1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70
71 struct selinux_policy_convert_data {
72 struct convert_context_args args;
73 struct sidtab_convert_params sidtab_params;
74 };
75
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 struct context *context,
79 char **scontext,
80 u32 *scontext_len);
81
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 struct sidtab *sidtab,
84 struct sidtab_entry *entry,
85 char **scontext,
86 u32 *scontext_len);
87
88 static void context_struct_compute_av(struct policydb *policydb,
89 struct context *scontext,
90 struct context *tcontext,
91 u16 tclass,
92 struct av_decision *avd,
93 struct extended_perms *xperms);
94
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)95 static int selinux_set_mapping(struct policydb *pol,
96 const struct security_class_mapping *map,
97 struct selinux_map *out_map)
98 {
99 u16 i, j;
100 bool print_unknown_handle = false;
101
102 /* Find number of classes in the input mapping */
103 if (!map)
104 return -EINVAL;
105 i = 0;
106 while (map[i].name)
107 i++;
108
109 /* Allocate space for the class records, plus one for class zero */
110 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 if (!out_map->mapping)
112 return -ENOMEM;
113
114 /* Store the raw class and permission values */
115 j = 0;
116 while (map[j].name) {
117 const struct security_class_mapping *p_in = map + (j++);
118 struct selinux_mapping *p_out = out_map->mapping + j;
119 u16 k;
120
121 /* An empty class string skips ahead */
122 if (!strcmp(p_in->name, "")) {
123 p_out->num_perms = 0;
124 continue;
125 }
126
127 p_out->value = string_to_security_class(pol, p_in->name);
128 if (!p_out->value) {
129 pr_info("SELinux: Class %s not defined in policy.\n",
130 p_in->name);
131 if (pol->reject_unknown)
132 goto err;
133 p_out->num_perms = 0;
134 print_unknown_handle = true;
135 continue;
136 }
137
138 k = 0;
139 while (p_in->perms[k]) {
140 /* An empty permission string skips ahead */
141 if (!*p_in->perms[k]) {
142 k++;
143 continue;
144 }
145 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 p_in->perms[k]);
147 if (!p_out->perms[k]) {
148 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
149 p_in->perms[k], p_in->name);
150 if (pol->reject_unknown)
151 goto err;
152 print_unknown_handle = true;
153 }
154
155 k++;
156 }
157 p_out->num_perms = k;
158 }
159
160 if (print_unknown_handle)
161 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 pol->allow_unknown ? "allowed" : "denied");
163
164 out_map->size = i;
165 return 0;
166 err:
167 kfree(out_map->mapping);
168 out_map->mapping = NULL;
169 return -EINVAL;
170 }
171
172 /*
173 * Get real, policy values from mapped values
174 */
175
unmap_class(struct selinux_map * map,u16 tclass)176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 if (tclass < map->size)
179 return map->mapping[tclass].value;
180
181 return tclass;
182 }
183
184 /*
185 * Get kernel value for class from its policy value
186 */
map_class(struct selinux_map * map,u16 pol_value)187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 u16 i;
190
191 for (i = 1; i < map->size; i++) {
192 if (map->mapping[i].value == pol_value)
193 return i;
194 }
195
196 return SECCLASS_NULL;
197 }
198
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)199 static void map_decision(struct selinux_map *map,
200 u16 tclass, struct av_decision *avd,
201 int allow_unknown)
202 {
203 if (tclass < map->size) {
204 struct selinux_mapping *mapping = &map->mapping[tclass];
205 unsigned int i, n = mapping->num_perms;
206 u32 result;
207
208 for (i = 0, result = 0; i < n; i++) {
209 if (avd->allowed & mapping->perms[i])
210 result |= (u32)1<<i;
211 if (allow_unknown && !mapping->perms[i])
212 result |= (u32)1<<i;
213 }
214 avd->allowed = result;
215
216 for (i = 0, result = 0; i < n; i++)
217 if (avd->auditallow & mapping->perms[i])
218 result |= (u32)1<<i;
219 avd->auditallow = result;
220
221 for (i = 0, result = 0; i < n; i++) {
222 if (avd->auditdeny & mapping->perms[i])
223 result |= (u32)1<<i;
224 if (!allow_unknown && !mapping->perms[i])
225 result |= (u32)1<<i;
226 }
227 /*
228 * In case the kernel has a bug and requests a permission
229 * between num_perms and the maximum permission number, we
230 * should audit that denial
231 */
232 for (; i < (sizeof(u32)*8); i++)
233 result |= (u32)1<<i;
234 avd->auditdeny = result;
235 }
236 }
237
security_mls_enabled(void)238 int security_mls_enabled(void)
239 {
240 int mls_enabled;
241 struct selinux_policy *policy;
242
243 if (!selinux_initialized())
244 return 0;
245
246 rcu_read_lock();
247 policy = rcu_dereference(selinux_state.policy);
248 mls_enabled = policy->policydb.mls_enabled;
249 rcu_read_unlock();
250 return mls_enabled;
251 }
252
253 /*
254 * Return the boolean value of a constraint expression
255 * when it is applied to the specified source and target
256 * security contexts.
257 *
258 * xcontext is a special beast... It is used by the validatetrans rules
259 * only. For these rules, scontext is the context before the transition,
260 * tcontext is the context after the transition, and xcontext is the context
261 * of the process performing the transition. All other callers of
262 * constraint_expr_eval should pass in NULL for xcontext.
263 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)264 static int constraint_expr_eval(struct policydb *policydb,
265 struct context *scontext,
266 struct context *tcontext,
267 struct context *xcontext,
268 struct constraint_expr *cexpr)
269 {
270 u32 val1, val2;
271 struct context *c;
272 struct role_datum *r1, *r2;
273 struct mls_level *l1, *l2;
274 struct constraint_expr *e;
275 int s[CEXPR_MAXDEPTH];
276 int sp = -1;
277
278 for (e = cexpr; e; e = e->next) {
279 switch (e->expr_type) {
280 case CEXPR_NOT:
281 BUG_ON(sp < 0);
282 s[sp] = !s[sp];
283 break;
284 case CEXPR_AND:
285 BUG_ON(sp < 1);
286 sp--;
287 s[sp] &= s[sp + 1];
288 break;
289 case CEXPR_OR:
290 BUG_ON(sp < 1);
291 sp--;
292 s[sp] |= s[sp + 1];
293 break;
294 case CEXPR_ATTR:
295 if (sp == (CEXPR_MAXDEPTH - 1))
296 return 0;
297 switch (e->attr) {
298 case CEXPR_USER:
299 val1 = scontext->user;
300 val2 = tcontext->user;
301 break;
302 case CEXPR_TYPE:
303 val1 = scontext->type;
304 val2 = tcontext->type;
305 break;
306 case CEXPR_ROLE:
307 val1 = scontext->role;
308 val2 = tcontext->role;
309 r1 = policydb->role_val_to_struct[val1 - 1];
310 r2 = policydb->role_val_to_struct[val2 - 1];
311 switch (e->op) {
312 case CEXPR_DOM:
313 s[++sp] = ebitmap_get_bit(&r1->dominates,
314 val2 - 1);
315 continue;
316 case CEXPR_DOMBY:
317 s[++sp] = ebitmap_get_bit(&r2->dominates,
318 val1 - 1);
319 continue;
320 case CEXPR_INCOMP:
321 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 val2 - 1) &&
323 !ebitmap_get_bit(&r2->dominates,
324 val1 - 1));
325 continue;
326 default:
327 break;
328 }
329 break;
330 case CEXPR_L1L2:
331 l1 = &(scontext->range.level[0]);
332 l2 = &(tcontext->range.level[0]);
333 goto mls_ops;
334 case CEXPR_L1H2:
335 l1 = &(scontext->range.level[0]);
336 l2 = &(tcontext->range.level[1]);
337 goto mls_ops;
338 case CEXPR_H1L2:
339 l1 = &(scontext->range.level[1]);
340 l2 = &(tcontext->range.level[0]);
341 goto mls_ops;
342 case CEXPR_H1H2:
343 l1 = &(scontext->range.level[1]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346 case CEXPR_L1H1:
347 l1 = &(scontext->range.level[0]);
348 l2 = &(scontext->range.level[1]);
349 goto mls_ops;
350 case CEXPR_L2H2:
351 l1 = &(tcontext->range.level[0]);
352 l2 = &(tcontext->range.level[1]);
353 goto mls_ops;
354 mls_ops:
355 switch (e->op) {
356 case CEXPR_EQ:
357 s[++sp] = mls_level_eq(l1, l2);
358 continue;
359 case CEXPR_NEQ:
360 s[++sp] = !mls_level_eq(l1, l2);
361 continue;
362 case CEXPR_DOM:
363 s[++sp] = mls_level_dom(l1, l2);
364 continue;
365 case CEXPR_DOMBY:
366 s[++sp] = mls_level_dom(l2, l1);
367 continue;
368 case CEXPR_INCOMP:
369 s[++sp] = mls_level_incomp(l2, l1);
370 continue;
371 default:
372 BUG();
373 return 0;
374 }
375 break;
376 default:
377 BUG();
378 return 0;
379 }
380
381 switch (e->op) {
382 case CEXPR_EQ:
383 s[++sp] = (val1 == val2);
384 break;
385 case CEXPR_NEQ:
386 s[++sp] = (val1 != val2);
387 break;
388 default:
389 BUG();
390 return 0;
391 }
392 break;
393 case CEXPR_NAMES:
394 if (sp == (CEXPR_MAXDEPTH-1))
395 return 0;
396 c = scontext;
397 if (e->attr & CEXPR_TARGET)
398 c = tcontext;
399 else if (e->attr & CEXPR_XTARGET) {
400 c = xcontext;
401 if (!c) {
402 BUG();
403 return 0;
404 }
405 }
406 if (e->attr & CEXPR_USER)
407 val1 = c->user;
408 else if (e->attr & CEXPR_ROLE)
409 val1 = c->role;
410 else if (e->attr & CEXPR_TYPE)
411 val1 = c->type;
412 else {
413 BUG();
414 return 0;
415 }
416
417 switch (e->op) {
418 case CEXPR_EQ:
419 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 break;
421 case CEXPR_NEQ:
422 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 break;
424 default:
425 BUG();
426 return 0;
427 }
428 break;
429 default:
430 BUG();
431 return 0;
432 }
433 }
434
435 BUG_ON(sp != 0);
436 return s[0];
437 }
438
439 /*
440 * security_dump_masked_av - dumps masked permissions during
441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442 */
dump_masked_av_helper(void * k,void * d,void * args)443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 struct perm_datum *pdatum = d;
446 char **permission_names = args;
447
448 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449
450 permission_names[pdatum->value - 1] = (char *)k;
451
452 return 0;
453 }
454
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)455 static void security_dump_masked_av(struct policydb *policydb,
456 struct context *scontext,
457 struct context *tcontext,
458 u16 tclass,
459 u32 permissions,
460 const char *reason)
461 {
462 struct common_datum *common_dat;
463 struct class_datum *tclass_dat;
464 struct audit_buffer *ab;
465 char *tclass_name;
466 char *scontext_name = NULL;
467 char *tcontext_name = NULL;
468 char *permission_names[32];
469 int index;
470 u32 length;
471 bool need_comma = false;
472
473 if (!permissions)
474 return;
475
476 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 common_dat = tclass_dat->comdatum;
479
480 /* init permission_names */
481 if (common_dat &&
482 hashtab_map(&common_dat->permissions.table,
483 dump_masked_av_helper, permission_names) < 0)
484 goto out;
485
486 if (hashtab_map(&tclass_dat->permissions.table,
487 dump_masked_av_helper, permission_names) < 0)
488 goto out;
489
490 /* get scontext/tcontext in text form */
491 if (context_struct_to_string(policydb, scontext,
492 &scontext_name, &length) < 0)
493 goto out;
494
495 if (context_struct_to_string(policydb, tcontext,
496 &tcontext_name, &length) < 0)
497 goto out;
498
499 /* audit a message */
500 ab = audit_log_start(audit_context(),
501 GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 if (!ab)
503 goto out;
504
505 audit_log_format(ab, "op=security_compute_av reason=%s "
506 "scontext=%s tcontext=%s tclass=%s perms=",
507 reason, scontext_name, tcontext_name, tclass_name);
508
509 for (index = 0; index < 32; index++) {
510 u32 mask = (1 << index);
511
512 if ((mask & permissions) == 0)
513 continue;
514
515 audit_log_format(ab, "%s%s",
516 need_comma ? "," : "",
517 permission_names[index]
518 ? permission_names[index] : "????");
519 need_comma = true;
520 }
521 audit_log_end(ab);
522 out:
523 /* release scontext/tcontext */
524 kfree(tcontext_name);
525 kfree(scontext_name);
526 }
527
528 /*
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
531 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 struct context *scontext,
534 struct context *tcontext,
535 u16 tclass,
536 struct av_decision *avd)
537 {
538 struct context lo_scontext;
539 struct context lo_tcontext, *tcontextp = tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source;
542 struct type_datum *target;
543 u32 masked = 0;
544
545 source = policydb->type_val_to_struct[scontext->type - 1];
546 BUG_ON(!source);
547
548 if (!source->bounds)
549 return;
550
551 target = policydb->type_val_to_struct[tcontext->type - 1];
552 BUG_ON(!target);
553
554 memset(&lo_avd, 0, sizeof(lo_avd));
555
556 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 lo_scontext.type = source->bounds;
558
559 if (target->bounds) {
560 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 lo_tcontext.type = target->bounds;
562 tcontextp = &lo_tcontext;
563 }
564
565 context_struct_compute_av(policydb, &lo_scontext,
566 tcontextp,
567 tclass,
568 &lo_avd,
569 NULL);
570
571 masked = ~lo_avd.allowed & avd->allowed;
572
573 if (likely(!masked))
574 return; /* no masked permission */
575
576 /* mask violated permissions */
577 avd->allowed &= ~masked;
578
579 /* audit masked permissions */
580 security_dump_masked_av(policydb, scontext, tcontext,
581 tclass, masked, "bounds");
582 }
583
584 /*
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permissions
587 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591 {
592 unsigned int i;
593
594 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 /* if one or more driver has all permissions allowed */
596 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 /* if allowing permissions within a driver */
600 security_xperm_set(xperms->drivers.p,
601 node->datum.u.xperms->driver);
602 }
603
604 xperms->len = 1;
605 }
606
607 /*
608 * Compute access vectors and extended permissions based on a context
609 * structure pair for the permissions in a particular class.
610 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)611 static void context_struct_compute_av(struct policydb *policydb,
612 struct context *scontext,
613 struct context *tcontext,
614 u16 tclass,
615 struct av_decision *avd,
616 struct extended_perms *xperms)
617 {
618 struct constraint_node *constraint;
619 struct role_allow *ra;
620 struct avtab_key avkey;
621 struct avtab_node *node;
622 struct class_datum *tclass_datum;
623 struct ebitmap *sattr, *tattr;
624 struct ebitmap_node *snode, *tnode;
625 unsigned int i, j;
626
627 avd->allowed = 0;
628 avd->auditallow = 0;
629 avd->auditdeny = 0xffffffff;
630 if (xperms) {
631 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632 xperms->len = 0;
633 }
634
635 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636 if (printk_ratelimit())
637 pr_warn("SELinux: Invalid class %hu\n", tclass);
638 return;
639 }
640
641 tclass_datum = policydb->class_val_to_struct[tclass - 1];
642
643 /*
644 * If a specific type enforcement rule was defined for
645 * this permission check, then use it.
646 */
647 avkey.target_class = tclass;
648 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
649 sattr = &policydb->type_attr_map_array[scontext->type - 1];
650 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
651 ebitmap_for_each_positive_bit(sattr, snode, i) {
652 ebitmap_for_each_positive_bit(tattr, tnode, j) {
653 avkey.source_type = i + 1;
654 avkey.target_type = j + 1;
655 for (node = avtab_search_node(&policydb->te_avtab,
656 &avkey);
657 node;
658 node = avtab_search_node_next(node, avkey.specified)) {
659 if (node->key.specified == AVTAB_ALLOWED)
660 avd->allowed |= node->datum.u.data;
661 else if (node->key.specified == AVTAB_AUDITALLOW)
662 avd->auditallow |= node->datum.u.data;
663 else if (node->key.specified == AVTAB_AUDITDENY)
664 avd->auditdeny &= node->datum.u.data;
665 else if (xperms && (node->key.specified & AVTAB_XPERMS))
666 services_compute_xperms_drivers(xperms, node);
667 }
668
669 /* Check conditional av table for additional permissions */
670 cond_compute_av(&policydb->te_cond_avtab, &avkey,
671 avd, xperms);
672
673 }
674 }
675
676 /*
677 * Remove any permissions prohibited by a constraint (this includes
678 * the MLS policy).
679 */
680 constraint = tclass_datum->constraints;
681 while (constraint) {
682 if ((constraint->permissions & (avd->allowed)) &&
683 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
684 constraint->expr)) {
685 avd->allowed &= ~(constraint->permissions);
686 }
687 constraint = constraint->next;
688 }
689
690 /*
691 * If checking process transition permission and the
692 * role is changing, then check the (current_role, new_role)
693 * pair.
694 */
695 if (tclass == policydb->process_class &&
696 (avd->allowed & policydb->process_trans_perms) &&
697 scontext->role != tcontext->role) {
698 for (ra = policydb->role_allow; ra; ra = ra->next) {
699 if (scontext->role == ra->role &&
700 tcontext->role == ra->new_role)
701 break;
702 }
703 if (!ra)
704 avd->allowed &= ~policydb->process_trans_perms;
705 }
706
707 /*
708 * If the given source and target types have boundary
709 * constraint, lazy checks have to mask any violated
710 * permission and notice it to userspace via audit.
711 */
712 type_attribute_bounds_av(policydb, scontext, tcontext,
713 tclass, avd);
714 }
715
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)716 static int security_validtrans_handle_fail(struct selinux_policy *policy,
717 struct sidtab_entry *oentry,
718 struct sidtab_entry *nentry,
719 struct sidtab_entry *tentry,
720 u16 tclass)
721 {
722 struct policydb *p = &policy->policydb;
723 struct sidtab *sidtab = policy->sidtab;
724 char *o = NULL, *n = NULL, *t = NULL;
725 u32 olen, nlen, tlen;
726
727 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
728 goto out;
729 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
730 goto out;
731 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
732 goto out;
733 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
734 "op=security_validate_transition seresult=denied"
735 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
736 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
737 out:
738 kfree(o);
739 kfree(n);
740 kfree(t);
741
742 if (!enforcing_enabled())
743 return 0;
744 return -EPERM;
745 }
746
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)747 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
748 u16 orig_tclass, bool user)
749 {
750 struct selinux_policy *policy;
751 struct policydb *policydb;
752 struct sidtab *sidtab;
753 struct sidtab_entry *oentry;
754 struct sidtab_entry *nentry;
755 struct sidtab_entry *tentry;
756 struct class_datum *tclass_datum;
757 struct constraint_node *constraint;
758 u16 tclass;
759 int rc = 0;
760
761
762 if (!selinux_initialized())
763 return 0;
764
765 rcu_read_lock();
766
767 policy = rcu_dereference(selinux_state.policy);
768 policydb = &policy->policydb;
769 sidtab = policy->sidtab;
770
771 if (!user)
772 tclass = unmap_class(&policy->map, orig_tclass);
773 else
774 tclass = orig_tclass;
775
776 if (!tclass || tclass > policydb->p_classes.nprim) {
777 rc = -EINVAL;
778 goto out;
779 }
780 tclass_datum = policydb->class_val_to_struct[tclass - 1];
781
782 oentry = sidtab_search_entry(sidtab, oldsid);
783 if (!oentry) {
784 pr_err("SELinux: %s: unrecognized SID %d\n",
785 __func__, oldsid);
786 rc = -EINVAL;
787 goto out;
788 }
789
790 nentry = sidtab_search_entry(sidtab, newsid);
791 if (!nentry) {
792 pr_err("SELinux: %s: unrecognized SID %d\n",
793 __func__, newsid);
794 rc = -EINVAL;
795 goto out;
796 }
797
798 tentry = sidtab_search_entry(sidtab, tasksid);
799 if (!tentry) {
800 pr_err("SELinux: %s: unrecognized SID %d\n",
801 __func__, tasksid);
802 rc = -EINVAL;
803 goto out;
804 }
805
806 constraint = tclass_datum->validatetrans;
807 while (constraint) {
808 if (!constraint_expr_eval(policydb, &oentry->context,
809 &nentry->context, &tentry->context,
810 constraint->expr)) {
811 if (user)
812 rc = -EPERM;
813 else
814 rc = security_validtrans_handle_fail(policy,
815 oentry,
816 nentry,
817 tentry,
818 tclass);
819 goto out;
820 }
821 constraint = constraint->next;
822 }
823
824 out:
825 rcu_read_unlock();
826 return rc;
827 }
828
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)829 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
830 u16 tclass)
831 {
832 return security_compute_validatetrans(oldsid, newsid, tasksid,
833 tclass, true);
834 }
835
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)836 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
837 u16 orig_tclass)
838 {
839 return security_compute_validatetrans(oldsid, newsid, tasksid,
840 orig_tclass, false);
841 }
842
843 /*
844 * security_bounded_transition - check whether the given
845 * transition is directed to bounded, or not.
846 * It returns 0, if @newsid is bounded by @oldsid.
847 * Otherwise, it returns error code.
848 *
849 * @oldsid : current security identifier
850 * @newsid : destinated security identifier
851 */
security_bounded_transition(u32 old_sid,u32 new_sid)852 int security_bounded_transition(u32 old_sid, u32 new_sid)
853 {
854 struct selinux_policy *policy;
855 struct policydb *policydb;
856 struct sidtab *sidtab;
857 struct sidtab_entry *old_entry, *new_entry;
858 struct type_datum *type;
859 u32 index;
860 int rc;
861
862 if (!selinux_initialized())
863 return 0;
864
865 rcu_read_lock();
866 policy = rcu_dereference(selinux_state.policy);
867 policydb = &policy->policydb;
868 sidtab = policy->sidtab;
869
870 rc = -EINVAL;
871 old_entry = sidtab_search_entry(sidtab, old_sid);
872 if (!old_entry) {
873 pr_err("SELinux: %s: unrecognized SID %u\n",
874 __func__, old_sid);
875 goto out;
876 }
877
878 rc = -EINVAL;
879 new_entry = sidtab_search_entry(sidtab, new_sid);
880 if (!new_entry) {
881 pr_err("SELinux: %s: unrecognized SID %u\n",
882 __func__, new_sid);
883 goto out;
884 }
885
886 rc = 0;
887 /* type/domain unchanged */
888 if (old_entry->context.type == new_entry->context.type)
889 goto out;
890
891 index = new_entry->context.type;
892 while (true) {
893 type = policydb->type_val_to_struct[index - 1];
894 BUG_ON(!type);
895
896 /* not bounded anymore */
897 rc = -EPERM;
898 if (!type->bounds)
899 break;
900
901 /* @newsid is bounded by @oldsid */
902 rc = 0;
903 if (type->bounds == old_entry->context.type)
904 break;
905
906 index = type->bounds;
907 }
908
909 if (rc) {
910 char *old_name = NULL;
911 char *new_name = NULL;
912 u32 length;
913
914 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
915 &old_name, &length) &&
916 !sidtab_entry_to_string(policydb, sidtab, new_entry,
917 &new_name, &length)) {
918 audit_log(audit_context(),
919 GFP_ATOMIC, AUDIT_SELINUX_ERR,
920 "op=security_bounded_transition "
921 "seresult=denied "
922 "oldcontext=%s newcontext=%s",
923 old_name, new_name);
924 }
925 kfree(new_name);
926 kfree(old_name);
927 }
928 out:
929 rcu_read_unlock();
930
931 return rc;
932 }
933
avd_init(struct selinux_policy * policy,struct av_decision * avd)934 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
935 {
936 avd->allowed = 0;
937 avd->auditallow = 0;
938 avd->auditdeny = 0xffffffff;
939 if (policy)
940 avd->seqno = policy->latest_granting;
941 else
942 avd->seqno = 0;
943 avd->flags = 0;
944 }
945
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)946 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947 struct avtab_node *node)
948 {
949 unsigned int i;
950
951 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952 if (xpermd->driver != node->datum.u.xperms->driver)
953 return;
954 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955 if (!security_xperm_test(node->datum.u.xperms->perms.p,
956 xpermd->driver))
957 return;
958 } else {
959 BUG();
960 }
961
962 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
963 xpermd->used |= XPERMS_ALLOWED;
964 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
965 memset(xpermd->allowed->p, 0xff,
966 sizeof(xpermd->allowed->p));
967 }
968 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
969 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
970 xpermd->allowed->p[i] |=
971 node->datum.u.xperms->perms.p[i];
972 }
973 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
974 xpermd->used |= XPERMS_AUDITALLOW;
975 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976 memset(xpermd->auditallow->p, 0xff,
977 sizeof(xpermd->auditallow->p));
978 }
979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
981 xpermd->auditallow->p[i] |=
982 node->datum.u.xperms->perms.p[i];
983 }
984 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
985 xpermd->used |= XPERMS_DONTAUDIT;
986 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987 memset(xpermd->dontaudit->p, 0xff,
988 sizeof(xpermd->dontaudit->p));
989 }
990 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
992 xpermd->dontaudit->p[i] |=
993 node->datum.u.xperms->perms.p[i];
994 }
995 } else {
996 BUG();
997 }
998 }
999
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1000 void security_compute_xperms_decision(u32 ssid,
1001 u32 tsid,
1002 u16 orig_tclass,
1003 u8 driver,
1004 struct extended_perms_decision *xpermd)
1005 {
1006 struct selinux_policy *policy;
1007 struct policydb *policydb;
1008 struct sidtab *sidtab;
1009 u16 tclass;
1010 struct context *scontext, *tcontext;
1011 struct avtab_key avkey;
1012 struct avtab_node *node;
1013 struct ebitmap *sattr, *tattr;
1014 struct ebitmap_node *snode, *tnode;
1015 unsigned int i, j;
1016
1017 xpermd->driver = driver;
1018 xpermd->used = 0;
1019 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1020 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1021 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1022
1023 rcu_read_lock();
1024 if (!selinux_initialized())
1025 goto allow;
1026
1027 policy = rcu_dereference(selinux_state.policy);
1028 policydb = &policy->policydb;
1029 sidtab = policy->sidtab;
1030
1031 scontext = sidtab_search(sidtab, ssid);
1032 if (!scontext) {
1033 pr_err("SELinux: %s: unrecognized SID %d\n",
1034 __func__, ssid);
1035 goto out;
1036 }
1037
1038 tcontext = sidtab_search(sidtab, tsid);
1039 if (!tcontext) {
1040 pr_err("SELinux: %s: unrecognized SID %d\n",
1041 __func__, tsid);
1042 goto out;
1043 }
1044
1045 tclass = unmap_class(&policy->map, orig_tclass);
1046 if (unlikely(orig_tclass && !tclass)) {
1047 if (policydb->allow_unknown)
1048 goto allow;
1049 goto out;
1050 }
1051
1052
1053 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1054 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1055 goto out;
1056 }
1057
1058 avkey.target_class = tclass;
1059 avkey.specified = AVTAB_XPERMS;
1060 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1061 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1062 ebitmap_for_each_positive_bit(sattr, snode, i) {
1063 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1064 avkey.source_type = i + 1;
1065 avkey.target_type = j + 1;
1066 for (node = avtab_search_node(&policydb->te_avtab,
1067 &avkey);
1068 node;
1069 node = avtab_search_node_next(node, avkey.specified))
1070 services_compute_xperms_decision(xpermd, node);
1071
1072 cond_compute_xperms(&policydb->te_cond_avtab,
1073 &avkey, xpermd);
1074 }
1075 }
1076 out:
1077 rcu_read_unlock();
1078 return;
1079 allow:
1080 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1081 goto out;
1082 }
1083
1084 /**
1085 * security_compute_av - Compute access vector decisions.
1086 * @ssid: source security identifier
1087 * @tsid: target security identifier
1088 * @orig_tclass: target security class
1089 * @avd: access vector decisions
1090 * @xperms: extended permissions
1091 *
1092 * Compute a set of access vector decisions based on the
1093 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1094 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1095 void security_compute_av(u32 ssid,
1096 u32 tsid,
1097 u16 orig_tclass,
1098 struct av_decision *avd,
1099 struct extended_perms *xperms)
1100 {
1101 struct selinux_policy *policy;
1102 struct policydb *policydb;
1103 struct sidtab *sidtab;
1104 u16 tclass;
1105 struct context *scontext = NULL, *tcontext = NULL;
1106
1107 rcu_read_lock();
1108 policy = rcu_dereference(selinux_state.policy);
1109 avd_init(policy, avd);
1110 xperms->len = 0;
1111 if (!selinux_initialized())
1112 goto allow;
1113
1114 policydb = &policy->policydb;
1115 sidtab = policy->sidtab;
1116
1117 scontext = sidtab_search(sidtab, ssid);
1118 if (!scontext) {
1119 pr_err("SELinux: %s: unrecognized SID %d\n",
1120 __func__, ssid);
1121 goto out;
1122 }
1123
1124 /* permissive domain? */
1125 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1126 avd->flags |= AVD_FLAGS_PERMISSIVE;
1127
1128 tcontext = sidtab_search(sidtab, tsid);
1129 if (!tcontext) {
1130 pr_err("SELinux: %s: unrecognized SID %d\n",
1131 __func__, tsid);
1132 goto out;
1133 }
1134
1135 tclass = unmap_class(&policy->map, orig_tclass);
1136 if (unlikely(orig_tclass && !tclass)) {
1137 if (policydb->allow_unknown)
1138 goto allow;
1139 goto out;
1140 }
1141 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1142 xperms);
1143 map_decision(&policy->map, orig_tclass, avd,
1144 policydb->allow_unknown);
1145 out:
1146 rcu_read_unlock();
1147 return;
1148 allow:
1149 avd->allowed = 0xffffffff;
1150 goto out;
1151 }
1152
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1153 void security_compute_av_user(u32 ssid,
1154 u32 tsid,
1155 u16 tclass,
1156 struct av_decision *avd)
1157 {
1158 struct selinux_policy *policy;
1159 struct policydb *policydb;
1160 struct sidtab *sidtab;
1161 struct context *scontext = NULL, *tcontext = NULL;
1162
1163 rcu_read_lock();
1164 policy = rcu_dereference(selinux_state.policy);
1165 avd_init(policy, avd);
1166 if (!selinux_initialized())
1167 goto allow;
1168
1169 policydb = &policy->policydb;
1170 sidtab = policy->sidtab;
1171
1172 scontext = sidtab_search(sidtab, ssid);
1173 if (!scontext) {
1174 pr_err("SELinux: %s: unrecognized SID %d\n",
1175 __func__, ssid);
1176 goto out;
1177 }
1178
1179 /* permissive domain? */
1180 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1181 avd->flags |= AVD_FLAGS_PERMISSIVE;
1182
1183 tcontext = sidtab_search(sidtab, tsid);
1184 if (!tcontext) {
1185 pr_err("SELinux: %s: unrecognized SID %d\n",
1186 __func__, tsid);
1187 goto out;
1188 }
1189
1190 if (unlikely(!tclass)) {
1191 if (policydb->allow_unknown)
1192 goto allow;
1193 goto out;
1194 }
1195
1196 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1197 NULL);
1198 out:
1199 rcu_read_unlock();
1200 return;
1201 allow:
1202 avd->allowed = 0xffffffff;
1203 goto out;
1204 }
1205
1206 /*
1207 * Write the security context string representation of
1208 * the context structure `context' into a dynamically
1209 * allocated string of the correct size. Set `*scontext'
1210 * to point to this string and set `*scontext_len' to
1211 * the length of the string.
1212 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1213 static int context_struct_to_string(struct policydb *p,
1214 struct context *context,
1215 char **scontext, u32 *scontext_len)
1216 {
1217 char *scontextp;
1218
1219 if (scontext)
1220 *scontext = NULL;
1221 *scontext_len = 0;
1222
1223 if (context->len) {
1224 *scontext_len = context->len;
1225 if (scontext) {
1226 *scontext = kstrdup(context->str, GFP_ATOMIC);
1227 if (!(*scontext))
1228 return -ENOMEM;
1229 }
1230 return 0;
1231 }
1232
1233 /* Compute the size of the context. */
1234 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1235 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1236 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1237 *scontext_len += mls_compute_context_len(p, context);
1238
1239 if (!scontext)
1240 return 0;
1241
1242 /* Allocate space for the context; caller must free this space. */
1243 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1244 if (!scontextp)
1245 return -ENOMEM;
1246 *scontext = scontextp;
1247
1248 /*
1249 * Copy the user name, role name and type name into the context.
1250 */
1251 scontextp += sprintf(scontextp, "%s:%s:%s",
1252 sym_name(p, SYM_USERS, context->user - 1),
1253 sym_name(p, SYM_ROLES, context->role - 1),
1254 sym_name(p, SYM_TYPES, context->type - 1));
1255
1256 mls_sid_to_context(p, context, &scontextp);
1257
1258 *scontextp = 0;
1259
1260 return 0;
1261 }
1262
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1263 static int sidtab_entry_to_string(struct policydb *p,
1264 struct sidtab *sidtab,
1265 struct sidtab_entry *entry,
1266 char **scontext, u32 *scontext_len)
1267 {
1268 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1269
1270 if (rc != -ENOENT)
1271 return rc;
1272
1273 rc = context_struct_to_string(p, &entry->context, scontext,
1274 scontext_len);
1275 if (!rc && scontext)
1276 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1277 return rc;
1278 }
1279
1280 #include "initial_sid_to_string.h"
1281
security_sidtab_hash_stats(char * page)1282 int security_sidtab_hash_stats(char *page)
1283 {
1284 struct selinux_policy *policy;
1285 int rc;
1286
1287 if (!selinux_initialized()) {
1288 pr_err("SELinux: %s: called before initial load_policy\n",
1289 __func__);
1290 return -EINVAL;
1291 }
1292
1293 rcu_read_lock();
1294 policy = rcu_dereference(selinux_state.policy);
1295 rc = sidtab_hash_stats(policy->sidtab, page);
1296 rcu_read_unlock();
1297
1298 return rc;
1299 }
1300
security_get_initial_sid_context(u32 sid)1301 const char *security_get_initial_sid_context(u32 sid)
1302 {
1303 if (unlikely(sid > SECINITSID_NUM))
1304 return NULL;
1305 return initial_sid_to_string[sid];
1306 }
1307
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1308 static int security_sid_to_context_core(u32 sid, char **scontext,
1309 u32 *scontext_len, int force,
1310 int only_invalid)
1311 {
1312 struct selinux_policy *policy;
1313 struct policydb *policydb;
1314 struct sidtab *sidtab;
1315 struct sidtab_entry *entry;
1316 int rc = 0;
1317
1318 if (scontext)
1319 *scontext = NULL;
1320 *scontext_len = 0;
1321
1322 if (!selinux_initialized()) {
1323 if (sid <= SECINITSID_NUM) {
1324 char *scontextp;
1325 const char *s = initial_sid_to_string[sid];
1326
1327 if (!s)
1328 return -EINVAL;
1329 *scontext_len = strlen(s) + 1;
1330 if (!scontext)
1331 return 0;
1332 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1333 if (!scontextp)
1334 return -ENOMEM;
1335 *scontext = scontextp;
1336 return 0;
1337 }
1338 pr_err("SELinux: %s: called before initial "
1339 "load_policy on unknown SID %d\n", __func__, sid);
1340 return -EINVAL;
1341 }
1342 rcu_read_lock();
1343 policy = rcu_dereference(selinux_state.policy);
1344 policydb = &policy->policydb;
1345 sidtab = policy->sidtab;
1346
1347 if (force)
1348 entry = sidtab_search_entry_force(sidtab, sid);
1349 else
1350 entry = sidtab_search_entry(sidtab, sid);
1351 if (!entry) {
1352 pr_err("SELinux: %s: unrecognized SID %d\n",
1353 __func__, sid);
1354 rc = -EINVAL;
1355 goto out_unlock;
1356 }
1357 if (only_invalid && !entry->context.len)
1358 goto out_unlock;
1359
1360 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1361 scontext_len);
1362
1363 out_unlock:
1364 rcu_read_unlock();
1365 return rc;
1366
1367 }
1368
1369 /**
1370 * security_sid_to_context - Obtain a context for a given SID.
1371 * @sid: security identifier, SID
1372 * @scontext: security context
1373 * @scontext_len: length in bytes
1374 *
1375 * Write the string representation of the context associated with @sid
1376 * into a dynamically allocated string of the correct size. Set @scontext
1377 * to point to this string and set @scontext_len to the length of the string.
1378 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1379 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1380 {
1381 return security_sid_to_context_core(sid, scontext,
1382 scontext_len, 0, 0);
1383 }
1384
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1385 int security_sid_to_context_force(u32 sid,
1386 char **scontext, u32 *scontext_len)
1387 {
1388 return security_sid_to_context_core(sid, scontext,
1389 scontext_len, 1, 0);
1390 }
1391
1392 /**
1393 * security_sid_to_context_inval - Obtain a context for a given SID if it
1394 * is invalid.
1395 * @sid: security identifier, SID
1396 * @scontext: security context
1397 * @scontext_len: length in bytes
1398 *
1399 * Write the string representation of the context associated with @sid
1400 * into a dynamically allocated string of the correct size, but only if the
1401 * context is invalid in the current policy. Set @scontext to point to
1402 * this string (or NULL if the context is valid) and set @scontext_len to
1403 * the length of the string (or 0 if the context is valid).
1404 */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1405 int security_sid_to_context_inval(u32 sid,
1406 char **scontext, u32 *scontext_len)
1407 {
1408 return security_sid_to_context_core(sid, scontext,
1409 scontext_len, 1, 1);
1410 }
1411
1412 /*
1413 * Caveat: Mutates scontext.
1414 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1415 static int string_to_context_struct(struct policydb *pol,
1416 struct sidtab *sidtabp,
1417 char *scontext,
1418 struct context *ctx,
1419 u32 def_sid)
1420 {
1421 struct role_datum *role;
1422 struct type_datum *typdatum;
1423 struct user_datum *usrdatum;
1424 char *scontextp, *p, oldc;
1425 int rc = 0;
1426
1427 context_init(ctx);
1428
1429 /* Parse the security context. */
1430
1431 rc = -EINVAL;
1432 scontextp = scontext;
1433
1434 /* Extract the user. */
1435 p = scontextp;
1436 while (*p && *p != ':')
1437 p++;
1438
1439 if (*p == 0)
1440 goto out;
1441
1442 *p++ = 0;
1443
1444 usrdatum = symtab_search(&pol->p_users, scontextp);
1445 if (!usrdatum)
1446 goto out;
1447
1448 ctx->user = usrdatum->value;
1449
1450 /* Extract role. */
1451 scontextp = p;
1452 while (*p && *p != ':')
1453 p++;
1454
1455 if (*p == 0)
1456 goto out;
1457
1458 *p++ = 0;
1459
1460 role = symtab_search(&pol->p_roles, scontextp);
1461 if (!role)
1462 goto out;
1463 ctx->role = role->value;
1464
1465 /* Extract type. */
1466 scontextp = p;
1467 while (*p && *p != ':')
1468 p++;
1469 oldc = *p;
1470 *p++ = 0;
1471
1472 typdatum = symtab_search(&pol->p_types, scontextp);
1473 if (!typdatum || typdatum->attribute)
1474 goto out;
1475
1476 ctx->type = typdatum->value;
1477
1478 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1479 if (rc)
1480 goto out;
1481
1482 /* Check the validity of the new context. */
1483 rc = -EINVAL;
1484 if (!policydb_context_isvalid(pol, ctx))
1485 goto out;
1486 rc = 0;
1487 out:
1488 if (rc)
1489 context_destroy(ctx);
1490 return rc;
1491 }
1492
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1493 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1494 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1495 int force)
1496 {
1497 struct selinux_policy *policy;
1498 struct policydb *policydb;
1499 struct sidtab *sidtab;
1500 char *scontext2, *str = NULL;
1501 struct context context;
1502 int rc = 0;
1503
1504 /* An empty security context is never valid. */
1505 if (!scontext_len)
1506 return -EINVAL;
1507
1508 /* Copy the string to allow changes and ensure a NUL terminator */
1509 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1510 if (!scontext2)
1511 return -ENOMEM;
1512
1513 if (!selinux_initialized()) {
1514 u32 i;
1515
1516 for (i = 1; i < SECINITSID_NUM; i++) {
1517 const char *s = initial_sid_to_string[i];
1518
1519 if (s && !strcmp(s, scontext2)) {
1520 *sid = i;
1521 goto out;
1522 }
1523 }
1524 *sid = SECINITSID_KERNEL;
1525 goto out;
1526 }
1527 *sid = SECSID_NULL;
1528
1529 if (force) {
1530 /* Save another copy for storing in uninterpreted form */
1531 rc = -ENOMEM;
1532 str = kstrdup(scontext2, gfp_flags);
1533 if (!str)
1534 goto out;
1535 }
1536 retry:
1537 rcu_read_lock();
1538 policy = rcu_dereference(selinux_state.policy);
1539 policydb = &policy->policydb;
1540 sidtab = policy->sidtab;
1541 rc = string_to_context_struct(policydb, sidtab, scontext2,
1542 &context, def_sid);
1543 if (rc == -EINVAL && force) {
1544 context.str = str;
1545 context.len = strlen(str) + 1;
1546 str = NULL;
1547 } else if (rc)
1548 goto out_unlock;
1549 rc = sidtab_context_to_sid(sidtab, &context, sid);
1550 if (rc == -ESTALE) {
1551 rcu_read_unlock();
1552 if (context.str) {
1553 str = context.str;
1554 context.str = NULL;
1555 }
1556 context_destroy(&context);
1557 goto retry;
1558 }
1559 context_destroy(&context);
1560 out_unlock:
1561 rcu_read_unlock();
1562 out:
1563 kfree(scontext2);
1564 kfree(str);
1565 return rc;
1566 }
1567
1568 /**
1569 * security_context_to_sid - Obtain a SID for a given security context.
1570 * @scontext: security context
1571 * @scontext_len: length in bytes
1572 * @sid: security identifier, SID
1573 * @gfp: context for the allocation
1574 *
1575 * Obtains a SID associated with the security context that
1576 * has the string representation specified by @scontext.
1577 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1578 * memory is available, or 0 on success.
1579 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1580 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1581 gfp_t gfp)
1582 {
1583 return security_context_to_sid_core(scontext, scontext_len,
1584 sid, SECSID_NULL, gfp, 0);
1585 }
1586
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1587 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1588 {
1589 return security_context_to_sid(scontext, strlen(scontext),
1590 sid, gfp);
1591 }
1592
1593 /**
1594 * security_context_to_sid_default - Obtain a SID for a given security context,
1595 * falling back to specified default if needed.
1596 *
1597 * @scontext: security context
1598 * @scontext_len: length in bytes
1599 * @sid: security identifier, SID
1600 * @def_sid: default SID to assign on error
1601 * @gfp_flags: the allocator get-free-page (GFP) flags
1602 *
1603 * Obtains a SID associated with the security context that
1604 * has the string representation specified by @scontext.
1605 * The default SID is passed to the MLS layer to be used to allow
1606 * kernel labeling of the MLS field if the MLS field is not present
1607 * (for upgrading to MLS without full relabel).
1608 * Implicitly forces adding of the context even if it cannot be mapped yet.
1609 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1610 * memory is available, or 0 on success.
1611 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1612 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1613 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1614 {
1615 return security_context_to_sid_core(scontext, scontext_len,
1616 sid, def_sid, gfp_flags, 1);
1617 }
1618
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1619 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1620 u32 *sid)
1621 {
1622 return security_context_to_sid_core(scontext, scontext_len,
1623 sid, SECSID_NULL, GFP_KERNEL, 1);
1624 }
1625
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1626 static int compute_sid_handle_invalid_context(
1627 struct selinux_policy *policy,
1628 struct sidtab_entry *sentry,
1629 struct sidtab_entry *tentry,
1630 u16 tclass,
1631 struct context *newcontext)
1632 {
1633 struct policydb *policydb = &policy->policydb;
1634 struct sidtab *sidtab = policy->sidtab;
1635 char *s = NULL, *t = NULL, *n = NULL;
1636 u32 slen, tlen, nlen;
1637 struct audit_buffer *ab;
1638
1639 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1640 goto out;
1641 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1642 goto out;
1643 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1644 goto out;
1645 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1646 if (!ab)
1647 goto out;
1648 audit_log_format(ab,
1649 "op=security_compute_sid invalid_context=");
1650 /* no need to record the NUL with untrusted strings */
1651 audit_log_n_untrustedstring(ab, n, nlen - 1);
1652 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1653 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1654 audit_log_end(ab);
1655 out:
1656 kfree(s);
1657 kfree(t);
1658 kfree(n);
1659 if (!enforcing_enabled())
1660 return 0;
1661 return -EACCES;
1662 }
1663
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1664 static void filename_compute_type(struct policydb *policydb,
1665 struct context *newcontext,
1666 u32 stype, u32 ttype, u16 tclass,
1667 const char *objname)
1668 {
1669 struct filename_trans_key ft;
1670 struct filename_trans_datum *datum;
1671
1672 /*
1673 * Most filename trans rules are going to live in specific directories
1674 * like /dev or /var/run. This bitmap will quickly skip rule searches
1675 * if the ttype does not contain any rules.
1676 */
1677 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1678 return;
1679
1680 ft.ttype = ttype;
1681 ft.tclass = tclass;
1682 ft.name = objname;
1683
1684 datum = policydb_filenametr_search(policydb, &ft);
1685 while (datum) {
1686 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1687 newcontext->type = datum->otype;
1688 return;
1689 }
1690 datum = datum->next;
1691 }
1692 }
1693
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1694 static int security_compute_sid(u32 ssid,
1695 u32 tsid,
1696 u16 orig_tclass,
1697 u16 specified,
1698 const char *objname,
1699 u32 *out_sid,
1700 bool kern)
1701 {
1702 struct selinux_policy *policy;
1703 struct policydb *policydb;
1704 struct sidtab *sidtab;
1705 struct class_datum *cladatum;
1706 struct context *scontext, *tcontext, newcontext;
1707 struct sidtab_entry *sentry, *tentry;
1708 struct avtab_key avkey;
1709 struct avtab_node *avnode, *node;
1710 u16 tclass;
1711 int rc = 0;
1712 bool sock;
1713
1714 if (!selinux_initialized()) {
1715 switch (orig_tclass) {
1716 case SECCLASS_PROCESS: /* kernel value */
1717 *out_sid = ssid;
1718 break;
1719 default:
1720 *out_sid = tsid;
1721 break;
1722 }
1723 goto out;
1724 }
1725
1726 retry:
1727 cladatum = NULL;
1728 context_init(&newcontext);
1729
1730 rcu_read_lock();
1731
1732 policy = rcu_dereference(selinux_state.policy);
1733
1734 if (kern) {
1735 tclass = unmap_class(&policy->map, orig_tclass);
1736 sock = security_is_socket_class(orig_tclass);
1737 } else {
1738 tclass = orig_tclass;
1739 sock = security_is_socket_class(map_class(&policy->map,
1740 tclass));
1741 }
1742
1743 policydb = &policy->policydb;
1744 sidtab = policy->sidtab;
1745
1746 sentry = sidtab_search_entry(sidtab, ssid);
1747 if (!sentry) {
1748 pr_err("SELinux: %s: unrecognized SID %d\n",
1749 __func__, ssid);
1750 rc = -EINVAL;
1751 goto out_unlock;
1752 }
1753 tentry = sidtab_search_entry(sidtab, tsid);
1754 if (!tentry) {
1755 pr_err("SELinux: %s: unrecognized SID %d\n",
1756 __func__, tsid);
1757 rc = -EINVAL;
1758 goto out_unlock;
1759 }
1760
1761 scontext = &sentry->context;
1762 tcontext = &tentry->context;
1763
1764 if (tclass && tclass <= policydb->p_classes.nprim)
1765 cladatum = policydb->class_val_to_struct[tclass - 1];
1766
1767 /* Set the user identity. */
1768 switch (specified) {
1769 case AVTAB_TRANSITION:
1770 case AVTAB_CHANGE:
1771 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1772 newcontext.user = tcontext->user;
1773 } else {
1774 /* notice this gets both DEFAULT_SOURCE and unset */
1775 /* Use the process user identity. */
1776 newcontext.user = scontext->user;
1777 }
1778 break;
1779 case AVTAB_MEMBER:
1780 /* Use the related object owner. */
1781 newcontext.user = tcontext->user;
1782 break;
1783 }
1784
1785 /* Set the role to default values. */
1786 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1787 newcontext.role = scontext->role;
1788 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1789 newcontext.role = tcontext->role;
1790 } else {
1791 if ((tclass == policydb->process_class) || sock)
1792 newcontext.role = scontext->role;
1793 else
1794 newcontext.role = OBJECT_R_VAL;
1795 }
1796
1797 /* Set the type to default values. */
1798 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1799 newcontext.type = scontext->type;
1800 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1801 newcontext.type = tcontext->type;
1802 } else {
1803 if ((tclass == policydb->process_class) || sock) {
1804 /* Use the type of process. */
1805 newcontext.type = scontext->type;
1806 } else {
1807 /* Use the type of the related object. */
1808 newcontext.type = tcontext->type;
1809 }
1810 }
1811
1812 /* Look for a type transition/member/change rule. */
1813 avkey.source_type = scontext->type;
1814 avkey.target_type = tcontext->type;
1815 avkey.target_class = tclass;
1816 avkey.specified = specified;
1817 avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1818
1819 /* If no permanent rule, also check for enabled conditional rules */
1820 if (!avnode) {
1821 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1822 for (; node; node = avtab_search_node_next(node, specified)) {
1823 if (node->key.specified & AVTAB_ENABLED) {
1824 avnode = node;
1825 break;
1826 }
1827 }
1828 }
1829
1830 if (avnode) {
1831 /* Use the type from the type transition/member/change rule. */
1832 newcontext.type = avnode->datum.u.data;
1833 }
1834
1835 /* if we have a objname this is a file trans check so check those rules */
1836 if (objname)
1837 filename_compute_type(policydb, &newcontext, scontext->type,
1838 tcontext->type, tclass, objname);
1839
1840 /* Check for class-specific changes. */
1841 if (specified & AVTAB_TRANSITION) {
1842 /* Look for a role transition rule. */
1843 struct role_trans_datum *rtd;
1844 struct role_trans_key rtk = {
1845 .role = scontext->role,
1846 .type = tcontext->type,
1847 .tclass = tclass,
1848 };
1849
1850 rtd = policydb_roletr_search(policydb, &rtk);
1851 if (rtd)
1852 newcontext.role = rtd->new_role;
1853 }
1854
1855 /* Set the MLS attributes.
1856 This is done last because it may allocate memory. */
1857 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1858 &newcontext, sock);
1859 if (rc)
1860 goto out_unlock;
1861
1862 /* Check the validity of the context. */
1863 if (!policydb_context_isvalid(policydb, &newcontext)) {
1864 rc = compute_sid_handle_invalid_context(policy, sentry,
1865 tentry, tclass,
1866 &newcontext);
1867 if (rc)
1868 goto out_unlock;
1869 }
1870 /* Obtain the sid for the context. */
1871 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1872 if (rc == -ESTALE) {
1873 rcu_read_unlock();
1874 context_destroy(&newcontext);
1875 goto retry;
1876 }
1877 out_unlock:
1878 rcu_read_unlock();
1879 context_destroy(&newcontext);
1880 out:
1881 return rc;
1882 }
1883
1884 /**
1885 * security_transition_sid - Compute the SID for a new subject/object.
1886 * @ssid: source security identifier
1887 * @tsid: target security identifier
1888 * @tclass: target security class
1889 * @qstr: object name
1890 * @out_sid: security identifier for new subject/object
1891 *
1892 * Compute a SID to use for labeling a new subject or object in the
1893 * class @tclass based on a SID pair (@ssid, @tsid).
1894 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1895 * if insufficient memory is available, or %0 if the new SID was
1896 * computed successfully.
1897 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1898 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1899 const struct qstr *qstr, u32 *out_sid)
1900 {
1901 return security_compute_sid(ssid, tsid, tclass,
1902 AVTAB_TRANSITION,
1903 qstr ? qstr->name : NULL, out_sid, true);
1904 }
1905
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1906 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1907 const char *objname, u32 *out_sid)
1908 {
1909 return security_compute_sid(ssid, tsid, tclass,
1910 AVTAB_TRANSITION,
1911 objname, out_sid, false);
1912 }
1913
1914 /**
1915 * security_member_sid - Compute the SID for member selection.
1916 * @ssid: source security identifier
1917 * @tsid: target security identifier
1918 * @tclass: target security class
1919 * @out_sid: security identifier for selected member
1920 *
1921 * Compute a SID to use when selecting a member of a polyinstantiated
1922 * object of class @tclass based on a SID pair (@ssid, @tsid).
1923 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1924 * if insufficient memory is available, or %0 if the SID was
1925 * computed successfully.
1926 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1927 int security_member_sid(u32 ssid,
1928 u32 tsid,
1929 u16 tclass,
1930 u32 *out_sid)
1931 {
1932 return security_compute_sid(ssid, tsid, tclass,
1933 AVTAB_MEMBER, NULL,
1934 out_sid, false);
1935 }
1936
1937 /**
1938 * security_change_sid - Compute the SID for object relabeling.
1939 * @ssid: source security identifier
1940 * @tsid: target security identifier
1941 * @tclass: target security class
1942 * @out_sid: security identifier for selected member
1943 *
1944 * Compute a SID to use for relabeling an object of class @tclass
1945 * based on a SID pair (@ssid, @tsid).
1946 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1947 * if insufficient memory is available, or %0 if the SID was
1948 * computed successfully.
1949 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1950 int security_change_sid(u32 ssid,
1951 u32 tsid,
1952 u16 tclass,
1953 u32 *out_sid)
1954 {
1955 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1956 out_sid, false);
1957 }
1958
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)1959 static inline int convert_context_handle_invalid_context(
1960 struct policydb *policydb,
1961 struct context *context)
1962 {
1963 char *s;
1964 u32 len;
1965
1966 if (enforcing_enabled())
1967 return -EINVAL;
1968
1969 if (!context_struct_to_string(policydb, context, &s, &len)) {
1970 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1971 s);
1972 kfree(s);
1973 }
1974 return 0;
1975 }
1976
1977 /**
1978 * services_convert_context - Convert a security context across policies.
1979 * @args: populated convert_context_args struct
1980 * @oldc: original context
1981 * @newc: converted context
1982 * @gfp_flags: allocation flags
1983 *
1984 * Convert the values in the security context structure @oldc from the values
1985 * specified in the policy @args->oldp to the values specified in the policy
1986 * @args->newp, storing the new context in @newc, and verifying that the
1987 * context is valid under the new policy.
1988 */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)1989 int services_convert_context(struct convert_context_args *args,
1990 struct context *oldc, struct context *newc,
1991 gfp_t gfp_flags)
1992 {
1993 struct ocontext *oc;
1994 struct role_datum *role;
1995 struct type_datum *typdatum;
1996 struct user_datum *usrdatum;
1997 char *s;
1998 u32 len;
1999 int rc;
2000
2001 if (oldc->str) {
2002 s = kstrdup(oldc->str, gfp_flags);
2003 if (!s)
2004 return -ENOMEM;
2005
2006 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2007 if (rc == -EINVAL) {
2008 /*
2009 * Retain string representation for later mapping.
2010 *
2011 * IMPORTANT: We need to copy the contents of oldc->str
2012 * back into s again because string_to_context_struct()
2013 * may have garbled it.
2014 */
2015 memcpy(s, oldc->str, oldc->len);
2016 context_init(newc);
2017 newc->str = s;
2018 newc->len = oldc->len;
2019 return 0;
2020 }
2021 kfree(s);
2022 if (rc) {
2023 /* Other error condition, e.g. ENOMEM. */
2024 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2025 oldc->str, -rc);
2026 return rc;
2027 }
2028 pr_info("SELinux: Context %s became valid (mapped).\n",
2029 oldc->str);
2030 return 0;
2031 }
2032
2033 context_init(newc);
2034
2035 /* Convert the user. */
2036 usrdatum = symtab_search(&args->newp->p_users,
2037 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2038 if (!usrdatum)
2039 goto bad;
2040 newc->user = usrdatum->value;
2041
2042 /* Convert the role. */
2043 role = symtab_search(&args->newp->p_roles,
2044 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2045 if (!role)
2046 goto bad;
2047 newc->role = role->value;
2048
2049 /* Convert the type. */
2050 typdatum = symtab_search(&args->newp->p_types,
2051 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2052 if (!typdatum)
2053 goto bad;
2054 newc->type = typdatum->value;
2055
2056 /* Convert the MLS fields if dealing with MLS policies */
2057 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2058 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2059 if (rc)
2060 goto bad;
2061 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2062 /*
2063 * Switching between non-MLS and MLS policy:
2064 * ensure that the MLS fields of the context for all
2065 * existing entries in the sidtab are filled in with a
2066 * suitable default value, likely taken from one of the
2067 * initial SIDs.
2068 */
2069 oc = args->newp->ocontexts[OCON_ISID];
2070 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2071 oc = oc->next;
2072 if (!oc) {
2073 pr_err("SELinux: unable to look up"
2074 " the initial SIDs list\n");
2075 goto bad;
2076 }
2077 rc = mls_range_set(newc, &oc->context[0].range);
2078 if (rc)
2079 goto bad;
2080 }
2081
2082 /* Check the validity of the new context. */
2083 if (!policydb_context_isvalid(args->newp, newc)) {
2084 rc = convert_context_handle_invalid_context(args->oldp, oldc);
2085 if (rc)
2086 goto bad;
2087 }
2088
2089 return 0;
2090 bad:
2091 /* Map old representation to string and save it. */
2092 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2093 if (rc)
2094 return rc;
2095 context_destroy(newc);
2096 newc->str = s;
2097 newc->len = len;
2098 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2099 newc->str);
2100 return 0;
2101 }
2102
security_load_policycaps(struct selinux_policy * policy)2103 static void security_load_policycaps(struct selinux_policy *policy)
2104 {
2105 struct policydb *p;
2106 unsigned int i;
2107 struct ebitmap_node *node;
2108
2109 p = &policy->policydb;
2110
2111 for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2112 WRITE_ONCE(selinux_state.policycap[i],
2113 ebitmap_get_bit(&p->policycaps, i));
2114
2115 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2116 pr_info("SELinux: policy capability %s=%d\n",
2117 selinux_policycap_names[i],
2118 ebitmap_get_bit(&p->policycaps, i));
2119
2120 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2121 if (i >= ARRAY_SIZE(selinux_policycap_names))
2122 pr_info("SELinux: unknown policy capability %u\n",
2123 i);
2124 }
2125 }
2126
2127 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2128 struct selinux_policy *newpolicy);
2129
selinux_policy_free(struct selinux_policy * policy)2130 static void selinux_policy_free(struct selinux_policy *policy)
2131 {
2132 if (!policy)
2133 return;
2134
2135 sidtab_destroy(policy->sidtab);
2136 kfree(policy->map.mapping);
2137 policydb_destroy(&policy->policydb);
2138 kfree(policy->sidtab);
2139 kfree(policy);
2140 }
2141
selinux_policy_cond_free(struct selinux_policy * policy)2142 static void selinux_policy_cond_free(struct selinux_policy *policy)
2143 {
2144 cond_policydb_destroy_dup(&policy->policydb);
2145 kfree(policy);
2146 }
2147
selinux_policy_cancel(struct selinux_load_state * load_state)2148 void selinux_policy_cancel(struct selinux_load_state *load_state)
2149 {
2150 struct selinux_state *state = &selinux_state;
2151 struct selinux_policy *oldpolicy;
2152
2153 oldpolicy = rcu_dereference_protected(state->policy,
2154 lockdep_is_held(&state->policy_mutex));
2155
2156 sidtab_cancel_convert(oldpolicy->sidtab);
2157 selinux_policy_free(load_state->policy);
2158 kfree(load_state->convert_data);
2159 }
2160
selinux_notify_policy_change(u32 seqno)2161 static void selinux_notify_policy_change(u32 seqno)
2162 {
2163 /* Flush external caches and notify userspace of policy load */
2164 avc_ss_reset(seqno);
2165 selnl_notify_policyload(seqno);
2166 selinux_status_update_policyload(seqno);
2167 selinux_netlbl_cache_invalidate();
2168 selinux_xfrm_notify_policyload();
2169 selinux_ima_measure_state_locked();
2170 }
2171
selinux_policy_commit(struct selinux_load_state * load_state)2172 void selinux_policy_commit(struct selinux_load_state *load_state)
2173 {
2174 struct selinux_state *state = &selinux_state;
2175 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2176 unsigned long flags;
2177 u32 seqno;
2178
2179 oldpolicy = rcu_dereference_protected(state->policy,
2180 lockdep_is_held(&state->policy_mutex));
2181
2182 /* If switching between different policy types, log MLS status */
2183 if (oldpolicy) {
2184 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2185 pr_info("SELinux: Disabling MLS support...\n");
2186 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2187 pr_info("SELinux: Enabling MLS support...\n");
2188 }
2189
2190 /* Set latest granting seqno for new policy. */
2191 if (oldpolicy)
2192 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2193 else
2194 newpolicy->latest_granting = 1;
2195 seqno = newpolicy->latest_granting;
2196
2197 /* Install the new policy. */
2198 if (oldpolicy) {
2199 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2200 rcu_assign_pointer(state->policy, newpolicy);
2201 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2202 } else {
2203 rcu_assign_pointer(state->policy, newpolicy);
2204 }
2205
2206 /* Load the policycaps from the new policy */
2207 security_load_policycaps(newpolicy);
2208
2209 if (!selinux_initialized()) {
2210 /*
2211 * After first policy load, the security server is
2212 * marked as initialized and ready to handle requests and
2213 * any objects created prior to policy load are then labeled.
2214 */
2215 selinux_mark_initialized();
2216 selinux_complete_init();
2217 }
2218
2219 /* Free the old policy */
2220 synchronize_rcu();
2221 selinux_policy_free(oldpolicy);
2222 kfree(load_state->convert_data);
2223
2224 /* Notify others of the policy change */
2225 selinux_notify_policy_change(seqno);
2226 }
2227
2228 /**
2229 * security_load_policy - Load a security policy configuration.
2230 * @data: binary policy data
2231 * @len: length of data in bytes
2232 * @load_state: policy load state
2233 *
2234 * Load a new set of security policy configuration data,
2235 * validate it and convert the SID table as necessary.
2236 * This function will flush the access vector cache after
2237 * loading the new policy.
2238 */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2239 int security_load_policy(void *data, size_t len,
2240 struct selinux_load_state *load_state)
2241 {
2242 struct selinux_state *state = &selinux_state;
2243 struct selinux_policy *newpolicy, *oldpolicy;
2244 struct selinux_policy_convert_data *convert_data;
2245 int rc = 0;
2246 struct policy_file file = { data, len }, *fp = &file;
2247
2248 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2249 if (!newpolicy)
2250 return -ENOMEM;
2251
2252 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2253 if (!newpolicy->sidtab) {
2254 rc = -ENOMEM;
2255 goto err_policy;
2256 }
2257
2258 rc = policydb_read(&newpolicy->policydb, fp);
2259 if (rc)
2260 goto err_sidtab;
2261
2262 newpolicy->policydb.len = len;
2263 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2264 &newpolicy->map);
2265 if (rc)
2266 goto err_policydb;
2267
2268 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2269 if (rc) {
2270 pr_err("SELinux: unable to load the initial SIDs\n");
2271 goto err_mapping;
2272 }
2273
2274 if (!selinux_initialized()) {
2275 /* First policy load, so no need to preserve state from old policy */
2276 load_state->policy = newpolicy;
2277 load_state->convert_data = NULL;
2278 return 0;
2279 }
2280
2281 oldpolicy = rcu_dereference_protected(state->policy,
2282 lockdep_is_held(&state->policy_mutex));
2283
2284 /* Preserve active boolean values from the old policy */
2285 rc = security_preserve_bools(oldpolicy, newpolicy);
2286 if (rc) {
2287 pr_err("SELinux: unable to preserve booleans\n");
2288 goto err_free_isids;
2289 }
2290
2291 /*
2292 * Convert the internal representations of contexts
2293 * in the new SID table.
2294 */
2295
2296 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2297 if (!convert_data) {
2298 rc = -ENOMEM;
2299 goto err_free_isids;
2300 }
2301
2302 convert_data->args.oldp = &oldpolicy->policydb;
2303 convert_data->args.newp = &newpolicy->policydb;
2304
2305 convert_data->sidtab_params.args = &convert_data->args;
2306 convert_data->sidtab_params.target = newpolicy->sidtab;
2307
2308 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2309 if (rc) {
2310 pr_err("SELinux: unable to convert the internal"
2311 " representation of contexts in the new SID"
2312 " table\n");
2313 goto err_free_convert_data;
2314 }
2315
2316 load_state->policy = newpolicy;
2317 load_state->convert_data = convert_data;
2318 return 0;
2319
2320 err_free_convert_data:
2321 kfree(convert_data);
2322 err_free_isids:
2323 sidtab_destroy(newpolicy->sidtab);
2324 err_mapping:
2325 kfree(newpolicy->map.mapping);
2326 err_policydb:
2327 policydb_destroy(&newpolicy->policydb);
2328 err_sidtab:
2329 kfree(newpolicy->sidtab);
2330 err_policy:
2331 kfree(newpolicy);
2332
2333 return rc;
2334 }
2335
2336 /**
2337 * ocontext_to_sid - Helper to safely get sid for an ocontext
2338 * @sidtab: SID table
2339 * @c: ocontext structure
2340 * @index: index of the context entry (0 or 1)
2341 * @out_sid: pointer to the resulting SID value
2342 *
2343 * For all ocontexts except OCON_ISID the SID fields are populated
2344 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2345 * operation, this helper must be used to do that safely.
2346 *
2347 * WARNING: This function may return -ESTALE, indicating that the caller
2348 * must retry the operation after re-acquiring the policy pointer!
2349 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2350 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2351 size_t index, u32 *out_sid)
2352 {
2353 int rc;
2354 u32 sid;
2355
2356 /* Ensure the associated sidtab entry is visible to this thread. */
2357 sid = smp_load_acquire(&c->sid[index]);
2358 if (!sid) {
2359 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2360 if (rc)
2361 return rc;
2362
2363 /*
2364 * Ensure the new sidtab entry is visible to other threads
2365 * when they see the SID.
2366 */
2367 smp_store_release(&c->sid[index], sid);
2368 }
2369 *out_sid = sid;
2370 return 0;
2371 }
2372
2373 /**
2374 * security_port_sid - Obtain the SID for a port.
2375 * @protocol: protocol number
2376 * @port: port number
2377 * @out_sid: security identifier
2378 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2379 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2380 {
2381 struct selinux_policy *policy;
2382 struct policydb *policydb;
2383 struct sidtab *sidtab;
2384 struct ocontext *c;
2385 int rc;
2386
2387 if (!selinux_initialized()) {
2388 *out_sid = SECINITSID_PORT;
2389 return 0;
2390 }
2391
2392 retry:
2393 rc = 0;
2394 rcu_read_lock();
2395 policy = rcu_dereference(selinux_state.policy);
2396 policydb = &policy->policydb;
2397 sidtab = policy->sidtab;
2398
2399 c = policydb->ocontexts[OCON_PORT];
2400 while (c) {
2401 if (c->u.port.protocol == protocol &&
2402 c->u.port.low_port <= port &&
2403 c->u.port.high_port >= port)
2404 break;
2405 c = c->next;
2406 }
2407
2408 if (c) {
2409 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2410 if (rc == -ESTALE) {
2411 rcu_read_unlock();
2412 goto retry;
2413 }
2414 if (rc)
2415 goto out;
2416 } else {
2417 *out_sid = SECINITSID_PORT;
2418 }
2419
2420 out:
2421 rcu_read_unlock();
2422 return rc;
2423 }
2424
2425 /**
2426 * security_ib_pkey_sid - Obtain the SID for a pkey.
2427 * @subnet_prefix: Subnet Prefix
2428 * @pkey_num: pkey number
2429 * @out_sid: security identifier
2430 */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2431 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2432 {
2433 struct selinux_policy *policy;
2434 struct policydb *policydb;
2435 struct sidtab *sidtab;
2436 struct ocontext *c;
2437 int rc;
2438
2439 if (!selinux_initialized()) {
2440 *out_sid = SECINITSID_UNLABELED;
2441 return 0;
2442 }
2443
2444 retry:
2445 rc = 0;
2446 rcu_read_lock();
2447 policy = rcu_dereference(selinux_state.policy);
2448 policydb = &policy->policydb;
2449 sidtab = policy->sidtab;
2450
2451 c = policydb->ocontexts[OCON_IBPKEY];
2452 while (c) {
2453 if (c->u.ibpkey.low_pkey <= pkey_num &&
2454 c->u.ibpkey.high_pkey >= pkey_num &&
2455 c->u.ibpkey.subnet_prefix == subnet_prefix)
2456 break;
2457
2458 c = c->next;
2459 }
2460
2461 if (c) {
2462 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2463 if (rc == -ESTALE) {
2464 rcu_read_unlock();
2465 goto retry;
2466 }
2467 if (rc)
2468 goto out;
2469 } else
2470 *out_sid = SECINITSID_UNLABELED;
2471
2472 out:
2473 rcu_read_unlock();
2474 return rc;
2475 }
2476
2477 /**
2478 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2479 * @dev_name: device name
2480 * @port_num: port number
2481 * @out_sid: security identifier
2482 */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2483 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2484 {
2485 struct selinux_policy *policy;
2486 struct policydb *policydb;
2487 struct sidtab *sidtab;
2488 struct ocontext *c;
2489 int rc;
2490
2491 if (!selinux_initialized()) {
2492 *out_sid = SECINITSID_UNLABELED;
2493 return 0;
2494 }
2495
2496 retry:
2497 rc = 0;
2498 rcu_read_lock();
2499 policy = rcu_dereference(selinux_state.policy);
2500 policydb = &policy->policydb;
2501 sidtab = policy->sidtab;
2502
2503 c = policydb->ocontexts[OCON_IBENDPORT];
2504 while (c) {
2505 if (c->u.ibendport.port == port_num &&
2506 !strncmp(c->u.ibendport.dev_name,
2507 dev_name,
2508 IB_DEVICE_NAME_MAX))
2509 break;
2510
2511 c = c->next;
2512 }
2513
2514 if (c) {
2515 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2516 if (rc == -ESTALE) {
2517 rcu_read_unlock();
2518 goto retry;
2519 }
2520 if (rc)
2521 goto out;
2522 } else
2523 *out_sid = SECINITSID_UNLABELED;
2524
2525 out:
2526 rcu_read_unlock();
2527 return rc;
2528 }
2529
2530 /**
2531 * security_netif_sid - Obtain the SID for a network interface.
2532 * @name: interface name
2533 * @if_sid: interface SID
2534 */
security_netif_sid(char * name,u32 * if_sid)2535 int security_netif_sid(char *name, u32 *if_sid)
2536 {
2537 struct selinux_policy *policy;
2538 struct policydb *policydb;
2539 struct sidtab *sidtab;
2540 int rc;
2541 struct ocontext *c;
2542
2543 if (!selinux_initialized()) {
2544 *if_sid = SECINITSID_NETIF;
2545 return 0;
2546 }
2547
2548 retry:
2549 rc = 0;
2550 rcu_read_lock();
2551 policy = rcu_dereference(selinux_state.policy);
2552 policydb = &policy->policydb;
2553 sidtab = policy->sidtab;
2554
2555 c = policydb->ocontexts[OCON_NETIF];
2556 while (c) {
2557 if (strcmp(name, c->u.name) == 0)
2558 break;
2559 c = c->next;
2560 }
2561
2562 if (c) {
2563 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2564 if (rc == -ESTALE) {
2565 rcu_read_unlock();
2566 goto retry;
2567 }
2568 if (rc)
2569 goto out;
2570 } else
2571 *if_sid = SECINITSID_NETIF;
2572
2573 out:
2574 rcu_read_unlock();
2575 return rc;
2576 }
2577
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2578 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2579 {
2580 int i, fail = 0;
2581
2582 for (i = 0; i < 4; i++)
2583 if (addr[i] != (input[i] & mask[i])) {
2584 fail = 1;
2585 break;
2586 }
2587
2588 return !fail;
2589 }
2590
2591 /**
2592 * security_node_sid - Obtain the SID for a node (host).
2593 * @domain: communication domain aka address family
2594 * @addrp: address
2595 * @addrlen: address length in bytes
2596 * @out_sid: security identifier
2597 */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2598 int security_node_sid(u16 domain,
2599 void *addrp,
2600 u32 addrlen,
2601 u32 *out_sid)
2602 {
2603 struct selinux_policy *policy;
2604 struct policydb *policydb;
2605 struct sidtab *sidtab;
2606 int rc;
2607 struct ocontext *c;
2608
2609 if (!selinux_initialized()) {
2610 *out_sid = SECINITSID_NODE;
2611 return 0;
2612 }
2613
2614 retry:
2615 rcu_read_lock();
2616 policy = rcu_dereference(selinux_state.policy);
2617 policydb = &policy->policydb;
2618 sidtab = policy->sidtab;
2619
2620 switch (domain) {
2621 case AF_INET: {
2622 u32 addr;
2623
2624 rc = -EINVAL;
2625 if (addrlen != sizeof(u32))
2626 goto out;
2627
2628 addr = *((u32 *)addrp);
2629
2630 c = policydb->ocontexts[OCON_NODE];
2631 while (c) {
2632 if (c->u.node.addr == (addr & c->u.node.mask))
2633 break;
2634 c = c->next;
2635 }
2636 break;
2637 }
2638
2639 case AF_INET6:
2640 rc = -EINVAL;
2641 if (addrlen != sizeof(u64) * 2)
2642 goto out;
2643 c = policydb->ocontexts[OCON_NODE6];
2644 while (c) {
2645 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2646 c->u.node6.mask))
2647 break;
2648 c = c->next;
2649 }
2650 break;
2651
2652 default:
2653 rc = 0;
2654 *out_sid = SECINITSID_NODE;
2655 goto out;
2656 }
2657
2658 if (c) {
2659 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2660 if (rc == -ESTALE) {
2661 rcu_read_unlock();
2662 goto retry;
2663 }
2664 if (rc)
2665 goto out;
2666 } else {
2667 *out_sid = SECINITSID_NODE;
2668 }
2669
2670 rc = 0;
2671 out:
2672 rcu_read_unlock();
2673 return rc;
2674 }
2675
2676 #define SIDS_NEL 25
2677
2678 /**
2679 * security_get_user_sids - Obtain reachable SIDs for a user.
2680 * @fromsid: starting SID
2681 * @username: username
2682 * @sids: array of reachable SIDs for user
2683 * @nel: number of elements in @sids
2684 *
2685 * Generate the set of SIDs for legal security contexts
2686 * for a given user that can be reached by @fromsid.
2687 * Set *@sids to point to a dynamically allocated
2688 * array containing the set of SIDs. Set *@nel to the
2689 * number of elements in the array.
2690 */
2691
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2692 int security_get_user_sids(u32 fromsid,
2693 char *username,
2694 u32 **sids,
2695 u32 *nel)
2696 {
2697 struct selinux_policy *policy;
2698 struct policydb *policydb;
2699 struct sidtab *sidtab;
2700 struct context *fromcon, usercon;
2701 u32 *mysids = NULL, *mysids2, sid;
2702 u32 i, j, mynel, maxnel = SIDS_NEL;
2703 struct user_datum *user;
2704 struct role_datum *role;
2705 struct ebitmap_node *rnode, *tnode;
2706 int rc;
2707
2708 *sids = NULL;
2709 *nel = 0;
2710
2711 if (!selinux_initialized())
2712 return 0;
2713
2714 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2715 if (!mysids)
2716 return -ENOMEM;
2717
2718 retry:
2719 mynel = 0;
2720 rcu_read_lock();
2721 policy = rcu_dereference(selinux_state.policy);
2722 policydb = &policy->policydb;
2723 sidtab = policy->sidtab;
2724
2725 context_init(&usercon);
2726
2727 rc = -EINVAL;
2728 fromcon = sidtab_search(sidtab, fromsid);
2729 if (!fromcon)
2730 goto out_unlock;
2731
2732 rc = -EINVAL;
2733 user = symtab_search(&policydb->p_users, username);
2734 if (!user)
2735 goto out_unlock;
2736
2737 usercon.user = user->value;
2738
2739 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2740 role = policydb->role_val_to_struct[i];
2741 usercon.role = i + 1;
2742 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2743 usercon.type = j + 1;
2744
2745 if (mls_setup_user_range(policydb, fromcon, user,
2746 &usercon))
2747 continue;
2748
2749 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2750 if (rc == -ESTALE) {
2751 rcu_read_unlock();
2752 goto retry;
2753 }
2754 if (rc)
2755 goto out_unlock;
2756 if (mynel < maxnel) {
2757 mysids[mynel++] = sid;
2758 } else {
2759 rc = -ENOMEM;
2760 maxnel += SIDS_NEL;
2761 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2762 if (!mysids2)
2763 goto out_unlock;
2764 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2765 kfree(mysids);
2766 mysids = mysids2;
2767 mysids[mynel++] = sid;
2768 }
2769 }
2770 }
2771 rc = 0;
2772 out_unlock:
2773 rcu_read_unlock();
2774 if (rc || !mynel) {
2775 kfree(mysids);
2776 return rc;
2777 }
2778
2779 rc = -ENOMEM;
2780 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2781 if (!mysids2) {
2782 kfree(mysids);
2783 return rc;
2784 }
2785 for (i = 0, j = 0; i < mynel; i++) {
2786 struct av_decision dummy_avd;
2787 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2788 SECCLASS_PROCESS, /* kernel value */
2789 PROCESS__TRANSITION, AVC_STRICT,
2790 &dummy_avd);
2791 if (!rc)
2792 mysids2[j++] = mysids[i];
2793 cond_resched();
2794 }
2795 kfree(mysids);
2796 *sids = mysids2;
2797 *nel = j;
2798 return 0;
2799 }
2800
2801 /**
2802 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2803 * @policy: policy
2804 * @fstype: filesystem type
2805 * @path: path from root of mount
2806 * @orig_sclass: file security class
2807 * @sid: SID for path
2808 *
2809 * Obtain a SID to use for a file in a filesystem that
2810 * cannot support xattr or use a fixed labeling behavior like
2811 * transition SIDs or task SIDs.
2812 *
2813 * WARNING: This function may return -ESTALE, indicating that the caller
2814 * must retry the operation after re-acquiring the policy pointer!
2815 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2816 static inline int __security_genfs_sid(struct selinux_policy *policy,
2817 const char *fstype,
2818 const char *path,
2819 u16 orig_sclass,
2820 u32 *sid)
2821 {
2822 struct policydb *policydb = &policy->policydb;
2823 struct sidtab *sidtab = policy->sidtab;
2824 u16 sclass;
2825 struct genfs *genfs;
2826 struct ocontext *c;
2827 int cmp = 0;
2828
2829 while (path[0] == '/' && path[1] == '/')
2830 path++;
2831
2832 sclass = unmap_class(&policy->map, orig_sclass);
2833 *sid = SECINITSID_UNLABELED;
2834
2835 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2836 cmp = strcmp(fstype, genfs->fstype);
2837 if (cmp <= 0)
2838 break;
2839 }
2840
2841 if (!genfs || cmp)
2842 return -ENOENT;
2843
2844 for (c = genfs->head; c; c = c->next) {
2845 size_t len = strlen(c->u.name);
2846 if ((!c->v.sclass || sclass == c->v.sclass) &&
2847 (strncmp(c->u.name, path, len) == 0))
2848 break;
2849 }
2850
2851 if (!c)
2852 return -ENOENT;
2853
2854 return ocontext_to_sid(sidtab, c, 0, sid);
2855 }
2856
2857 /**
2858 * security_genfs_sid - Obtain a SID for a file in a filesystem
2859 * @fstype: filesystem type
2860 * @path: path from root of mount
2861 * @orig_sclass: file security class
2862 * @sid: SID for path
2863 *
2864 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2865 * it afterward.
2866 */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2867 int security_genfs_sid(const char *fstype,
2868 const char *path,
2869 u16 orig_sclass,
2870 u32 *sid)
2871 {
2872 struct selinux_policy *policy;
2873 int retval;
2874
2875 if (!selinux_initialized()) {
2876 *sid = SECINITSID_UNLABELED;
2877 return 0;
2878 }
2879
2880 do {
2881 rcu_read_lock();
2882 policy = rcu_dereference(selinux_state.policy);
2883 retval = __security_genfs_sid(policy, fstype, path,
2884 orig_sclass, sid);
2885 rcu_read_unlock();
2886 } while (retval == -ESTALE);
2887 return retval;
2888 }
2889
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2890 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2891 const char *fstype,
2892 const char *path,
2893 u16 orig_sclass,
2894 u32 *sid)
2895 {
2896 /* no lock required, policy is not yet accessible by other threads */
2897 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2898 }
2899
2900 /**
2901 * security_fs_use - Determine how to handle labeling for a filesystem.
2902 * @sb: superblock in question
2903 */
security_fs_use(struct super_block * sb)2904 int security_fs_use(struct super_block *sb)
2905 {
2906 struct selinux_policy *policy;
2907 struct policydb *policydb;
2908 struct sidtab *sidtab;
2909 int rc;
2910 struct ocontext *c;
2911 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2912 const char *fstype = sb->s_type->name;
2913
2914 if (!selinux_initialized()) {
2915 sbsec->behavior = SECURITY_FS_USE_NONE;
2916 sbsec->sid = SECINITSID_UNLABELED;
2917 return 0;
2918 }
2919
2920 retry:
2921 rcu_read_lock();
2922 policy = rcu_dereference(selinux_state.policy);
2923 policydb = &policy->policydb;
2924 sidtab = policy->sidtab;
2925
2926 c = policydb->ocontexts[OCON_FSUSE];
2927 while (c) {
2928 if (strcmp(fstype, c->u.name) == 0)
2929 break;
2930 c = c->next;
2931 }
2932
2933 if (c) {
2934 sbsec->behavior = c->v.behavior;
2935 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2936 if (rc == -ESTALE) {
2937 rcu_read_unlock();
2938 goto retry;
2939 }
2940 if (rc)
2941 goto out;
2942 } else {
2943 rc = __security_genfs_sid(policy, fstype, "/",
2944 SECCLASS_DIR, &sbsec->sid);
2945 if (rc == -ESTALE) {
2946 rcu_read_unlock();
2947 goto retry;
2948 }
2949 if (rc) {
2950 sbsec->behavior = SECURITY_FS_USE_NONE;
2951 rc = 0;
2952 } else {
2953 sbsec->behavior = SECURITY_FS_USE_GENFS;
2954 }
2955 }
2956
2957 out:
2958 rcu_read_unlock();
2959 return rc;
2960 }
2961
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)2962 int security_get_bools(struct selinux_policy *policy,
2963 u32 *len, char ***names, int **values)
2964 {
2965 struct policydb *policydb;
2966 u32 i;
2967 int rc;
2968
2969 policydb = &policy->policydb;
2970
2971 *names = NULL;
2972 *values = NULL;
2973
2974 rc = 0;
2975 *len = policydb->p_bools.nprim;
2976 if (!*len)
2977 goto out;
2978
2979 rc = -ENOMEM;
2980 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2981 if (!*names)
2982 goto err;
2983
2984 rc = -ENOMEM;
2985 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2986 if (!*values)
2987 goto err;
2988
2989 for (i = 0; i < *len; i++) {
2990 (*values)[i] = policydb->bool_val_to_struct[i]->state;
2991
2992 rc = -ENOMEM;
2993 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2994 GFP_ATOMIC);
2995 if (!(*names)[i])
2996 goto err;
2997 }
2998 rc = 0;
2999 out:
3000 return rc;
3001 err:
3002 if (*names) {
3003 for (i = 0; i < *len; i++)
3004 kfree((*names)[i]);
3005 kfree(*names);
3006 }
3007 kfree(*values);
3008 *len = 0;
3009 *names = NULL;
3010 *values = NULL;
3011 goto out;
3012 }
3013
3014
security_set_bools(u32 len,int * values)3015 int security_set_bools(u32 len, int *values)
3016 {
3017 struct selinux_state *state = &selinux_state;
3018 struct selinux_policy *newpolicy, *oldpolicy;
3019 int rc;
3020 u32 i, seqno = 0;
3021
3022 if (!selinux_initialized())
3023 return -EINVAL;
3024
3025 oldpolicy = rcu_dereference_protected(state->policy,
3026 lockdep_is_held(&state->policy_mutex));
3027
3028 /* Consistency check on number of booleans, should never fail */
3029 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3030 return -EINVAL;
3031
3032 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3033 if (!newpolicy)
3034 return -ENOMEM;
3035
3036 /*
3037 * Deep copy only the parts of the policydb that might be
3038 * modified as a result of changing booleans.
3039 */
3040 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3041 if (rc) {
3042 kfree(newpolicy);
3043 return -ENOMEM;
3044 }
3045
3046 /* Update the boolean states in the copy */
3047 for (i = 0; i < len; i++) {
3048 int new_state = !!values[i];
3049 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3050
3051 if (new_state != old_state) {
3052 audit_log(audit_context(), GFP_ATOMIC,
3053 AUDIT_MAC_CONFIG_CHANGE,
3054 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3055 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3056 new_state,
3057 old_state,
3058 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3059 audit_get_sessionid(current));
3060 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3061 }
3062 }
3063
3064 /* Re-evaluate the conditional rules in the copy */
3065 evaluate_cond_nodes(&newpolicy->policydb);
3066
3067 /* Set latest granting seqno for new policy */
3068 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3069 seqno = newpolicy->latest_granting;
3070
3071 /* Install the new policy */
3072 rcu_assign_pointer(state->policy, newpolicy);
3073
3074 /*
3075 * Free the conditional portions of the old policydb
3076 * that were copied for the new policy, and the oldpolicy
3077 * structure itself but not what it references.
3078 */
3079 synchronize_rcu();
3080 selinux_policy_cond_free(oldpolicy);
3081
3082 /* Notify others of the policy change */
3083 selinux_notify_policy_change(seqno);
3084 return 0;
3085 }
3086
security_get_bool_value(u32 index)3087 int security_get_bool_value(u32 index)
3088 {
3089 struct selinux_policy *policy;
3090 struct policydb *policydb;
3091 int rc;
3092 u32 len;
3093
3094 if (!selinux_initialized())
3095 return 0;
3096
3097 rcu_read_lock();
3098 policy = rcu_dereference(selinux_state.policy);
3099 policydb = &policy->policydb;
3100
3101 rc = -EFAULT;
3102 len = policydb->p_bools.nprim;
3103 if (index >= len)
3104 goto out;
3105
3106 rc = policydb->bool_val_to_struct[index]->state;
3107 out:
3108 rcu_read_unlock();
3109 return rc;
3110 }
3111
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3112 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3113 struct selinux_policy *newpolicy)
3114 {
3115 int rc, *bvalues = NULL;
3116 char **bnames = NULL;
3117 struct cond_bool_datum *booldatum;
3118 u32 i, nbools = 0;
3119
3120 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3121 if (rc)
3122 goto out;
3123 for (i = 0; i < nbools; i++) {
3124 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3125 bnames[i]);
3126 if (booldatum)
3127 booldatum->state = bvalues[i];
3128 }
3129 evaluate_cond_nodes(&newpolicy->policydb);
3130
3131 out:
3132 if (bnames) {
3133 for (i = 0; i < nbools; i++)
3134 kfree(bnames[i]);
3135 }
3136 kfree(bnames);
3137 kfree(bvalues);
3138 return rc;
3139 }
3140
3141 /*
3142 * security_sid_mls_copy() - computes a new sid based on the given
3143 * sid and the mls portion of mls_sid.
3144 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3145 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3146 {
3147 struct selinux_policy *policy;
3148 struct policydb *policydb;
3149 struct sidtab *sidtab;
3150 struct context *context1;
3151 struct context *context2;
3152 struct context newcon;
3153 char *s;
3154 u32 len;
3155 int rc;
3156
3157 if (!selinux_initialized()) {
3158 *new_sid = sid;
3159 return 0;
3160 }
3161
3162 retry:
3163 rc = 0;
3164 context_init(&newcon);
3165
3166 rcu_read_lock();
3167 policy = rcu_dereference(selinux_state.policy);
3168 policydb = &policy->policydb;
3169 sidtab = policy->sidtab;
3170
3171 if (!policydb->mls_enabled) {
3172 *new_sid = sid;
3173 goto out_unlock;
3174 }
3175
3176 rc = -EINVAL;
3177 context1 = sidtab_search(sidtab, sid);
3178 if (!context1) {
3179 pr_err("SELinux: %s: unrecognized SID %d\n",
3180 __func__, sid);
3181 goto out_unlock;
3182 }
3183
3184 rc = -EINVAL;
3185 context2 = sidtab_search(sidtab, mls_sid);
3186 if (!context2) {
3187 pr_err("SELinux: %s: unrecognized SID %d\n",
3188 __func__, mls_sid);
3189 goto out_unlock;
3190 }
3191
3192 newcon.user = context1->user;
3193 newcon.role = context1->role;
3194 newcon.type = context1->type;
3195 rc = mls_context_cpy(&newcon, context2);
3196 if (rc)
3197 goto out_unlock;
3198
3199 /* Check the validity of the new context. */
3200 if (!policydb_context_isvalid(policydb, &newcon)) {
3201 rc = convert_context_handle_invalid_context(policydb,
3202 &newcon);
3203 if (rc) {
3204 if (!context_struct_to_string(policydb, &newcon, &s,
3205 &len)) {
3206 struct audit_buffer *ab;
3207
3208 ab = audit_log_start(audit_context(),
3209 GFP_ATOMIC,
3210 AUDIT_SELINUX_ERR);
3211 audit_log_format(ab,
3212 "op=security_sid_mls_copy invalid_context=");
3213 /* don't record NUL with untrusted strings */
3214 audit_log_n_untrustedstring(ab, s, len - 1);
3215 audit_log_end(ab);
3216 kfree(s);
3217 }
3218 goto out_unlock;
3219 }
3220 }
3221 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3222 if (rc == -ESTALE) {
3223 rcu_read_unlock();
3224 context_destroy(&newcon);
3225 goto retry;
3226 }
3227 out_unlock:
3228 rcu_read_unlock();
3229 context_destroy(&newcon);
3230 return rc;
3231 }
3232
3233 /**
3234 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3235 * @nlbl_sid: NetLabel SID
3236 * @nlbl_type: NetLabel labeling protocol type
3237 * @xfrm_sid: XFRM SID
3238 * @peer_sid: network peer sid
3239 *
3240 * Description:
3241 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3242 * resolved into a single SID it is returned via @peer_sid and the function
3243 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3244 * returns a negative value. A table summarizing the behavior is below:
3245 *
3246 * | function return | @sid
3247 * ------------------------------+-----------------+-----------------
3248 * no peer labels | 0 | SECSID_NULL
3249 * single peer label | 0 | <peer_label>
3250 * multiple, consistent labels | 0 | <peer_label>
3251 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3252 *
3253 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3254 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3255 u32 xfrm_sid,
3256 u32 *peer_sid)
3257 {
3258 struct selinux_policy *policy;
3259 struct policydb *policydb;
3260 struct sidtab *sidtab;
3261 int rc;
3262 struct context *nlbl_ctx;
3263 struct context *xfrm_ctx;
3264
3265 *peer_sid = SECSID_NULL;
3266
3267 /* handle the common (which also happens to be the set of easy) cases
3268 * right away, these two if statements catch everything involving a
3269 * single or absent peer SID/label */
3270 if (xfrm_sid == SECSID_NULL) {
3271 *peer_sid = nlbl_sid;
3272 return 0;
3273 }
3274 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3275 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3276 * is present */
3277 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3278 *peer_sid = xfrm_sid;
3279 return 0;
3280 }
3281
3282 if (!selinux_initialized())
3283 return 0;
3284
3285 rcu_read_lock();
3286 policy = rcu_dereference(selinux_state.policy);
3287 policydb = &policy->policydb;
3288 sidtab = policy->sidtab;
3289
3290 /*
3291 * We don't need to check initialized here since the only way both
3292 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3293 * security server was initialized and state->initialized was true.
3294 */
3295 if (!policydb->mls_enabled) {
3296 rc = 0;
3297 goto out;
3298 }
3299
3300 rc = -EINVAL;
3301 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3302 if (!nlbl_ctx) {
3303 pr_err("SELinux: %s: unrecognized SID %d\n",
3304 __func__, nlbl_sid);
3305 goto out;
3306 }
3307 rc = -EINVAL;
3308 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3309 if (!xfrm_ctx) {
3310 pr_err("SELinux: %s: unrecognized SID %d\n",
3311 __func__, xfrm_sid);
3312 goto out;
3313 }
3314 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3315 if (rc)
3316 goto out;
3317
3318 /* at present NetLabel SIDs/labels really only carry MLS
3319 * information so if the MLS portion of the NetLabel SID
3320 * matches the MLS portion of the labeled XFRM SID/label
3321 * then pass along the XFRM SID as it is the most
3322 * expressive */
3323 *peer_sid = xfrm_sid;
3324 out:
3325 rcu_read_unlock();
3326 return rc;
3327 }
3328
get_classes_callback(void * k,void * d,void * args)3329 static int get_classes_callback(void *k, void *d, void *args)
3330 {
3331 struct class_datum *datum = d;
3332 char *name = k, **classes = args;
3333 u32 value = datum->value - 1;
3334
3335 classes[value] = kstrdup(name, GFP_ATOMIC);
3336 if (!classes[value])
3337 return -ENOMEM;
3338
3339 return 0;
3340 }
3341
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3342 int security_get_classes(struct selinux_policy *policy,
3343 char ***classes, u32 *nclasses)
3344 {
3345 struct policydb *policydb;
3346 int rc;
3347
3348 policydb = &policy->policydb;
3349
3350 rc = -ENOMEM;
3351 *nclasses = policydb->p_classes.nprim;
3352 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3353 if (!*classes)
3354 goto out;
3355
3356 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3357 *classes);
3358 if (rc) {
3359 u32 i;
3360
3361 for (i = 0; i < *nclasses; i++)
3362 kfree((*classes)[i]);
3363 kfree(*classes);
3364 }
3365
3366 out:
3367 return rc;
3368 }
3369
get_permissions_callback(void * k,void * d,void * args)3370 static int get_permissions_callback(void *k, void *d, void *args)
3371 {
3372 struct perm_datum *datum = d;
3373 char *name = k, **perms = args;
3374 u32 value = datum->value - 1;
3375
3376 perms[value] = kstrdup(name, GFP_ATOMIC);
3377 if (!perms[value])
3378 return -ENOMEM;
3379
3380 return 0;
3381 }
3382
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3383 int security_get_permissions(struct selinux_policy *policy,
3384 const char *class, char ***perms, u32 *nperms)
3385 {
3386 struct policydb *policydb;
3387 u32 i;
3388 int rc;
3389 struct class_datum *match;
3390
3391 policydb = &policy->policydb;
3392
3393 rc = -EINVAL;
3394 match = symtab_search(&policydb->p_classes, class);
3395 if (!match) {
3396 pr_err("SELinux: %s: unrecognized class %s\n",
3397 __func__, class);
3398 goto out;
3399 }
3400
3401 rc = -ENOMEM;
3402 *nperms = match->permissions.nprim;
3403 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3404 if (!*perms)
3405 goto out;
3406
3407 if (match->comdatum) {
3408 rc = hashtab_map(&match->comdatum->permissions.table,
3409 get_permissions_callback, *perms);
3410 if (rc)
3411 goto err;
3412 }
3413
3414 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3415 *perms);
3416 if (rc)
3417 goto err;
3418
3419 out:
3420 return rc;
3421
3422 err:
3423 for (i = 0; i < *nperms; i++)
3424 kfree((*perms)[i]);
3425 kfree(*perms);
3426 return rc;
3427 }
3428
security_get_reject_unknown(void)3429 int security_get_reject_unknown(void)
3430 {
3431 struct selinux_policy *policy;
3432 int value;
3433
3434 if (!selinux_initialized())
3435 return 0;
3436
3437 rcu_read_lock();
3438 policy = rcu_dereference(selinux_state.policy);
3439 value = policy->policydb.reject_unknown;
3440 rcu_read_unlock();
3441 return value;
3442 }
3443
security_get_allow_unknown(void)3444 int security_get_allow_unknown(void)
3445 {
3446 struct selinux_policy *policy;
3447 int value;
3448
3449 if (!selinux_initialized())
3450 return 0;
3451
3452 rcu_read_lock();
3453 policy = rcu_dereference(selinux_state.policy);
3454 value = policy->policydb.allow_unknown;
3455 rcu_read_unlock();
3456 return value;
3457 }
3458
3459 /**
3460 * security_policycap_supported - Check for a specific policy capability
3461 * @req_cap: capability
3462 *
3463 * Description:
3464 * This function queries the currently loaded policy to see if it supports the
3465 * capability specified by @req_cap. Returns true (1) if the capability is
3466 * supported, false (0) if it isn't supported.
3467 *
3468 */
security_policycap_supported(unsigned int req_cap)3469 int security_policycap_supported(unsigned int req_cap)
3470 {
3471 struct selinux_policy *policy;
3472 int rc;
3473
3474 if (!selinux_initialized())
3475 return 0;
3476
3477 rcu_read_lock();
3478 policy = rcu_dereference(selinux_state.policy);
3479 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3480 rcu_read_unlock();
3481
3482 return rc;
3483 }
3484
3485 struct selinux_audit_rule {
3486 u32 au_seqno;
3487 struct context au_ctxt;
3488 };
3489
selinux_audit_rule_free(void * vrule)3490 void selinux_audit_rule_free(void *vrule)
3491 {
3492 struct selinux_audit_rule *rule = vrule;
3493
3494 if (rule) {
3495 context_destroy(&rule->au_ctxt);
3496 kfree(rule);
3497 }
3498 }
3499
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3500 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3501 gfp_t gfp)
3502 {
3503 struct selinux_state *state = &selinux_state;
3504 struct selinux_policy *policy;
3505 struct policydb *policydb;
3506 struct selinux_audit_rule *tmprule;
3507 struct role_datum *roledatum;
3508 struct type_datum *typedatum;
3509 struct user_datum *userdatum;
3510 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3511 int rc = 0;
3512
3513 *rule = NULL;
3514
3515 if (!selinux_initialized())
3516 return -EOPNOTSUPP;
3517
3518 switch (field) {
3519 case AUDIT_SUBJ_USER:
3520 case AUDIT_SUBJ_ROLE:
3521 case AUDIT_SUBJ_TYPE:
3522 case AUDIT_OBJ_USER:
3523 case AUDIT_OBJ_ROLE:
3524 case AUDIT_OBJ_TYPE:
3525 /* only 'equals' and 'not equals' fit user, role, and type */
3526 if (op != Audit_equal && op != Audit_not_equal)
3527 return -EINVAL;
3528 break;
3529 case AUDIT_SUBJ_SEN:
3530 case AUDIT_SUBJ_CLR:
3531 case AUDIT_OBJ_LEV_LOW:
3532 case AUDIT_OBJ_LEV_HIGH:
3533 /* we do not allow a range, indicated by the presence of '-' */
3534 if (strchr(rulestr, '-'))
3535 return -EINVAL;
3536 break;
3537 default:
3538 /* only the above fields are valid */
3539 return -EINVAL;
3540 }
3541
3542 tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3543 if (!tmprule)
3544 return -ENOMEM;
3545 context_init(&tmprule->au_ctxt);
3546
3547 rcu_read_lock();
3548 policy = rcu_dereference(state->policy);
3549 policydb = &policy->policydb;
3550 tmprule->au_seqno = policy->latest_granting;
3551 switch (field) {
3552 case AUDIT_SUBJ_USER:
3553 case AUDIT_OBJ_USER:
3554 userdatum = symtab_search(&policydb->p_users, rulestr);
3555 if (!userdatum) {
3556 rc = -EINVAL;
3557 goto err;
3558 }
3559 tmprule->au_ctxt.user = userdatum->value;
3560 break;
3561 case AUDIT_SUBJ_ROLE:
3562 case AUDIT_OBJ_ROLE:
3563 roledatum = symtab_search(&policydb->p_roles, rulestr);
3564 if (!roledatum) {
3565 rc = -EINVAL;
3566 goto err;
3567 }
3568 tmprule->au_ctxt.role = roledatum->value;
3569 break;
3570 case AUDIT_SUBJ_TYPE:
3571 case AUDIT_OBJ_TYPE:
3572 typedatum = symtab_search(&policydb->p_types, rulestr);
3573 if (!typedatum) {
3574 rc = -EINVAL;
3575 goto err;
3576 }
3577 tmprule->au_ctxt.type = typedatum->value;
3578 break;
3579 case AUDIT_SUBJ_SEN:
3580 case AUDIT_SUBJ_CLR:
3581 case AUDIT_OBJ_LEV_LOW:
3582 case AUDIT_OBJ_LEV_HIGH:
3583 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3584 GFP_ATOMIC);
3585 if (rc)
3586 goto err;
3587 break;
3588 }
3589 rcu_read_unlock();
3590
3591 *rule = tmprule;
3592 return 0;
3593
3594 err:
3595 rcu_read_unlock();
3596 selinux_audit_rule_free(tmprule);
3597 *rule = NULL;
3598 return rc;
3599 }
3600
3601 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3602 int selinux_audit_rule_known(struct audit_krule *rule)
3603 {
3604 u32 i;
3605
3606 for (i = 0; i < rule->field_count; i++) {
3607 struct audit_field *f = &rule->fields[i];
3608 switch (f->type) {
3609 case AUDIT_SUBJ_USER:
3610 case AUDIT_SUBJ_ROLE:
3611 case AUDIT_SUBJ_TYPE:
3612 case AUDIT_SUBJ_SEN:
3613 case AUDIT_SUBJ_CLR:
3614 case AUDIT_OBJ_USER:
3615 case AUDIT_OBJ_ROLE:
3616 case AUDIT_OBJ_TYPE:
3617 case AUDIT_OBJ_LEV_LOW:
3618 case AUDIT_OBJ_LEV_HIGH:
3619 return 1;
3620 }
3621 }
3622
3623 return 0;
3624 }
3625
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3626 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3627 {
3628 struct selinux_state *state = &selinux_state;
3629 struct selinux_policy *policy;
3630 struct context *ctxt;
3631 struct mls_level *level;
3632 struct selinux_audit_rule *rule = vrule;
3633 int match = 0;
3634
3635 if (unlikely(!rule)) {
3636 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3637 return -ENOENT;
3638 }
3639
3640 if (!selinux_initialized())
3641 return 0;
3642
3643 rcu_read_lock();
3644
3645 policy = rcu_dereference(state->policy);
3646
3647 if (rule->au_seqno < policy->latest_granting) {
3648 match = -ESTALE;
3649 goto out;
3650 }
3651
3652 ctxt = sidtab_search(policy->sidtab, sid);
3653 if (unlikely(!ctxt)) {
3654 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3655 sid);
3656 match = -ENOENT;
3657 goto out;
3658 }
3659
3660 /* a field/op pair that is not caught here will simply fall through
3661 without a match */
3662 switch (field) {
3663 case AUDIT_SUBJ_USER:
3664 case AUDIT_OBJ_USER:
3665 switch (op) {
3666 case Audit_equal:
3667 match = (ctxt->user == rule->au_ctxt.user);
3668 break;
3669 case Audit_not_equal:
3670 match = (ctxt->user != rule->au_ctxt.user);
3671 break;
3672 }
3673 break;
3674 case AUDIT_SUBJ_ROLE:
3675 case AUDIT_OBJ_ROLE:
3676 switch (op) {
3677 case Audit_equal:
3678 match = (ctxt->role == rule->au_ctxt.role);
3679 break;
3680 case Audit_not_equal:
3681 match = (ctxt->role != rule->au_ctxt.role);
3682 break;
3683 }
3684 break;
3685 case AUDIT_SUBJ_TYPE:
3686 case AUDIT_OBJ_TYPE:
3687 switch (op) {
3688 case Audit_equal:
3689 match = (ctxt->type == rule->au_ctxt.type);
3690 break;
3691 case Audit_not_equal:
3692 match = (ctxt->type != rule->au_ctxt.type);
3693 break;
3694 }
3695 break;
3696 case AUDIT_SUBJ_SEN:
3697 case AUDIT_SUBJ_CLR:
3698 case AUDIT_OBJ_LEV_LOW:
3699 case AUDIT_OBJ_LEV_HIGH:
3700 level = ((field == AUDIT_SUBJ_SEN ||
3701 field == AUDIT_OBJ_LEV_LOW) ?
3702 &ctxt->range.level[0] : &ctxt->range.level[1]);
3703 switch (op) {
3704 case Audit_equal:
3705 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3706 level);
3707 break;
3708 case Audit_not_equal:
3709 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3710 level);
3711 break;
3712 case Audit_lt:
3713 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3714 level) &&
3715 !mls_level_eq(&rule->au_ctxt.range.level[0],
3716 level));
3717 break;
3718 case Audit_le:
3719 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3720 level);
3721 break;
3722 case Audit_gt:
3723 match = (mls_level_dom(level,
3724 &rule->au_ctxt.range.level[0]) &&
3725 !mls_level_eq(level,
3726 &rule->au_ctxt.range.level[0]));
3727 break;
3728 case Audit_ge:
3729 match = mls_level_dom(level,
3730 &rule->au_ctxt.range.level[0]);
3731 break;
3732 }
3733 }
3734
3735 out:
3736 rcu_read_unlock();
3737 return match;
3738 }
3739
aurule_avc_callback(u32 event)3740 static int aurule_avc_callback(u32 event)
3741 {
3742 if (event == AVC_CALLBACK_RESET)
3743 return audit_update_lsm_rules();
3744 return 0;
3745 }
3746
aurule_init(void)3747 static int __init aurule_init(void)
3748 {
3749 int err;
3750
3751 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3752 if (err)
3753 panic("avc_add_callback() failed, error %d\n", err);
3754
3755 return err;
3756 }
3757 __initcall(aurule_init);
3758
3759 #ifdef CONFIG_NETLABEL
3760 /**
3761 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3762 * @secattr: the NetLabel packet security attributes
3763 * @sid: the SELinux SID
3764 *
3765 * Description:
3766 * Attempt to cache the context in @ctx, which was derived from the packet in
3767 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3768 * already been initialized.
3769 *
3770 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3771 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3772 u32 sid)
3773 {
3774 u32 *sid_cache;
3775
3776 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3777 if (sid_cache == NULL)
3778 return;
3779 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3780 if (secattr->cache == NULL) {
3781 kfree(sid_cache);
3782 return;
3783 }
3784
3785 *sid_cache = sid;
3786 secattr->cache->free = kfree;
3787 secattr->cache->data = sid_cache;
3788 secattr->flags |= NETLBL_SECATTR_CACHE;
3789 }
3790
3791 /**
3792 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3793 * @secattr: the NetLabel packet security attributes
3794 * @sid: the SELinux SID
3795 *
3796 * Description:
3797 * Convert the given NetLabel security attributes in @secattr into a
3798 * SELinux SID. If the @secattr field does not contain a full SELinux
3799 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3800 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3801 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3802 * conversion for future lookups. Returns zero on success, negative values on
3803 * failure.
3804 *
3805 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3806 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3807 u32 *sid)
3808 {
3809 struct selinux_policy *policy;
3810 struct policydb *policydb;
3811 struct sidtab *sidtab;
3812 int rc;
3813 struct context *ctx;
3814 struct context ctx_new;
3815
3816 if (!selinux_initialized()) {
3817 *sid = SECSID_NULL;
3818 return 0;
3819 }
3820
3821 retry:
3822 rc = 0;
3823 rcu_read_lock();
3824 policy = rcu_dereference(selinux_state.policy);
3825 policydb = &policy->policydb;
3826 sidtab = policy->sidtab;
3827
3828 if (secattr->flags & NETLBL_SECATTR_CACHE)
3829 *sid = *(u32 *)secattr->cache->data;
3830 else if (secattr->flags & NETLBL_SECATTR_SECID)
3831 *sid = secattr->attr.secid;
3832 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3833 rc = -EIDRM;
3834 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3835 if (ctx == NULL)
3836 goto out;
3837
3838 context_init(&ctx_new);
3839 ctx_new.user = ctx->user;
3840 ctx_new.role = ctx->role;
3841 ctx_new.type = ctx->type;
3842 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3843 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3844 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3845 if (rc)
3846 goto out;
3847 }
3848 rc = -EIDRM;
3849 if (!mls_context_isvalid(policydb, &ctx_new)) {
3850 ebitmap_destroy(&ctx_new.range.level[0].cat);
3851 goto out;
3852 }
3853
3854 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3855 ebitmap_destroy(&ctx_new.range.level[0].cat);
3856 if (rc == -ESTALE) {
3857 rcu_read_unlock();
3858 goto retry;
3859 }
3860 if (rc)
3861 goto out;
3862
3863 security_netlbl_cache_add(secattr, *sid);
3864 } else
3865 *sid = SECSID_NULL;
3866
3867 out:
3868 rcu_read_unlock();
3869 return rc;
3870 }
3871
3872 /**
3873 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3874 * @sid: the SELinux SID
3875 * @secattr: the NetLabel packet security attributes
3876 *
3877 * Description:
3878 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3879 * Returns zero on success, negative values on failure.
3880 *
3881 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3882 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3883 {
3884 struct selinux_policy *policy;
3885 struct policydb *policydb;
3886 int rc;
3887 struct context *ctx;
3888
3889 if (!selinux_initialized())
3890 return 0;
3891
3892 rcu_read_lock();
3893 policy = rcu_dereference(selinux_state.policy);
3894 policydb = &policy->policydb;
3895
3896 rc = -ENOENT;
3897 ctx = sidtab_search(policy->sidtab, sid);
3898 if (ctx == NULL)
3899 goto out;
3900
3901 rc = -ENOMEM;
3902 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3903 GFP_ATOMIC);
3904 if (secattr->domain == NULL)
3905 goto out;
3906
3907 secattr->attr.secid = sid;
3908 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3909 mls_export_netlbl_lvl(policydb, ctx, secattr);
3910 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3911 out:
3912 rcu_read_unlock();
3913 return rc;
3914 }
3915 #endif /* CONFIG_NETLABEL */
3916
3917 /**
3918 * __security_read_policy - read the policy.
3919 * @policy: SELinux policy
3920 * @data: binary policy data
3921 * @len: length of data in bytes
3922 *
3923 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3924 static int __security_read_policy(struct selinux_policy *policy,
3925 void *data, size_t *len)
3926 {
3927 int rc;
3928 struct policy_file fp;
3929
3930 fp.data = data;
3931 fp.len = *len;
3932
3933 rc = policydb_write(&policy->policydb, &fp);
3934 if (rc)
3935 return rc;
3936
3937 *len = (unsigned long)fp.data - (unsigned long)data;
3938 return 0;
3939 }
3940
3941 /**
3942 * security_read_policy - read the policy.
3943 * @data: binary policy data
3944 * @len: length of data in bytes
3945 *
3946 */
security_read_policy(void ** data,size_t * len)3947 int security_read_policy(void **data, size_t *len)
3948 {
3949 struct selinux_state *state = &selinux_state;
3950 struct selinux_policy *policy;
3951
3952 policy = rcu_dereference_protected(
3953 state->policy, lockdep_is_held(&state->policy_mutex));
3954 if (!policy)
3955 return -EINVAL;
3956
3957 *len = policy->policydb.len;
3958 *data = vmalloc_user(*len);
3959 if (!*data)
3960 return -ENOMEM;
3961
3962 return __security_read_policy(policy, *data, len);
3963 }
3964
3965 /**
3966 * security_read_state_kernel - read the policy.
3967 * @data: binary policy data
3968 * @len: length of data in bytes
3969 *
3970 * Allocates kernel memory for reading SELinux policy.
3971 * This function is for internal use only and should not
3972 * be used for returning data to user space.
3973 *
3974 * This function must be called with policy_mutex held.
3975 */
security_read_state_kernel(void ** data,size_t * len)3976 int security_read_state_kernel(void **data, size_t *len)
3977 {
3978 int err;
3979 struct selinux_state *state = &selinux_state;
3980 struct selinux_policy *policy;
3981
3982 policy = rcu_dereference_protected(
3983 state->policy, lockdep_is_held(&state->policy_mutex));
3984 if (!policy)
3985 return -EINVAL;
3986
3987 *len = policy->policydb.len;
3988 *data = vmalloc(*len);
3989 if (!*data)
3990 return -ENOMEM;
3991
3992 err = __security_read_policy(policy, *data, len);
3993 if (err) {
3994 vfree(*data);
3995 *data = NULL;
3996 *len = 0;
3997 }
3998 return err;
3999 }
4000