1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
4 * Provides Bus interface for MIIM regs
5 *
6 * Author: Andy Fleming <afleming@freescale.com>
7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
8 *
9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
10 *
11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/platform_device.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/module.h>
21 #include <linux/mii.h>
22 #include <linux/of_address.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_device.h>
25
26 #include <asm/io.h>
27 #if IS_ENABLED(CONFIG_UCC_GETH)
28 #include <soc/fsl/qe/ucc.h>
29 #endif
30
31 #include "gianfar.h"
32
33 #define MIIMIND_BUSY 0x00000001
34 #define MIIMIND_NOTVALID 0x00000004
35 #define MIIMCFG_INIT_VALUE 0x00000007
36 #define MIIMCFG_RESET 0x80000000
37
38 #define MII_READ_COMMAND 0x00000001
39
40 struct fsl_pq_mii {
41 u32 miimcfg; /* MII management configuration reg */
42 u32 miimcom; /* MII management command reg */
43 u32 miimadd; /* MII management address reg */
44 u32 miimcon; /* MII management control reg */
45 u32 miimstat; /* MII management status reg */
46 u32 miimind; /* MII management indication reg */
47 };
48
49 struct fsl_pq_mdio {
50 u8 res1[16];
51 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/
52 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/
53 u8 res2[4];
54 u32 emapm; /* MDIO Event mapping register (for etsec2)*/
55 u8 res3[1280];
56 struct fsl_pq_mii mii;
57 u8 res4[28];
58 u32 utbipar; /* TBI phy address reg (only on UCC) */
59 u8 res5[2728];
60 } __packed;
61
62 /* Number of microseconds to wait for an MII register to respond */
63 #define MII_TIMEOUT 1000
64
65 struct fsl_pq_mdio_priv {
66 void __iomem *map;
67 struct fsl_pq_mii __iomem *regs;
68 };
69
70 /*
71 * Per-device-type data. Each type of device tree node that we support gets
72 * one of these.
73 *
74 * @mii_offset: the offset of the MII registers within the memory map of the
75 * node. Some nodes define only the MII registers, and some define the whole
76 * MAC (which includes the MII registers).
77 *
78 * @get_tbipa: determines the address of the TBIPA register
79 *
80 * @ucc_configure: a special function for extra QE configuration
81 */
82 struct fsl_pq_mdio_data {
83 unsigned int mii_offset; /* offset of the MII registers */
84 uint32_t __iomem * (*get_tbipa)(void __iomem *p);
85 void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
86 };
87
88 /*
89 * Write value to the PHY at mii_id at register regnum, on the bus attached
90 * to the local interface, which may be different from the generic mdio bus
91 * (tied to a single interface), waiting until the write is done before
92 * returning. This is helpful in programming interfaces like the TBI which
93 * control interfaces like onchip SERDES and are always tied to the local
94 * mdio pins, which may not be the same as system mdio bus, used for
95 * controlling the external PHYs, for example.
96 */
fsl_pq_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)97 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
98 u16 value)
99 {
100 struct fsl_pq_mdio_priv *priv = bus->priv;
101 struct fsl_pq_mii __iomem *regs = priv->regs;
102 unsigned int timeout;
103
104 /* Set the PHY address and the register address we want to write */
105 iowrite32be((mii_id << 8) | regnum, ®s->miimadd);
106
107 /* Write out the value we want */
108 iowrite32be(value, ®s->miimcon);
109
110 /* Wait for the transaction to finish */
111 timeout = MII_TIMEOUT;
112 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) {
113 cpu_relax();
114 timeout--;
115 }
116
117 return timeout ? 0 : -ETIMEDOUT;
118 }
119
120 /*
121 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
122 * Clears miimcom first.
123 *
124 * All PHY operation done on the bus attached to the local interface, which
125 * may be different from the generic mdio bus. This is helpful in programming
126 * interfaces like the TBI which, in turn, control interfaces like on-chip
127 * SERDES and are always tied to the local mdio pins, which may not be the
128 * same as system mdio bus, used for controlling the external PHYs, for eg.
129 */
fsl_pq_mdio_read(struct mii_bus * bus,int mii_id,int regnum)130 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
131 {
132 struct fsl_pq_mdio_priv *priv = bus->priv;
133 struct fsl_pq_mii __iomem *regs = priv->regs;
134 unsigned int timeout;
135 u16 value;
136
137 /* Set the PHY address and the register address we want to read */
138 iowrite32be((mii_id << 8) | regnum, ®s->miimadd);
139
140 /* Clear miimcom, and then initiate a read */
141 iowrite32be(0, ®s->miimcom);
142 iowrite32be(MII_READ_COMMAND, ®s->miimcom);
143
144 /* Wait for the transaction to finish, normally less than 100us */
145 timeout = MII_TIMEOUT;
146 while ((ioread32be(®s->miimind) &
147 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
148 cpu_relax();
149 timeout--;
150 }
151
152 if (!timeout)
153 return -ETIMEDOUT;
154
155 /* Grab the value of the register from miimstat */
156 value = ioread32be(®s->miimstat);
157
158 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
159 return value;
160 }
161
162 /* Reset the MIIM registers, and wait for the bus to free */
fsl_pq_mdio_reset(struct mii_bus * bus)163 static int fsl_pq_mdio_reset(struct mii_bus *bus)
164 {
165 struct fsl_pq_mdio_priv *priv = bus->priv;
166 struct fsl_pq_mii __iomem *regs = priv->regs;
167 unsigned int timeout;
168
169 mutex_lock(&bus->mdio_lock);
170
171 /* Reset the management interface */
172 iowrite32be(MIIMCFG_RESET, ®s->miimcfg);
173
174 /* Setup the MII Mgmt clock speed */
175 iowrite32be(MIIMCFG_INIT_VALUE, ®s->miimcfg);
176
177 /* Wait until the bus is free */
178 timeout = MII_TIMEOUT;
179 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) {
180 cpu_relax();
181 timeout--;
182 }
183
184 mutex_unlock(&bus->mdio_lock);
185
186 if (!timeout) {
187 dev_err(&bus->dev, "timeout waiting for MII bus\n");
188 return -EBUSY;
189 }
190
191 return 0;
192 }
193
194 #if IS_ENABLED(CONFIG_GIANFAR)
195 /*
196 * Return the TBIPA address, starting from the address
197 * of the mapped GFAR MDIO registers (struct gfar)
198 * This is mildly evil, but so is our hardware for doing this.
199 * Also, we have to cast back to struct gfar because of
200 * definition weirdness done in gianfar.h.
201 */
get_gfar_tbipa_from_mdio(void __iomem * p)202 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
203 {
204 struct gfar __iomem *enet_regs = p;
205
206 return &enet_regs->tbipa;
207 }
208
209 /*
210 * Return the TBIPA address, starting from the address
211 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
212 */
get_gfar_tbipa_from_mii(void __iomem * p)213 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
214 {
215 return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
216 }
217
218 /*
219 * Return the TBIPAR address for an eTSEC2 node
220 */
get_etsec_tbipa(void __iomem * p)221 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
222 {
223 return p;
224 }
225 #endif
226
227 #if IS_ENABLED(CONFIG_UCC_GETH)
228 /*
229 * Return the TBIPAR address for a QE MDIO node, starting from the address
230 * of the mapped MII registers (struct fsl_pq_mii)
231 */
get_ucc_tbipa(void __iomem * p)232 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
233 {
234 struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
235
236 return &mdio->utbipar;
237 }
238
239 /*
240 * Find the UCC node that controls the given MDIO node
241 *
242 * For some reason, the QE MDIO nodes are not children of the UCC devices
243 * that control them. Therefore, we need to scan all UCC nodes looking for
244 * the one that encompases the given MDIO node. We do this by comparing
245 * physical addresses. The 'start' and 'end' addresses of the MDIO node are
246 * passed, and the correct UCC node will cover the entire address range.
247 *
248 * This assumes that there is only one QE MDIO node in the entire device tree.
249 */
ucc_configure(phys_addr_t start,phys_addr_t end)250 static void ucc_configure(phys_addr_t start, phys_addr_t end)
251 {
252 static bool found_mii_master;
253 struct device_node *np = NULL;
254
255 if (found_mii_master)
256 return;
257
258 for_each_compatible_node(np, NULL, "ucc_geth") {
259 struct resource res;
260 const uint32_t *iprop;
261 uint32_t id;
262 int ret;
263
264 ret = of_address_to_resource(np, 0, &res);
265 if (ret < 0) {
266 pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
267 np);
268 continue;
269 }
270
271 /* if our mdio regs fall within this UCC regs range */
272 if ((start < res.start) || (end > res.end))
273 continue;
274
275 iprop = of_get_property(np, "cell-index", NULL);
276 if (!iprop) {
277 iprop = of_get_property(np, "device-id", NULL);
278 if (!iprop) {
279 pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
280 np);
281 continue;
282 }
283 }
284
285 id = be32_to_cpup(iprop);
286
287 /*
288 * cell-index and device-id for QE nodes are
289 * numbered from 1, not 0.
290 */
291 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
292 pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
293 np);
294 continue;
295 }
296
297 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
298 found_mii_master = true;
299 }
300 }
301
302 #endif
303
304 static const struct of_device_id fsl_pq_mdio_match[] = {
305 #if IS_ENABLED(CONFIG_GIANFAR)
306 {
307 .compatible = "fsl,gianfar-tbi",
308 .data = &(struct fsl_pq_mdio_data) {
309 .mii_offset = 0,
310 .get_tbipa = get_gfar_tbipa_from_mii,
311 },
312 },
313 {
314 .compatible = "fsl,gianfar-mdio",
315 .data = &(struct fsl_pq_mdio_data) {
316 .mii_offset = 0,
317 .get_tbipa = get_gfar_tbipa_from_mii,
318 },
319 },
320 {
321 .type = "mdio",
322 .compatible = "gianfar",
323 .data = &(struct fsl_pq_mdio_data) {
324 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
325 .get_tbipa = get_gfar_tbipa_from_mdio,
326 },
327 },
328 {
329 .compatible = "fsl,etsec2-tbi",
330 .data = &(struct fsl_pq_mdio_data) {
331 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
332 .get_tbipa = get_etsec_tbipa,
333 },
334 },
335 {
336 .compatible = "fsl,etsec2-mdio",
337 .data = &(struct fsl_pq_mdio_data) {
338 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
339 .get_tbipa = get_etsec_tbipa,
340 },
341 },
342 #endif
343 #if IS_ENABLED(CONFIG_UCC_GETH)
344 {
345 .compatible = "fsl,ucc-mdio",
346 .data = &(struct fsl_pq_mdio_data) {
347 .mii_offset = 0,
348 .get_tbipa = get_ucc_tbipa,
349 .ucc_configure = ucc_configure,
350 },
351 },
352 {
353 /* Legacy UCC MDIO node */
354 .type = "mdio",
355 .compatible = "ucc_geth_phy",
356 .data = &(struct fsl_pq_mdio_data) {
357 .mii_offset = 0,
358 .get_tbipa = get_ucc_tbipa,
359 .ucc_configure = ucc_configure,
360 },
361 },
362 #endif
363 /* No Kconfig option for Fman support yet */
364 {
365 .compatible = "fsl,fman-mdio",
366 .data = &(struct fsl_pq_mdio_data) {
367 .mii_offset = 0,
368 /* Fman TBI operations are handled elsewhere */
369 },
370 },
371
372 {},
373 };
374 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
375
set_tbipa(const u32 tbipa_val,struct platform_device * pdev,uint32_t __iomem * (* get_tbipa)(void __iomem *),void __iomem * reg_map,struct resource * reg_res)376 static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
377 uint32_t __iomem * (*get_tbipa)(void __iomem *),
378 void __iomem *reg_map, struct resource *reg_res)
379 {
380 struct device_node *np = pdev->dev.of_node;
381 uint32_t __iomem *tbipa;
382 bool tbipa_mapped;
383
384 tbipa = of_iomap(np, 1);
385 if (tbipa) {
386 tbipa_mapped = true;
387 } else {
388 tbipa_mapped = false;
389 tbipa = (*get_tbipa)(reg_map);
390
391 /*
392 * Add consistency check to make sure TBI is contained within
393 * the mapped range (not because we would get a segfault,
394 * rather to catch bugs in computing TBI address). Print error
395 * message but continue anyway.
396 */
397 if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
398 dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
399 ((void *)tbipa - reg_map) + 4);
400 }
401
402 iowrite32be(be32_to_cpu(tbipa_val), tbipa);
403
404 if (tbipa_mapped)
405 iounmap(tbipa);
406 }
407
fsl_pq_mdio_probe(struct platform_device * pdev)408 static int fsl_pq_mdio_probe(struct platform_device *pdev)
409 {
410 const struct of_device_id *id =
411 of_match_device(fsl_pq_mdio_match, &pdev->dev);
412 const struct fsl_pq_mdio_data *data;
413 struct device_node *np = pdev->dev.of_node;
414 struct resource res;
415 struct device_node *tbi;
416 struct fsl_pq_mdio_priv *priv;
417 struct mii_bus *new_bus;
418 int err;
419
420 if (!id) {
421 dev_err(&pdev->dev, "Failed to match device\n");
422 return -ENODEV;
423 }
424
425 data = id->data;
426
427 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
428
429 new_bus = mdiobus_alloc_size(sizeof(*priv));
430 if (!new_bus)
431 return -ENOMEM;
432
433 priv = new_bus->priv;
434 new_bus->name = "Freescale PowerQUICC MII Bus";
435 new_bus->read = &fsl_pq_mdio_read;
436 new_bus->write = &fsl_pq_mdio_write;
437 new_bus->reset = &fsl_pq_mdio_reset;
438
439 err = of_address_to_resource(np, 0, &res);
440 if (err < 0) {
441 dev_err(&pdev->dev, "could not obtain address information\n");
442 goto error;
443 }
444
445 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
446 (unsigned long long)res.start);
447
448 priv->map = of_iomap(np, 0);
449 if (!priv->map) {
450 err = -ENOMEM;
451 goto error;
452 }
453
454 /*
455 * Some device tree nodes represent only the MII registers, and
456 * others represent the MAC and MII registers. The 'mii_offset' field
457 * contains the offset of the MII registers inside the mapped register
458 * space.
459 */
460 if (data->mii_offset > resource_size(&res)) {
461 dev_err(&pdev->dev, "invalid register map\n");
462 err = -EINVAL;
463 goto error;
464 }
465 priv->regs = priv->map + data->mii_offset;
466
467 new_bus->parent = &pdev->dev;
468 platform_set_drvdata(pdev, new_bus);
469
470 if (data->get_tbipa) {
471 for_each_child_of_node(np, tbi) {
472 if (of_node_is_type(tbi, "tbi-phy")) {
473 dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
474 tbi);
475 break;
476 }
477 }
478
479 if (tbi) {
480 const u32 *prop = of_get_property(tbi, "reg", NULL);
481 if (!prop) {
482 dev_err(&pdev->dev,
483 "missing 'reg' property in node %pOF\n",
484 tbi);
485 err = -EBUSY;
486 goto error;
487 }
488 set_tbipa(*prop, pdev,
489 data->get_tbipa, priv->map, &res);
490 }
491 }
492
493 if (data->ucc_configure)
494 data->ucc_configure(res.start, res.end);
495
496 err = of_mdiobus_register(new_bus, np);
497 if (err) {
498 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
499 new_bus->name);
500 goto error;
501 }
502
503 return 0;
504
505 error:
506 if (priv->map)
507 iounmap(priv->map);
508
509 kfree(new_bus);
510
511 return err;
512 }
513
514
fsl_pq_mdio_remove(struct platform_device * pdev)515 static void fsl_pq_mdio_remove(struct platform_device *pdev)
516 {
517 struct device *device = &pdev->dev;
518 struct mii_bus *bus = dev_get_drvdata(device);
519 struct fsl_pq_mdio_priv *priv = bus->priv;
520
521 mdiobus_unregister(bus);
522
523 iounmap(priv->map);
524 mdiobus_free(bus);
525 }
526
527 static struct platform_driver fsl_pq_mdio_driver = {
528 .driver = {
529 .name = "fsl-pq_mdio",
530 .of_match_table = fsl_pq_mdio_match,
531 },
532 .probe = fsl_pq_mdio_probe,
533 .remove_new = fsl_pq_mdio_remove,
534 };
535
536 module_platform_driver(fsl_pq_mdio_driver);
537
538 MODULE_LICENSE("GPL");
539