1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS (250)
53
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56 /*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66 {
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77
78 /*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82 static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84 {
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102 }
103
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108 {
109 }
110
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112
mmc_complete_cmd(struct mmc_request * mrq)113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117 }
118
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130
131 /**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212 }
213
214 EXPORT_SYMBOL(mmc_request_done);
215
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262 }
263
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266 {
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296 }
297
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333 }
334
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 int err;
338
339 init_completion(&mrq->cmd_completion);
340
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
346 mmc_mrq_pr_debug(host, mrq, false);
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
356
357 return 0;
358 }
359 EXPORT_SYMBOL(mmc_start_request);
360
mmc_wait_done(struct mmc_request * mrq)361 static void mmc_wait_done(struct mmc_request *mrq)
362 {
363 complete(&mrq->completion);
364 }
365
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367 {
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376 }
377
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379 {
380 int err;
381
382 mmc_wait_ongoing_tfr_cmd(host);
383
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
392 }
393
394 return err;
395 }
396
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
405
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
408 break;
409
410 mmc_retune_recheck(host);
411
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 __mmc_start_request(host, mrq);
417 }
418
419 mmc_retune_release(host);
420 }
421 EXPORT_SYMBOL(mmc_wait_for_req_done);
422
423 /*
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
427 *
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
430 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)431 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432 {
433 int err;
434
435 /*
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
440 */
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
444
445 mrq->host = host;
446
447 mmc_mrq_pr_debug(host, mrq, true);
448
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
452
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
456
457 trace_mmc_request_start(host, mrq);
458
459 return 0;
460
461 out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
468 }
469 return err;
470 }
471 EXPORT_SYMBOL(mmc_cqe_start_req);
472
473 /**
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
477 *
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
480 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)481 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482 {
483 mmc_should_fail_request(host, mrq);
484
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
489
490 trace_mmc_request_done(host, mrq);
491
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
498 }
499
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
504 }
505
506 mrq->done(mrq);
507 }
508 EXPORT_SYMBOL(mmc_cqe_request_done);
509
510 /**
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
514 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)515 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
519 }
520 EXPORT_SYMBOL(mmc_cqe_post_req);
521
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT 1000
524
525 /*
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
528 *
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
533 */
mmc_cqe_recovery(struct mmc_host * host)534 int mmc_cqe_recovery(struct mmc_host *host)
535 {
536 struct mmc_command cmd;
537 int err;
538
539 mmc_retune_hold_now(host);
540
541 /*
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
544 */
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546
547 host->cqe_ops->cqe_recovery_start(host);
548
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION;
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
554 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
555
556 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
557
558 memset(&cmd, 0, sizeof(cmd));
559 cmd.opcode = MMC_CMDQ_TASK_MGMT;
560 cmd.arg = 1; /* Discard entire queue */
561 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
562 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
563 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
564 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
565
566 host->cqe_ops->cqe_recovery_finish(host);
567
568 if (err)
569 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
570
571 mmc_retune_release(host);
572
573 return err;
574 }
575 EXPORT_SYMBOL(mmc_cqe_recovery);
576
577 /**
578 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
579 * @host: MMC host
580 * @mrq: MMC request
581 *
582 * mmc_is_req_done() is used with requests that have
583 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
584 * starting a request and before waiting for it to complete. That is,
585 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
586 * and before mmc_wait_for_req_done(). If it is called at other times the
587 * result is not meaningful.
588 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)589 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
590 {
591 return completion_done(&mrq->completion);
592 }
593 EXPORT_SYMBOL(mmc_is_req_done);
594
595 /**
596 * mmc_wait_for_req - start a request and wait for completion
597 * @host: MMC host to start command
598 * @mrq: MMC request to start
599 *
600 * Start a new MMC custom command request for a host, and wait
601 * for the command to complete. In the case of 'cap_cmd_during_tfr'
602 * requests, the transfer is ongoing and the caller can issue further
603 * commands that do not use the data lines, and then wait by calling
604 * mmc_wait_for_req_done().
605 * Does not attempt to parse the response.
606 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)607 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
608 {
609 __mmc_start_req(host, mrq);
610
611 if (!mrq->cap_cmd_during_tfr)
612 mmc_wait_for_req_done(host, mrq);
613 }
614 EXPORT_SYMBOL(mmc_wait_for_req);
615
616 /**
617 * mmc_wait_for_cmd - start a command and wait for completion
618 * @host: MMC host to start command
619 * @cmd: MMC command to start
620 * @retries: maximum number of retries
621 *
622 * Start a new MMC command for a host, and wait for the command
623 * to complete. Return any error that occurred while the command
624 * was executing. Do not attempt to parse the response.
625 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)626 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
627 {
628 struct mmc_request mrq = {};
629
630 WARN_ON(!host->claimed);
631
632 memset(cmd->resp, 0, sizeof(cmd->resp));
633 cmd->retries = retries;
634
635 mrq.cmd = cmd;
636 cmd->data = NULL;
637
638 mmc_wait_for_req(host, &mrq);
639
640 return cmd->error;
641 }
642
643 EXPORT_SYMBOL(mmc_wait_for_cmd);
644
645 /**
646 * mmc_set_data_timeout - set the timeout for a data command
647 * @data: data phase for command
648 * @card: the MMC card associated with the data transfer
649 *
650 * Computes the data timeout parameters according to the
651 * correct algorithm given the card type.
652 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)653 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
654 {
655 unsigned int mult;
656
657 /*
658 * SDIO cards only define an upper 1 s limit on access.
659 */
660 if (mmc_card_sdio(card)) {
661 data->timeout_ns = 1000000000;
662 data->timeout_clks = 0;
663 return;
664 }
665
666 /*
667 * SD cards use a 100 multiplier rather than 10
668 */
669 mult = mmc_card_sd(card) ? 100 : 10;
670
671 /*
672 * Scale up the multiplier (and therefore the timeout) by
673 * the r2w factor for writes.
674 */
675 if (data->flags & MMC_DATA_WRITE)
676 mult <<= card->csd.r2w_factor;
677
678 data->timeout_ns = card->csd.taac_ns * mult;
679 data->timeout_clks = card->csd.taac_clks * mult;
680
681 /*
682 * SD cards also have an upper limit on the timeout.
683 */
684 if (mmc_card_sd(card)) {
685 unsigned int timeout_us, limit_us;
686
687 timeout_us = data->timeout_ns / 1000;
688 if (card->host->ios.clock)
689 timeout_us += data->timeout_clks * 1000 /
690 (card->host->ios.clock / 1000);
691
692 if (data->flags & MMC_DATA_WRITE)
693 /*
694 * The MMC spec "It is strongly recommended
695 * for hosts to implement more than 500ms
696 * timeout value even if the card indicates
697 * the 250ms maximum busy length." Even the
698 * previous value of 300ms is known to be
699 * insufficient for some cards.
700 */
701 limit_us = 3000000;
702 else
703 limit_us = 100000;
704
705 /*
706 * SDHC cards always use these fixed values.
707 */
708 if (timeout_us > limit_us) {
709 data->timeout_ns = limit_us * 1000;
710 data->timeout_clks = 0;
711 }
712
713 /* assign limit value if invalid */
714 if (timeout_us == 0)
715 data->timeout_ns = limit_us * 1000;
716 }
717
718 /*
719 * Some cards require longer data read timeout than indicated in CSD.
720 * Address this by setting the read timeout to a "reasonably high"
721 * value. For the cards tested, 600ms has proven enough. If necessary,
722 * this value can be increased if other problematic cards require this.
723 */
724 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
725 data->timeout_ns = 600000000;
726 data->timeout_clks = 0;
727 }
728
729 /*
730 * Some cards need very high timeouts if driven in SPI mode.
731 * The worst observed timeout was 900ms after writing a
732 * continuous stream of data until the internal logic
733 * overflowed.
734 */
735 if (mmc_host_is_spi(card->host)) {
736 if (data->flags & MMC_DATA_WRITE) {
737 if (data->timeout_ns < 1000000000)
738 data->timeout_ns = 1000000000; /* 1s */
739 } else {
740 if (data->timeout_ns < 100000000)
741 data->timeout_ns = 100000000; /* 100ms */
742 }
743 }
744 }
745 EXPORT_SYMBOL(mmc_set_data_timeout);
746
747 /*
748 * Allow claiming an already claimed host if the context is the same or there is
749 * no context but the task is the same.
750 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)751 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
752 struct task_struct *task)
753 {
754 return host->claimer == ctx ||
755 (!ctx && task && host->claimer->task == task);
756 }
757
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)758 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
759 struct mmc_ctx *ctx,
760 struct task_struct *task)
761 {
762 if (!host->claimer) {
763 if (ctx)
764 host->claimer = ctx;
765 else
766 host->claimer = &host->default_ctx;
767 }
768 if (task)
769 host->claimer->task = task;
770 }
771
772 /**
773 * __mmc_claim_host - exclusively claim a host
774 * @host: mmc host to claim
775 * @ctx: context that claims the host or NULL in which case the default
776 * context will be used
777 * @abort: whether or not the operation should be aborted
778 *
779 * Claim a host for a set of operations. If @abort is non null and
780 * dereference a non-zero value then this will return prematurely with
781 * that non-zero value without acquiring the lock. Returns zero
782 * with the lock held otherwise.
783 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)784 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
785 atomic_t *abort)
786 {
787 struct task_struct *task = ctx ? NULL : current;
788 DECLARE_WAITQUEUE(wait, current);
789 unsigned long flags;
790 int stop;
791 bool pm = false;
792
793 might_sleep();
794
795 add_wait_queue(&host->wq, &wait);
796 spin_lock_irqsave(&host->lock, flags);
797 while (1) {
798 set_current_state(TASK_UNINTERRUPTIBLE);
799 stop = abort ? atomic_read(abort) : 0;
800 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
801 break;
802 spin_unlock_irqrestore(&host->lock, flags);
803 schedule();
804 spin_lock_irqsave(&host->lock, flags);
805 }
806 set_current_state(TASK_RUNNING);
807 if (!stop) {
808 host->claimed = 1;
809 mmc_ctx_set_claimer(host, ctx, task);
810 host->claim_cnt += 1;
811 if (host->claim_cnt == 1)
812 pm = true;
813 } else
814 wake_up(&host->wq);
815 spin_unlock_irqrestore(&host->lock, flags);
816 remove_wait_queue(&host->wq, &wait);
817
818 if (pm)
819 pm_runtime_get_sync(mmc_dev(host));
820
821 return stop;
822 }
823 EXPORT_SYMBOL(__mmc_claim_host);
824
825 /**
826 * mmc_release_host - release a host
827 * @host: mmc host to release
828 *
829 * Release a MMC host, allowing others to claim the host
830 * for their operations.
831 */
mmc_release_host(struct mmc_host * host)832 void mmc_release_host(struct mmc_host *host)
833 {
834 unsigned long flags;
835
836 WARN_ON(!host->claimed);
837
838 spin_lock_irqsave(&host->lock, flags);
839 if (--host->claim_cnt) {
840 /* Release for nested claim */
841 spin_unlock_irqrestore(&host->lock, flags);
842 } else {
843 host->claimed = 0;
844 host->claimer->task = NULL;
845 host->claimer = NULL;
846 spin_unlock_irqrestore(&host->lock, flags);
847 wake_up(&host->wq);
848 pm_runtime_mark_last_busy(mmc_dev(host));
849 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
850 pm_runtime_put_sync_suspend(mmc_dev(host));
851 else
852 pm_runtime_put_autosuspend(mmc_dev(host));
853 }
854 }
855 EXPORT_SYMBOL(mmc_release_host);
856
857 /*
858 * This is a helper function, which fetches a runtime pm reference for the
859 * card device and also claims the host.
860 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)861 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
862 {
863 pm_runtime_get_sync(&card->dev);
864 __mmc_claim_host(card->host, ctx, NULL);
865 }
866 EXPORT_SYMBOL(mmc_get_card);
867
868 /*
869 * This is a helper function, which releases the host and drops the runtime
870 * pm reference for the card device.
871 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)872 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
873 {
874 struct mmc_host *host = card->host;
875
876 WARN_ON(ctx && host->claimer != ctx);
877
878 mmc_release_host(host);
879 pm_runtime_mark_last_busy(&card->dev);
880 pm_runtime_put_autosuspend(&card->dev);
881 }
882 EXPORT_SYMBOL(mmc_put_card);
883
884 /*
885 * Internal function that does the actual ios call to the host driver,
886 * optionally printing some debug output.
887 */
mmc_set_ios(struct mmc_host * host)888 static inline void mmc_set_ios(struct mmc_host *host)
889 {
890 struct mmc_ios *ios = &host->ios;
891
892 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
893 "width %u timing %u\n",
894 mmc_hostname(host), ios->clock, ios->bus_mode,
895 ios->power_mode, ios->chip_select, ios->vdd,
896 1 << ios->bus_width, ios->timing);
897
898 host->ops->set_ios(host, ios);
899 }
900
901 /*
902 * Control chip select pin on a host.
903 */
mmc_set_chip_select(struct mmc_host * host,int mode)904 void mmc_set_chip_select(struct mmc_host *host, int mode)
905 {
906 host->ios.chip_select = mode;
907 mmc_set_ios(host);
908 }
909
910 /*
911 * Sets the host clock to the highest possible frequency that
912 * is below "hz".
913 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)914 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
915 {
916 WARN_ON(hz && hz < host->f_min);
917
918 if (hz > host->f_max)
919 hz = host->f_max;
920
921 host->ios.clock = hz;
922 mmc_set_ios(host);
923 }
924
mmc_execute_tuning(struct mmc_card * card)925 int mmc_execute_tuning(struct mmc_card *card)
926 {
927 struct mmc_host *host = card->host;
928 u32 opcode;
929 int err;
930
931 if (!host->ops->execute_tuning)
932 return 0;
933
934 if (host->cqe_on)
935 host->cqe_ops->cqe_off(host);
936
937 if (mmc_card_mmc(card))
938 opcode = MMC_SEND_TUNING_BLOCK_HS200;
939 else
940 opcode = MMC_SEND_TUNING_BLOCK;
941
942 err = host->ops->execute_tuning(host, opcode);
943 if (!err) {
944 mmc_retune_clear(host);
945 mmc_retune_enable(host);
946 return 0;
947 }
948
949 /* Only print error when we don't check for card removal */
950 if (!host->detect_change) {
951 pr_err("%s: tuning execution failed: %d\n",
952 mmc_hostname(host), err);
953 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
954 }
955
956 return err;
957 }
958
959 /*
960 * Change the bus mode (open drain/push-pull) of a host.
961 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)962 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
963 {
964 host->ios.bus_mode = mode;
965 mmc_set_ios(host);
966 }
967
968 /*
969 * Change data bus width of a host.
970 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)971 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
972 {
973 host->ios.bus_width = width;
974 mmc_set_ios(host);
975 }
976
977 /*
978 * Set initial state after a power cycle or a hw_reset.
979 */
mmc_set_initial_state(struct mmc_host * host)980 void mmc_set_initial_state(struct mmc_host *host)
981 {
982 if (host->cqe_on)
983 host->cqe_ops->cqe_off(host);
984
985 mmc_retune_disable(host);
986
987 if (mmc_host_is_spi(host))
988 host->ios.chip_select = MMC_CS_HIGH;
989 else
990 host->ios.chip_select = MMC_CS_DONTCARE;
991 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
992 host->ios.bus_width = MMC_BUS_WIDTH_1;
993 host->ios.timing = MMC_TIMING_LEGACY;
994 host->ios.drv_type = 0;
995 host->ios.enhanced_strobe = false;
996
997 /*
998 * Make sure we are in non-enhanced strobe mode before we
999 * actually enable it in ext_csd.
1000 */
1001 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1002 host->ops->hs400_enhanced_strobe)
1003 host->ops->hs400_enhanced_strobe(host, &host->ios);
1004
1005 mmc_set_ios(host);
1006
1007 mmc_crypto_set_initial_state(host);
1008 }
1009
1010 /**
1011 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1012 * @vdd: voltage (mV)
1013 * @low_bits: prefer low bits in boundary cases
1014 *
1015 * This function returns the OCR bit number according to the provided @vdd
1016 * value. If conversion is not possible a negative errno value returned.
1017 *
1018 * Depending on the @low_bits flag the function prefers low or high OCR bits
1019 * on boundary voltages. For example,
1020 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1021 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1022 *
1023 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1024 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1025 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1026 {
1027 const int max_bit = ilog2(MMC_VDD_35_36);
1028 int bit;
1029
1030 if (vdd < 1650 || vdd > 3600)
1031 return -EINVAL;
1032
1033 if (vdd >= 1650 && vdd <= 1950)
1034 return ilog2(MMC_VDD_165_195);
1035
1036 if (low_bits)
1037 vdd -= 1;
1038
1039 /* Base 2000 mV, step 100 mV, bit's base 8. */
1040 bit = (vdd - 2000) / 100 + 8;
1041 if (bit > max_bit)
1042 return max_bit;
1043 return bit;
1044 }
1045
1046 /**
1047 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1048 * @vdd_min: minimum voltage value (mV)
1049 * @vdd_max: maximum voltage value (mV)
1050 *
1051 * This function returns the OCR mask bits according to the provided @vdd_min
1052 * and @vdd_max values. If conversion is not possible the function returns 0.
1053 *
1054 * Notes wrt boundary cases:
1055 * This function sets the OCR bits for all boundary voltages, for example
1056 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1057 * MMC_VDD_34_35 mask.
1058 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1059 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1060 {
1061 u32 mask = 0;
1062
1063 if (vdd_max < vdd_min)
1064 return 0;
1065
1066 /* Prefer high bits for the boundary vdd_max values. */
1067 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1068 if (vdd_max < 0)
1069 return 0;
1070
1071 /* Prefer low bits for the boundary vdd_min values. */
1072 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1073 if (vdd_min < 0)
1074 return 0;
1075
1076 /* Fill the mask, from max bit to min bit. */
1077 while (vdd_max >= vdd_min)
1078 mask |= 1 << vdd_max--;
1079
1080 return mask;
1081 }
1082
mmc_of_get_func_num(struct device_node * node)1083 static int mmc_of_get_func_num(struct device_node *node)
1084 {
1085 u32 reg;
1086 int ret;
1087
1088 ret = of_property_read_u32(node, "reg", ®);
1089 if (ret < 0)
1090 return ret;
1091
1092 return reg;
1093 }
1094
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1095 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1096 unsigned func_num)
1097 {
1098 struct device_node *node;
1099
1100 if (!host->parent || !host->parent->of_node)
1101 return NULL;
1102
1103 for_each_child_of_node(host->parent->of_node, node) {
1104 if (mmc_of_get_func_num(node) == func_num)
1105 return node;
1106 }
1107
1108 return NULL;
1109 }
1110
1111 /*
1112 * Mask off any voltages we don't support and select
1113 * the lowest voltage
1114 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1115 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1116 {
1117 int bit;
1118
1119 /*
1120 * Sanity check the voltages that the card claims to
1121 * support.
1122 */
1123 if (ocr & 0x7F) {
1124 dev_warn(mmc_dev(host),
1125 "card claims to support voltages below defined range\n");
1126 ocr &= ~0x7F;
1127 }
1128
1129 ocr &= host->ocr_avail;
1130 if (!ocr) {
1131 dev_warn(mmc_dev(host), "no support for card's volts\n");
1132 return 0;
1133 }
1134
1135 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1136 bit = ffs(ocr) - 1;
1137 ocr &= 3 << bit;
1138 mmc_power_cycle(host, ocr);
1139 } else {
1140 bit = fls(ocr) - 1;
1141 /*
1142 * The bit variable represents the highest voltage bit set in
1143 * the OCR register.
1144 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1145 * we must shift the mask '3' with (bit - 1).
1146 */
1147 ocr &= 3 << (bit - 1);
1148 if (bit != host->ios.vdd)
1149 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1150 }
1151
1152 return ocr;
1153 }
1154
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1155 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1156 {
1157 int err = 0;
1158 int old_signal_voltage = host->ios.signal_voltage;
1159
1160 host->ios.signal_voltage = signal_voltage;
1161 if (host->ops->start_signal_voltage_switch)
1162 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1163
1164 if (err)
1165 host->ios.signal_voltage = old_signal_voltage;
1166
1167 return err;
1168
1169 }
1170
mmc_set_initial_signal_voltage(struct mmc_host * host)1171 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1172 {
1173 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1175 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1176 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1177 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1178 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1179 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1180 }
1181
mmc_host_set_uhs_voltage(struct mmc_host * host)1182 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1183 {
1184 u32 clock;
1185
1186 /*
1187 * During a signal voltage level switch, the clock must be gated
1188 * for 5 ms according to the SD spec
1189 */
1190 clock = host->ios.clock;
1191 host->ios.clock = 0;
1192 mmc_set_ios(host);
1193
1194 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1195 return -EAGAIN;
1196
1197 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1198 mmc_delay(10);
1199 host->ios.clock = clock;
1200 mmc_set_ios(host);
1201
1202 return 0;
1203 }
1204
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1205 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1206 {
1207 struct mmc_command cmd = {};
1208 int err = 0;
1209
1210 /*
1211 * If we cannot switch voltages, return failure so the caller
1212 * can continue without UHS mode
1213 */
1214 if (!host->ops->start_signal_voltage_switch)
1215 return -EPERM;
1216 if (!host->ops->card_busy)
1217 pr_warn("%s: cannot verify signal voltage switch\n",
1218 mmc_hostname(host));
1219
1220 cmd.opcode = SD_SWITCH_VOLTAGE;
1221 cmd.arg = 0;
1222 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1223
1224 err = mmc_wait_for_cmd(host, &cmd, 0);
1225 if (err)
1226 goto power_cycle;
1227
1228 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1229 return -EIO;
1230
1231 /*
1232 * The card should drive cmd and dat[0:3] low immediately
1233 * after the response of cmd11, but wait 1 ms to be sure
1234 */
1235 mmc_delay(1);
1236 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1237 err = -EAGAIN;
1238 goto power_cycle;
1239 }
1240
1241 if (mmc_host_set_uhs_voltage(host)) {
1242 /*
1243 * Voltages may not have been switched, but we've already
1244 * sent CMD11, so a power cycle is required anyway
1245 */
1246 err = -EAGAIN;
1247 goto power_cycle;
1248 }
1249
1250 /* Wait for at least 1 ms according to spec */
1251 mmc_delay(1);
1252
1253 /*
1254 * Failure to switch is indicated by the card holding
1255 * dat[0:3] low
1256 */
1257 if (host->ops->card_busy && host->ops->card_busy(host))
1258 err = -EAGAIN;
1259
1260 power_cycle:
1261 if (err) {
1262 pr_debug("%s: Signal voltage switch failed, "
1263 "power cycling card\n", mmc_hostname(host));
1264 mmc_power_cycle(host, ocr);
1265 }
1266
1267 return err;
1268 }
1269
1270 /*
1271 * Select timing parameters for host.
1272 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1273 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1274 {
1275 host->ios.timing = timing;
1276 mmc_set_ios(host);
1277 }
1278
1279 /*
1280 * Select appropriate driver type for host.
1281 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1282 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1283 {
1284 host->ios.drv_type = drv_type;
1285 mmc_set_ios(host);
1286 }
1287
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1288 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1289 int card_drv_type, int *drv_type)
1290 {
1291 struct mmc_host *host = card->host;
1292 int host_drv_type = SD_DRIVER_TYPE_B;
1293
1294 *drv_type = 0;
1295
1296 if (!host->ops->select_drive_strength)
1297 return 0;
1298
1299 /* Use SD definition of driver strength for hosts */
1300 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1301 host_drv_type |= SD_DRIVER_TYPE_A;
1302
1303 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1304 host_drv_type |= SD_DRIVER_TYPE_C;
1305
1306 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1307 host_drv_type |= SD_DRIVER_TYPE_D;
1308
1309 /*
1310 * The drive strength that the hardware can support
1311 * depends on the board design. Pass the appropriate
1312 * information and let the hardware specific code
1313 * return what is possible given the options
1314 */
1315 return host->ops->select_drive_strength(card, max_dtr,
1316 host_drv_type,
1317 card_drv_type,
1318 drv_type);
1319 }
1320
1321 /*
1322 * Apply power to the MMC stack. This is a two-stage process.
1323 * First, we enable power to the card without the clock running.
1324 * We then wait a bit for the power to stabilise. Finally,
1325 * enable the bus drivers and clock to the card.
1326 *
1327 * We must _NOT_ enable the clock prior to power stablising.
1328 *
1329 * If a host does all the power sequencing itself, ignore the
1330 * initial MMC_POWER_UP stage.
1331 */
mmc_power_up(struct mmc_host * host,u32 ocr)1332 void mmc_power_up(struct mmc_host *host, u32 ocr)
1333 {
1334 if (host->ios.power_mode == MMC_POWER_ON)
1335 return;
1336
1337 mmc_pwrseq_pre_power_on(host);
1338
1339 host->ios.vdd = fls(ocr) - 1;
1340 host->ios.power_mode = MMC_POWER_UP;
1341 /* Set initial state and call mmc_set_ios */
1342 mmc_set_initial_state(host);
1343
1344 mmc_set_initial_signal_voltage(host);
1345
1346 /*
1347 * This delay should be sufficient to allow the power supply
1348 * to reach the minimum voltage.
1349 */
1350 mmc_delay(host->ios.power_delay_ms);
1351
1352 mmc_pwrseq_post_power_on(host);
1353
1354 host->ios.clock = host->f_init;
1355
1356 host->ios.power_mode = MMC_POWER_ON;
1357 mmc_set_ios(host);
1358
1359 /*
1360 * This delay must be at least 74 clock sizes, or 1 ms, or the
1361 * time required to reach a stable voltage.
1362 */
1363 mmc_delay(host->ios.power_delay_ms);
1364 }
1365
mmc_power_off(struct mmc_host * host)1366 void mmc_power_off(struct mmc_host *host)
1367 {
1368 if (host->ios.power_mode == MMC_POWER_OFF)
1369 return;
1370
1371 mmc_pwrseq_power_off(host);
1372
1373 host->ios.clock = 0;
1374 host->ios.vdd = 0;
1375
1376 host->ios.power_mode = MMC_POWER_OFF;
1377 /* Set initial state and call mmc_set_ios */
1378 mmc_set_initial_state(host);
1379
1380 /*
1381 * Some configurations, such as the 802.11 SDIO card in the OLPC
1382 * XO-1.5, require a short delay after poweroff before the card
1383 * can be successfully turned on again.
1384 */
1385 mmc_delay(1);
1386 }
1387
mmc_power_cycle(struct mmc_host * host,u32 ocr)1388 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1389 {
1390 mmc_power_off(host);
1391 /* Wait at least 1 ms according to SD spec */
1392 mmc_delay(1);
1393 mmc_power_up(host, ocr);
1394 }
1395
1396 /*
1397 * Assign a mmc bus handler to a host. Only one bus handler may control a
1398 * host at any given time.
1399 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1400 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1401 {
1402 host->bus_ops = ops;
1403 }
1404
1405 /*
1406 * Remove the current bus handler from a host.
1407 */
mmc_detach_bus(struct mmc_host * host)1408 void mmc_detach_bus(struct mmc_host *host)
1409 {
1410 host->bus_ops = NULL;
1411 }
1412
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1413 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1414 {
1415 /*
1416 * Prevent system sleep for 5s to allow user space to consume the
1417 * corresponding uevent. This is especially useful, when CD irq is used
1418 * as a system wakeup, but doesn't hurt in other cases.
1419 */
1420 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1421 __pm_wakeup_event(host->ws, 5000);
1422
1423 host->detect_change = 1;
1424 mmc_schedule_delayed_work(&host->detect, delay);
1425 }
1426
1427 /**
1428 * mmc_detect_change - process change of state on a MMC socket
1429 * @host: host which changed state.
1430 * @delay: optional delay to wait before detection (jiffies)
1431 *
1432 * MMC drivers should call this when they detect a card has been
1433 * inserted or removed. The MMC layer will confirm that any
1434 * present card is still functional, and initialize any newly
1435 * inserted.
1436 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1437 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1438 {
1439 _mmc_detect_change(host, delay, true);
1440 }
1441 EXPORT_SYMBOL(mmc_detect_change);
1442
mmc_init_erase(struct mmc_card * card)1443 void mmc_init_erase(struct mmc_card *card)
1444 {
1445 unsigned int sz;
1446
1447 if (is_power_of_2(card->erase_size))
1448 card->erase_shift = ffs(card->erase_size) - 1;
1449 else
1450 card->erase_shift = 0;
1451
1452 /*
1453 * It is possible to erase an arbitrarily large area of an SD or MMC
1454 * card. That is not desirable because it can take a long time
1455 * (minutes) potentially delaying more important I/O, and also the
1456 * timeout calculations become increasingly hugely over-estimated.
1457 * Consequently, 'pref_erase' is defined as a guide to limit erases
1458 * to that size and alignment.
1459 *
1460 * For SD cards that define Allocation Unit size, limit erases to one
1461 * Allocation Unit at a time.
1462 * For MMC, have a stab at ai good value and for modern cards it will
1463 * end up being 4MiB. Note that if the value is too small, it can end
1464 * up taking longer to erase. Also note, erase_size is already set to
1465 * High Capacity Erase Size if available when this function is called.
1466 */
1467 if (mmc_card_sd(card) && card->ssr.au) {
1468 card->pref_erase = card->ssr.au;
1469 card->erase_shift = ffs(card->ssr.au) - 1;
1470 } else if (card->erase_size) {
1471 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1472 if (sz < 128)
1473 card->pref_erase = 512 * 1024 / 512;
1474 else if (sz < 512)
1475 card->pref_erase = 1024 * 1024 / 512;
1476 else if (sz < 1024)
1477 card->pref_erase = 2 * 1024 * 1024 / 512;
1478 else
1479 card->pref_erase = 4 * 1024 * 1024 / 512;
1480 if (card->pref_erase < card->erase_size)
1481 card->pref_erase = card->erase_size;
1482 else {
1483 sz = card->pref_erase % card->erase_size;
1484 if (sz)
1485 card->pref_erase += card->erase_size - sz;
1486 }
1487 } else
1488 card->pref_erase = 0;
1489 }
1490
is_trim_arg(unsigned int arg)1491 static bool is_trim_arg(unsigned int arg)
1492 {
1493 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1494 }
1495
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1496 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1497 unsigned int arg, unsigned int qty)
1498 {
1499 unsigned int erase_timeout;
1500
1501 if (arg == MMC_DISCARD_ARG ||
1502 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1503 erase_timeout = card->ext_csd.trim_timeout;
1504 } else if (card->ext_csd.erase_group_def & 1) {
1505 /* High Capacity Erase Group Size uses HC timeouts */
1506 if (arg == MMC_TRIM_ARG)
1507 erase_timeout = card->ext_csd.trim_timeout;
1508 else
1509 erase_timeout = card->ext_csd.hc_erase_timeout;
1510 } else {
1511 /* CSD Erase Group Size uses write timeout */
1512 unsigned int mult = (10 << card->csd.r2w_factor);
1513 unsigned int timeout_clks = card->csd.taac_clks * mult;
1514 unsigned int timeout_us;
1515
1516 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1517 if (card->csd.taac_ns < 1000000)
1518 timeout_us = (card->csd.taac_ns * mult) / 1000;
1519 else
1520 timeout_us = (card->csd.taac_ns / 1000) * mult;
1521
1522 /*
1523 * ios.clock is only a target. The real clock rate might be
1524 * less but not that much less, so fudge it by multiplying by 2.
1525 */
1526 timeout_clks <<= 1;
1527 timeout_us += (timeout_clks * 1000) /
1528 (card->host->ios.clock / 1000);
1529
1530 erase_timeout = timeout_us / 1000;
1531
1532 /*
1533 * Theoretically, the calculation could underflow so round up
1534 * to 1ms in that case.
1535 */
1536 if (!erase_timeout)
1537 erase_timeout = 1;
1538 }
1539
1540 /* Multiplier for secure operations */
1541 if (arg & MMC_SECURE_ARGS) {
1542 if (arg == MMC_SECURE_ERASE_ARG)
1543 erase_timeout *= card->ext_csd.sec_erase_mult;
1544 else
1545 erase_timeout *= card->ext_csd.sec_trim_mult;
1546 }
1547
1548 erase_timeout *= qty;
1549
1550 /*
1551 * Ensure at least a 1 second timeout for SPI as per
1552 * 'mmc_set_data_timeout()'
1553 */
1554 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1555 erase_timeout = 1000;
1556
1557 return erase_timeout;
1558 }
1559
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1560 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1561 unsigned int arg,
1562 unsigned int qty)
1563 {
1564 unsigned int erase_timeout;
1565
1566 /* for DISCARD none of the below calculation applies.
1567 * the busy timeout is 250msec per discard command.
1568 */
1569 if (arg == SD_DISCARD_ARG)
1570 return SD_DISCARD_TIMEOUT_MS;
1571
1572 if (card->ssr.erase_timeout) {
1573 /* Erase timeout specified in SD Status Register (SSR) */
1574 erase_timeout = card->ssr.erase_timeout * qty +
1575 card->ssr.erase_offset;
1576 } else {
1577 /*
1578 * Erase timeout not specified in SD Status Register (SSR) so
1579 * use 250ms per write block.
1580 */
1581 erase_timeout = 250 * qty;
1582 }
1583
1584 /* Must not be less than 1 second */
1585 if (erase_timeout < 1000)
1586 erase_timeout = 1000;
1587
1588 return erase_timeout;
1589 }
1590
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1591 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1592 unsigned int arg,
1593 unsigned int qty)
1594 {
1595 if (mmc_card_sd(card))
1596 return mmc_sd_erase_timeout(card, arg, qty);
1597 else
1598 return mmc_mmc_erase_timeout(card, arg, qty);
1599 }
1600
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1601 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1602 unsigned int to, unsigned int arg)
1603 {
1604 struct mmc_command cmd = {};
1605 unsigned int qty = 0, busy_timeout = 0;
1606 bool use_r1b_resp;
1607 int err;
1608
1609 mmc_retune_hold(card->host);
1610
1611 /*
1612 * qty is used to calculate the erase timeout which depends on how many
1613 * erase groups (or allocation units in SD terminology) are affected.
1614 * We count erasing part of an erase group as one erase group.
1615 * For SD, the allocation units are always a power of 2. For MMC, the
1616 * erase group size is almost certainly also power of 2, but it does not
1617 * seem to insist on that in the JEDEC standard, so we fall back to
1618 * division in that case. SD may not specify an allocation unit size,
1619 * in which case the timeout is based on the number of write blocks.
1620 *
1621 * Note that the timeout for secure trim 2 will only be correct if the
1622 * number of erase groups specified is the same as the total of all
1623 * preceding secure trim 1 commands. Since the power may have been
1624 * lost since the secure trim 1 commands occurred, it is generally
1625 * impossible to calculate the secure trim 2 timeout correctly.
1626 */
1627 if (card->erase_shift)
1628 qty += ((to >> card->erase_shift) -
1629 (from >> card->erase_shift)) + 1;
1630 else if (mmc_card_sd(card))
1631 qty += to - from + 1;
1632 else
1633 qty += ((to / card->erase_size) -
1634 (from / card->erase_size)) + 1;
1635
1636 if (!mmc_card_blockaddr(card)) {
1637 from <<= 9;
1638 to <<= 9;
1639 }
1640
1641 if (mmc_card_sd(card))
1642 cmd.opcode = SD_ERASE_WR_BLK_START;
1643 else
1644 cmd.opcode = MMC_ERASE_GROUP_START;
1645 cmd.arg = from;
1646 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1647 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1648 if (err) {
1649 pr_err("mmc_erase: group start error %d, "
1650 "status %#x\n", err, cmd.resp[0]);
1651 err = -EIO;
1652 goto out;
1653 }
1654
1655 memset(&cmd, 0, sizeof(struct mmc_command));
1656 if (mmc_card_sd(card))
1657 cmd.opcode = SD_ERASE_WR_BLK_END;
1658 else
1659 cmd.opcode = MMC_ERASE_GROUP_END;
1660 cmd.arg = to;
1661 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1662 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 if (err) {
1664 pr_err("mmc_erase: group end error %d, status %#x\n",
1665 err, cmd.resp[0]);
1666 err = -EIO;
1667 goto out;
1668 }
1669
1670 memset(&cmd, 0, sizeof(struct mmc_command));
1671 cmd.opcode = MMC_ERASE;
1672 cmd.arg = arg;
1673 busy_timeout = mmc_erase_timeout(card, arg, qty);
1674 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1675
1676 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677 if (err) {
1678 pr_err("mmc_erase: erase error %d, status %#x\n",
1679 err, cmd.resp[0]);
1680 err = -EIO;
1681 goto out;
1682 }
1683
1684 if (mmc_host_is_spi(card->host))
1685 goto out;
1686
1687 /*
1688 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1689 * shall be avoided.
1690 */
1691 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1692 goto out;
1693
1694 /* Let's poll to find out when the erase operation completes. */
1695 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1696
1697 out:
1698 mmc_retune_release(card->host);
1699 return err;
1700 }
1701
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1702 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1703 unsigned int *from,
1704 unsigned int *to,
1705 unsigned int nr)
1706 {
1707 unsigned int from_new = *from, nr_new = nr, rem;
1708
1709 /*
1710 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1711 * to align the erase size efficiently.
1712 */
1713 if (is_power_of_2(card->erase_size)) {
1714 unsigned int temp = from_new;
1715
1716 from_new = round_up(temp, card->erase_size);
1717 rem = from_new - temp;
1718
1719 if (nr_new > rem)
1720 nr_new -= rem;
1721 else
1722 return 0;
1723
1724 nr_new = round_down(nr_new, card->erase_size);
1725 } else {
1726 rem = from_new % card->erase_size;
1727 if (rem) {
1728 rem = card->erase_size - rem;
1729 from_new += rem;
1730 if (nr_new > rem)
1731 nr_new -= rem;
1732 else
1733 return 0;
1734 }
1735
1736 rem = nr_new % card->erase_size;
1737 if (rem)
1738 nr_new -= rem;
1739 }
1740
1741 if (nr_new == 0)
1742 return 0;
1743
1744 *to = from_new + nr_new;
1745 *from = from_new;
1746
1747 return nr_new;
1748 }
1749
1750 /**
1751 * mmc_erase - erase sectors.
1752 * @card: card to erase
1753 * @from: first sector to erase
1754 * @nr: number of sectors to erase
1755 * @arg: erase command argument
1756 *
1757 * Caller must claim host before calling this function.
1758 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1759 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1760 unsigned int arg)
1761 {
1762 unsigned int rem, to = from + nr;
1763 int err;
1764
1765 if (!(card->csd.cmdclass & CCC_ERASE))
1766 return -EOPNOTSUPP;
1767
1768 if (!card->erase_size)
1769 return -EOPNOTSUPP;
1770
1771 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1772 return -EOPNOTSUPP;
1773
1774 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1775 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1776 return -EOPNOTSUPP;
1777
1778 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1779 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1780 return -EOPNOTSUPP;
1781
1782 if (arg == MMC_SECURE_ERASE_ARG) {
1783 if (from % card->erase_size || nr % card->erase_size)
1784 return -EINVAL;
1785 }
1786
1787 if (arg == MMC_ERASE_ARG)
1788 nr = mmc_align_erase_size(card, &from, &to, nr);
1789
1790 if (nr == 0)
1791 return 0;
1792
1793 if (to <= from)
1794 return -EINVAL;
1795
1796 /* 'from' and 'to' are inclusive */
1797 to -= 1;
1798
1799 /*
1800 * Special case where only one erase-group fits in the timeout budget:
1801 * If the region crosses an erase-group boundary on this particular
1802 * case, we will be trimming more than one erase-group which, does not
1803 * fit in the timeout budget of the controller, so we need to split it
1804 * and call mmc_do_erase() twice if necessary. This special case is
1805 * identified by the card->eg_boundary flag.
1806 */
1807 rem = card->erase_size - (from % card->erase_size);
1808 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1809 err = mmc_do_erase(card, from, from + rem - 1, arg);
1810 from += rem;
1811 if ((err) || (to <= from))
1812 return err;
1813 }
1814
1815 return mmc_do_erase(card, from, to, arg);
1816 }
1817 EXPORT_SYMBOL(mmc_erase);
1818
mmc_can_erase(struct mmc_card * card)1819 int mmc_can_erase(struct mmc_card *card)
1820 {
1821 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1822 return 1;
1823 return 0;
1824 }
1825 EXPORT_SYMBOL(mmc_can_erase);
1826
mmc_can_trim(struct mmc_card * card)1827 int mmc_can_trim(struct mmc_card *card)
1828 {
1829 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1830 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1831 return 1;
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(mmc_can_trim);
1835
mmc_can_discard(struct mmc_card * card)1836 int mmc_can_discard(struct mmc_card *card)
1837 {
1838 /*
1839 * As there's no way to detect the discard support bit at v4.5
1840 * use the s/w feature support filed.
1841 */
1842 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1843 return 1;
1844 return 0;
1845 }
1846 EXPORT_SYMBOL(mmc_can_discard);
1847
mmc_can_sanitize(struct mmc_card * card)1848 int mmc_can_sanitize(struct mmc_card *card)
1849 {
1850 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1851 return 0;
1852 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1853 return 1;
1854 return 0;
1855 }
1856
mmc_can_secure_erase_trim(struct mmc_card * card)1857 int mmc_can_secure_erase_trim(struct mmc_card *card)
1858 {
1859 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1860 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1861 return 1;
1862 return 0;
1863 }
1864 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1865
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1866 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1867 unsigned int nr)
1868 {
1869 if (!card->erase_size)
1870 return 0;
1871 if (from % card->erase_size || nr % card->erase_size)
1872 return 0;
1873 return 1;
1874 }
1875 EXPORT_SYMBOL(mmc_erase_group_aligned);
1876
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1877 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1878 unsigned int arg)
1879 {
1880 struct mmc_host *host = card->host;
1881 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1882 unsigned int last_timeout = 0;
1883 unsigned int max_busy_timeout = host->max_busy_timeout ?
1884 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1885
1886 if (card->erase_shift) {
1887 max_qty = UINT_MAX >> card->erase_shift;
1888 min_qty = card->pref_erase >> card->erase_shift;
1889 } else if (mmc_card_sd(card)) {
1890 max_qty = UINT_MAX;
1891 min_qty = card->pref_erase;
1892 } else {
1893 max_qty = UINT_MAX / card->erase_size;
1894 min_qty = card->pref_erase / card->erase_size;
1895 }
1896
1897 /*
1898 * We should not only use 'host->max_busy_timeout' as the limitation
1899 * when deciding the max discard sectors. We should set a balance value
1900 * to improve the erase speed, and it can not get too long timeout at
1901 * the same time.
1902 *
1903 * Here we set 'card->pref_erase' as the minimal discard sectors no
1904 * matter what size of 'host->max_busy_timeout', but if the
1905 * 'host->max_busy_timeout' is large enough for more discard sectors,
1906 * then we can continue to increase the max discard sectors until we
1907 * get a balance value. In cases when the 'host->max_busy_timeout'
1908 * isn't specified, use the default max erase timeout.
1909 */
1910 do {
1911 y = 0;
1912 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1913 timeout = mmc_erase_timeout(card, arg, qty + x);
1914
1915 if (qty + x > min_qty && timeout > max_busy_timeout)
1916 break;
1917
1918 if (timeout < last_timeout)
1919 break;
1920 last_timeout = timeout;
1921 y = x;
1922 }
1923 qty += y;
1924 } while (y);
1925
1926 if (!qty)
1927 return 0;
1928
1929 /*
1930 * When specifying a sector range to trim, chances are we might cross
1931 * an erase-group boundary even if the amount of sectors is less than
1932 * one erase-group.
1933 * If we can only fit one erase-group in the controller timeout budget,
1934 * we have to care that erase-group boundaries are not crossed by a
1935 * single trim operation. We flag that special case with "eg_boundary".
1936 * In all other cases we can just decrement qty and pretend that we
1937 * always touch (qty + 1) erase-groups as a simple optimization.
1938 */
1939 if (qty == 1)
1940 card->eg_boundary = 1;
1941 else
1942 qty--;
1943
1944 /* Convert qty to sectors */
1945 if (card->erase_shift)
1946 max_discard = qty << card->erase_shift;
1947 else if (mmc_card_sd(card))
1948 max_discard = qty + 1;
1949 else
1950 max_discard = qty * card->erase_size;
1951
1952 return max_discard;
1953 }
1954
mmc_calc_max_discard(struct mmc_card * card)1955 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1956 {
1957 struct mmc_host *host = card->host;
1958 unsigned int max_discard, max_trim;
1959
1960 /*
1961 * Without erase_group_def set, MMC erase timeout depends on clock
1962 * frequence which can change. In that case, the best choice is
1963 * just the preferred erase size.
1964 */
1965 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1966 return card->pref_erase;
1967
1968 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1969 if (mmc_can_trim(card)) {
1970 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1971 if (max_trim < max_discard || max_discard == 0)
1972 max_discard = max_trim;
1973 } else if (max_discard < card->erase_size) {
1974 max_discard = 0;
1975 }
1976 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1977 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1978 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1979 return max_discard;
1980 }
1981 EXPORT_SYMBOL(mmc_calc_max_discard);
1982
mmc_card_is_blockaddr(struct mmc_card * card)1983 bool mmc_card_is_blockaddr(struct mmc_card *card)
1984 {
1985 return card ? mmc_card_blockaddr(card) : false;
1986 }
1987 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1988
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1989 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1990 {
1991 struct mmc_command cmd = {};
1992
1993 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1994 mmc_card_hs400(card) || mmc_card_hs400es(card))
1995 return 0;
1996
1997 cmd.opcode = MMC_SET_BLOCKLEN;
1998 cmd.arg = blocklen;
1999 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000 return mmc_wait_for_cmd(card->host, &cmd, 5);
2001 }
2002 EXPORT_SYMBOL(mmc_set_blocklen);
2003
mmc_hw_reset_for_init(struct mmc_host * host)2004 static void mmc_hw_reset_for_init(struct mmc_host *host)
2005 {
2006 mmc_pwrseq_reset(host);
2007
2008 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2009 return;
2010 host->ops->card_hw_reset(host);
2011 }
2012
2013 /**
2014 * mmc_hw_reset - reset the card in hardware
2015 * @card: card to be reset
2016 *
2017 * Hard reset the card. This function is only for upper layers, like the
2018 * block layer or card drivers. You cannot use it in host drivers (struct
2019 * mmc_card might be gone then).
2020 *
2021 * Return: 0 on success, -errno on failure
2022 */
mmc_hw_reset(struct mmc_card * card)2023 int mmc_hw_reset(struct mmc_card *card)
2024 {
2025 struct mmc_host *host = card->host;
2026 int ret;
2027
2028 ret = host->bus_ops->hw_reset(host);
2029 if (ret < 0)
2030 pr_warn("%s: tried to HW reset card, got error %d\n",
2031 mmc_hostname(host), ret);
2032
2033 return ret;
2034 }
2035 EXPORT_SYMBOL(mmc_hw_reset);
2036
mmc_sw_reset(struct mmc_card * card)2037 int mmc_sw_reset(struct mmc_card *card)
2038 {
2039 struct mmc_host *host = card->host;
2040 int ret;
2041
2042 if (!host->bus_ops->sw_reset)
2043 return -EOPNOTSUPP;
2044
2045 ret = host->bus_ops->sw_reset(host);
2046 if (ret)
2047 pr_warn("%s: tried to SW reset card, got error %d\n",
2048 mmc_hostname(host), ret);
2049
2050 return ret;
2051 }
2052 EXPORT_SYMBOL(mmc_sw_reset);
2053
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2054 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2055 {
2056 host->f_init = freq;
2057
2058 pr_debug("%s: %s: trying to init card at %u Hz\n",
2059 mmc_hostname(host), __func__, host->f_init);
2060
2061 mmc_power_up(host, host->ocr_avail);
2062
2063 /*
2064 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2065 * do a hardware reset if possible.
2066 */
2067 mmc_hw_reset_for_init(host);
2068
2069 /*
2070 * sdio_reset sends CMD52 to reset card. Since we do not know
2071 * if the card is being re-initialized, just send it. CMD52
2072 * should be ignored by SD/eMMC cards.
2073 * Skip it if we already know that we do not support SDIO commands
2074 */
2075 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2076 sdio_reset(host);
2077
2078 mmc_go_idle(host);
2079
2080 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2081 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2082 goto out;
2083 if (mmc_card_sd_express(host))
2084 return 0;
2085 }
2086
2087 /* Order's important: probe SDIO, then SD, then MMC */
2088 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2089 if (!mmc_attach_sdio(host))
2090 return 0;
2091
2092 if (!(host->caps2 & MMC_CAP2_NO_SD))
2093 if (!mmc_attach_sd(host))
2094 return 0;
2095
2096 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2097 if (!mmc_attach_mmc(host))
2098 return 0;
2099
2100 out:
2101 mmc_power_off(host);
2102 return -EIO;
2103 }
2104
_mmc_detect_card_removed(struct mmc_host * host)2105 int _mmc_detect_card_removed(struct mmc_host *host)
2106 {
2107 int ret;
2108
2109 if (!host->card || mmc_card_removed(host->card))
2110 return 1;
2111
2112 ret = host->bus_ops->alive(host);
2113
2114 /*
2115 * Card detect status and alive check may be out of sync if card is
2116 * removed slowly, when card detect switch changes while card/slot
2117 * pads are still contacted in hardware (refer to "SD Card Mechanical
2118 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2119 * detect work 200ms later for this case.
2120 */
2121 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2122 mmc_detect_change(host, msecs_to_jiffies(200));
2123 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2124 }
2125
2126 if (ret) {
2127 mmc_card_set_removed(host->card);
2128 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2129 }
2130
2131 return ret;
2132 }
2133
mmc_detect_card_removed(struct mmc_host * host)2134 int mmc_detect_card_removed(struct mmc_host *host)
2135 {
2136 struct mmc_card *card = host->card;
2137 int ret;
2138
2139 WARN_ON(!host->claimed);
2140
2141 if (!card)
2142 return 1;
2143
2144 if (!mmc_card_is_removable(host))
2145 return 0;
2146
2147 ret = mmc_card_removed(card);
2148 /*
2149 * The card will be considered unchanged unless we have been asked to
2150 * detect a change or host requires polling to provide card detection.
2151 */
2152 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2153 return ret;
2154
2155 host->detect_change = 0;
2156 if (!ret) {
2157 ret = _mmc_detect_card_removed(host);
2158 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2159 /*
2160 * Schedule a detect work as soon as possible to let a
2161 * rescan handle the card removal.
2162 */
2163 cancel_delayed_work(&host->detect);
2164 _mmc_detect_change(host, 0, false);
2165 }
2166 }
2167
2168 return ret;
2169 }
2170 EXPORT_SYMBOL(mmc_detect_card_removed);
2171
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2172 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2173 {
2174 unsigned int boot_sectors_num;
2175
2176 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2177 return -EOPNOTSUPP;
2178
2179 /* filter out unrelated cards */
2180 if (card->ext_csd.rev < 3 ||
2181 !mmc_card_mmc(card) ||
2182 !mmc_card_is_blockaddr(card) ||
2183 mmc_card_is_removable(card->host))
2184 return -ENOENT;
2185
2186 /*
2187 * eMMC storage has two special boot partitions in addition to the
2188 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2189 * accesses, this means that the partition table addresses are shifted
2190 * by the size of boot partitions. In accordance with the eMMC
2191 * specification, the boot partition size is calculated as follows:
2192 *
2193 * boot partition size = 128K byte x BOOT_SIZE_MULT
2194 *
2195 * Calculate number of sectors occupied by the both boot partitions.
2196 */
2197 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2198 SZ_512 * MMC_NUM_BOOT_PARTITION;
2199
2200 /* Defined by NVIDIA and used by Android devices. */
2201 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2202
2203 return 0;
2204 }
2205 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2206
mmc_rescan(struct work_struct * work)2207 void mmc_rescan(struct work_struct *work)
2208 {
2209 struct mmc_host *host =
2210 container_of(work, struct mmc_host, detect.work);
2211 int i;
2212
2213 if (host->rescan_disable)
2214 return;
2215
2216 /* If there is a non-removable card registered, only scan once */
2217 if (!mmc_card_is_removable(host) && host->rescan_entered)
2218 return;
2219 host->rescan_entered = 1;
2220
2221 if (host->trigger_card_event && host->ops->card_event) {
2222 mmc_claim_host(host);
2223 host->ops->card_event(host);
2224 mmc_release_host(host);
2225 host->trigger_card_event = false;
2226 }
2227
2228 /* Verify a registered card to be functional, else remove it. */
2229 if (host->bus_ops)
2230 host->bus_ops->detect(host);
2231
2232 host->detect_change = 0;
2233
2234 /* if there still is a card present, stop here */
2235 if (host->bus_ops != NULL)
2236 goto out;
2237
2238 mmc_claim_host(host);
2239 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2240 host->ops->get_cd(host) == 0) {
2241 mmc_power_off(host);
2242 mmc_release_host(host);
2243 goto out;
2244 }
2245
2246 /* If an SD express card is present, then leave it as is. */
2247 if (mmc_card_sd_express(host)) {
2248 mmc_release_host(host);
2249 goto out;
2250 }
2251
2252 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2253 unsigned int freq = freqs[i];
2254 if (freq > host->f_max) {
2255 if (i + 1 < ARRAY_SIZE(freqs))
2256 continue;
2257 freq = host->f_max;
2258 }
2259 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2260 break;
2261 if (freqs[i] <= host->f_min)
2262 break;
2263 }
2264
2265 /* A non-removable card should have been detected by now. */
2266 if (!mmc_card_is_removable(host) && !host->bus_ops)
2267 pr_info("%s: Failed to initialize a non-removable card",
2268 mmc_hostname(host));
2269
2270 /*
2271 * Ignore the command timeout errors observed during
2272 * the card init as those are excepted.
2273 */
2274 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2275 mmc_release_host(host);
2276
2277 out:
2278 if (host->caps & MMC_CAP_NEEDS_POLL)
2279 mmc_schedule_delayed_work(&host->detect, HZ);
2280 }
2281
mmc_start_host(struct mmc_host * host)2282 void mmc_start_host(struct mmc_host *host)
2283 {
2284 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2285 host->rescan_disable = 0;
2286
2287 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2288 mmc_claim_host(host);
2289 mmc_power_up(host, host->ocr_avail);
2290 mmc_release_host(host);
2291 }
2292
2293 mmc_gpiod_request_cd_irq(host);
2294 _mmc_detect_change(host, 0, false);
2295 }
2296
__mmc_stop_host(struct mmc_host * host)2297 void __mmc_stop_host(struct mmc_host *host)
2298 {
2299 if (host->rescan_disable)
2300 return;
2301
2302 if (host->slot.cd_irq >= 0) {
2303 mmc_gpio_set_cd_wake(host, false);
2304 disable_irq(host->slot.cd_irq);
2305 }
2306
2307 host->rescan_disable = 1;
2308 cancel_delayed_work_sync(&host->detect);
2309 }
2310
mmc_stop_host(struct mmc_host * host)2311 void mmc_stop_host(struct mmc_host *host)
2312 {
2313 __mmc_stop_host(host);
2314
2315 /* clear pm flags now and let card drivers set them as needed */
2316 host->pm_flags = 0;
2317
2318 if (host->bus_ops) {
2319 /* Calling bus_ops->remove() with a claimed host can deadlock */
2320 host->bus_ops->remove(host);
2321 mmc_claim_host(host);
2322 mmc_detach_bus(host);
2323 mmc_power_off(host);
2324 mmc_release_host(host);
2325 return;
2326 }
2327
2328 mmc_claim_host(host);
2329 mmc_power_off(host);
2330 mmc_release_host(host);
2331 }
2332
mmc_init(void)2333 static int __init mmc_init(void)
2334 {
2335 int ret;
2336
2337 ret = mmc_register_bus();
2338 if (ret)
2339 return ret;
2340
2341 ret = mmc_register_host_class();
2342 if (ret)
2343 goto unregister_bus;
2344
2345 ret = sdio_register_bus();
2346 if (ret)
2347 goto unregister_host_class;
2348
2349 return 0;
2350
2351 unregister_host_class:
2352 mmc_unregister_host_class();
2353 unregister_bus:
2354 mmc_unregister_bus();
2355 return ret;
2356 }
2357
mmc_exit(void)2358 static void __exit mmc_exit(void)
2359 {
2360 sdio_unregister_bus();
2361 mmc_unregister_host_class();
2362 mmc_unregister_bus();
2363 }
2364
2365 subsys_initcall(mmc_init);
2366 module_exit(mmc_exit);
2367
2368 MODULE_LICENSE("GPL");
2369