1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108
109 #include <trace/events/sched.h>
110
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113
114 /*
115 * Minimum number of threads to boot the kernel
116 */
117 #define MIN_THREADS 20
118
119 /*
120 * Maximum number of threads
121 */
122 #define MAX_THREADS FUTEX_TID_MASK
123
124 /*
125 * Protected counters by write_lock_irq(&tasklist_lock)
126 */
127 unsigned long total_forks; /* Handle normal Linux uptimes. */
128 int nr_threads; /* The idle threads do not count.. */
129
130 static int max_threads; /* tunable limit on nr_threads */
131
132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133
134 static const char * const resident_page_types[] = {
135 NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
144
145 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)146 int lockdep_tasklist_lock_is_held(void)
147 {
148 return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152
nr_processes(void)153 int nr_processes(void)
154 {
155 int cpu;
156 int total = 0;
157
158 for_each_possible_cpu(cpu)
159 total += per_cpu(process_counts, cpu);
160
161 return total;
162 }
163
arch_release_task_struct(struct task_struct * tsk)164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167
168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 static struct kmem_cache *task_struct_cachep;
170
alloc_task_struct_node(int node)171 static inline struct task_struct *alloc_task_struct_node(int node)
172 {
173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 }
175
free_task_struct(struct task_struct * tsk)176 static inline void free_task_struct(struct task_struct *tsk)
177 {
178 kmem_cache_free(task_struct_cachep, tsk);
179 }
180 #endif
181
182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183
184 /*
185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186 * kmemcache based allocator.
187 */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189
190 # ifdef CONFIG_VMAP_STACK
191 /*
192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193 * flush. Try to minimize the number of calls by caching stacks.
194 */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197
198 struct vm_stack {
199 struct rcu_head rcu;
200 struct vm_struct *stack_vm_area;
201 };
202
try_release_thread_stack_to_cache(struct vm_struct * vm)203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 unsigned int i;
206
207 for (i = 0; i < NR_CACHED_STACKS; i++) {
208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 continue;
210 return true;
211 }
212 return false;
213 }
214
thread_stack_free_rcu(struct rcu_head * rh)215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218
219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 return;
221
222 vfree(vm_stack);
223 }
224
thread_stack_delayed_free(struct task_struct * tsk)225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 struct vm_stack *vm_stack = tsk->stack;
228
229 vm_stack->stack_vm_area = tsk->stack_vm_area;
230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232
free_vm_stack_cache(unsigned int cpu)233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 int i;
237
238 for (i = 0; i < NR_CACHED_STACKS; i++) {
239 struct vm_struct *vm_stack = cached_vm_stacks[i];
240
241 if (!vm_stack)
242 continue;
243
244 vfree(vm_stack->addr);
245 cached_vm_stacks[i] = NULL;
246 }
247
248 return 0;
249 }
250
memcg_charge_kernel_stack(struct vm_struct * vm)251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 int i;
254 int ret;
255 int nr_charged = 0;
256
257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258
259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 if (ret)
262 goto err;
263 nr_charged++;
264 }
265 return 0;
266 err:
267 for (i = 0; i < nr_charged; i++)
268 memcg_kmem_uncharge_page(vm->pages[i], 0);
269 return ret;
270 }
271
alloc_thread_stack_node(struct task_struct * tsk,int node)272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 struct vm_struct *vm;
275 void *stack;
276 int i;
277
278 for (i = 0; i < NR_CACHED_STACKS; i++) {
279 struct vm_struct *s;
280
281 s = this_cpu_xchg(cached_stacks[i], NULL);
282
283 if (!s)
284 continue;
285
286 /* Reset stack metadata. */
287 kasan_unpoison_range(s->addr, THREAD_SIZE);
288
289 stack = kasan_reset_tag(s->addr);
290
291 /* Clear stale pointers from reused stack. */
292 memset(stack, 0, THREAD_SIZE);
293
294 if (memcg_charge_kernel_stack(s)) {
295 vfree(s->addr);
296 return -ENOMEM;
297 }
298
299 tsk->stack_vm_area = s;
300 tsk->stack = stack;
301 return 0;
302 }
303
304 /*
305 * Allocated stacks are cached and later reused by new threads,
306 * so memcg accounting is performed manually on assigning/releasing
307 * stacks to tasks. Drop __GFP_ACCOUNT.
308 */
309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 VMALLOC_START, VMALLOC_END,
311 THREADINFO_GFP & ~__GFP_ACCOUNT,
312 PAGE_KERNEL,
313 0, node, __builtin_return_address(0));
314 if (!stack)
315 return -ENOMEM;
316
317 vm = find_vm_area(stack);
318 if (memcg_charge_kernel_stack(vm)) {
319 vfree(stack);
320 return -ENOMEM;
321 }
322 /*
323 * We can't call find_vm_area() in interrupt context, and
324 * free_thread_stack() can be called in interrupt context,
325 * so cache the vm_struct.
326 */
327 tsk->stack_vm_area = vm;
328 stack = kasan_reset_tag(stack);
329 tsk->stack = stack;
330 return 0;
331 }
332
free_thread_stack(struct task_struct * tsk)333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 thread_stack_delayed_free(tsk);
337
338 tsk->stack = NULL;
339 tsk->stack_vm_area = NULL;
340 }
341
342 # else /* !CONFIG_VMAP_STACK */
343
thread_stack_free_rcu(struct rcu_head * rh)344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348
thread_stack_delayed_free(struct task_struct * tsk)349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 struct rcu_head *rh = tsk->stack;
352
353 call_rcu(rh, thread_stack_free_rcu);
354 }
355
alloc_thread_stack_node(struct task_struct * tsk,int node)356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 THREAD_SIZE_ORDER);
360
361 if (likely(page)) {
362 tsk->stack = kasan_reset_tag(page_address(page));
363 return 0;
364 }
365 return -ENOMEM;
366 }
367
free_thread_stack(struct task_struct * tsk)368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 thread_stack_delayed_free(tsk);
371 tsk->stack = NULL;
372 }
373
374 # endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376
377 static struct kmem_cache *thread_stack_cache;
378
thread_stack_free_rcu(struct rcu_head * rh)379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 kmem_cache_free(thread_stack_cache, rh);
382 }
383
thread_stack_delayed_free(struct task_struct * tsk)384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 struct rcu_head *rh = tsk->stack;
387
388 call_rcu(rh, thread_stack_free_rcu);
389 }
390
alloc_thread_stack_node(struct task_struct * tsk,int node)391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 unsigned long *stack;
394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 stack = kasan_reset_tag(stack);
396 tsk->stack = stack;
397 return stack ? 0 : -ENOMEM;
398 }
399
free_thread_stack(struct task_struct * tsk)400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 thread_stack_delayed_free(tsk);
403 tsk->stack = NULL;
404 }
405
thread_stack_cache_init(void)406 void thread_stack_cache_init(void)
407 {
408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 THREAD_SIZE, THREAD_SIZE, 0, 0,
410 THREAD_SIZE, NULL);
411 BUG_ON(thread_stack_cache == NULL);
412 }
413
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416
alloc_thread_stack_node(struct task_struct * tsk,int node)417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 unsigned long *stack;
420
421 stack = arch_alloc_thread_stack_node(tsk, node);
422 tsk->stack = stack;
423 return stack ? 0 : -ENOMEM;
424 }
425
free_thread_stack(struct task_struct * tsk)426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 arch_free_thread_stack(tsk);
429 tsk->stack = NULL;
430 }
431
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451
452 #ifdef CONFIG_PER_VMA_LOCK
453
454 /* SLAB cache for vm_area_struct.lock */
455 static struct kmem_cache *vma_lock_cachep;
456
vma_lock_alloc(struct vm_area_struct * vma)457 static bool vma_lock_alloc(struct vm_area_struct *vma)
458 {
459 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 if (!vma->vm_lock)
461 return false;
462
463 init_rwsem(&vma->vm_lock->lock);
464 vma->vm_lock_seq = -1;
465
466 return true;
467 }
468
vma_lock_free(struct vm_area_struct * vma)469 static inline void vma_lock_free(struct vm_area_struct *vma)
470 {
471 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 }
473
474 #else /* CONFIG_PER_VMA_LOCK */
475
vma_lock_alloc(struct vm_area_struct * vma)476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)477 static inline void vma_lock_free(struct vm_area_struct *vma) {}
478
479 #endif /* CONFIG_PER_VMA_LOCK */
480
vm_area_alloc(struct mm_struct * mm)481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 {
483 struct vm_area_struct *vma;
484
485 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 if (!vma)
487 return NULL;
488
489 vma_init(vma, mm);
490 if (!vma_lock_alloc(vma)) {
491 kmem_cache_free(vm_area_cachep, vma);
492 return NULL;
493 }
494
495 return vma;
496 }
497
vm_area_dup(struct vm_area_struct * orig)498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 {
500 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501
502 if (!new)
503 return NULL;
504
505 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 /*
508 * orig->shared.rb may be modified concurrently, but the clone
509 * will be reinitialized.
510 */
511 data_race(memcpy(new, orig, sizeof(*new)));
512 if (!vma_lock_alloc(new)) {
513 kmem_cache_free(vm_area_cachep, new);
514 return NULL;
515 }
516 INIT_LIST_HEAD(&new->anon_vma_chain);
517 vma_numab_state_init(new);
518 dup_anon_vma_name(orig, new);
519
520 return new;
521 }
522
__vm_area_free(struct vm_area_struct * vma)523 void __vm_area_free(struct vm_area_struct *vma)
524 {
525 vma_numab_state_free(vma);
526 free_anon_vma_name(vma);
527 vma_lock_free(vma);
528 kmem_cache_free(vm_area_cachep, vma);
529 }
530
531 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)532 static void vm_area_free_rcu_cb(struct rcu_head *head)
533 {
534 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 vm_rcu);
536
537 /* The vma should not be locked while being destroyed. */
538 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 __vm_area_free(vma);
540 }
541 #endif
542
vm_area_free(struct vm_area_struct * vma)543 void vm_area_free(struct vm_area_struct *vma)
544 {
545 #ifdef CONFIG_PER_VMA_LOCK
546 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 #else
548 __vm_area_free(vma);
549 #endif
550 }
551
account_kernel_stack(struct task_struct * tsk,int account)552 static void account_kernel_stack(struct task_struct *tsk, int account)
553 {
554 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 struct vm_struct *vm = task_stack_vm_area(tsk);
556 int i;
557
558 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 account * (PAGE_SIZE / 1024));
561 } else {
562 void *stack = task_stack_page(tsk);
563
564 /* All stack pages are in the same node. */
565 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 account * (THREAD_SIZE / 1024));
567 }
568 }
569
exit_task_stack_account(struct task_struct * tsk)570 void exit_task_stack_account(struct task_struct *tsk)
571 {
572 account_kernel_stack(tsk, -1);
573
574 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 struct vm_struct *vm;
576 int i;
577
578 vm = task_stack_vm_area(tsk);
579 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 memcg_kmem_uncharge_page(vm->pages[i], 0);
581 }
582 }
583
release_task_stack(struct task_struct * tsk)584 static void release_task_stack(struct task_struct *tsk)
585 {
586 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 return; /* Better to leak the stack than to free prematurely */
588
589 free_thread_stack(tsk);
590 }
591
592 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)593 void put_task_stack(struct task_struct *tsk)
594 {
595 if (refcount_dec_and_test(&tsk->stack_refcount))
596 release_task_stack(tsk);
597 }
598 #endif
599
free_task(struct task_struct * tsk)600 void free_task(struct task_struct *tsk)
601 {
602 #ifdef CONFIG_SECCOMP
603 WARN_ON_ONCE(tsk->seccomp.filter);
604 #endif
605 release_user_cpus_ptr(tsk);
606 scs_release(tsk);
607
608 #ifndef CONFIG_THREAD_INFO_IN_TASK
609 /*
610 * The task is finally done with both the stack and thread_info,
611 * so free both.
612 */
613 release_task_stack(tsk);
614 #else
615 /*
616 * If the task had a separate stack allocation, it should be gone
617 * by now.
618 */
619 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 #endif
621 rt_mutex_debug_task_free(tsk);
622 ftrace_graph_exit_task(tsk);
623 arch_release_task_struct(tsk);
624 if (tsk->flags & PF_KTHREAD)
625 free_kthread_struct(tsk);
626 bpf_task_storage_free(tsk);
627 free_task_struct(tsk);
628 }
629 EXPORT_SYMBOL(free_task);
630
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 struct file *exe_file;
634
635 exe_file = get_mm_exe_file(oldmm);
636 RCU_INIT_POINTER(mm->exe_file, exe_file);
637 /*
638 * We depend on the oldmm having properly denied write access to the
639 * exe_file already.
640 */
641 if (exe_file && deny_write_access(exe_file))
642 pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 }
644
645 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)646 static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 struct mm_struct *oldmm)
648 {
649 struct vm_area_struct *mpnt, *tmp;
650 int retval;
651 unsigned long charge = 0;
652 LIST_HEAD(uf);
653 VMA_ITERATOR(old_vmi, oldmm, 0);
654 VMA_ITERATOR(vmi, mm, 0);
655
656 uprobe_start_dup_mmap();
657 if (mmap_write_lock_killable(oldmm)) {
658 retval = -EINTR;
659 goto fail_uprobe_end;
660 }
661 flush_cache_dup_mm(oldmm);
662 uprobe_dup_mmap(oldmm, mm);
663 /*
664 * Not linked in yet - no deadlock potential:
665 */
666 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
667
668 /* No ordering required: file already has been exposed. */
669 dup_mm_exe_file(mm, oldmm);
670
671 mm->total_vm = oldmm->total_vm;
672 mm->data_vm = oldmm->data_vm;
673 mm->exec_vm = oldmm->exec_vm;
674 mm->stack_vm = oldmm->stack_vm;
675
676 retval = ksm_fork(mm, oldmm);
677 if (retval)
678 goto out;
679 khugepaged_fork(mm, oldmm);
680
681 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
682 if (retval)
683 goto out;
684
685 mt_clear_in_rcu(vmi.mas.tree);
686 for_each_vma(old_vmi, mpnt) {
687 struct file *file;
688
689 vma_start_write(mpnt);
690 if (mpnt->vm_flags & VM_DONTCOPY) {
691 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 continue;
693 }
694 charge = 0;
695 /*
696 * Don't duplicate many vmas if we've been oom-killed (for
697 * example)
698 */
699 if (fatal_signal_pending(current)) {
700 retval = -EINTR;
701 goto loop_out;
702 }
703 if (mpnt->vm_flags & VM_ACCOUNT) {
704 unsigned long len = vma_pages(mpnt);
705
706 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 goto fail_nomem;
708 charge = len;
709 }
710 tmp = vm_area_dup(mpnt);
711 if (!tmp)
712 goto fail_nomem;
713 retval = vma_dup_policy(mpnt, tmp);
714 if (retval)
715 goto fail_nomem_policy;
716 tmp->vm_mm = mm;
717 retval = dup_userfaultfd(tmp, &uf);
718 if (retval)
719 goto fail_nomem_anon_vma_fork;
720 if (tmp->vm_flags & VM_WIPEONFORK) {
721 /*
722 * VM_WIPEONFORK gets a clean slate in the child.
723 * Don't prepare anon_vma until fault since we don't
724 * copy page for current vma.
725 */
726 tmp->anon_vma = NULL;
727 } else if (anon_vma_fork(tmp, mpnt))
728 goto fail_nomem_anon_vma_fork;
729 vm_flags_clear(tmp, VM_LOCKED_MASK);
730 file = tmp->vm_file;
731 if (file) {
732 struct address_space *mapping = file->f_mapping;
733
734 get_file(file);
735 i_mmap_lock_write(mapping);
736 if (tmp->vm_flags & VM_SHARED)
737 mapping_allow_writable(mapping);
738 flush_dcache_mmap_lock(mapping);
739 /* insert tmp into the share list, just after mpnt */
740 vma_interval_tree_insert_after(tmp, mpnt,
741 &mapping->i_mmap);
742 flush_dcache_mmap_unlock(mapping);
743 i_mmap_unlock_write(mapping);
744 }
745
746 /*
747 * Copy/update hugetlb private vma information.
748 */
749 if (is_vm_hugetlb_page(tmp))
750 hugetlb_dup_vma_private(tmp);
751
752 /* Link the vma into the MT */
753 if (vma_iter_bulk_store(&vmi, tmp))
754 goto fail_nomem_vmi_store;
755
756 mm->map_count++;
757 if (!(tmp->vm_flags & VM_WIPEONFORK))
758 retval = copy_page_range(tmp, mpnt);
759
760 if (tmp->vm_ops && tmp->vm_ops->open)
761 tmp->vm_ops->open(tmp);
762
763 if (retval)
764 goto loop_out;
765 }
766 /* a new mm has just been created */
767 retval = arch_dup_mmap(oldmm, mm);
768 loop_out:
769 vma_iter_free(&vmi);
770 if (!retval)
771 mt_set_in_rcu(vmi.mas.tree);
772 out:
773 mmap_write_unlock(mm);
774 flush_tlb_mm(oldmm);
775 mmap_write_unlock(oldmm);
776 dup_userfaultfd_complete(&uf);
777 fail_uprobe_end:
778 uprobe_end_dup_mmap();
779 return retval;
780
781 fail_nomem_vmi_store:
782 unlink_anon_vmas(tmp);
783 fail_nomem_anon_vma_fork:
784 mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 vm_area_free(tmp);
787 fail_nomem:
788 retval = -ENOMEM;
789 vm_unacct_memory(charge);
790 goto loop_out;
791 }
792
mm_alloc_pgd(struct mm_struct * mm)793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 mm->pgd = pgd_alloc(mm);
796 if (unlikely(!mm->pgd))
797 return -ENOMEM;
798 return 0;
799 }
800
mm_free_pgd(struct mm_struct * mm)801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 pgd_free(mm, mm->pgd);
804 }
805 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 mmap_write_lock(oldmm);
809 dup_mm_exe_file(mm, oldmm);
810 mmap_write_unlock(oldmm);
811 return 0;
812 }
813 #define mm_alloc_pgd(mm) (0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816
check_mm(struct mm_struct * mm)817 static void check_mm(struct mm_struct *mm)
818 {
819 int i;
820
821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 "Please make sure 'struct resident_page_types[]' is updated as well");
823
824 for (i = 0; i < NR_MM_COUNTERS; i++) {
825 long x = percpu_counter_sum(&mm->rss_stat[i]);
826
827 if (unlikely(x))
828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 mm, resident_page_types[i], x);
830 }
831
832 if (mm_pgtables_bytes(mm))
833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 mm_pgtables_bytes(mm));
835
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840
841 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
843
do_check_lazy_tlb(void * arg)844 static void do_check_lazy_tlb(void *arg)
845 {
846 struct mm_struct *mm = arg;
847
848 WARN_ON_ONCE(current->active_mm == mm);
849 }
850
do_shoot_lazy_tlb(void * arg)851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 struct mm_struct *mm = arg;
854
855 if (current->active_mm == mm) {
856 WARN_ON_ONCE(current->mm);
857 current->active_mm = &init_mm;
858 switch_mm(mm, &init_mm, current);
859 }
860 }
861
cleanup_lazy_tlbs(struct mm_struct * mm)862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 /*
866 * In this case, lazy tlb mms are refounted and would not reach
867 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 */
869 return;
870 }
871
872 /*
873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 * requires lazy mm users to switch to another mm when the refcount
875 * drops to zero, before the mm is freed. This requires IPIs here to
876 * switch kernel threads to init_mm.
877 *
878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 * switch with the final userspace teardown TLB flush which leaves the
880 * mm lazy on this CPU but no others, reducing the need for additional
881 * IPIs here. There are cases where a final IPI is still required here,
882 * such as the final mmdrop being performed on a different CPU than the
883 * one exiting, or kernel threads using the mm when userspace exits.
884 *
885 * IPI overheads have not found to be expensive, but they could be
886 * reduced in a number of possible ways, for example (roughly
887 * increasing order of complexity):
888 * - The last lazy reference created by exit_mm() could instead switch
889 * to init_mm, however it's probable this will run on the same CPU
890 * immediately afterwards, so this may not reduce IPIs much.
891 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 * - CPUs store active_mm where it can be remotely checked without a
893 * lock, to filter out false-positives in the cpumask.
894 * - After mm_users or mm_count reaches zero, switching away from the
895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 * with some batching or delaying of the final IPIs.
897 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 * switching to avoid IPIs completely.
899 */
900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904
905 /*
906 * Called when the last reference to the mm
907 * is dropped: either by a lazy thread or by
908 * mmput. Free the page directory and the mm.
909 */
__mmdrop(struct mm_struct * mm)910 void __mmdrop(struct mm_struct *mm)
911 {
912 BUG_ON(mm == &init_mm);
913 WARN_ON_ONCE(mm == current->mm);
914
915 /* Ensure no CPUs are using this as their lazy tlb mm */
916 cleanup_lazy_tlbs(mm);
917
918 WARN_ON_ONCE(mm == current->active_mm);
919 mm_free_pgd(mm);
920 destroy_context(mm);
921 mmu_notifier_subscriptions_destroy(mm);
922 check_mm(mm);
923 put_user_ns(mm->user_ns);
924 mm_pasid_drop(mm);
925 mm_destroy_cid(mm);
926 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
927
928 free_mm(mm);
929 }
930 EXPORT_SYMBOL_GPL(__mmdrop);
931
mmdrop_async_fn(struct work_struct * work)932 static void mmdrop_async_fn(struct work_struct *work)
933 {
934 struct mm_struct *mm;
935
936 mm = container_of(work, struct mm_struct, async_put_work);
937 __mmdrop(mm);
938 }
939
mmdrop_async(struct mm_struct * mm)940 static void mmdrop_async(struct mm_struct *mm)
941 {
942 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
943 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
944 schedule_work(&mm->async_put_work);
945 }
946 }
947
free_signal_struct(struct signal_struct * sig)948 static inline void free_signal_struct(struct signal_struct *sig)
949 {
950 taskstats_tgid_free(sig);
951 sched_autogroup_exit(sig);
952 /*
953 * __mmdrop is not safe to call from softirq context on x86 due to
954 * pgd_dtor so postpone it to the async context
955 */
956 if (sig->oom_mm)
957 mmdrop_async(sig->oom_mm);
958 kmem_cache_free(signal_cachep, sig);
959 }
960
put_signal_struct(struct signal_struct * sig)961 static inline void put_signal_struct(struct signal_struct *sig)
962 {
963 if (refcount_dec_and_test(&sig->sigcnt))
964 free_signal_struct(sig);
965 }
966
__put_task_struct(struct task_struct * tsk)967 void __put_task_struct(struct task_struct *tsk)
968 {
969 WARN_ON(!tsk->exit_state);
970 WARN_ON(refcount_read(&tsk->usage));
971 WARN_ON(tsk == current);
972
973 io_uring_free(tsk);
974 cgroup_free(tsk);
975 task_numa_free(tsk, true);
976 security_task_free(tsk);
977 exit_creds(tsk);
978 delayacct_tsk_free(tsk);
979 put_signal_struct(tsk->signal);
980 sched_core_free(tsk);
981 free_task(tsk);
982 }
983 EXPORT_SYMBOL_GPL(__put_task_struct);
984
__put_task_struct_rcu_cb(struct rcu_head * rhp)985 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
986 {
987 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
988
989 __put_task_struct(task);
990 }
991 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
992
arch_task_cache_init(void)993 void __init __weak arch_task_cache_init(void) { }
994
995 /*
996 * set_max_threads
997 */
set_max_threads(unsigned int max_threads_suggested)998 static void set_max_threads(unsigned int max_threads_suggested)
999 {
1000 u64 threads;
1001 unsigned long nr_pages = totalram_pages();
1002
1003 /*
1004 * The number of threads shall be limited such that the thread
1005 * structures may only consume a small part of the available memory.
1006 */
1007 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1008 threads = MAX_THREADS;
1009 else
1010 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1011 (u64) THREAD_SIZE * 8UL);
1012
1013 if (threads > max_threads_suggested)
1014 threads = max_threads_suggested;
1015
1016 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1017 }
1018
1019 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1020 /* Initialized by the architecture: */
1021 int arch_task_struct_size __read_mostly;
1022 #endif
1023
1024 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1025 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026 {
1027 /* Fetch thread_struct whitelist for the architecture. */
1028 arch_thread_struct_whitelist(offset, size);
1029
1030 /*
1031 * Handle zero-sized whitelist or empty thread_struct, otherwise
1032 * adjust offset to position of thread_struct in task_struct.
1033 */
1034 if (unlikely(*size == 0))
1035 *offset = 0;
1036 else
1037 *offset += offsetof(struct task_struct, thread);
1038 }
1039 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1040
fork_init(void)1041 void __init fork_init(void)
1042 {
1043 int i;
1044 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1045 #ifndef ARCH_MIN_TASKALIGN
1046 #define ARCH_MIN_TASKALIGN 0
1047 #endif
1048 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1049 unsigned long useroffset, usersize;
1050
1051 /* create a slab on which task_structs can be allocated */
1052 task_struct_whitelist(&useroffset, &usersize);
1053 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1054 arch_task_struct_size, align,
1055 SLAB_PANIC|SLAB_ACCOUNT,
1056 useroffset, usersize, NULL);
1057 #endif
1058
1059 /* do the arch specific task caches init */
1060 arch_task_cache_init();
1061
1062 set_max_threads(MAX_THREADS);
1063
1064 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1065 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1066 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1067 init_task.signal->rlim[RLIMIT_NPROC];
1068
1069 for (i = 0; i < UCOUNT_COUNTS; i++)
1070 init_user_ns.ucount_max[i] = max_threads/2;
1071
1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1074 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1076
1077 #ifdef CONFIG_VMAP_STACK
1078 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1079 NULL, free_vm_stack_cache);
1080 #endif
1081
1082 scs_init();
1083
1084 lockdep_init_task(&init_task);
1085 uprobes_init();
1086 }
1087
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1088 int __weak arch_dup_task_struct(struct task_struct *dst,
1089 struct task_struct *src)
1090 {
1091 *dst = *src;
1092 return 0;
1093 }
1094
set_task_stack_end_magic(struct task_struct * tsk)1095 void set_task_stack_end_magic(struct task_struct *tsk)
1096 {
1097 unsigned long *stackend;
1098
1099 stackend = end_of_stack(tsk);
1100 *stackend = STACK_END_MAGIC; /* for overflow detection */
1101 }
1102
dup_task_struct(struct task_struct * orig,int node)1103 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1104 {
1105 struct task_struct *tsk;
1106 int err;
1107
1108 if (node == NUMA_NO_NODE)
1109 node = tsk_fork_get_node(orig);
1110 tsk = alloc_task_struct_node(node);
1111 if (!tsk)
1112 return NULL;
1113
1114 err = arch_dup_task_struct(tsk, orig);
1115 if (err)
1116 goto free_tsk;
1117
1118 err = alloc_thread_stack_node(tsk, node);
1119 if (err)
1120 goto free_tsk;
1121
1122 #ifdef CONFIG_THREAD_INFO_IN_TASK
1123 refcount_set(&tsk->stack_refcount, 1);
1124 #endif
1125 account_kernel_stack(tsk, 1);
1126
1127 err = scs_prepare(tsk, node);
1128 if (err)
1129 goto free_stack;
1130
1131 #ifdef CONFIG_SECCOMP
1132 /*
1133 * We must handle setting up seccomp filters once we're under
1134 * the sighand lock in case orig has changed between now and
1135 * then. Until then, filter must be NULL to avoid messing up
1136 * the usage counts on the error path calling free_task.
1137 */
1138 tsk->seccomp.filter = NULL;
1139 #endif
1140
1141 setup_thread_stack(tsk, orig);
1142 clear_user_return_notifier(tsk);
1143 clear_tsk_need_resched(tsk);
1144 set_task_stack_end_magic(tsk);
1145 clear_syscall_work_syscall_user_dispatch(tsk);
1146
1147 #ifdef CONFIG_STACKPROTECTOR
1148 tsk->stack_canary = get_random_canary();
1149 #endif
1150 if (orig->cpus_ptr == &orig->cpus_mask)
1151 tsk->cpus_ptr = &tsk->cpus_mask;
1152 dup_user_cpus_ptr(tsk, orig, node);
1153
1154 /*
1155 * One for the user space visible state that goes away when reaped.
1156 * One for the scheduler.
1157 */
1158 refcount_set(&tsk->rcu_users, 2);
1159 /* One for the rcu users */
1160 refcount_set(&tsk->usage, 1);
1161 #ifdef CONFIG_BLK_DEV_IO_TRACE
1162 tsk->btrace_seq = 0;
1163 #endif
1164 tsk->splice_pipe = NULL;
1165 tsk->task_frag.page = NULL;
1166 tsk->wake_q.next = NULL;
1167 tsk->worker_private = NULL;
1168
1169 kcov_task_init(tsk);
1170 kmsan_task_create(tsk);
1171 kmap_local_fork(tsk);
1172
1173 #ifdef CONFIG_FAULT_INJECTION
1174 tsk->fail_nth = 0;
1175 #endif
1176
1177 #ifdef CONFIG_BLK_CGROUP
1178 tsk->throttle_disk = NULL;
1179 tsk->use_memdelay = 0;
1180 #endif
1181
1182 #ifdef CONFIG_IOMMU_SVA
1183 tsk->pasid_activated = 0;
1184 #endif
1185
1186 #ifdef CONFIG_MEMCG
1187 tsk->active_memcg = NULL;
1188 #endif
1189
1190 #ifdef CONFIG_CPU_SUP_INTEL
1191 tsk->reported_split_lock = 0;
1192 #endif
1193
1194 #ifdef CONFIG_SCHED_MM_CID
1195 tsk->mm_cid = -1;
1196 tsk->last_mm_cid = -1;
1197 tsk->mm_cid_active = 0;
1198 tsk->migrate_from_cpu = -1;
1199 #endif
1200 return tsk;
1201
1202 free_stack:
1203 exit_task_stack_account(tsk);
1204 free_thread_stack(tsk);
1205 free_tsk:
1206 free_task_struct(tsk);
1207 return NULL;
1208 }
1209
1210 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1211
1212 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1213
coredump_filter_setup(char * s)1214 static int __init coredump_filter_setup(char *s)
1215 {
1216 default_dump_filter =
1217 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1218 MMF_DUMP_FILTER_MASK;
1219 return 1;
1220 }
1221
1222 __setup("coredump_filter=", coredump_filter_setup);
1223
1224 #include <linux/init_task.h>
1225
mm_init_aio(struct mm_struct * mm)1226 static void mm_init_aio(struct mm_struct *mm)
1227 {
1228 #ifdef CONFIG_AIO
1229 spin_lock_init(&mm->ioctx_lock);
1230 mm->ioctx_table = NULL;
1231 #endif
1232 }
1233
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1234 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1235 struct task_struct *p)
1236 {
1237 #ifdef CONFIG_MEMCG
1238 if (mm->owner == p)
1239 WRITE_ONCE(mm->owner, NULL);
1240 #endif
1241 }
1242
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1243 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1244 {
1245 #ifdef CONFIG_MEMCG
1246 mm->owner = p;
1247 #endif
1248 }
1249
mm_init_uprobes_state(struct mm_struct * mm)1250 static void mm_init_uprobes_state(struct mm_struct *mm)
1251 {
1252 #ifdef CONFIG_UPROBES
1253 mm->uprobes_state.xol_area = NULL;
1254 #endif
1255 }
1256
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1257 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1258 struct user_namespace *user_ns)
1259 {
1260 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1261 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1262 atomic_set(&mm->mm_users, 1);
1263 atomic_set(&mm->mm_count, 1);
1264 seqcount_init(&mm->write_protect_seq);
1265 mmap_init_lock(mm);
1266 INIT_LIST_HEAD(&mm->mmlist);
1267 #ifdef CONFIG_PER_VMA_LOCK
1268 mm->mm_lock_seq = 0;
1269 #endif
1270 mm_pgtables_bytes_init(mm);
1271 mm->map_count = 0;
1272 mm->locked_vm = 0;
1273 atomic64_set(&mm->pinned_vm, 0);
1274 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1275 spin_lock_init(&mm->page_table_lock);
1276 spin_lock_init(&mm->arg_lock);
1277 mm_init_cpumask(mm);
1278 mm_init_aio(mm);
1279 mm_init_owner(mm, p);
1280 mm_pasid_init(mm);
1281 RCU_INIT_POINTER(mm->exe_file, NULL);
1282 mmu_notifier_subscriptions_init(mm);
1283 init_tlb_flush_pending(mm);
1284 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1285 mm->pmd_huge_pte = NULL;
1286 #endif
1287 mm_init_uprobes_state(mm);
1288 hugetlb_count_init(mm);
1289
1290 if (current->mm) {
1291 mm->flags = mmf_init_flags(current->mm->flags);
1292 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1293 } else {
1294 mm->flags = default_dump_filter;
1295 mm->def_flags = 0;
1296 }
1297
1298 if (mm_alloc_pgd(mm))
1299 goto fail_nopgd;
1300
1301 if (init_new_context(p, mm))
1302 goto fail_nocontext;
1303
1304 if (mm_alloc_cid(mm))
1305 goto fail_cid;
1306
1307 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1308 NR_MM_COUNTERS))
1309 goto fail_pcpu;
1310
1311 mm->user_ns = get_user_ns(user_ns);
1312 lru_gen_init_mm(mm);
1313 return mm;
1314
1315 fail_pcpu:
1316 mm_destroy_cid(mm);
1317 fail_cid:
1318 destroy_context(mm);
1319 fail_nocontext:
1320 mm_free_pgd(mm);
1321 fail_nopgd:
1322 free_mm(mm);
1323 return NULL;
1324 }
1325
1326 /*
1327 * Allocate and initialize an mm_struct.
1328 */
mm_alloc(void)1329 struct mm_struct *mm_alloc(void)
1330 {
1331 struct mm_struct *mm;
1332
1333 mm = allocate_mm();
1334 if (!mm)
1335 return NULL;
1336
1337 memset(mm, 0, sizeof(*mm));
1338 return mm_init(mm, current, current_user_ns());
1339 }
1340
__mmput(struct mm_struct * mm)1341 static inline void __mmput(struct mm_struct *mm)
1342 {
1343 VM_BUG_ON(atomic_read(&mm->mm_users));
1344
1345 uprobe_clear_state(mm);
1346 exit_aio(mm);
1347 ksm_exit(mm);
1348 khugepaged_exit(mm); /* must run before exit_mmap */
1349 exit_mmap(mm);
1350 mm_put_huge_zero_page(mm);
1351 set_mm_exe_file(mm, NULL);
1352 if (!list_empty(&mm->mmlist)) {
1353 spin_lock(&mmlist_lock);
1354 list_del(&mm->mmlist);
1355 spin_unlock(&mmlist_lock);
1356 }
1357 if (mm->binfmt)
1358 module_put(mm->binfmt->module);
1359 lru_gen_del_mm(mm);
1360 mmdrop(mm);
1361 }
1362
1363 /*
1364 * Decrement the use count and release all resources for an mm.
1365 */
mmput(struct mm_struct * mm)1366 void mmput(struct mm_struct *mm)
1367 {
1368 might_sleep();
1369
1370 if (atomic_dec_and_test(&mm->mm_users))
1371 __mmput(mm);
1372 }
1373 EXPORT_SYMBOL_GPL(mmput);
1374
1375 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1376 static void mmput_async_fn(struct work_struct *work)
1377 {
1378 struct mm_struct *mm = container_of(work, struct mm_struct,
1379 async_put_work);
1380
1381 __mmput(mm);
1382 }
1383
mmput_async(struct mm_struct * mm)1384 void mmput_async(struct mm_struct *mm)
1385 {
1386 if (atomic_dec_and_test(&mm->mm_users)) {
1387 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1388 schedule_work(&mm->async_put_work);
1389 }
1390 }
1391 EXPORT_SYMBOL_GPL(mmput_async);
1392 #endif
1393
1394 /**
1395 * set_mm_exe_file - change a reference to the mm's executable file
1396 *
1397 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1398 *
1399 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1400 * invocations: in mmput() nobody alive left, in execve it happens before
1401 * the new mm is made visible to anyone.
1402 *
1403 * Can only fail if new_exe_file != NULL.
1404 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1405 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1406 {
1407 struct file *old_exe_file;
1408
1409 /*
1410 * It is safe to dereference the exe_file without RCU as
1411 * this function is only called if nobody else can access
1412 * this mm -- see comment above for justification.
1413 */
1414 old_exe_file = rcu_dereference_raw(mm->exe_file);
1415
1416 if (new_exe_file) {
1417 /*
1418 * We expect the caller (i.e., sys_execve) to already denied
1419 * write access, so this is unlikely to fail.
1420 */
1421 if (unlikely(deny_write_access(new_exe_file)))
1422 return -EACCES;
1423 get_file(new_exe_file);
1424 }
1425 rcu_assign_pointer(mm->exe_file, new_exe_file);
1426 if (old_exe_file) {
1427 allow_write_access(old_exe_file);
1428 fput(old_exe_file);
1429 }
1430 return 0;
1431 }
1432
1433 /**
1434 * replace_mm_exe_file - replace a reference to the mm's executable file
1435 *
1436 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1437 *
1438 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1439 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1440 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1441 {
1442 struct vm_area_struct *vma;
1443 struct file *old_exe_file;
1444 int ret = 0;
1445
1446 /* Forbid mm->exe_file change if old file still mapped. */
1447 old_exe_file = get_mm_exe_file(mm);
1448 if (old_exe_file) {
1449 VMA_ITERATOR(vmi, mm, 0);
1450 mmap_read_lock(mm);
1451 for_each_vma(vmi, vma) {
1452 if (!vma->vm_file)
1453 continue;
1454 if (path_equal(&vma->vm_file->f_path,
1455 &old_exe_file->f_path)) {
1456 ret = -EBUSY;
1457 break;
1458 }
1459 }
1460 mmap_read_unlock(mm);
1461 fput(old_exe_file);
1462 if (ret)
1463 return ret;
1464 }
1465
1466 ret = deny_write_access(new_exe_file);
1467 if (ret)
1468 return -EACCES;
1469 get_file(new_exe_file);
1470
1471 /* set the new file */
1472 mmap_write_lock(mm);
1473 old_exe_file = rcu_dereference_raw(mm->exe_file);
1474 rcu_assign_pointer(mm->exe_file, new_exe_file);
1475 mmap_write_unlock(mm);
1476
1477 if (old_exe_file) {
1478 allow_write_access(old_exe_file);
1479 fput(old_exe_file);
1480 }
1481 return 0;
1482 }
1483
1484 /**
1485 * get_mm_exe_file - acquire a reference to the mm's executable file
1486 *
1487 * Returns %NULL if mm has no associated executable file.
1488 * User must release file via fput().
1489 */
get_mm_exe_file(struct mm_struct * mm)1490 struct file *get_mm_exe_file(struct mm_struct *mm)
1491 {
1492 struct file *exe_file;
1493
1494 rcu_read_lock();
1495 exe_file = rcu_dereference(mm->exe_file);
1496 if (exe_file && !get_file_rcu(exe_file))
1497 exe_file = NULL;
1498 rcu_read_unlock();
1499 return exe_file;
1500 }
1501
1502 /**
1503 * get_task_exe_file - acquire a reference to the task's executable file
1504 *
1505 * Returns %NULL if task's mm (if any) has no associated executable file or
1506 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1507 * User must release file via fput().
1508 */
get_task_exe_file(struct task_struct * task)1509 struct file *get_task_exe_file(struct task_struct *task)
1510 {
1511 struct file *exe_file = NULL;
1512 struct mm_struct *mm;
1513
1514 task_lock(task);
1515 mm = task->mm;
1516 if (mm) {
1517 if (!(task->flags & PF_KTHREAD))
1518 exe_file = get_mm_exe_file(mm);
1519 }
1520 task_unlock(task);
1521 return exe_file;
1522 }
1523
1524 /**
1525 * get_task_mm - acquire a reference to the task's mm
1526 *
1527 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1528 * this kernel workthread has transiently adopted a user mm with use_mm,
1529 * to do its AIO) is not set and if so returns a reference to it, after
1530 * bumping up the use count. User must release the mm via mmput()
1531 * after use. Typically used by /proc and ptrace.
1532 */
get_task_mm(struct task_struct * task)1533 struct mm_struct *get_task_mm(struct task_struct *task)
1534 {
1535 struct mm_struct *mm;
1536
1537 task_lock(task);
1538 mm = task->mm;
1539 if (mm) {
1540 if (task->flags & PF_KTHREAD)
1541 mm = NULL;
1542 else
1543 mmget(mm);
1544 }
1545 task_unlock(task);
1546 return mm;
1547 }
1548 EXPORT_SYMBOL_GPL(get_task_mm);
1549
mm_access(struct task_struct * task,unsigned int mode)1550 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1551 {
1552 struct mm_struct *mm;
1553 int err;
1554
1555 err = down_read_killable(&task->signal->exec_update_lock);
1556 if (err)
1557 return ERR_PTR(err);
1558
1559 mm = get_task_mm(task);
1560 if (mm && mm != current->mm &&
1561 !ptrace_may_access(task, mode)) {
1562 mmput(mm);
1563 mm = ERR_PTR(-EACCES);
1564 }
1565 up_read(&task->signal->exec_update_lock);
1566
1567 return mm;
1568 }
1569
complete_vfork_done(struct task_struct * tsk)1570 static void complete_vfork_done(struct task_struct *tsk)
1571 {
1572 struct completion *vfork;
1573
1574 task_lock(tsk);
1575 vfork = tsk->vfork_done;
1576 if (likely(vfork)) {
1577 tsk->vfork_done = NULL;
1578 complete(vfork);
1579 }
1580 task_unlock(tsk);
1581 }
1582
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1583 static int wait_for_vfork_done(struct task_struct *child,
1584 struct completion *vfork)
1585 {
1586 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1587 int killed;
1588
1589 cgroup_enter_frozen();
1590 killed = wait_for_completion_state(vfork, state);
1591 cgroup_leave_frozen(false);
1592
1593 if (killed) {
1594 task_lock(child);
1595 child->vfork_done = NULL;
1596 task_unlock(child);
1597 }
1598
1599 put_task_struct(child);
1600 return killed;
1601 }
1602
1603 /* Please note the differences between mmput and mm_release.
1604 * mmput is called whenever we stop holding onto a mm_struct,
1605 * error success whatever.
1606 *
1607 * mm_release is called after a mm_struct has been removed
1608 * from the current process.
1609 *
1610 * This difference is important for error handling, when we
1611 * only half set up a mm_struct for a new process and need to restore
1612 * the old one. Because we mmput the new mm_struct before
1613 * restoring the old one. . .
1614 * Eric Biederman 10 January 1998
1615 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1616 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1617 {
1618 uprobe_free_utask(tsk);
1619
1620 /* Get rid of any cached register state */
1621 deactivate_mm(tsk, mm);
1622
1623 /*
1624 * Signal userspace if we're not exiting with a core dump
1625 * because we want to leave the value intact for debugging
1626 * purposes.
1627 */
1628 if (tsk->clear_child_tid) {
1629 if (atomic_read(&mm->mm_users) > 1) {
1630 /*
1631 * We don't check the error code - if userspace has
1632 * not set up a proper pointer then tough luck.
1633 */
1634 put_user(0, tsk->clear_child_tid);
1635 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1636 1, NULL, NULL, 0, 0);
1637 }
1638 tsk->clear_child_tid = NULL;
1639 }
1640
1641 /*
1642 * All done, finally we can wake up parent and return this mm to him.
1643 * Also kthread_stop() uses this completion for synchronization.
1644 */
1645 if (tsk->vfork_done)
1646 complete_vfork_done(tsk);
1647 }
1648
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1649 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1650 {
1651 futex_exit_release(tsk);
1652 mm_release(tsk, mm);
1653 }
1654
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1655 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1656 {
1657 futex_exec_release(tsk);
1658 mm_release(tsk, mm);
1659 }
1660
1661 /**
1662 * dup_mm() - duplicates an existing mm structure
1663 * @tsk: the task_struct with which the new mm will be associated.
1664 * @oldmm: the mm to duplicate.
1665 *
1666 * Allocates a new mm structure and duplicates the provided @oldmm structure
1667 * content into it.
1668 *
1669 * Return: the duplicated mm or NULL on failure.
1670 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1671 static struct mm_struct *dup_mm(struct task_struct *tsk,
1672 struct mm_struct *oldmm)
1673 {
1674 struct mm_struct *mm;
1675 int err;
1676
1677 mm = allocate_mm();
1678 if (!mm)
1679 goto fail_nomem;
1680
1681 memcpy(mm, oldmm, sizeof(*mm));
1682
1683 if (!mm_init(mm, tsk, mm->user_ns))
1684 goto fail_nomem;
1685
1686 err = dup_mmap(mm, oldmm);
1687 if (err)
1688 goto free_pt;
1689
1690 mm->hiwater_rss = get_mm_rss(mm);
1691 mm->hiwater_vm = mm->total_vm;
1692
1693 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1694 goto free_pt;
1695
1696 return mm;
1697
1698 free_pt:
1699 /* don't put binfmt in mmput, we haven't got module yet */
1700 mm->binfmt = NULL;
1701 mm_init_owner(mm, NULL);
1702 mmput(mm);
1703
1704 fail_nomem:
1705 return NULL;
1706 }
1707
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1708 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1709 {
1710 struct mm_struct *mm, *oldmm;
1711
1712 tsk->min_flt = tsk->maj_flt = 0;
1713 tsk->nvcsw = tsk->nivcsw = 0;
1714 #ifdef CONFIG_DETECT_HUNG_TASK
1715 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1716 tsk->last_switch_time = 0;
1717 #endif
1718
1719 tsk->mm = NULL;
1720 tsk->active_mm = NULL;
1721
1722 /*
1723 * Are we cloning a kernel thread?
1724 *
1725 * We need to steal a active VM for that..
1726 */
1727 oldmm = current->mm;
1728 if (!oldmm)
1729 return 0;
1730
1731 if (clone_flags & CLONE_VM) {
1732 mmget(oldmm);
1733 mm = oldmm;
1734 } else {
1735 mm = dup_mm(tsk, current->mm);
1736 if (!mm)
1737 return -ENOMEM;
1738 }
1739
1740 tsk->mm = mm;
1741 tsk->active_mm = mm;
1742 sched_mm_cid_fork(tsk);
1743 return 0;
1744 }
1745
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1746 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1747 {
1748 struct fs_struct *fs = current->fs;
1749 if (clone_flags & CLONE_FS) {
1750 /* tsk->fs is already what we want */
1751 spin_lock(&fs->lock);
1752 if (fs->in_exec) {
1753 spin_unlock(&fs->lock);
1754 return -EAGAIN;
1755 }
1756 fs->users++;
1757 spin_unlock(&fs->lock);
1758 return 0;
1759 }
1760 tsk->fs = copy_fs_struct(fs);
1761 if (!tsk->fs)
1762 return -ENOMEM;
1763 return 0;
1764 }
1765
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1766 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1767 int no_files)
1768 {
1769 struct files_struct *oldf, *newf;
1770
1771 /*
1772 * A background process may not have any files ...
1773 */
1774 oldf = current->files;
1775 if (!oldf)
1776 return 0;
1777
1778 if (no_files) {
1779 tsk->files = NULL;
1780 return 0;
1781 }
1782
1783 if (clone_flags & CLONE_FILES) {
1784 atomic_inc(&oldf->count);
1785 return 0;
1786 }
1787
1788 newf = dup_fd(oldf, NULL);
1789 if (IS_ERR(newf))
1790 return PTR_ERR(newf);
1791
1792 tsk->files = newf;
1793 return 0;
1794 }
1795
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1796 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1797 {
1798 struct sighand_struct *sig;
1799
1800 if (clone_flags & CLONE_SIGHAND) {
1801 refcount_inc(¤t->sighand->count);
1802 return 0;
1803 }
1804 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1805 RCU_INIT_POINTER(tsk->sighand, sig);
1806 if (!sig)
1807 return -ENOMEM;
1808
1809 refcount_set(&sig->count, 1);
1810 spin_lock_irq(¤t->sighand->siglock);
1811 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1812 spin_unlock_irq(¤t->sighand->siglock);
1813
1814 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1815 if (clone_flags & CLONE_CLEAR_SIGHAND)
1816 flush_signal_handlers(tsk, 0);
1817
1818 return 0;
1819 }
1820
__cleanup_sighand(struct sighand_struct * sighand)1821 void __cleanup_sighand(struct sighand_struct *sighand)
1822 {
1823 if (refcount_dec_and_test(&sighand->count)) {
1824 signalfd_cleanup(sighand);
1825 /*
1826 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1827 * without an RCU grace period, see __lock_task_sighand().
1828 */
1829 kmem_cache_free(sighand_cachep, sighand);
1830 }
1831 }
1832
1833 /*
1834 * Initialize POSIX timer handling for a thread group.
1835 */
posix_cpu_timers_init_group(struct signal_struct * sig)1836 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1837 {
1838 struct posix_cputimers *pct = &sig->posix_cputimers;
1839 unsigned long cpu_limit;
1840
1841 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1842 posix_cputimers_group_init(pct, cpu_limit);
1843 }
1844
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1845 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1846 {
1847 struct signal_struct *sig;
1848
1849 if (clone_flags & CLONE_THREAD)
1850 return 0;
1851
1852 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1853 tsk->signal = sig;
1854 if (!sig)
1855 return -ENOMEM;
1856
1857 sig->nr_threads = 1;
1858 sig->quick_threads = 1;
1859 atomic_set(&sig->live, 1);
1860 refcount_set(&sig->sigcnt, 1);
1861
1862 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1863 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1864 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1865
1866 init_waitqueue_head(&sig->wait_chldexit);
1867 sig->curr_target = tsk;
1868 init_sigpending(&sig->shared_pending);
1869 INIT_HLIST_HEAD(&sig->multiprocess);
1870 seqlock_init(&sig->stats_lock);
1871 prev_cputime_init(&sig->prev_cputime);
1872
1873 #ifdef CONFIG_POSIX_TIMERS
1874 INIT_LIST_HEAD(&sig->posix_timers);
1875 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1876 sig->real_timer.function = it_real_fn;
1877 #endif
1878
1879 task_lock(current->group_leader);
1880 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1881 task_unlock(current->group_leader);
1882
1883 posix_cpu_timers_init_group(sig);
1884
1885 tty_audit_fork(sig);
1886 sched_autogroup_fork(sig);
1887
1888 sig->oom_score_adj = current->signal->oom_score_adj;
1889 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1890
1891 mutex_init(&sig->cred_guard_mutex);
1892 init_rwsem(&sig->exec_update_lock);
1893
1894 return 0;
1895 }
1896
copy_seccomp(struct task_struct * p)1897 static void copy_seccomp(struct task_struct *p)
1898 {
1899 #ifdef CONFIG_SECCOMP
1900 /*
1901 * Must be called with sighand->lock held, which is common to
1902 * all threads in the group. Holding cred_guard_mutex is not
1903 * needed because this new task is not yet running and cannot
1904 * be racing exec.
1905 */
1906 assert_spin_locked(¤t->sighand->siglock);
1907
1908 /* Ref-count the new filter user, and assign it. */
1909 get_seccomp_filter(current);
1910 p->seccomp = current->seccomp;
1911
1912 /*
1913 * Explicitly enable no_new_privs here in case it got set
1914 * between the task_struct being duplicated and holding the
1915 * sighand lock. The seccomp state and nnp must be in sync.
1916 */
1917 if (task_no_new_privs(current))
1918 task_set_no_new_privs(p);
1919
1920 /*
1921 * If the parent gained a seccomp mode after copying thread
1922 * flags and between before we held the sighand lock, we have
1923 * to manually enable the seccomp thread flag here.
1924 */
1925 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1926 set_task_syscall_work(p, SECCOMP);
1927 #endif
1928 }
1929
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1930 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1931 {
1932 current->clear_child_tid = tidptr;
1933
1934 return task_pid_vnr(current);
1935 }
1936
rt_mutex_init_task(struct task_struct * p)1937 static void rt_mutex_init_task(struct task_struct *p)
1938 {
1939 raw_spin_lock_init(&p->pi_lock);
1940 #ifdef CONFIG_RT_MUTEXES
1941 p->pi_waiters = RB_ROOT_CACHED;
1942 p->pi_top_task = NULL;
1943 p->pi_blocked_on = NULL;
1944 #endif
1945 }
1946
init_task_pid_links(struct task_struct * task)1947 static inline void init_task_pid_links(struct task_struct *task)
1948 {
1949 enum pid_type type;
1950
1951 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1952 INIT_HLIST_NODE(&task->pid_links[type]);
1953 }
1954
1955 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1956 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1957 {
1958 if (type == PIDTYPE_PID)
1959 task->thread_pid = pid;
1960 else
1961 task->signal->pids[type] = pid;
1962 }
1963
rcu_copy_process(struct task_struct * p)1964 static inline void rcu_copy_process(struct task_struct *p)
1965 {
1966 #ifdef CONFIG_PREEMPT_RCU
1967 p->rcu_read_lock_nesting = 0;
1968 p->rcu_read_unlock_special.s = 0;
1969 p->rcu_blocked_node = NULL;
1970 INIT_LIST_HEAD(&p->rcu_node_entry);
1971 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1972 #ifdef CONFIG_TASKS_RCU
1973 p->rcu_tasks_holdout = false;
1974 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1975 p->rcu_tasks_idle_cpu = -1;
1976 #endif /* #ifdef CONFIG_TASKS_RCU */
1977 #ifdef CONFIG_TASKS_TRACE_RCU
1978 p->trc_reader_nesting = 0;
1979 p->trc_reader_special.s = 0;
1980 INIT_LIST_HEAD(&p->trc_holdout_list);
1981 INIT_LIST_HEAD(&p->trc_blkd_node);
1982 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1983 }
1984
pidfd_pid(const struct file * file)1985 struct pid *pidfd_pid(const struct file *file)
1986 {
1987 if (file->f_op == &pidfd_fops)
1988 return file->private_data;
1989
1990 return ERR_PTR(-EBADF);
1991 }
1992
pidfd_release(struct inode * inode,struct file * file)1993 static int pidfd_release(struct inode *inode, struct file *file)
1994 {
1995 struct pid *pid = file->private_data;
1996
1997 file->private_data = NULL;
1998 put_pid(pid);
1999 return 0;
2000 }
2001
2002 #ifdef CONFIG_PROC_FS
2003 /**
2004 * pidfd_show_fdinfo - print information about a pidfd
2005 * @m: proc fdinfo file
2006 * @f: file referencing a pidfd
2007 *
2008 * Pid:
2009 * This function will print the pid that a given pidfd refers to in the
2010 * pid namespace of the procfs instance.
2011 * If the pid namespace of the process is not a descendant of the pid
2012 * namespace of the procfs instance 0 will be shown as its pid. This is
2013 * similar to calling getppid() on a process whose parent is outside of
2014 * its pid namespace.
2015 *
2016 * NSpid:
2017 * If pid namespaces are supported then this function will also print
2018 * the pid of a given pidfd refers to for all descendant pid namespaces
2019 * starting from the current pid namespace of the instance, i.e. the
2020 * Pid field and the first entry in the NSpid field will be identical.
2021 * If the pid namespace of the process is not a descendant of the pid
2022 * namespace of the procfs instance 0 will be shown as its first NSpid
2023 * entry and no others will be shown.
2024 * Note that this differs from the Pid and NSpid fields in
2025 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2026 * the pid namespace of the procfs instance. The difference becomes
2027 * obvious when sending around a pidfd between pid namespaces from a
2028 * different branch of the tree, i.e. where no ancestral relation is
2029 * present between the pid namespaces:
2030 * - create two new pid namespaces ns1 and ns2 in the initial pid
2031 * namespace (also take care to create new mount namespaces in the
2032 * new pid namespace and mount procfs)
2033 * - create a process with a pidfd in ns1
2034 * - send pidfd from ns1 to ns2
2035 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2036 * have exactly one entry, which is 0
2037 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2038 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2039 {
2040 struct pid *pid = f->private_data;
2041 struct pid_namespace *ns;
2042 pid_t nr = -1;
2043
2044 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2045 ns = proc_pid_ns(file_inode(m->file)->i_sb);
2046 nr = pid_nr_ns(pid, ns);
2047 }
2048
2049 seq_put_decimal_ll(m, "Pid:\t", nr);
2050
2051 #ifdef CONFIG_PID_NS
2052 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2053 if (nr > 0) {
2054 int i;
2055
2056 /* If nr is non-zero it means that 'pid' is valid and that
2057 * ns, i.e. the pid namespace associated with the procfs
2058 * instance, is in the pid namespace hierarchy of pid.
2059 * Start at one below the already printed level.
2060 */
2061 for (i = ns->level + 1; i <= pid->level; i++)
2062 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2063 }
2064 #endif
2065 seq_putc(m, '\n');
2066 }
2067 #endif
2068
2069 /*
2070 * Poll support for process exit notification.
2071 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2072 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2073 {
2074 struct pid *pid = file->private_data;
2075 __poll_t poll_flags = 0;
2076
2077 poll_wait(file, &pid->wait_pidfd, pts);
2078
2079 /*
2080 * Inform pollers only when the whole thread group exits.
2081 * If the thread group leader exits before all other threads in the
2082 * group, then poll(2) should block, similar to the wait(2) family.
2083 */
2084 if (thread_group_exited(pid))
2085 poll_flags = EPOLLIN | EPOLLRDNORM;
2086
2087 return poll_flags;
2088 }
2089
2090 const struct file_operations pidfd_fops = {
2091 .release = pidfd_release,
2092 .poll = pidfd_poll,
2093 #ifdef CONFIG_PROC_FS
2094 .show_fdinfo = pidfd_show_fdinfo,
2095 #endif
2096 };
2097
2098 /**
2099 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2100 * @pid: the struct pid for which to create a pidfd
2101 * @flags: flags of the new @pidfd
2102 * @pidfd: the pidfd to return
2103 *
2104 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2105 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2106
2107 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2108 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2109 * pidfd file are prepared.
2110 *
2111 * If this function returns successfully the caller is responsible to either
2112 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2113 * order to install the pidfd into its file descriptor table or they must use
2114 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2115 * respectively.
2116 *
2117 * This function is useful when a pidfd must already be reserved but there
2118 * might still be points of failure afterwards and the caller wants to ensure
2119 * that no pidfd is leaked into its file descriptor table.
2120 *
2121 * Return: On success, a reserved pidfd is returned from the function and a new
2122 * pidfd file is returned in the last argument to the function. On
2123 * error, a negative error code is returned from the function and the
2124 * last argument remains unchanged.
2125 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2126 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2127 {
2128 int pidfd;
2129 struct file *pidfd_file;
2130
2131 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2132 return -EINVAL;
2133
2134 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2135 if (pidfd < 0)
2136 return pidfd;
2137
2138 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2139 flags | O_RDWR | O_CLOEXEC);
2140 if (IS_ERR(pidfd_file)) {
2141 put_unused_fd(pidfd);
2142 return PTR_ERR(pidfd_file);
2143 }
2144 get_pid(pid); /* held by pidfd_file now */
2145 *ret = pidfd_file;
2146 return pidfd;
2147 }
2148
2149 /**
2150 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2151 * @pid: the struct pid for which to create a pidfd
2152 * @flags: flags of the new @pidfd
2153 * @pidfd: the pidfd to return
2154 *
2155 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2156 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2157 *
2158 * The helper verifies that @pid is used as a thread group leader.
2159 *
2160 * If this function returns successfully the caller is responsible to either
2161 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2162 * order to install the pidfd into its file descriptor table or they must use
2163 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2164 * respectively.
2165 *
2166 * This function is useful when a pidfd must already be reserved but there
2167 * might still be points of failure afterwards and the caller wants to ensure
2168 * that no pidfd is leaked into its file descriptor table.
2169 *
2170 * Return: On success, a reserved pidfd is returned from the function and a new
2171 * pidfd file is returned in the last argument to the function. On
2172 * error, a negative error code is returned from the function and the
2173 * last argument remains unchanged.
2174 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2175 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2176 {
2177 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2178 return -EINVAL;
2179
2180 return __pidfd_prepare(pid, flags, ret);
2181 }
2182
__delayed_free_task(struct rcu_head * rhp)2183 static void __delayed_free_task(struct rcu_head *rhp)
2184 {
2185 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2186
2187 free_task(tsk);
2188 }
2189
delayed_free_task(struct task_struct * tsk)2190 static __always_inline void delayed_free_task(struct task_struct *tsk)
2191 {
2192 if (IS_ENABLED(CONFIG_MEMCG))
2193 call_rcu(&tsk->rcu, __delayed_free_task);
2194 else
2195 free_task(tsk);
2196 }
2197
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2198 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2199 {
2200 /* Skip if kernel thread */
2201 if (!tsk->mm)
2202 return;
2203
2204 /* Skip if spawning a thread or using vfork */
2205 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2206 return;
2207
2208 /* We need to synchronize with __set_oom_adj */
2209 mutex_lock(&oom_adj_mutex);
2210 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2211 /* Update the values in case they were changed after copy_signal */
2212 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2213 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2214 mutex_unlock(&oom_adj_mutex);
2215 }
2216
2217 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2218 static void rv_task_fork(struct task_struct *p)
2219 {
2220 int i;
2221
2222 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2223 p->rv[i].da_mon.monitoring = false;
2224 }
2225 #else
2226 #define rv_task_fork(p) do {} while (0)
2227 #endif
2228
2229 /*
2230 * This creates a new process as a copy of the old one,
2231 * but does not actually start it yet.
2232 *
2233 * It copies the registers, and all the appropriate
2234 * parts of the process environment (as per the clone
2235 * flags). The actual kick-off is left to the caller.
2236 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2237 __latent_entropy struct task_struct *copy_process(
2238 struct pid *pid,
2239 int trace,
2240 int node,
2241 struct kernel_clone_args *args)
2242 {
2243 int pidfd = -1, retval;
2244 struct task_struct *p;
2245 struct multiprocess_signals delayed;
2246 struct file *pidfile = NULL;
2247 const u64 clone_flags = args->flags;
2248 struct nsproxy *nsp = current->nsproxy;
2249
2250 /*
2251 * Don't allow sharing the root directory with processes in a different
2252 * namespace
2253 */
2254 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2255 return ERR_PTR(-EINVAL);
2256
2257 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2258 return ERR_PTR(-EINVAL);
2259
2260 /*
2261 * Thread groups must share signals as well, and detached threads
2262 * can only be started up within the thread group.
2263 */
2264 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2265 return ERR_PTR(-EINVAL);
2266
2267 /*
2268 * Shared signal handlers imply shared VM. By way of the above,
2269 * thread groups also imply shared VM. Blocking this case allows
2270 * for various simplifications in other code.
2271 */
2272 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2273 return ERR_PTR(-EINVAL);
2274
2275 /*
2276 * Siblings of global init remain as zombies on exit since they are
2277 * not reaped by their parent (swapper). To solve this and to avoid
2278 * multi-rooted process trees, prevent global and container-inits
2279 * from creating siblings.
2280 */
2281 if ((clone_flags & CLONE_PARENT) &&
2282 current->signal->flags & SIGNAL_UNKILLABLE)
2283 return ERR_PTR(-EINVAL);
2284
2285 /*
2286 * If the new process will be in a different pid or user namespace
2287 * do not allow it to share a thread group with the forking task.
2288 */
2289 if (clone_flags & CLONE_THREAD) {
2290 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2291 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2292 return ERR_PTR(-EINVAL);
2293 }
2294
2295 if (clone_flags & CLONE_PIDFD) {
2296 /*
2297 * - CLONE_DETACHED is blocked so that we can potentially
2298 * reuse it later for CLONE_PIDFD.
2299 * - CLONE_THREAD is blocked until someone really needs it.
2300 */
2301 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2302 return ERR_PTR(-EINVAL);
2303 }
2304
2305 /*
2306 * Force any signals received before this point to be delivered
2307 * before the fork happens. Collect up signals sent to multiple
2308 * processes that happen during the fork and delay them so that
2309 * they appear to happen after the fork.
2310 */
2311 sigemptyset(&delayed.signal);
2312 INIT_HLIST_NODE(&delayed.node);
2313
2314 spin_lock_irq(¤t->sighand->siglock);
2315 if (!(clone_flags & CLONE_THREAD))
2316 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2317 recalc_sigpending();
2318 spin_unlock_irq(¤t->sighand->siglock);
2319 retval = -ERESTARTNOINTR;
2320 if (task_sigpending(current))
2321 goto fork_out;
2322
2323 retval = -ENOMEM;
2324 p = dup_task_struct(current, node);
2325 if (!p)
2326 goto fork_out;
2327 p->flags &= ~PF_KTHREAD;
2328 if (args->kthread)
2329 p->flags |= PF_KTHREAD;
2330 if (args->user_worker) {
2331 /*
2332 * Mark us a user worker, and block any signal that isn't
2333 * fatal or STOP
2334 */
2335 p->flags |= PF_USER_WORKER;
2336 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2337 }
2338 if (args->io_thread)
2339 p->flags |= PF_IO_WORKER;
2340
2341 if (args->name)
2342 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2343
2344 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2345 /*
2346 * Clear TID on mm_release()?
2347 */
2348 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2349
2350 ftrace_graph_init_task(p);
2351
2352 rt_mutex_init_task(p);
2353
2354 lockdep_assert_irqs_enabled();
2355 #ifdef CONFIG_PROVE_LOCKING
2356 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2357 #endif
2358 retval = copy_creds(p, clone_flags);
2359 if (retval < 0)
2360 goto bad_fork_free;
2361
2362 retval = -EAGAIN;
2363 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2364 if (p->real_cred->user != INIT_USER &&
2365 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2366 goto bad_fork_cleanup_count;
2367 }
2368 current->flags &= ~PF_NPROC_EXCEEDED;
2369
2370 /*
2371 * If multiple threads are within copy_process(), then this check
2372 * triggers too late. This doesn't hurt, the check is only there
2373 * to stop root fork bombs.
2374 */
2375 retval = -EAGAIN;
2376 if (data_race(nr_threads >= max_threads))
2377 goto bad_fork_cleanup_count;
2378
2379 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2380 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2381 p->flags |= PF_FORKNOEXEC;
2382 INIT_LIST_HEAD(&p->children);
2383 INIT_LIST_HEAD(&p->sibling);
2384 rcu_copy_process(p);
2385 p->vfork_done = NULL;
2386 spin_lock_init(&p->alloc_lock);
2387
2388 init_sigpending(&p->pending);
2389
2390 p->utime = p->stime = p->gtime = 0;
2391 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2392 p->utimescaled = p->stimescaled = 0;
2393 #endif
2394 prev_cputime_init(&p->prev_cputime);
2395
2396 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2397 seqcount_init(&p->vtime.seqcount);
2398 p->vtime.starttime = 0;
2399 p->vtime.state = VTIME_INACTIVE;
2400 #endif
2401
2402 #ifdef CONFIG_IO_URING
2403 p->io_uring = NULL;
2404 #endif
2405
2406 #if defined(SPLIT_RSS_COUNTING)
2407 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2408 #endif
2409
2410 p->default_timer_slack_ns = current->timer_slack_ns;
2411
2412 #ifdef CONFIG_PSI
2413 p->psi_flags = 0;
2414 #endif
2415
2416 task_io_accounting_init(&p->ioac);
2417 acct_clear_integrals(p);
2418
2419 posix_cputimers_init(&p->posix_cputimers);
2420
2421 p->io_context = NULL;
2422 audit_set_context(p, NULL);
2423 cgroup_fork(p);
2424 if (args->kthread) {
2425 if (!set_kthread_struct(p))
2426 goto bad_fork_cleanup_delayacct;
2427 }
2428 #ifdef CONFIG_NUMA
2429 p->mempolicy = mpol_dup(p->mempolicy);
2430 if (IS_ERR(p->mempolicy)) {
2431 retval = PTR_ERR(p->mempolicy);
2432 p->mempolicy = NULL;
2433 goto bad_fork_cleanup_delayacct;
2434 }
2435 #endif
2436 #ifdef CONFIG_CPUSETS
2437 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2438 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2439 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2440 #endif
2441 #ifdef CONFIG_TRACE_IRQFLAGS
2442 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2443 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2444 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2445 p->softirqs_enabled = 1;
2446 p->softirq_context = 0;
2447 #endif
2448
2449 p->pagefault_disabled = 0;
2450
2451 #ifdef CONFIG_LOCKDEP
2452 lockdep_init_task(p);
2453 #endif
2454
2455 #ifdef CONFIG_DEBUG_MUTEXES
2456 p->blocked_on = NULL; /* not blocked yet */
2457 #endif
2458 #ifdef CONFIG_BCACHE
2459 p->sequential_io = 0;
2460 p->sequential_io_avg = 0;
2461 #endif
2462 #ifdef CONFIG_BPF_SYSCALL
2463 RCU_INIT_POINTER(p->bpf_storage, NULL);
2464 p->bpf_ctx = NULL;
2465 #endif
2466
2467 /* Perform scheduler related setup. Assign this task to a CPU. */
2468 retval = sched_fork(clone_flags, p);
2469 if (retval)
2470 goto bad_fork_cleanup_policy;
2471
2472 retval = perf_event_init_task(p, clone_flags);
2473 if (retval)
2474 goto bad_fork_cleanup_policy;
2475 retval = audit_alloc(p);
2476 if (retval)
2477 goto bad_fork_cleanup_perf;
2478 /* copy all the process information */
2479 shm_init_task(p);
2480 retval = security_task_alloc(p, clone_flags);
2481 if (retval)
2482 goto bad_fork_cleanup_audit;
2483 retval = copy_semundo(clone_flags, p);
2484 if (retval)
2485 goto bad_fork_cleanup_security;
2486 retval = copy_files(clone_flags, p, args->no_files);
2487 if (retval)
2488 goto bad_fork_cleanup_semundo;
2489 retval = copy_fs(clone_flags, p);
2490 if (retval)
2491 goto bad_fork_cleanup_files;
2492 retval = copy_sighand(clone_flags, p);
2493 if (retval)
2494 goto bad_fork_cleanup_fs;
2495 retval = copy_signal(clone_flags, p);
2496 if (retval)
2497 goto bad_fork_cleanup_sighand;
2498 retval = copy_mm(clone_flags, p);
2499 if (retval)
2500 goto bad_fork_cleanup_signal;
2501 retval = copy_namespaces(clone_flags, p);
2502 if (retval)
2503 goto bad_fork_cleanup_mm;
2504 retval = copy_io(clone_flags, p);
2505 if (retval)
2506 goto bad_fork_cleanup_namespaces;
2507 retval = copy_thread(p, args);
2508 if (retval)
2509 goto bad_fork_cleanup_io;
2510
2511 stackleak_task_init(p);
2512
2513 if (pid != &init_struct_pid) {
2514 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2515 args->set_tid_size);
2516 if (IS_ERR(pid)) {
2517 retval = PTR_ERR(pid);
2518 goto bad_fork_cleanup_thread;
2519 }
2520 }
2521
2522 /*
2523 * This has to happen after we've potentially unshared the file
2524 * descriptor table (so that the pidfd doesn't leak into the child
2525 * if the fd table isn't shared).
2526 */
2527 if (clone_flags & CLONE_PIDFD) {
2528 /* Note that no task has been attached to @pid yet. */
2529 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2530 if (retval < 0)
2531 goto bad_fork_free_pid;
2532 pidfd = retval;
2533
2534 retval = put_user(pidfd, args->pidfd);
2535 if (retval)
2536 goto bad_fork_put_pidfd;
2537 }
2538
2539 #ifdef CONFIG_BLOCK
2540 p->plug = NULL;
2541 #endif
2542 futex_init_task(p);
2543
2544 /*
2545 * sigaltstack should be cleared when sharing the same VM
2546 */
2547 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2548 sas_ss_reset(p);
2549
2550 /*
2551 * Syscall tracing and stepping should be turned off in the
2552 * child regardless of CLONE_PTRACE.
2553 */
2554 user_disable_single_step(p);
2555 clear_task_syscall_work(p, SYSCALL_TRACE);
2556 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2557 clear_task_syscall_work(p, SYSCALL_EMU);
2558 #endif
2559 clear_tsk_latency_tracing(p);
2560
2561 /* ok, now we should be set up.. */
2562 p->pid = pid_nr(pid);
2563 if (clone_flags & CLONE_THREAD) {
2564 p->group_leader = current->group_leader;
2565 p->tgid = current->tgid;
2566 } else {
2567 p->group_leader = p;
2568 p->tgid = p->pid;
2569 }
2570
2571 p->nr_dirtied = 0;
2572 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2573 p->dirty_paused_when = 0;
2574
2575 p->pdeath_signal = 0;
2576 INIT_LIST_HEAD(&p->thread_group);
2577 p->task_works = NULL;
2578 clear_posix_cputimers_work(p);
2579
2580 #ifdef CONFIG_KRETPROBES
2581 p->kretprobe_instances.first = NULL;
2582 #endif
2583 #ifdef CONFIG_RETHOOK
2584 p->rethooks.first = NULL;
2585 #endif
2586
2587 /*
2588 * Ensure that the cgroup subsystem policies allow the new process to be
2589 * forked. It should be noted that the new process's css_set can be changed
2590 * between here and cgroup_post_fork() if an organisation operation is in
2591 * progress.
2592 */
2593 retval = cgroup_can_fork(p, args);
2594 if (retval)
2595 goto bad_fork_put_pidfd;
2596
2597 /*
2598 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2599 * the new task on the correct runqueue. All this *before* the task
2600 * becomes visible.
2601 *
2602 * This isn't part of ->can_fork() because while the re-cloning is
2603 * cgroup specific, it unconditionally needs to place the task on a
2604 * runqueue.
2605 */
2606 sched_cgroup_fork(p, args);
2607
2608 /*
2609 * From this point on we must avoid any synchronous user-space
2610 * communication until we take the tasklist-lock. In particular, we do
2611 * not want user-space to be able to predict the process start-time by
2612 * stalling fork(2) after we recorded the start_time but before it is
2613 * visible to the system.
2614 */
2615
2616 p->start_time = ktime_get_ns();
2617 p->start_boottime = ktime_get_boottime_ns();
2618
2619 /*
2620 * Make it visible to the rest of the system, but dont wake it up yet.
2621 * Need tasklist lock for parent etc handling!
2622 */
2623 write_lock_irq(&tasklist_lock);
2624
2625 /* CLONE_PARENT re-uses the old parent */
2626 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2627 p->real_parent = current->real_parent;
2628 p->parent_exec_id = current->parent_exec_id;
2629 if (clone_flags & CLONE_THREAD)
2630 p->exit_signal = -1;
2631 else
2632 p->exit_signal = current->group_leader->exit_signal;
2633 } else {
2634 p->real_parent = current;
2635 p->parent_exec_id = current->self_exec_id;
2636 p->exit_signal = args->exit_signal;
2637 }
2638
2639 klp_copy_process(p);
2640
2641 sched_core_fork(p);
2642
2643 spin_lock(¤t->sighand->siglock);
2644
2645 rv_task_fork(p);
2646
2647 rseq_fork(p, clone_flags);
2648
2649 /* Don't start children in a dying pid namespace */
2650 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2651 retval = -ENOMEM;
2652 goto bad_fork_cancel_cgroup;
2653 }
2654
2655 /* Let kill terminate clone/fork in the middle */
2656 if (fatal_signal_pending(current)) {
2657 retval = -EINTR;
2658 goto bad_fork_cancel_cgroup;
2659 }
2660
2661 /* No more failure paths after this point. */
2662
2663 /*
2664 * Copy seccomp details explicitly here, in case they were changed
2665 * before holding sighand lock.
2666 */
2667 copy_seccomp(p);
2668
2669 init_task_pid_links(p);
2670 if (likely(p->pid)) {
2671 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2672
2673 init_task_pid(p, PIDTYPE_PID, pid);
2674 if (thread_group_leader(p)) {
2675 init_task_pid(p, PIDTYPE_TGID, pid);
2676 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2677 init_task_pid(p, PIDTYPE_SID, task_session(current));
2678
2679 if (is_child_reaper(pid)) {
2680 ns_of_pid(pid)->child_reaper = p;
2681 p->signal->flags |= SIGNAL_UNKILLABLE;
2682 }
2683 p->signal->shared_pending.signal = delayed.signal;
2684 p->signal->tty = tty_kref_get(current->signal->tty);
2685 /*
2686 * Inherit has_child_subreaper flag under the same
2687 * tasklist_lock with adding child to the process tree
2688 * for propagate_has_child_subreaper optimization.
2689 */
2690 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2691 p->real_parent->signal->is_child_subreaper;
2692 list_add_tail(&p->sibling, &p->real_parent->children);
2693 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2694 attach_pid(p, PIDTYPE_TGID);
2695 attach_pid(p, PIDTYPE_PGID);
2696 attach_pid(p, PIDTYPE_SID);
2697 __this_cpu_inc(process_counts);
2698 } else {
2699 current->signal->nr_threads++;
2700 current->signal->quick_threads++;
2701 atomic_inc(¤t->signal->live);
2702 refcount_inc(¤t->signal->sigcnt);
2703 task_join_group_stop(p);
2704 list_add_tail_rcu(&p->thread_group,
2705 &p->group_leader->thread_group);
2706 list_add_tail_rcu(&p->thread_node,
2707 &p->signal->thread_head);
2708 }
2709 attach_pid(p, PIDTYPE_PID);
2710 nr_threads++;
2711 }
2712 total_forks++;
2713 hlist_del_init(&delayed.node);
2714 spin_unlock(¤t->sighand->siglock);
2715 syscall_tracepoint_update(p);
2716 write_unlock_irq(&tasklist_lock);
2717
2718 if (pidfile)
2719 fd_install(pidfd, pidfile);
2720
2721 proc_fork_connector(p);
2722 sched_post_fork(p);
2723 cgroup_post_fork(p, args);
2724 perf_event_fork(p);
2725
2726 trace_task_newtask(p, clone_flags);
2727 uprobe_copy_process(p, clone_flags);
2728 user_events_fork(p, clone_flags);
2729
2730 copy_oom_score_adj(clone_flags, p);
2731
2732 return p;
2733
2734 bad_fork_cancel_cgroup:
2735 sched_core_free(p);
2736 spin_unlock(¤t->sighand->siglock);
2737 write_unlock_irq(&tasklist_lock);
2738 cgroup_cancel_fork(p, args);
2739 bad_fork_put_pidfd:
2740 if (clone_flags & CLONE_PIDFD) {
2741 fput(pidfile);
2742 put_unused_fd(pidfd);
2743 }
2744 bad_fork_free_pid:
2745 if (pid != &init_struct_pid)
2746 free_pid(pid);
2747 bad_fork_cleanup_thread:
2748 exit_thread(p);
2749 bad_fork_cleanup_io:
2750 if (p->io_context)
2751 exit_io_context(p);
2752 bad_fork_cleanup_namespaces:
2753 exit_task_namespaces(p);
2754 bad_fork_cleanup_mm:
2755 if (p->mm) {
2756 mm_clear_owner(p->mm, p);
2757 mmput(p->mm);
2758 }
2759 bad_fork_cleanup_signal:
2760 if (!(clone_flags & CLONE_THREAD))
2761 free_signal_struct(p->signal);
2762 bad_fork_cleanup_sighand:
2763 __cleanup_sighand(p->sighand);
2764 bad_fork_cleanup_fs:
2765 exit_fs(p); /* blocking */
2766 bad_fork_cleanup_files:
2767 exit_files(p); /* blocking */
2768 bad_fork_cleanup_semundo:
2769 exit_sem(p);
2770 bad_fork_cleanup_security:
2771 security_task_free(p);
2772 bad_fork_cleanup_audit:
2773 audit_free(p);
2774 bad_fork_cleanup_perf:
2775 perf_event_free_task(p);
2776 bad_fork_cleanup_policy:
2777 lockdep_free_task(p);
2778 #ifdef CONFIG_NUMA
2779 mpol_put(p->mempolicy);
2780 #endif
2781 bad_fork_cleanup_delayacct:
2782 delayacct_tsk_free(p);
2783 bad_fork_cleanup_count:
2784 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2785 exit_creds(p);
2786 bad_fork_free:
2787 WRITE_ONCE(p->__state, TASK_DEAD);
2788 exit_task_stack_account(p);
2789 put_task_stack(p);
2790 delayed_free_task(p);
2791 fork_out:
2792 spin_lock_irq(¤t->sighand->siglock);
2793 hlist_del_init(&delayed.node);
2794 spin_unlock_irq(¤t->sighand->siglock);
2795 return ERR_PTR(retval);
2796 }
2797
init_idle_pids(struct task_struct * idle)2798 static inline void init_idle_pids(struct task_struct *idle)
2799 {
2800 enum pid_type type;
2801
2802 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2803 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2804 init_task_pid(idle, type, &init_struct_pid);
2805 }
2806 }
2807
idle_dummy(void * dummy)2808 static int idle_dummy(void *dummy)
2809 {
2810 /* This function is never called */
2811 return 0;
2812 }
2813
fork_idle(int cpu)2814 struct task_struct * __init fork_idle(int cpu)
2815 {
2816 struct task_struct *task;
2817 struct kernel_clone_args args = {
2818 .flags = CLONE_VM,
2819 .fn = &idle_dummy,
2820 .fn_arg = NULL,
2821 .kthread = 1,
2822 .idle = 1,
2823 };
2824
2825 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2826 if (!IS_ERR(task)) {
2827 init_idle_pids(task);
2828 init_idle(task, cpu);
2829 }
2830
2831 return task;
2832 }
2833
2834 /*
2835 * This is like kernel_clone(), but shaved down and tailored to just
2836 * creating io_uring workers. It returns a created task, or an error pointer.
2837 * The returned task is inactive, and the caller must fire it up through
2838 * wake_up_new_task(p). All signals are blocked in the created task.
2839 */
create_io_thread(int (* fn)(void *),void * arg,int node)2840 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2841 {
2842 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2843 CLONE_IO;
2844 struct kernel_clone_args args = {
2845 .flags = ((lower_32_bits(flags) | CLONE_VM |
2846 CLONE_UNTRACED) & ~CSIGNAL),
2847 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2848 .fn = fn,
2849 .fn_arg = arg,
2850 .io_thread = 1,
2851 .user_worker = 1,
2852 };
2853
2854 return copy_process(NULL, 0, node, &args);
2855 }
2856
2857 /*
2858 * Ok, this is the main fork-routine.
2859 *
2860 * It copies the process, and if successful kick-starts
2861 * it and waits for it to finish using the VM if required.
2862 *
2863 * args->exit_signal is expected to be checked for sanity by the caller.
2864 */
kernel_clone(struct kernel_clone_args * args)2865 pid_t kernel_clone(struct kernel_clone_args *args)
2866 {
2867 u64 clone_flags = args->flags;
2868 struct completion vfork;
2869 struct pid *pid;
2870 struct task_struct *p;
2871 int trace = 0;
2872 pid_t nr;
2873
2874 /*
2875 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2876 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2877 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2878 * field in struct clone_args and it still doesn't make sense to have
2879 * them both point at the same memory location. Performing this check
2880 * here has the advantage that we don't need to have a separate helper
2881 * to check for legacy clone().
2882 */
2883 if ((args->flags & CLONE_PIDFD) &&
2884 (args->flags & CLONE_PARENT_SETTID) &&
2885 (args->pidfd == args->parent_tid))
2886 return -EINVAL;
2887
2888 /*
2889 * Determine whether and which event to report to ptracer. When
2890 * called from kernel_thread or CLONE_UNTRACED is explicitly
2891 * requested, no event is reported; otherwise, report if the event
2892 * for the type of forking is enabled.
2893 */
2894 if (!(clone_flags & CLONE_UNTRACED)) {
2895 if (clone_flags & CLONE_VFORK)
2896 trace = PTRACE_EVENT_VFORK;
2897 else if (args->exit_signal != SIGCHLD)
2898 trace = PTRACE_EVENT_CLONE;
2899 else
2900 trace = PTRACE_EVENT_FORK;
2901
2902 if (likely(!ptrace_event_enabled(current, trace)))
2903 trace = 0;
2904 }
2905
2906 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2907 add_latent_entropy();
2908
2909 if (IS_ERR(p))
2910 return PTR_ERR(p);
2911
2912 /*
2913 * Do this prior waking up the new thread - the thread pointer
2914 * might get invalid after that point, if the thread exits quickly.
2915 */
2916 trace_sched_process_fork(current, p);
2917
2918 pid = get_task_pid(p, PIDTYPE_PID);
2919 nr = pid_vnr(pid);
2920
2921 if (clone_flags & CLONE_PARENT_SETTID)
2922 put_user(nr, args->parent_tid);
2923
2924 if (clone_flags & CLONE_VFORK) {
2925 p->vfork_done = &vfork;
2926 init_completion(&vfork);
2927 get_task_struct(p);
2928 }
2929
2930 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2931 /* lock the task to synchronize with memcg migration */
2932 task_lock(p);
2933 lru_gen_add_mm(p->mm);
2934 task_unlock(p);
2935 }
2936
2937 wake_up_new_task(p);
2938
2939 /* forking complete and child started to run, tell ptracer */
2940 if (unlikely(trace))
2941 ptrace_event_pid(trace, pid);
2942
2943 if (clone_flags & CLONE_VFORK) {
2944 if (!wait_for_vfork_done(p, &vfork))
2945 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2946 }
2947
2948 put_pid(pid);
2949 return nr;
2950 }
2951
2952 /*
2953 * Create a kernel thread.
2954 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2955 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2956 unsigned long flags)
2957 {
2958 struct kernel_clone_args args = {
2959 .flags = ((lower_32_bits(flags) | CLONE_VM |
2960 CLONE_UNTRACED) & ~CSIGNAL),
2961 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2962 .fn = fn,
2963 .fn_arg = arg,
2964 .name = name,
2965 .kthread = 1,
2966 };
2967
2968 return kernel_clone(&args);
2969 }
2970
2971 /*
2972 * Create a user mode thread.
2973 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2974 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2975 {
2976 struct kernel_clone_args args = {
2977 .flags = ((lower_32_bits(flags) | CLONE_VM |
2978 CLONE_UNTRACED) & ~CSIGNAL),
2979 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2980 .fn = fn,
2981 .fn_arg = arg,
2982 };
2983
2984 return kernel_clone(&args);
2985 }
2986
2987 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2988 SYSCALL_DEFINE0(fork)
2989 {
2990 #ifdef CONFIG_MMU
2991 struct kernel_clone_args args = {
2992 .exit_signal = SIGCHLD,
2993 };
2994
2995 return kernel_clone(&args);
2996 #else
2997 /* can not support in nommu mode */
2998 return -EINVAL;
2999 #endif
3000 }
3001 #endif
3002
3003 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3004 SYSCALL_DEFINE0(vfork)
3005 {
3006 struct kernel_clone_args args = {
3007 .flags = CLONE_VFORK | CLONE_VM,
3008 .exit_signal = SIGCHLD,
3009 };
3010
3011 return kernel_clone(&args);
3012 }
3013 #endif
3014
3015 #ifdef __ARCH_WANT_SYS_CLONE
3016 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3017 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3018 int __user *, parent_tidptr,
3019 unsigned long, tls,
3020 int __user *, child_tidptr)
3021 #elif defined(CONFIG_CLONE_BACKWARDS2)
3022 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3023 int __user *, parent_tidptr,
3024 int __user *, child_tidptr,
3025 unsigned long, tls)
3026 #elif defined(CONFIG_CLONE_BACKWARDS3)
3027 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3028 int, stack_size,
3029 int __user *, parent_tidptr,
3030 int __user *, child_tidptr,
3031 unsigned long, tls)
3032 #else
3033 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3034 int __user *, parent_tidptr,
3035 int __user *, child_tidptr,
3036 unsigned long, tls)
3037 #endif
3038 {
3039 struct kernel_clone_args args = {
3040 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
3041 .pidfd = parent_tidptr,
3042 .child_tid = child_tidptr,
3043 .parent_tid = parent_tidptr,
3044 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
3045 .stack = newsp,
3046 .tls = tls,
3047 };
3048
3049 return kernel_clone(&args);
3050 }
3051 #endif
3052
3053 #ifdef __ARCH_WANT_SYS_CLONE3
3054
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3055 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3056 struct clone_args __user *uargs,
3057 size_t usize)
3058 {
3059 int err;
3060 struct clone_args args;
3061 pid_t *kset_tid = kargs->set_tid;
3062
3063 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3064 CLONE_ARGS_SIZE_VER0);
3065 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3066 CLONE_ARGS_SIZE_VER1);
3067 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3068 CLONE_ARGS_SIZE_VER2);
3069 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3070
3071 if (unlikely(usize > PAGE_SIZE))
3072 return -E2BIG;
3073 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3074 return -EINVAL;
3075
3076 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3077 if (err)
3078 return err;
3079
3080 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3081 return -EINVAL;
3082
3083 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3084 return -EINVAL;
3085
3086 if (unlikely(args.set_tid && args.set_tid_size == 0))
3087 return -EINVAL;
3088
3089 /*
3090 * Verify that higher 32bits of exit_signal are unset and that
3091 * it is a valid signal
3092 */
3093 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3094 !valid_signal(args.exit_signal)))
3095 return -EINVAL;
3096
3097 if ((args.flags & CLONE_INTO_CGROUP) &&
3098 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3099 return -EINVAL;
3100
3101 *kargs = (struct kernel_clone_args){
3102 .flags = args.flags,
3103 .pidfd = u64_to_user_ptr(args.pidfd),
3104 .child_tid = u64_to_user_ptr(args.child_tid),
3105 .parent_tid = u64_to_user_ptr(args.parent_tid),
3106 .exit_signal = args.exit_signal,
3107 .stack = args.stack,
3108 .stack_size = args.stack_size,
3109 .tls = args.tls,
3110 .set_tid_size = args.set_tid_size,
3111 .cgroup = args.cgroup,
3112 };
3113
3114 if (args.set_tid &&
3115 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3116 (kargs->set_tid_size * sizeof(pid_t))))
3117 return -EFAULT;
3118
3119 kargs->set_tid = kset_tid;
3120
3121 return 0;
3122 }
3123
3124 /**
3125 * clone3_stack_valid - check and prepare stack
3126 * @kargs: kernel clone args
3127 *
3128 * Verify that the stack arguments userspace gave us are sane.
3129 * In addition, set the stack direction for userspace since it's easy for us to
3130 * determine.
3131 */
clone3_stack_valid(struct kernel_clone_args * kargs)3132 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3133 {
3134 if (kargs->stack == 0) {
3135 if (kargs->stack_size > 0)
3136 return false;
3137 } else {
3138 if (kargs->stack_size == 0)
3139 return false;
3140
3141 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3142 return false;
3143
3144 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3145 kargs->stack += kargs->stack_size;
3146 #endif
3147 }
3148
3149 return true;
3150 }
3151
clone3_args_valid(struct kernel_clone_args * kargs)3152 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3153 {
3154 /* Verify that no unknown flags are passed along. */
3155 if (kargs->flags &
3156 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3157 return false;
3158
3159 /*
3160 * - make the CLONE_DETACHED bit reusable for clone3
3161 * - make the CSIGNAL bits reusable for clone3
3162 */
3163 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3164 return false;
3165
3166 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3167 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3168 return false;
3169
3170 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3171 kargs->exit_signal)
3172 return false;
3173
3174 if (!clone3_stack_valid(kargs))
3175 return false;
3176
3177 return true;
3178 }
3179
3180 /**
3181 * clone3 - create a new process with specific properties
3182 * @uargs: argument structure
3183 * @size: size of @uargs
3184 *
3185 * clone3() is the extensible successor to clone()/clone2().
3186 * It takes a struct as argument that is versioned by its size.
3187 *
3188 * Return: On success, a positive PID for the child process.
3189 * On error, a negative errno number.
3190 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3191 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3192 {
3193 int err;
3194
3195 struct kernel_clone_args kargs;
3196 pid_t set_tid[MAX_PID_NS_LEVEL];
3197
3198 kargs.set_tid = set_tid;
3199
3200 err = copy_clone_args_from_user(&kargs, uargs, size);
3201 if (err)
3202 return err;
3203
3204 if (!clone3_args_valid(&kargs))
3205 return -EINVAL;
3206
3207 return kernel_clone(&kargs);
3208 }
3209 #endif
3210
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3211 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3212 {
3213 struct task_struct *leader, *parent, *child;
3214 int res;
3215
3216 read_lock(&tasklist_lock);
3217 leader = top = top->group_leader;
3218 down:
3219 for_each_thread(leader, parent) {
3220 list_for_each_entry(child, &parent->children, sibling) {
3221 res = visitor(child, data);
3222 if (res) {
3223 if (res < 0)
3224 goto out;
3225 leader = child;
3226 goto down;
3227 }
3228 up:
3229 ;
3230 }
3231 }
3232
3233 if (leader != top) {
3234 child = leader;
3235 parent = child->real_parent;
3236 leader = parent->group_leader;
3237 goto up;
3238 }
3239 out:
3240 read_unlock(&tasklist_lock);
3241 }
3242
3243 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3244 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3245 #endif
3246
sighand_ctor(void * data)3247 static void sighand_ctor(void *data)
3248 {
3249 struct sighand_struct *sighand = data;
3250
3251 spin_lock_init(&sighand->siglock);
3252 init_waitqueue_head(&sighand->signalfd_wqh);
3253 }
3254
mm_cache_init(void)3255 void __init mm_cache_init(void)
3256 {
3257 unsigned int mm_size;
3258
3259 /*
3260 * The mm_cpumask is located at the end of mm_struct, and is
3261 * dynamically sized based on the maximum CPU number this system
3262 * can have, taking hotplug into account (nr_cpu_ids).
3263 */
3264 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3265
3266 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3267 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3268 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3269 offsetof(struct mm_struct, saved_auxv),
3270 sizeof_field(struct mm_struct, saved_auxv),
3271 NULL);
3272 }
3273
proc_caches_init(void)3274 void __init proc_caches_init(void)
3275 {
3276 sighand_cachep = kmem_cache_create("sighand_cache",
3277 sizeof(struct sighand_struct), 0,
3278 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3279 SLAB_ACCOUNT, sighand_ctor);
3280 signal_cachep = kmem_cache_create("signal_cache",
3281 sizeof(struct signal_struct), 0,
3282 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3283 NULL);
3284 files_cachep = kmem_cache_create("files_cache",
3285 sizeof(struct files_struct), 0,
3286 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3287 NULL);
3288 fs_cachep = kmem_cache_create("fs_cache",
3289 sizeof(struct fs_struct), 0,
3290 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3291 NULL);
3292
3293 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3294 #ifdef CONFIG_PER_VMA_LOCK
3295 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3296 #endif
3297 mmap_init();
3298 nsproxy_cache_init();
3299 }
3300
3301 /*
3302 * Check constraints on flags passed to the unshare system call.
3303 */
check_unshare_flags(unsigned long unshare_flags)3304 static int check_unshare_flags(unsigned long unshare_flags)
3305 {
3306 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3307 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3308 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3309 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3310 CLONE_NEWTIME))
3311 return -EINVAL;
3312 /*
3313 * Not implemented, but pretend it works if there is nothing
3314 * to unshare. Note that unsharing the address space or the
3315 * signal handlers also need to unshare the signal queues (aka
3316 * CLONE_THREAD).
3317 */
3318 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3319 if (!thread_group_empty(current))
3320 return -EINVAL;
3321 }
3322 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3323 if (refcount_read(¤t->sighand->count) > 1)
3324 return -EINVAL;
3325 }
3326 if (unshare_flags & CLONE_VM) {
3327 if (!current_is_single_threaded())
3328 return -EINVAL;
3329 }
3330
3331 return 0;
3332 }
3333
3334 /*
3335 * Unshare the filesystem structure if it is being shared
3336 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3337 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3338 {
3339 struct fs_struct *fs = current->fs;
3340
3341 if (!(unshare_flags & CLONE_FS) || !fs)
3342 return 0;
3343
3344 /* don't need lock here; in the worst case we'll do useless copy */
3345 if (fs->users == 1)
3346 return 0;
3347
3348 *new_fsp = copy_fs_struct(fs);
3349 if (!*new_fsp)
3350 return -ENOMEM;
3351
3352 return 0;
3353 }
3354
3355 /*
3356 * Unshare file descriptor table if it is being shared
3357 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3358 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3359 {
3360 struct files_struct *fd = current->files;
3361
3362 if ((unshare_flags & CLONE_FILES) &&
3363 (fd && atomic_read(&fd->count) > 1)) {
3364 fd = dup_fd(fd, NULL);
3365 if (IS_ERR(fd))
3366 return PTR_ERR(fd);
3367 *new_fdp = fd;
3368 }
3369
3370 return 0;
3371 }
3372
3373 /*
3374 * unshare allows a process to 'unshare' part of the process
3375 * context which was originally shared using clone. copy_*
3376 * functions used by kernel_clone() cannot be used here directly
3377 * because they modify an inactive task_struct that is being
3378 * constructed. Here we are modifying the current, active,
3379 * task_struct.
3380 */
ksys_unshare(unsigned long unshare_flags)3381 int ksys_unshare(unsigned long unshare_flags)
3382 {
3383 struct fs_struct *fs, *new_fs = NULL;
3384 struct files_struct *new_fd = NULL;
3385 struct cred *new_cred = NULL;
3386 struct nsproxy *new_nsproxy = NULL;
3387 int do_sysvsem = 0;
3388 int err;
3389
3390 /*
3391 * If unsharing a user namespace must also unshare the thread group
3392 * and unshare the filesystem root and working directories.
3393 */
3394 if (unshare_flags & CLONE_NEWUSER)
3395 unshare_flags |= CLONE_THREAD | CLONE_FS;
3396 /*
3397 * If unsharing vm, must also unshare signal handlers.
3398 */
3399 if (unshare_flags & CLONE_VM)
3400 unshare_flags |= CLONE_SIGHAND;
3401 /*
3402 * If unsharing a signal handlers, must also unshare the signal queues.
3403 */
3404 if (unshare_flags & CLONE_SIGHAND)
3405 unshare_flags |= CLONE_THREAD;
3406 /*
3407 * If unsharing namespace, must also unshare filesystem information.
3408 */
3409 if (unshare_flags & CLONE_NEWNS)
3410 unshare_flags |= CLONE_FS;
3411
3412 err = check_unshare_flags(unshare_flags);
3413 if (err)
3414 goto bad_unshare_out;
3415 /*
3416 * CLONE_NEWIPC must also detach from the undolist: after switching
3417 * to a new ipc namespace, the semaphore arrays from the old
3418 * namespace are unreachable.
3419 */
3420 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3421 do_sysvsem = 1;
3422 err = unshare_fs(unshare_flags, &new_fs);
3423 if (err)
3424 goto bad_unshare_out;
3425 err = unshare_fd(unshare_flags, &new_fd);
3426 if (err)
3427 goto bad_unshare_cleanup_fs;
3428 err = unshare_userns(unshare_flags, &new_cred);
3429 if (err)
3430 goto bad_unshare_cleanup_fd;
3431 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3432 new_cred, new_fs);
3433 if (err)
3434 goto bad_unshare_cleanup_cred;
3435
3436 if (new_cred) {
3437 err = set_cred_ucounts(new_cred);
3438 if (err)
3439 goto bad_unshare_cleanup_cred;
3440 }
3441
3442 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3443 if (do_sysvsem) {
3444 /*
3445 * CLONE_SYSVSEM is equivalent to sys_exit().
3446 */
3447 exit_sem(current);
3448 }
3449 if (unshare_flags & CLONE_NEWIPC) {
3450 /* Orphan segments in old ns (see sem above). */
3451 exit_shm(current);
3452 shm_init_task(current);
3453 }
3454
3455 if (new_nsproxy)
3456 switch_task_namespaces(current, new_nsproxy);
3457
3458 task_lock(current);
3459
3460 if (new_fs) {
3461 fs = current->fs;
3462 spin_lock(&fs->lock);
3463 current->fs = new_fs;
3464 if (--fs->users)
3465 new_fs = NULL;
3466 else
3467 new_fs = fs;
3468 spin_unlock(&fs->lock);
3469 }
3470
3471 if (new_fd)
3472 swap(current->files, new_fd);
3473
3474 task_unlock(current);
3475
3476 if (new_cred) {
3477 /* Install the new user namespace */
3478 commit_creds(new_cred);
3479 new_cred = NULL;
3480 }
3481 }
3482
3483 perf_event_namespaces(current);
3484
3485 bad_unshare_cleanup_cred:
3486 if (new_cred)
3487 put_cred(new_cred);
3488 bad_unshare_cleanup_fd:
3489 if (new_fd)
3490 put_files_struct(new_fd);
3491
3492 bad_unshare_cleanup_fs:
3493 if (new_fs)
3494 free_fs_struct(new_fs);
3495
3496 bad_unshare_out:
3497 return err;
3498 }
3499
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3500 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3501 {
3502 return ksys_unshare(unshare_flags);
3503 }
3504
3505 /*
3506 * Helper to unshare the files of the current task.
3507 * We don't want to expose copy_files internals to
3508 * the exec layer of the kernel.
3509 */
3510
unshare_files(void)3511 int unshare_files(void)
3512 {
3513 struct task_struct *task = current;
3514 struct files_struct *old, *copy = NULL;
3515 int error;
3516
3517 error = unshare_fd(CLONE_FILES, ©);
3518 if (error || !copy)
3519 return error;
3520
3521 old = task->files;
3522 task_lock(task);
3523 task->files = copy;
3524 task_unlock(task);
3525 put_files_struct(old);
3526 return 0;
3527 }
3528
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3529 int sysctl_max_threads(struct ctl_table *table, int write,
3530 void *buffer, size_t *lenp, loff_t *ppos)
3531 {
3532 struct ctl_table t;
3533 int ret;
3534 int threads = max_threads;
3535 int min = 1;
3536 int max = MAX_THREADS;
3537
3538 t = *table;
3539 t.data = &threads;
3540 t.extra1 = &min;
3541 t.extra2 = &max;
3542
3543 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3544 if (ret || !write)
3545 return ret;
3546
3547 max_threads = threads;
3548
3549 return 0;
3550 }
3551