall_timer_function(struct timer_list *unused) 1786 { 1787 struct udc_ep *ep; 1788 int halted = 0; 1789 1790 spin_lock_irq(&udc_stall_spinlock); 1791 /* 1792 * only one IN and OUT endpoints are handled 1793 * IN poll stall 1794 */ 1795 ep = &udc->ep[UDC_EPIN_IX]; 1796 udc_handle_halt_state(ep); 1797 if (ep->halted) 1798 halted = 1; 1799 /* OUT poll stall */ 1800 ep = &udc->ep[UDC_EPOUT_IX]; 1801 udc_handle_halt_state(ep); 1802 if (ep->halted) 1803 halted = 1; 1804 1805 /* setup timer again when still halted */ 1806 if (!stop_pollstall_timer && halted) { 1807 udc_pollstall_timer.expires = jiffies + 1808 HZ * UDC_POLLSTALL_TIMER_USECONDS 1809 / (1000 * 1000); 1810 add_timer(&udc_pollstall_timer); 1811 } 1812 spin_unlock_irq(&udc_stall_spinlock); 1813 1814 if (stop_pollstall_timer) 1815 complete(&on_pollstall_exit); 1816 } 1817 1818 /* Inits endpoint 0 so that SETUP packets are processed */ activate_control_endpoints(struct udc * dev)1819 static void activate_control_endpoints(struct udc *dev) 1820 { 1821 u32 tmp; 1822 1823 DBG(dev, "activate_control_endpoints\n"); 1824 1825 /* flush fifo */ 1826 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); 1827 tmp |= AMD_BIT(UDC_EPCTL_F); 1828 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); 1829 1830 /* set ep0 directions */ 1831 dev->ep[UDC_EP0IN_IX].in = 1; 1832 dev->ep[UDC_EP0OUT_IX].in = 0; 1833 1834 /* set buffer size (tx fifo entries) of EP0_IN */ 1835 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum); 1836 if (dev->gadget.speed == USB_SPEED_FULL) 1837 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE, 1838 UDC_EPIN_BUFF_SIZE); 1839 else if (dev->gadget.speed == USB_SPEED_HIGH) 1840 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE, 1841 UDC_EPIN_BUFF_SIZE); 1842 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum); 1843 1844 /* set max packet size of EP0_IN */ 1845 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt); 1846 if (dev->gadget.speed == USB_SPEED_FULL) 1847 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE, 1848 UDC_EP_MAX_PKT_SIZE); 1849 else if (dev->gadget.speed == USB_SPEED_HIGH) 1850 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE, 1851 UDC_EP_MAX_PKT_SIZE); 1852 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt); 1853 1854 /* set max packet size of EP0_OUT */ 1855 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt); 1856 if (dev->gadget.speed == USB_SPEED_FULL) 1857 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE, 1858 UDC_EP_MAX_PKT_SIZE); 1859 else if (dev->gadget.speed == USB_SPEED_HIGH) 1860 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE, 1861 UDC_EP_MAX_PKT_SIZE); 1862 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt); 1863 1864 /* set max packet size of EP0 in UDC CSR */ 1865 tmp = readl(&dev->csr->ne[0]); 1866 if (dev->gadget.speed == USB_SPEED_FULL) 1867 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE, 1868 UDC_CSR_NE_MAX_PKT); 1869 else if (dev->gadget.speed == USB_SPEED_HIGH) 1870 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE, 1871 UDC_CSR_NE_MAX_PKT); 1872 writel(tmp, &dev->csr->ne[0]); 1873 1874 if (use_dma) { 1875 dev->ep[UDC_EP0OUT_IX].td->status |= 1876 AMD_BIT(UDC_DMA_OUT_STS_L); 1877 /* write dma desc address */ 1878 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma, 1879 &dev->ep[UDC_EP0OUT_IX].regs->subptr); 1880 writel(dev->ep[UDC_EP0OUT_IX].td_phys, 1881 &dev->ep[UDC_EP0OUT_IX].regs->desptr); 1882 /* stop RDE timer */ 1883 if (timer_pending(&udc_timer)) { 1884 set_rde = 0; 1885 mod_timer(&udc_timer, jiffies - 1); 1886 } 1887 /* stop pollstall timer */ 1888 if (timer_pending(&udc_pollstall_timer)) 1889 mod_timer(&udc_pollstall_timer, jiffies - 1); 1890 /* enable DMA */ 1891 tmp = readl(&dev->regs->ctl); 1892 tmp |= AMD_BIT(UDC_DEVCTL_MODE) 1893 | AMD_BIT(UDC_DEVCTL_RDE) 1894 | AMD_BIT(UDC_DEVCTL_TDE); 1895 if (use_dma_bufferfill_mode) 1896 tmp |= AMD_BIT(UDC_DEVCTL_BF); 1897 else if (use_dma_ppb_du) 1898 tmp |= AMD_BIT(UDC_DEVCTL_DU); 1899 writel(tmp, &dev->regs->ctl); 1900 } 1901 1902 /* clear NAK by writing CNAK for EP0IN */ 1903 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); 1904 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 1905 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); 1906 dev->ep[UDC_EP0IN_IX].naking = 0; 1907 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX); 1908 1909 /* clear NAK by writing CNAK for EP0OUT */ 1910 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); 1911 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 1912 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl); 1913 dev->ep[UDC_EP0OUT_IX].naking = 0; 1914 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX); 1915 } 1916 1917 /* Make endpoint 0 ready for control traffic */ setup_ep0(struct udc * dev)1918 static int setup_ep0(struct udc *dev) 1919 { 1920 activate_control_endpoints(dev); 1921 /* enable ep0 interrupts */ 1922 udc_enable_ep0_interrupts(dev); 1923 /* enable device setup interrupts */ 1924 udc_enable_dev_setup_interrupts(dev); 1925 1926 return 0; 1927 } 1928 1929 /* Called by gadget driver to register itself */ amd5536_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1930 static int amd5536_udc_start(struct usb_gadget *g, 1931 struct usb_gadget_driver *driver) 1932 { 1933 struct udc *dev = to_amd5536_udc(g); 1934 u32 tmp; 1935 1936 dev->driver = driver; 1937 1938 /* Some gadget drivers use both ep0 directions. 1939 * NOTE: to gadget driver, ep0 is just one endpoint... 1940 */ 1941 dev->ep[UDC_EP0OUT_IX].ep.driver_data = 1942 dev->ep[UDC_EP0IN_IX].ep.driver_data; 1943 1944 /* get ready for ep0 traffic */ 1945 setup_ep0(dev); 1946 1947 /* clear SD */ 1948 tmp = readl(&dev->regs->ctl); 1949 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD); 1950 writel(tmp, &dev->regs->ctl); 1951 1952 usb_connect(dev); 1953 1954 return 0; 1955 } 1956 1957 /* shutdown requests and disconnect from gadget */ 1958 static void shutdown(struct udc * dev,struct usb_gadget_driver * driver)1959 shutdown(struct udc *dev, struct usb_gadget_driver *driver) 1960 __releases(dev->lock) 1961 __acquires(dev->lock) 1962 { 1963 int tmp; 1964 1965 /* empty queues and init hardware */ 1966 udc_basic_init(dev); 1967 1968 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) 1969 empty_req_queue(&dev->ep[tmp]); 1970 1971 udc_setup_endpoints(dev); 1972 } 1973 1974 /* Called by gadget driver to unregister itself */ amd5536_udc_stop(struct usb_gadget * g)1975 static int amd5536_udc_stop(struct usb_gadget *g) 1976 { 1977 struct udc *dev = to_amd5536_udc(g); 1978 unsigned long flags; 1979 u32 tmp; 1980 1981 spin_lock_irqsave(&dev->lock, flags); 1982 udc_mask_unused_interrupts(dev); 1983 shutdown(dev, NULL); 1984 spin_unlock_irqrestore(&dev->lock, flags); 1985 1986 dev->driver = NULL; 1987 1988 /* set SD */ 1989 tmp = readl(&dev->regs->ctl); 1990 tmp |= AMD_BIT(UDC_DEVCTL_SD); 1991 writel(tmp, &dev->regs->ctl); 1992 1993 return 0; 1994 } 1995 1996 /* Clear pending NAK bits */ udc_process_cnak_queue(struct udc * dev)1997 static void udc_process_cnak_queue(struct udc *dev) 1998 { 1999 u32 tmp; 2000 u32 reg; 2001 2002 /* check epin's */ 2003 DBG(dev, "CNAK pending queue processing\n"); 2004 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) { 2005 if (cnak_pending & (1 << tmp)) { 2006 DBG(dev, "CNAK pending for ep%d\n", tmp); 2007 /* clear NAK by writing CNAK */ 2008 reg = readl(&dev->ep[tmp].regs->ctl); 2009 reg |= AMD_BIT(UDC_EPCTL_CNAK); 2010 writel(reg, &dev->ep[tmp].regs->ctl); 2011 dev->ep[tmp].naking = 0; 2012 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num); 2013 } 2014 } 2015 /* ... and ep0out */ 2016 if (cnak_pending & (1 << UDC_EP0OUT_IX)) { 2017 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX); 2018 /* clear NAK by writing CNAK */ 2019 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); 2020 reg |= AMD_BIT(UDC_EPCTL_CNAK); 2021 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl); 2022 dev->ep[UDC_EP0OUT_IX].naking = 0; 2023 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], 2024 dev->ep[UDC_EP0OUT_IX].num); 2025 } 2026 } 2027 2028 /* Enabling RX DMA after setup packet */ udc_ep0_set_rde(struct udc * dev)2029 static void udc_ep0_set_rde(struct udc *dev) 2030 { 2031 if (use_dma) { 2032 /* 2033 * only enable RXDMA when no data endpoint enabled 2034 * or data is queued 2035 */ 2036 if (!dev->data_ep_enabled || dev->data_ep_queued) { 2037 udc_set_rde(dev); 2038 } else { 2039 /* 2040 * setup timer for enabling RDE (to not enable 2041 * RXFIFO DMA for data endpoints to early) 2042 */ 2043 if (set_rde != 0 && !timer_pending(&udc_timer)) { 2044 udc_timer.expires = 2045 jiffies + HZ/UDC_RDE_TIMER_DIV; 2046 set_rde = 1; 2047 if (!stop_timer) 2048 add_timer(&udc_timer); 2049 } 2050 } 2051 } 2052 } 2053 2054 2055 /* Interrupt handler for data OUT traffic */ udc_data_out_isr(struct udc * dev,int ep_ix)2056 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix) 2057 { 2058 irqreturn_t ret_val = IRQ_NONE; 2059 u32 tmp; 2060 struct udc_ep *ep; 2061 struct udc_request *req; 2062 unsigned int count; 2063 struct udc_data_dma *td = NULL; 2064 unsigned dma_done; 2065 2066 VDBG(dev, "ep%d irq\n", ep_ix); 2067 ep = &dev->ep[ep_ix]; 2068 2069 tmp = readl(&ep->regs->sts); 2070 if (use_dma) { 2071 /* BNA event ? */ 2072 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) { 2073 DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n", 2074 ep->num, readl(&ep->regs->desptr)); 2075 /* clear BNA */ 2076 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts); 2077 if (!ep->cancel_transfer) 2078 ep->bna_occurred = 1; 2079 else 2080 ep->cancel_transfer = 0; 2081 ret_val = IRQ_HANDLED; 2082 goto finished; 2083 } 2084 } 2085 /* HE event ? */ 2086 if (tmp & AMD_BIT(UDC_EPSTS_HE)) { 2087 dev_err(dev->dev, "HE ep%dout occurred\n", ep->num); 2088 2089 /* clear HE */ 2090 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts); 2091 ret_val = IRQ_HANDLED; 2092 goto finished; 2093 } 2094 2095 if (!list_empty(&ep->queue)) { 2096 2097 /* next request */ 2098 req = list_entry(ep->queue.next, 2099 struct udc_request, queue); 2100 } else { 2101 req = NULL; 2102 udc_rxfifo_pending = 1; 2103 } 2104 VDBG(dev, "req = %p\n", req); 2105 /* fifo mode */ 2106 if (!use_dma) { 2107 2108 /* read fifo */ 2109 if (req && udc_rxfifo_read(ep, req)) { 2110 ret_val = IRQ_HANDLED; 2111 2112 /* finish */ 2113 complete_req(ep, req, 0); 2114 /* next request */ 2115 if (!list_empty(&ep->queue) && !ep->halted) { 2116 req = list_entry(ep->queue.next, 2117 struct udc_request, queue); 2118 } else 2119 req = NULL; 2120 } 2121 2122 /* DMA */ 2123 } else if (!ep->cancel_transfer && req) { 2124 ret_val = IRQ_HANDLED; 2125 2126 /* check for DMA done */ 2127 if (!use_dma_ppb) { 2128 dma_done = AMD_GETBITS(req->td_data->status, 2129 UDC_DMA_OUT_STS_BS); 2130 /* packet per buffer mode - rx bytes */ 2131 } else { 2132 /* 2133 * if BNA occurred then recover desc. from 2134 * BNA dummy desc. 2135 */ 2136 if (ep->bna_occurred) { 2137 VDBG(dev, "Recover desc. from BNA dummy\n"); 2138 memcpy(req->td_data, ep->bna_dummy_req->td_data, 2139 sizeof(struct udc_data_dma)); 2140 ep->bna_occurred = 0; 2141 udc_init_bna_dummy(ep->req); 2142 } 2143 td = udc_get_last_dma_desc(req); 2144 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS); 2145 } 2146 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) { 2147 /* buffer fill mode - rx bytes */ 2148 if (!use_dma_ppb) { 2149 /* received number bytes */ 2150 count = AMD_GETBITS(req->td_data->status, 2151 UDC_DMA_OUT_STS_RXBYTES); 2152 VDBG(dev, "rx bytes=%u\n", count); 2153 /* packet per buffer mode - rx bytes */ 2154 } else { 2155 VDBG(dev, "req->td_data=%p\n", req->td_data); 2156 VDBG(dev, "last desc = %p\n", td); 2157 /* received number bytes */ 2158 if (use_dma_ppb_du) { 2159 /* every desc. counts bytes */ 2160 count = udc_get_ppbdu_rxbytes(req); 2161 } else { 2162 /* last desc. counts bytes */ 2163 count = AMD_GETBITS(td->status, 2164 UDC_DMA_OUT_STS_RXBYTES); 2165 if (!count && req->req.length 2166 == UDC_DMA_MAXPACKET) { 2167 /* 2168 * on 64k packets the RXBYTES 2169 * field is zero 2170 */ 2171 count = UDC_DMA_MAXPACKET; 2172 } 2173 } 2174 VDBG(dev, "last desc rx bytes=%u\n", count); 2175 } 2176 2177 tmp = req->req.length - req->req.actual; 2178 if (count > tmp) { 2179 if ((tmp % ep->ep.maxpacket) != 0) { 2180 DBG(dev, "%s: rx %db, space=%db\n", 2181 ep->ep.name, count, tmp); 2182 req->req.status = -EOVERFLOW; 2183 } 2184 count = tmp; 2185 } 2186 req->req.actual += count; 2187 req->dma_going = 0; 2188 /* complete request */ 2189 complete_req(ep, req, 0); 2190 2191 /* next request */ 2192 if (!list_empty(&ep->queue) && !ep->halted) { 2193 req = list_entry(ep->queue.next, 2194 struct udc_request, 2195 queue); 2196 /* 2197 * DMA may be already started by udc_queue() 2198 * called by gadget drivers completion 2199 * routine. This happens when queue 2200 * holds one request only. 2201 */ 2202 if (req->dma_going == 0) { 2203 /* next dma */ 2204 if (prep_dma(ep, req, GFP_ATOMIC) != 0) 2205 goto finished; 2206 /* write desc pointer */ 2207 writel(req->td_phys, 2208 &ep->regs->desptr); 2209 req->dma_going = 1; 2210 /* enable DMA */ 2211 udc_set_rde(dev); 2212 } 2213 } else { 2214 /* 2215 * implant BNA dummy descriptor to allow 2216 * RXFIFO opening by RDE 2217 */ 2218 if (ep->bna_dummy_req) { 2219 /* write desc pointer */ 2220 writel(ep->bna_dummy_req->td_phys, 2221 &ep->regs->desptr); 2222 ep->bna_occurred = 0; 2223 } 2224 2225 /* 2226 * schedule timer for setting RDE if queue 2227 * remains empty to allow ep0 packets pass 2228 * through 2229 */ 2230 if (set_rde != 0 2231 && !timer_pending(&udc_timer)) { 2232 udc_timer.expires = 2233 jiffies 2234 + HZ*UDC_RDE_TIMER_SECONDS; 2235 set_rde = 1; 2236 if (!stop_timer) 2237 add_timer(&udc_timer); 2238 } 2239 if (ep->num != UDC_EP0OUT_IX) 2240 dev->data_ep_queued = 0; 2241 } 2242 2243 } else { 2244 /* 2245 * RX DMA must be reenabled for each desc in PPBDU mode 2246 * and must be enabled for PPBNDU mode in case of BNA 2247 */ 2248 udc_set_rde(dev); 2249 } 2250 2251 } else if (ep->cancel_transfer) { 2252 ret_val = IRQ_HANDLED; 2253 ep->cancel_transfer = 0; 2254 } 2255 2256 /* check pending CNAKS */ 2257 if (cnak_pending) { 2258 /* CNAk processing when rxfifo empty only */ 2259 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) 2260 udc_process_cnak_queue(dev); 2261 } 2262 2263 /* clear OUT bits in ep status */ 2264 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts); 2265 finished: 2266 return ret_val; 2267 } 2268 2269 /* Interrupt handler for data IN traffic */ udc_data_in_isr(struct udc * dev,int ep_ix)2270 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix) 2271 { 2272 irqreturn_t ret_val = IRQ_NONE; 2273 u32 tmp; 2274 u32 epsts; 2275 struct udc_ep *ep; 2276 struct udc_request *req; 2277 struct udc_data_dma *td; 2278 unsigned len; 2279 2280 ep = &dev->ep[ep_ix]; 2281 2282 epsts = readl(&ep->regs->sts); 2283 if (use_dma) { 2284 /* BNA ? */ 2285 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) { 2286 dev_err(dev->dev, 2287 "BNA ep%din occurred - DESPTR = %08lx\n", 2288 ep->num, 2289 (unsigned long) readl(&ep->regs->desptr)); 2290 2291 /* clear BNA */ 2292 writel(epsts, &ep->regs->sts); 2293 ret_val = IRQ_HANDLED; 2294 goto finished; 2295 } 2296 } 2297 /* HE event ? */ 2298 if (epsts & AMD_BIT(UDC_EPSTS_HE)) { 2299 dev_err(dev->dev, 2300 "HE ep%dn occurred - DESPTR = %08lx\n", 2301 ep->num, (unsigned long) readl(&ep->regs->desptr)); 2302 2303 /* clear HE */ 2304 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts); 2305 ret_val = IRQ_HANDLED; 2306 goto finished; 2307 } 2308 2309 /* DMA completion */ 2310 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) { 2311 VDBG(dev, "TDC set- completion\n"); 2312 ret_val = IRQ_HANDLED; 2313 if (!ep->cancel_transfer && !list_empty(&ep->queue)) { 2314 req = list_entry(ep->queue.next, 2315 struct udc_request, queue); 2316 /* 2317 * length bytes transferred 2318 * check dma done of last desc. in PPBDU mode 2319 */ 2320 if (use_dma_ppb_du) { 2321 td = udc_get_last_dma_desc(req); 2322 if (td) 2323 req->req.actual = req->req.length; 2324 } else { 2325 /* assume all bytes transferred */ 2326 req->req.actual = req->req.length; 2327 } 2328 2329 if (req->req.actual == req->req.length) { 2330 /* complete req */ 2331 complete_req(ep, req, 0); 2332 req->dma_going = 0; 2333 /* further request available ? */ 2334 if (list_empty(&ep->queue)) { 2335 /* disable interrupt */ 2336 tmp = readl(&dev->regs->ep_irqmsk); 2337 tmp |= AMD_BIT(ep->num); 2338 writel(tmp, &dev->regs->ep_irqmsk); 2339 } 2340 } 2341 } 2342 ep->cancel_transfer = 0; 2343 2344 } 2345 /* 2346 * status reg has IN bit set and TDC not set (if TDC was handled, 2347 * IN must not be handled (UDC defect) ? 2348 */ 2349 if ((epsts & AMD_BIT(UDC_EPSTS_IN)) 2350 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) { 2351 ret_val = IRQ_HANDLED; 2352 if (!list_empty(&ep->queue)) { 2353 /* next request */ 2354 req = list_entry(ep->queue.next, 2355 struct udc_request, queue); 2356 /* FIFO mode */ 2357 if (!use_dma) { 2358 /* write fifo */ 2359 udc_txfifo_write(ep, &req->req); 2360 len = req->req.length - req->req.actual; 2361 if (len > ep->ep.maxpacket) 2362 len = ep->ep.maxpacket; 2363 req->req.actual += len; 2364 if (req->req.actual == req->req.length 2365 || (len != ep->ep.maxpacket)) { 2366 /* complete req */ 2367 complete_req(ep, req, 0); 2368 } 2369 /* DMA */ 2370 } else if (req && !req->dma_going) { 2371 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n", 2372 req, req->td_data); 2373 if (req->td_data) { 2374 2375 req->dma_going = 1; 2376 2377 /* 2378 * unset L bit of first desc. 2379 * for chain 2380 */ 2381 if (use_dma_ppb && req->req.length > 2382 ep->ep.maxpacket) { 2383 req->td_data->status &= 2384 AMD_CLEAR_BIT( 2385 UDC_DMA_IN_STS_L); 2386 } 2387 2388 /* write desc pointer */ 2389 writel(req->td_phys, &ep->regs->desptr); 2390 2391 /* set HOST READY */ 2392 req->td_data->status = 2393 AMD_ADDBITS( 2394 req->td_data->status, 2395 UDC_DMA_IN_STS_BS_HOST_READY, 2396 UDC_DMA_IN_STS_BS); 2397 2398 /* set poll demand bit */ 2399 tmp = readl(&ep->regs->ctl); 2400 tmp |= AMD_BIT(UDC_EPCTL_P); 2401 writel(tmp, &ep->regs->ctl); 2402 } 2403 } 2404 2405 } else if (!use_dma && ep->in) { 2406 /* disable interrupt */ 2407 tmp = readl( 2408 &dev->regs->ep_irqmsk); 2409 tmp |= AMD_BIT(ep->num); 2410 writel(tmp, 2411 &dev->regs->ep_irqmsk); 2412 } 2413 } 2414 /* clear status bits */ 2415 writel(epsts, &ep->regs->sts); 2416 2417 finished: 2418 return ret_val; 2419 2420 } 2421 2422 /* Interrupt handler for Control OUT traffic */ udc_control_out_isr(struct udc * dev)2423 static irqreturn_t udc_control_out_isr(struct udc *dev) 2424 __releases(dev->lock) 2425 __acquires(dev->lock) 2426 { 2427 irqreturn_t ret_val = IRQ_NONE; 2428 u32 tmp; 2429 int setup_supported; 2430 u32 count; 2431 int set = 0; 2432 struct udc_ep *ep; 2433 struct udc_ep *ep_tmp; 2434 2435 ep = &dev->ep[UDC_EP0OUT_IX]; 2436 2437 /* clear irq */ 2438 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts); 2439 2440 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts); 2441 /* check BNA and clear if set */ 2442 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) { 2443 VDBG(dev, "ep0: BNA set\n"); 2444 writel(AMD_BIT(UDC_EPSTS_BNA), 2445 &dev->ep[UDC_EP0OUT_IX].regs->sts); 2446 ep->bna_occurred = 1; 2447 ret_val = IRQ_HANDLED; 2448 goto finished; 2449 } 2450 2451 /* type of data: SETUP or DATA 0 bytes */ 2452 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT); 2453 VDBG(dev, "data_typ = %x\n", tmp); 2454 2455 /* setup data */ 2456 if (tmp == UDC_EPSTS_OUT_SETUP) { 2457 ret_val = IRQ_HANDLED; 2458 2459 ep->dev->stall_ep0in = 0; 2460 dev->waiting_zlp_ack_ep0in = 0; 2461 2462 /* set NAK for EP0_IN */ 2463 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); 2464 tmp |= AMD_BIT(UDC_EPCTL_SNAK); 2465 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); 2466 dev->ep[UDC_EP0IN_IX].naking = 1; 2467 /* get setup data */ 2468 if (use_dma) { 2469 2470 /* clear OUT bits in ep status */ 2471 writel(UDC_EPSTS_OUT_CLEAR, 2472 &dev->ep[UDC_EP0OUT_IX].regs->sts); 2473 2474 setup_data.data[0] = 2475 dev->ep[UDC_EP0OUT_IX].td_stp->data12; 2476 setup_data.data[1] = 2477 dev->ep[UDC_EP0OUT_IX].td_stp->data34; 2478 /* set HOST READY */ 2479 dev->ep[UDC_EP0OUT_IX].td_stp->status = 2480 UDC_DMA_STP_STS_BS_HOST_READY; 2481 } else { 2482 /* read fifo */ 2483 udc_rxfifo_read_dwords(dev, setup_data.data, 2); 2484 } 2485 2486 /* determine direction of control data */ 2487 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) { 2488 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep; 2489 /* enable RDE */ 2490 udc_ep0_set_rde(dev); 2491 set = 0; 2492 } else { 2493 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep; 2494 /* 2495 * implant BNA dummy descriptor to allow RXFIFO opening 2496 * by RDE 2497 */ 2498 if (ep->bna_dummy_req) { 2499 /* write desc pointer */ 2500 writel(ep->bna_dummy_req->td_phys, 2501 &dev->ep[UDC_EP0OUT_IX].regs->desptr); 2502 ep->bna_occurred = 0; 2503 } 2504 2505 set = 1; 2506 dev->ep[UDC_EP0OUT_IX].naking = 1; 2507 /* 2508 * setup timer for enabling RDE (to not enable 2509 * RXFIFO DMA for data to early) 2510 */ 2511 set_rde = 1; 2512 if (!timer_pending(&udc_timer)) { 2513 udc_timer.expires = jiffies + 2514 HZ/UDC_RDE_TIMER_DIV; 2515 if (!stop_timer) 2516 add_timer(&udc_timer); 2517 } 2518 } 2519 2520 /* 2521 * mass storage reset must be processed here because 2522 * next packet may be a CLEAR_FEATURE HALT which would not 2523 * clear the stall bit when no STALL handshake was received 2524 * before (autostall can cause this) 2525 */ 2526 if (setup_data.data[0] == UDC_MSCRES_DWORD0 2527 && setup_data.data[1] == UDC_MSCRES_DWORD1) { 2528 DBG(dev, "MSC Reset\n"); 2529 /* 2530 * clear stall bits 2531 * only one IN and OUT endpoints are handled 2532 */ 2533 ep_tmp = &udc->ep[UDC_EPIN_IX]; 2534 udc_set_halt(&ep_tmp->ep, 0); 2535 ep_tmp = &udc->ep[UDC_EPOUT_IX]; 2536 udc_set_halt(&ep_tmp->ep, 0); 2537 } 2538 2539 /* call gadget with setup data received */ 2540 spin_unlock(&dev->lock); 2541 setup_supported = dev->driver->setup(&dev->gadget, 2542 &setup_data.request); 2543 spin_lock(&dev->lock); 2544 2545 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); 2546 /* ep0 in returns data (not zlp) on IN phase */ 2547 if (setup_supported >= 0 && setup_supported < 2548 UDC_EP0IN_MAXPACKET) { 2549 /* clear NAK by writing CNAK in EP0_IN */ 2550 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 2551 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); 2552 dev->ep[UDC_EP0IN_IX].naking = 0; 2553 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX); 2554 2555 /* if unsupported request then stall */ 2556 } else if (setup_supported < 0) { 2557 tmp |= AMD_BIT(UDC_EPCTL_S); 2558 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); 2559 } else 2560 dev->waiting_zlp_ack_ep0in = 1; 2561 2562 2563 /* clear NAK by writing CNAK in EP0_OUT */ 2564 if (!set) { 2565 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); 2566 tmp |= AMD_BIT(UDC_EPCTL_CNAK); 2567 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl); 2568 dev->ep[UDC_EP0OUT_IX].naking = 0; 2569 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX); 2570 } 2571 2572 if (!use_dma) { 2573 /* clear OUT bits in ep status */ 2574 writel(UDC_EPSTS_OUT_CLEAR, 2575 &dev->ep[UDC_EP0OUT_IX].regs->sts); 2576 } 2577 2578 /* data packet 0 bytes */ 2579 } else if (tmp == UDC_EPSTS_OUT_DATA) { 2580 /* clear OUT bits in ep status */ 2581 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts); 2582 2583 /* get setup data: only 0 packet */ 2584 if (use_dma) { 2585 /* no req if 0 packet, just reactivate */ 2586 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) { 2587 VDBG(dev, "ZLP\n"); 2588 2589 /* set HOST READY */ 2590 dev->ep[UDC_EP0OUT_IX].td->status = 2591 AMD_ADDBITS( 2592 dev->ep[UDC_EP0OUT_IX].td->status, 2593 UDC_DMA_OUT_STS_BS_HOST_READY, 2594 UDC_DMA_OUT_STS_BS); 2595 /* enable RDE */ 2596 udc_ep0_set_rde(dev); 2597 ret_val = IRQ_HANDLED; 2598 2599 } else { 2600 /* control write */ 2601 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX); 2602 /* re-program desc. pointer for possible ZLPs */ 2603 writel(dev->ep[UDC_EP0OUT_IX].td_phys, 2604 &dev->ep[UDC_EP0OUT_IX].regs->desptr); 2605 /* enable RDE */ 2606 udc_ep0_set_rde(dev); 2607 } 2608 } else { 2609 2610 /* received number bytes */ 2611 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts); 2612 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE); 2613 /* out data for fifo mode not working */ 2614 count = 0; 2615 2616 /* 0 packet or real data ? */ 2617 if (count != 0) { 2618 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX); 2619 } else { 2620 /* dummy read confirm */ 2621 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm); 2622 ret_val = IRQ_HANDLED; 2623 } 2624 } 2625 } 2626 2627 /* check pending CNAKS */ 2628 if (cnak_pending) { 2629 /* CNAk processing when rxfifo empty only */ 2630 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) 2631 udc_process_cnak_queue(dev); 2632 } 2633 2634 finished: 2635 return ret_val; 2636 } 2637 2638 /* Interrupt handler for Control IN traffic */ udc_control_in_isr(struct udc * dev)2639 static irqreturn_t udc_control_in_isr(struct udc *dev) 2640 { 2641 irqreturn_t ret_val = IRQ_NONE; 2642 u32 tmp; 2643 struct udc_ep *ep; 2644 struct udc_request *req; 2645 unsigned len; 2646 2647 ep = &dev->ep[UDC_EP0IN_IX]; 2648 2649 /* clear irq */ 2650 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts); 2651 2652 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts); 2653 /* DMA completion */ 2654 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) { 2655 VDBG(dev, "isr: TDC clear\n"); 2656 ret_val = IRQ_HANDLED; 2657 2658 /* clear TDC bit */ 2659 writel(AMD_BIT(UDC_EPSTS_TDC), 2660 &dev->ep[UDC_EP0IN_IX].regs->sts); 2661 2662 /* status reg has IN bit set ? */ 2663 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) { 2664 ret_val = IRQ_HANDLED; 2665 2666 if (ep->dma) { 2667 /* clear IN bit */ 2668 writel(AMD_BIT(UDC_EPSTS_IN), 2669 &dev->ep[UDC_EP0IN_IX].regs->sts); 2670 } 2671 if (dev->stall_ep0in) { 2672 DBG(dev, "stall ep0in\n"); 2673 /* halt ep0in */ 2674 tmp = readl(&ep->regs->ctl); 2675 tmp |= AMD_BIT(UDC_EPCTL_S); 2676 writel(tmp, &ep->regs->ctl); 2677 } else { 2678 if (!list_empty(&ep->queue)) { 2679 /* next request */ 2680 req = list_entry(ep->queue.next, 2681 struct udc_request, queue); 2682 2683 if (ep->dma) { 2684 /* write desc pointer */ 2685 writel(req->td_phys, &ep->regs->desptr); 2686 /* set HOST READY */ 2687 req->td_data->status = 2688 AMD_ADDBITS( 2689 req->td_data->status, 2690 UDC_DMA_STP_STS_BS_HOST_READY, 2691 UDC_DMA_STP_STS_BS); 2692 2693 /* set poll demand bit */ 2694 tmp = 2695 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); 2696 tmp |= AMD_BIT(UDC_EPCTL_P); 2697 writel(tmp, 2698 &dev->ep[UDC_EP0IN_IX].regs->ctl); 2699 2700 /* all bytes will be transferred */ 2701 req->req.actual = req->req.length; 2702 2703 /* complete req */ 2704 complete_req(ep, req, 0); 2705 2706 } else { 2707 /* write fifo */ 2708 udc_txfifo_write(ep, &req->req); 2709 2710 /* lengh bytes transferred */ 2711 len = req->req.length - req->req.actual; 2712 if (len > ep->ep.maxpacket) 2713 len = ep->ep.maxpacket; 2714 2715 req->req.actual += len; 2716 if (req->req.actual == req->req.length 2717 || (len != ep->ep.maxpacket)) { 2718 /* complete req */ 2719 complete_req(ep, req, 0); 2720 } 2721 } 2722 2723 } 2724 } 2725 ep->halted = 0; 2726 dev->stall_ep0in = 0; 2727 if (!ep->dma) { 2728 /* clear IN bit */ 2729 writel(AMD_BIT(UDC_EPSTS_IN), 2730 &dev->ep[UDC_EP0IN_IX].regs->sts); 2731 } 2732 } 2733 2734 return ret_val; 2735 } 2736 2737 2738 /* Interrupt handler for global device events */ udc_dev_isr(struct udc * dev,u32 dev_irq)2739 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq) 2740 __releases(dev->lock) 2741 __acquires(dev->lock) 2742 { 2743 irqreturn_t ret_val = IRQ_NONE; 2744 u32 tmp; 2745 u32 cfg; 2746 struct udc_ep *ep; 2747 u16 i; 2748 u8 udc_csr_epix; 2749 2750 /* SET_CONFIG irq ? */ 2751 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) { 2752 ret_val = IRQ_HANDLED; 2753 2754 /* read config value */ 2755 tmp = readl(&dev->regs->sts); 2756 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG); 2757 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg); 2758 dev->cur_config = cfg; 2759 dev->set_cfg_not_acked = 1; 2760 2761 /* make usb request for gadget driver */ 2762 memset(&setup_data, 0 , sizeof(union udc_setup_data)); 2763 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION; 2764 setup_data.request.wValue = cpu_to_le16(dev->cur_config); 2765 2766 /* programm the NE registers */ 2767 for (i = 0; i < UDC_EP_NUM; i++) { 2768 ep = &dev->ep[i]; 2769 if (ep->in) { 2770 2771 /* ep ix in UDC CSR register space */ 2772 udc_csr_epix = ep->num; 2773 2774 2775 /* OUT ep */ 2776 } else { 2777 /* ep ix in UDC CSR register space */ 2778 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; 2779 } 2780 2781 tmp = readl(&dev->csr->ne[udc_csr_epix]); 2782 /* ep cfg */ 2783 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, 2784 UDC_CSR_NE_CFG); 2785 /* write reg */ 2786 writel(tmp, &dev->csr->ne[udc_csr_epix]); 2787 2788 /* clear stall bits */ 2789 ep->halted = 0; 2790 tmp = readl(&ep->regs->ctl); 2791 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); 2792 writel(tmp, &ep->regs->ctl); 2793 } 2794 /* call gadget zero with setup data received */ 2795 spin_unlock(&dev->lock); 2796 tmp = dev->driver->setup(&dev->gadget, &setup_data.request); 2797 spin_lock(&dev->lock); 2798 2799 } /* SET_INTERFACE ? */ 2800 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) { 2801 ret_val = IRQ_HANDLED; 2802 2803 dev->set_cfg_not_acked = 1; 2804 /* read interface and alt setting values */ 2805 tmp = readl(&dev->regs->sts); 2806 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT); 2807 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF); 2808 2809 /* make usb request for gadget driver */ 2810 memset(&setup_data, 0 , sizeof(union udc_setup_data)); 2811 setup_data.request.bRequest = USB_REQ_SET_INTERFACE; 2812 setup_data.request.bRequestType = USB_RECIP_INTERFACE; 2813 setup_data.request.wValue = cpu_to_le16(dev->cur_alt); 2814 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf); 2815 2816 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n", 2817 dev->cur_alt, dev->cur_intf); 2818 2819 /* programm the NE registers */ 2820 for (i = 0; i < UDC_EP_NUM; i++) { 2821 ep = &dev->ep[i]; 2822 if (ep->in) { 2823 2824 /* ep ix in UDC CSR register space */ 2825 udc_csr_epix = ep->num; 2826 2827 2828 /* OUT ep */ 2829 } else { 2830 /* ep ix in UDC CSR register space */ 2831 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; 2832 } 2833 2834 /* UDC CSR reg */ 2835 /* set ep values */ 2836 tmp = readl(&dev->csr->ne[udc_csr_epix]); 2837 /* ep interface */ 2838 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, 2839 UDC_CSR_NE_INTF); 2840 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */ 2841 /* ep alt */ 2842 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, 2843 UDC_CSR_NE_ALT); 2844 /* write reg */ 2845 writel(tmp, &dev->csr->ne[udc_csr_epix]); 2846 2847 /* clear stall bits */ 2848 ep->halted = 0; 2849 tmp = readl(&ep->regs->ctl); 2850 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); 2851 writel(tmp, &ep->regs->ctl); 2852 } 2853 2854 /* call gadget zero with setup data received */ 2855 spin_unlock(&dev->lock); 2856 tmp = dev->driver->setup(&dev->gadget, &setup_data.request); 2857 spin_lock(&dev->lock); 2858 2859 } /* USB reset */ 2860 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) { 2861 DBG(dev, "USB Reset interrupt\n"); 2862 ret_val = IRQ_HANDLED; 2863 2864 /* allow soft reset when suspend occurs */ 2865 soft_reset_occured = 0; 2866 2867 dev->waiting_zlp_ack_ep0in = 0; 2868 dev->set_cfg_not_acked = 0; 2869 2870 /* mask not needed interrupts */ 2871 udc_mask_unused_interrupts(dev); 2872 2873 /* call gadget to resume and reset configs etc. */ 2874 spin_unlock(&dev->lock); 2875 if (dev->sys_suspended && dev->driver->resume) { 2876 dev->driver->resume(&dev->gadget); 2877 dev->sys_suspended = 0; 2878 } 2879 usb_gadget_udc_reset(&dev->gadget, dev->driver); 2880 spin_lock(&dev->lock); 2881 2882 /* disable ep0 to empty req queue */ 2883 empty_req_queue(&dev->ep[UDC_EP0IN_IX]); 2884 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]); 2885 2886 /* soft reset when rxfifo not empty */ 2887 tmp = readl(&dev->regs->sts); 2888 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) 2889 && !soft_reset_after_usbreset_occured) { 2890 udc_soft_reset(dev); 2891 soft_reset_after_usbreset_occured++; 2892 } 2893 2894 /* 2895 * DMA reset to kill potential old DMA hw hang, 2896 * POLL bit is already reset by ep_init() through 2897 * disconnect() 2898 */ 2899 DBG(dev, "DMA machine reset\n"); 2900 tmp = readl(&dev->regs->cfg); 2901 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg); 2902 writel(tmp, &dev->regs->cfg); 2903 2904 /* put into initial config */ 2905 udc_basic_init(dev); 2906 2907 /* enable device setup interrupts */ 2908 udc_enable_dev_setup_interrupts(dev); 2909 2910 /* enable suspend interrupt */ 2911 tmp = readl(&dev->regs->irqmsk); 2912 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US); 2913 writel(tmp, &dev->regs->irqmsk); 2914 2915 } /* USB suspend */ 2916 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) { 2917 DBG(dev, "USB Suspend interrupt\n"); 2918 ret_val = IRQ_HANDLED; 2919 if (dev->driver->suspend) { 2920 spin_unlock(&dev->lock); 2921 dev->sys_suspended = 1; 2922 dev->driver->suspend(&dev->gadget); 2923 spin_lock(&dev->lock); 2924 } 2925 } /* new speed ? */ 2926 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) { 2927 DBG(dev, "ENUM interrupt\n"); 2928 ret_val = IRQ_HANDLED; 2929 soft_reset_after_usbreset_occured = 0; 2930 2931 /* disable ep0 to empty req queue */ 2932 empty_req_queue(&dev->ep[UDC_EP0IN_IX]); 2933 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]); 2934 2935 /* link up all endpoints */ 2936 udc_setup_endpoints(dev); 2937 dev_info(dev->dev, "Connect: %s\n", 2938 usb_speed_string(dev->gadget.speed)); 2939 2940 /* init ep 0 */ 2941 activate_control_endpoints(dev); 2942 2943 /* enable ep0 interrupts */ 2944 udc_enable_ep0_interrupts(dev); 2945 } 2946 /* session valid change interrupt */ 2947 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) { 2948 DBG(dev, "USB SVC interrupt\n"); 2949 ret_val = IRQ_HANDLED; 2950 2951 /* check that session is not valid to detect disconnect */ 2952 tmp = readl(&dev->regs->sts); 2953 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) { 2954 /* disable suspend interrupt */ 2955 tmp = readl(&dev->regs->irqmsk); 2956 tmp |= AMD_BIT(UDC_DEVINT_US); 2957 writel(tmp, &dev->regs->irqmsk); 2958 DBG(dev, "USB Disconnect (session valid low)\n"); 2959 /* cleanup on disconnect */ 2960 usb_disconnect(udc); 2961 } 2962 2963 } 2964 2965 return ret_val; 2966 } 2967 2968 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */ udc_irq(int irq,void * pdev)2969 irqreturn_t udc_irq(int irq, void *pdev) 2970 { 2971 struct udc *dev = pdev; 2972 u32 reg; 2973 u16 i; 2974 u32 ep_irq; 2975 irqreturn_t ret_val = IRQ_NONE; 2976 2977 spin_lock(&dev->lock); 2978 2979 /* check for ep irq */ 2980 reg = readl(&dev->regs->ep_irqsts); 2981 if (reg) { 2982 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0)) 2983 ret_val |= udc_control_out_isr(dev); 2984 if (reg & AMD_BIT(UDC_EPINT_IN_EP0)) 2985 ret_val |= udc_control_in_isr(dev); 2986 2987 /* 2988 * data endpoint 2989 * iterate ep's 2990 */ 2991 for (i = 1; i < UDC_EP_NUM; i++) { 2992 ep_irq = 1 << i; 2993 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0) 2994 continue; 2995 2996 /* clear irq status */ 2997 writel(ep_irq, &dev->regs->ep_irqsts); 2998 2999 /* irq for out ep ? */ 3000 if (i > UDC_EPIN_NUM) 3001 ret_val |= udc_data_out_isr(dev, i); 3002 else 3003 ret_val |= udc_data_in_isr(dev, i); 3004 } 3005 3006 } 3007 3008 3009 /* check for dev irq */ 3010 reg = readl(&dev->regs->irqsts); 3011 if (reg) { 3012 /* clear irq */ 3013 writel(reg, &dev->regs->irqsts); 3014 ret_val |= udc_dev_isr(dev, reg); 3015 } 3016 3017 3018 spin_unlock(&dev->lock); 3019 return ret_val; 3020 } 3021 EXPORT_SYMBOL_GPL(udc_irq); 3022 3023 /* Tears down device */ gadget_release(struct device * pdev)3024 void gadget_release(struct device *pdev) 3025 { 3026 struct amd5536udc *dev = dev_get_drvdata(pdev); 3027 kfree(dev); 3028 } 3029 EXPORT_SYMBOL_GPL(gadget_release); 3030 3031 /* Cleanup on device remove */ udc_remove(struct udc * dev)3032 void udc_remove(struct udc *dev) 3033 { 3034 /* remove timer */ 3035 stop_timer++; 3036 if (timer_pending(&udc_timer)) 3037 wait_for_completion(&on_exit); 3038 del_timer_sync(&udc_timer); 3039 /* remove pollstall timer */ 3040 stop_pollstall_timer++; 3041 if (timer_pending(&udc_pollstall_timer)) 3042 wait_for_completion(&on_pollstall_exit); 3043 del_timer_sync(&udc_pollstall_timer); 3044 udc = NULL; 3045 } 3046 EXPORT_SYMBOL_GPL(udc_remove); 3047 3048 /* free all the dma pools */ free_dma_pools(struct udc * dev)3049 void free_dma_pools(struct udc *dev) 3050 { 3051 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td, 3052 dev->ep[UDC_EP0OUT_IX].td_phys); 3053 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp, 3054 dev->ep[UDC_EP0OUT_IX].td_stp_dma); 3055 dma_pool_destroy(dev->stp_requests); 3056 dma_pool_destroy(dev->data_requests); 3057 } 3058 EXPORT_SYMBOL_GPL(free_dma_pools); 3059 3060 /* create dma pools on init */ init_dma_pools(struct udc * dev)3061 int init_dma_pools(struct udc *dev) 3062 { 3063 struct udc_stp_dma *td_stp; 3064 struct udc_data_dma *td_data; 3065 int retval; 3066 3067 /* consistent DMA mode setting ? */ 3068 if (use_dma_ppb) { 3069 use_dma_bufferfill_mode = 0; 3070 } else { 3071 use_dma_ppb_du = 0; 3072 use_dma_bufferfill_mode = 1; 3073 } 3074 3075 /* DMA setup */ 3076 dev->data_requests = dma_pool_create("data_requests", dev->dev, 3077 sizeof(struct udc_data_dma), 0, 0); 3078 if (!dev->data_requests) { 3079 DBG(dev, "can't get request data pool\n"); 3080 return -ENOMEM; 3081 } 3082 3083 /* EP0 in dma regs = dev control regs */ 3084 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl; 3085 3086 /* dma desc for setup data */ 3087 dev->stp_requests = dma_pool_create("setup requests", dev->dev, 3088 sizeof(struct udc_stp_dma), 0, 0); 3089 if (!dev->stp_requests) { 3090 DBG(dev, "can't get stp request pool\n"); 3091 retval = -ENOMEM; 3092 goto err_create_dma_pool; 3093 } 3094 /* setup */ 3095 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL, 3096 &dev->ep[UDC_EP0OUT_IX].td_stp_dma); 3097 if (!td_stp) { 3098 retval = -ENOMEM; 3099 goto err_alloc_dma; 3100 } 3101 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp; 3102 3103 /* data: 0 packets !? */ 3104 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL, 3105 &dev->ep[UDC_EP0OUT_IX].td_phys); 3106 if (!td_data) { 3107 retval = -ENOMEM; 3108 goto err_alloc_phys; 3109 } 3110 dev->ep[UDC_EP0OUT_IX].td = td_data; 3111 return 0; 3112 3113 err_alloc_phys: 3114 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp, 3115 dev->ep[UDC_EP0OUT_IX].td_stp_dma); 3116 err_alloc_dma: 3117 dma_pool_destroy(dev->stp_requests); 3118 dev->stp_requests = NULL; 3119 err_create_dma_pool: 3120 dma_pool_destroy(dev->data_requests); 3121 dev->data_requests = NULL; 3122 return retval; 3123 } 3124 EXPORT_SYMBOL_GPL(init_dma_pools); 3125 3126 /* general probe */ udc_probe(struct udc * dev)3127 int udc_probe(struct udc *dev) 3128 { 3129 char tmp[128]; 3130 u32 reg; 3131 int retval; 3132 3133 /* device struct setup */ 3134 dev->gadget.ops = &udc_ops; 3135 3136 dev_set_name(&dev->gadget.dev, "gadget"); 3137 dev->gadget.name = name; 3138 dev->gadget.max_speed = USB_SPEED_HIGH; 3139 3140 /* init registers, interrupts, ... */ 3141 startup_registers(dev); 3142 3143 dev_info(dev->dev, "%s\n", mod_desc); 3144 3145 snprintf(tmp, sizeof(tmp), "%d", dev->irq); 3146 3147 /* Print this device info for AMD chips only*/ 3148 if (dev->chiprev == UDC_HSA0_REV || 3149 dev->chiprev == UDC_HSB1_REV) { 3150 dev_info(dev->dev, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n", 3151 tmp, dev->phys_addr, dev->chiprev, 3152 (dev->chiprev == UDC_HSA0_REV) ? 3153 "A0" : "B1"); 3154 strcpy(tmp, UDC_DRIVER_VERSION_STRING); 3155 if (dev->chiprev == UDC_HSA0_REV) { 3156 dev_err(dev->dev, "chip revision is A0; too old\n"); 3157 retval = -ENODEV; 3158 goto finished; 3159 } 3160 dev_info(dev->dev, 3161 "driver version: %s(for Geode5536 B1)\n", tmp); 3162 } 3163 3164 udc = dev; 3165 3166 retval = usb_add_gadget_udc_release(udc->dev, &dev->gadget, 3167 gadget_release); 3168 if (retval) 3169 goto finished; 3170 3171 /* timer init */ 3172 timer_setup(&udc_timer, udc_timer_function, 0); 3173 timer_setup(&udc_pollstall_timer, udc_pollstall_timer_function, 0); 3174 3175 /* set SD */ 3176 reg = readl(&dev->regs->ctl); 3177 reg |= AMD_BIT(UDC_DEVCTL_SD); 3178 writel(reg, &dev->regs->ctl); 3179 3180 /* print dev register info */ 3181 print_regs(dev); 3182 3183 return 0; 3184 3185 finished: 3186 return retval; 3187 } 3188 EXPORT_SYMBOL_GPL(udc_probe); 3189 3190 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION); 3191 MODULE_AUTHOR("Thomas Dahlmann"); 3192 MODULE_LICENSE("GPL"); 3193